
anipulate- nything: Automating Real-World
Robots using Vision-Language Models

Jiafei Duan∗
University of Washington

Kiana Ehsani
Allen Institute for AI

Wentao Yuan∗
University of Washington

Dieter Fox
University of Washington

NVIDIA

Wilbert Pumacay
Universidad Católica San Pablo

Ranjay Krishna
University of Washington

Allen Institute for AI

Yi Ru Wang
University of Washington

Abstract—Large-scale endeavors like RT-1[2] and widespread
community efforts such as Open-X-Embodiment [8] have con-
tributed to growing the scale of robot demonstration data.
However, there is still an opportunity to improve the quality,
quantity, and diversity of robot demonstration data. Although
vision-language models have been shown to automatically generate
demonstration data, their utility has been limited to environments
with privileged state information, they require hand-designed
skills, and are limited to interactions with few object instances. We
propose Manipulate-Anything, a scalable automated generation
method for real-world robotic manipulation. Unlike prior work,
our method can operate in real-world environments without
any privileged state information, hand-designed skills, and can
manipulate any static object. We evaluate our method using
two setups. First, Manipulate-Anything successfully generates
trajectories for all 5 real-world and 12 simulation tasks, signif-
icantly outperforming existing methods like VoxPoser. Second,
Manipulate-Anything’s demonstrations can train more robust be-
havior cloning policies than training with human demonstrations,
or from data generated by VoxPoser [22] and Code-As-Policies
[26]. We believe Manipulate-Anything can be the scalable method
for both generating data for robotics and solving novel tasks in
a zero-shot setting. Project page: robot-ma.github.io.

I. INTRODUCTION

The success of modern machine learning systems fun-
damentally relies on the quantity [24, 6, 19, 35, 34, 42],
quality [13, 50, 33, 32, 25], and diversity [12, 17, 41, 48, 5]
of the data they are trained on. The availability of large-scale
internet data made possible significant advances in vision and
language [9, 28, 36]. However, the dearth of data has prevented
similar advancements in robotics. Human demonstration col-
lection methods do not scale to sufficient quantity or diversity.
Projects like RT-1 [2] demonstrated the utility of high-quality
human data collected over 17 months. Others have developed
low-cost hardware for data collection [7, 43, 10]. However, all
these procedures require expensive human collection. In an
effort to diversify demonstration data, Open X-Embodiment
project collected 1 million trajectories collected through a
participatory effort by 34 research labs [8]. Despite the wide-
spread effort, the dataset only contains 20 tasks.

Automated data collection methods do not scale to suffi-
cient diversity. With the advent of vision-language models,
the robotics community has been abuz with new systems

that leverage VLMs to guide robotic behavior [39, 26, 44,
45, 22, 18, 31]. In these systems, VLMs decompose tasks
into language plans [39, 26] or generate code to execute
predefined skills [20, 22]. Though successful in simulation,
these methods underperform in the real world [20, 22]. Some
methods rely on privileged state information only available
in simulation [44, 18], require hand-designed skills [45]. or
are also limited to manipulating a fixed set of object instances
with known geometric shape [22, 20].

We propose Manipulate-Anything, a scalable automated
demonstration generation method for real-world robotic
manipulation. Manipulate-Anything produces high quality
data, at large-quantities (if needed), and can manipulate a
diverse set of objects to perform a diverse set of tasks. When
placed in a real world environment and given a task (e.g.,
“open the top drawer” in Figure 1), Manipulate-Anything
effectively leverages VLMs to guide a robotic arm to complete
the task. Unlike prior methods, it doesn’t need privileged
state information, hand-designed skills, or limited to specific
object instances. Not relying on privileged information makes
Manipulate-Anything environment-agnostic. Thus it can easily
generalized to the real world. Manipulate-Anything plans a
sequence of sub-goals and generates actions to excute the sub-
goals. It can verify whether the robot succeeded in the sub-goal
using a verifier and re-plan from the current state if needed. This
error recovery enables mistake identification, re-planning, and
recovering from failure. It also injects recovery behavior into
the collected demonstrations. We further enhanced the VLMs’
capabilities by incorporating reasoning from multi-viewpoints,
significantly improving performance.

We showcase the utility of Manipulate-Anything through two
evaluation setups. First, we show that it can be prompted with
a novel, never-before-seen task and complete it in a zero-shot
manner. We quantitatively evaluate across 5 real-world and 12
RLBench [23] simulation tasks and demonstrate capabilities
across many real-world everyday tasks (refer to supplementary).
Our method significantly outperforms VoxPoser [22] in 9/12
simulation tasks for zero-shot evaluation. It also generalizes to
tasks where VoxPoser completely fails because of its limitation
to specific object instances. Furthermore, we demonstrated

https://robot-ma.github.io/


Fig. 1: Manipulate-Anything is an automated method for robot manipulation in real world environments. Unlike prior methods,
it doesn’t require priviledged state information, hand-designed skills, or limited to manipulating a fixed number of object
instances. It can guide a robot to accomplish a diverse set of unseen tasks, manipulating diverse objects. Furthermore, the
generated data enables training behavior cloning policies that outperform training with human demonstrations.

that our approach can solve real-world manipulation tasks
in a zero-shot manner, achieving a task-averaged success
rate of 36%. Second, we show that Manipulate-Anything can
generate useful training data for a behavior cloning policy. We
compare Manipulate-Anything generated data against ground
truth human demonstrations as well as against data from
VoxPoser[22] and Code-As-Policies [26]. Surprisingly, policies
trained on our data outperforms even human data on 5 out
of 12 tasks and performs on par for 3 more. Meanwhile, the
baselines are unable to generate the training data for some of
tasks. Manipulate-Anything demonstrates the broad possibility
of large-scale deployment of robots across unstructured real-
world environments. It also highlights its utility as a training
data generator, aiding in the crucial goal of scaling up robot
demonstration data.

II. RELATED WORK

Manipulate-Anything enables scaling of robotic manipulation
data using . As such, we review recent efforts in 1) scaling
manipulation data, and 2) applications of VLMs in robotics.
Scaling manipulation data. When deploying vision and
language-based control policies for real-world applications, a
significant challenge revolves around acquiring data. Tradition-
ally, a convenient avenue to collect such trajectories is through
human annotations for action (i.e. through teleoperation) and
language labeling [38, 37, 3], however, this approach is limited
to scale. To address this limitation and achieve autonomous
scalability, prior works employ vision-language models or pro-
cedurally generate language annotations in simulated environ-
ments [18, 11]. For action labels, strategies range from random
exploration to learned policies [46]. While human egocentric
videos are relevant, they lack action labels and require cross-
embodiment transfer [16]. Another strategy involves model-

based policies, such as task and motion planning (TAMP)
[14]. Our approach extends these methods by incorporating
common-sense knowledge from large language models (LLMs)
and vision language models (VLMs), by providing a framework
which combines the strengths of VLMs, object pose prediction,
and dynamic retry to synthesize demonstrations in simulated
and real environments.
Language models for robotics. In the field of robotics, large
language models have found diverse applications, including
policy learning [47], task and motion planning [27, 21], log
summarization [30], policy program synthesis [26], and opti-
mization program generation [39]. Previous research has also
explored the physical grounding capabilities of these models
[22, 20], while ongoing work investigates their integration with
task and motion planners to create expert demonstrations [18].
[3] attempted to collect extensive real-world interaction data,
with short-horizon trajectories. [29] proposed a key-point based
visual prompting method for real-world manipulation, through
predicting affordances and corresponding motions. Our work
complements the existing line of works, by leveraging the
high-level planning capabilities of language models, scene
understanding capabilities of vision language models, and
action sampling, to enable synthesis of robot trajectories, which
include language, vision, and robot state, given arbitrary tasks
and environments.

A. Task plan generation

Manipulate-Anything takes as input any task described by a
free-form language instruction, T (e.g., ‘open the top drawer’).
Creating robot trajectories that adheres to T is challenging
due to its potential complexity and ambiguity, requiring a
nuanced understanding of the current environment state. Given
T, and an image of the scene, we apply a VLMs to first



identify task-relevant objects in the scene, appending them
to a list. Subsequently, We use a VLMs to decompose the
main task T into a series of discrete, smaller sub-goals,
represented as Ti, along with the corresponding verification
conditions vi, where i ranges from 1 to n. For the above
task, sub-goals include ‘grasp the drawer handle’ or ‘pull
open the drawer’, and verification conditions are ‘did the
robot grasp the handle?’ or ‘is the drawer opened?’. This
transforms the instruction T into a sequence of specific sub-
goals {(T1, v1), (T2, v2), . . . , (Tn, vn)}. For each sub-goal,
Manipulate-Anything generates desired actions (§ II-B) and
uses the corresponding verification condition for each sub-
goal to validate whether the generated actions result in the
successful completion of the sub-goal (§ II-C). This verification
step allows Manipulate-Anything to recover from mistakes and
attempt again in the case of failure.

B. Action generation module

Given a sub-goal, the desired output from the action gener-
ation module is a sequence of low-level actions represented
as a 6 DoF end-effector pose. The actions can be categorized
into two sets: agent-centric or object-centric. Agent-centric
actions modify the agent’s state; e.g., it can move the robot’s
end-effector from the current state (e.g., “rotate 90◦”). We
feed the VLMs with the current observation along with in-
context learning technique to write a code to synthesize the
desired motion. Unlike prior methods that use only language
models to generate code [26], our approach utilizes VLMs to
understand and reason about object locations and the scene,
which helps to ground the generation in the current state of the
scene. This advantage is demonstrated in the ablation studies
in the Appendix.

Object-centric actions require manipulating a certain object
(e.g., “grasp a knife”). We use an object-agnostic grasp
prediction model [49]. The grasp model generates all the
possible 6-DOF grasping poses in the scene. These poses are
not conditioned on the objects and could contain errors. From
the RGB-D image of the current state, we extract a raw 3D
point cloud. The point cloud is sent to the grasp model, which
predicts 6-DoF grasps placements across the scene. We then
further filter the proposed candidate grasp pose using VLMs
with in-context learning and condition it on the given task (e.g.,
if the task is “grasp a knife”, the VLMs will detect the handle
of the knife). Lastly, we use the detected bounding box to filter
and sample an ideal grasp pose.

A single view point might be insufficient to provide the
VLMs with enough information to perform the task (e.g., some
views might be occluded by the robot arm). Therefore, for both
agent-centric and objec-centric action generation, we render
multiple viewpoints of the scene and query VLMs to choose
an ideal viewpoint given the sub-task. For example, if the
task is to open a drawer, the view in which the handle of the
drawer is visible would be preferred. After the best view point
is chosen, the grasping poses can be filtered limited to the
poses visible in that view point or the code generation will
be conditioned on that image. After the action is generated, a

simple motion planner can be used to move the robot to the
desired pose as shown in detailed in Fig. 2.

C. Sub-goal verification

To ensure that each sub-goal Ti is executed correctly, we
introduce a -based verifier. After every action for each sub-
goal are executed, we use the VLMs to check if the end
state matches the verifier condition vi. Similar to the action
generation module, we use multi-view VLMs reasoning to find
the optimal view, avoiding errors due to occlusion or ambiguity
from a single viewpoint. If the verifier identifies failure, we
re-attempt the action generation step from the current state.
Otherwise, the next sub-goal Ti+1 is attempted. More details
of the implementation is in the Appendix.

III. EXPERIMENTS

Our experiments are designed to address two questions:
1) Can Manipulate-Anything accurately solve a diverse set
of tasks in a zero-shot manner? 2) Can data generated from
Manipulate-Anything be used to train a robust policy?
Implementation details. We use both GPT-4V and Qwen-
VL [1] as our . We use GPT-4V for task decomposition, action
generation, and verification. We use Qwen-VL to detect and
extract object information. To ensure zero-shot execution within
a reasonable budget, we limit the number of action steps in
each trajectory to 50 and the verification module allows a
maximum of 30 tries to accomplish a sub-goal. For the task
plan generation, we follow the prompting structure adapted
from ProgPrompt [39]. All prompts input into the VLMs are
accompanied by few-shot demonstrations [4]. Additionally, we
provide three manually curated primitive action code snippets as
examples to prompt the VLMs for new action code generation.
Full prompts are included in the Appendix. We use four view-
points M4 = [front, wrist, left_shoulder, right_shoulder]
for the simulation experiments, and re-render three viewpoints
for the real-world experiments [15]. For better reasoning by
the , we use a resolution of 256× 256.

A. Zero-shot Performance in Simulation

We empirically study the zero-shot capability of Manipulate-
Anything in solving 12 diverse tasks in simulation. Our
simulation experiments are reported to ensure reproducibility
and provide a benchmark for future methods.
Environment and tasks. The simulation is set up in Cop-
peliaSim and interfaced through PyRep. All simulation ex-
periments use a Franka Panda robot with a parallel gripper.
Input observations are captured from four RGB-D cameras
positioned around a tabletop setting. We use RLBench [23], a
robot learning benchmark with diverse tasks conditioned on
language and provided success conditions. We sample 12 tasks
from RLBench, covering a diverse range of action primitives,
task horizons, and object position perturbations. Each action
can be represented as a way-point, and the trajectories are
computed and executed via a motion planner using the Open
Motion Planning Library[40].



Fig. 2: Action Generation Module. Manipulate-Anything enables generation of two types of actions: object-centric and agent
centric. For object-centric actions which require manipulation of an object, we leverage a foundation grasp model to generate
all suitable grasps. Next, we leverage a VLM to detect the object from mult-view frames, and along with the candidate grasp
poses and target subgoal, query the VLMs to select the best view point. We filter and select the optimal grasp for the sub-goal.
For more agent-centric actions, the view-point selection process is the same, and the goal is to output code representing the
change in pose of the end-effector from the current frame.

TABLE I: Task-averaged success rate % for zero-shot evaluation. outperformed other baselines in 9 out of 12 simulation
tasks from RLBench [23]. Each task was evaluated over 3 seeds to obtain the task-averaged success rate and standard deviations.

Method Put_block Play_jenga Open_jar Close_box Open_box Pickup_cup

VoxPoser [22] 70.7±2.31 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 26.7±14.00

CAP [26] 84.00±16.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 14.67±4.62

MA (Ours) 96.00±4.00 77.33±6.11 80.00±4.00 33.33±12.86 29.00±10.07 82.67±14.04

Method Take_umbrella Sort_mustard Open_wine Lamp_on Put_knife Pick_&_lift

VoxPoser[22] 33.33±8.33 96.0±6.93 8.00±4.00 57.3±12.22 92.00±4.00 96.00±0.00

CAP[26] 4.00±4.00 0.00±0.00 0.00±0.00 64.00±6.93 14.67±8.33 100.00±0.00

MA (Ours) 61.33±20.13 64.00±6.93 42.00±4.00 69.33±6.11 52.00±10.58 84.00±6.93

Baselines. We compare against two state-of-the-art zero-
shot data generation approaches: Code-as-Policies (CAP) [26]
and VoxPoser [22]. CAP uses language models to generate
executable programs that call hand-crafted primitive actions.
VoxPoser [22] builds a 3D voxel map of value functions for
predicting waypoints. We provide both CAP and VoxPoser
with ground truth simulation state information of the target
object’s asset names or positions.

Results: Manipulate-Anything can generate successful
trajectories for all 12 tasks while VoxPoser and CAP
cover only 8 and 6 tasks, respectively (Table I). Without the
privileged state information, the baselines would not succeed
on any of the 12 tasks. Manipulate-Anything outperforms the
baselines in 9 out of the 12 tasks. The three tasks where
our method achieves lower performance require fine-grained
manipulation of objects, which are the hardest task without
the privileged state information used by baselines. VoxPoser
fails in the tasks that require moving the arm beyond 4-
DoF. Manipulate-Anything outperforms the strongest baseline,
VoxPoser, by an average task-averaged margin of up to 25%.

B. Behavior cloning with demonstrations from Manipulate-
Anything

Next, we analyze the quality of the generated data by
comparing the success rates of behavior cloning models trained
with the data. Zero-shot methods like Manipulate-Anything are
computationally expensive but hold the potential to generate
useful training data. To evaluate the quality and effectiveness
of the generated training data, we use the methods described
in the previous section to generate data for each task. We
also compare performance against a model trained on human-
generated demonstrations across the 12 tasks. We use the data
to train behavior cloning policies.
Data generation details. We generate 10 successful demonstra-
tions per task. We use the system’s success condition to filter for
successful demonstrations. Each of the demonstrations consist
of a language instruction, RGB-D frames for the trajectory,
and waypoints represented as 6 DoF gripper poses and states.
For the tasks that the baselines were unable to generate any
successful demonstrations, we patched the missing training
data with RLBench system-generated demonstrations.



Fig. 3: Manipulate-Anything is an open-vocabulary autonomous robot demonstration generation system. We show zero-shot
demonstrations for 12 tasks in simulation 5 tasks in the real world.

Training and evaluation protocol. Using the generated
demonstrations, we train a Perceiver-Actor (PerAct) model,
which is a transformer-based robotic manipulation behavior
cloning model [38]. The model expects tokenized voxel grids
and language instructions as inputs and predicts discretized
voxel grid 6 DoF poses and gripper states. For all the generated
training datasets, we train a multi-task PerAct policy with
a batch size of 4 for 30k iterations. To ensure consistent
evaluation, we generate one set of testing environments with
RLBench. We evaluate the last checkpoint from each of the
trained policies. Each policy is evaluated for 25 episodes across
each task using 3 different seeds. We measure the success rate
based on the simulation-defined success condition.

Results: Policies trained using Manipulate-Anything
data perform similarily to policies trained using human
demonstrations (p = 0.973) (Table II). Training on either
Manipulate-Anything or on human demonstrations results in
a performance difference of a mere 0.27% across all tasks.
Furthermore, models trained on data from the baselines exhibit
a statistically lower performance (p ≤ 0.01 for both VoxPoser
and CAP). One of the main factors potentially contributing to
the differences in the performance could be that Manipulate-
Anything generates diverse expert trajectories that are preferable
to humans. This can be seen in Fig. 4, which shows the action

distribution of the generated data by different methods for the
same given tasks. Additionally, our generated data recorded the
lowest Chamfer Distance (CD) of 0.056 with human-generated
demonstrations data. We also observed that the policy trained on
MA data achieves a lower standard deviation of 3.39 across all
tasks compared tozero-shot performance of 8.48. This suggests
the benefits of training over generated data instead of relying
solely on zero-shot deployment.

C. Real-world experiments

Finally, we evaluate Manipulate-Anything in the real world.
We also automatically generate real-world demonstrations for
training PerAct.

Environment and tasks. We employ a Franka Panda manip-
ulator equipped with a parallel gripper. We use a front-facing
Kinect 2 RGB-D camera. To generate multi-view inputs for the
Manipulate-Anything framework, we re-render virtual view-
points from the generated point cloud, similar to prior work [15].
We select 5 representative real world tasks: open_jar,
sort_objects, correct_dices, open_drawer, and
on_lamp, all conditioned on language instructions. We evalu-
ate each task for 10 episodes, with varying object poses across
3 trials of evaluation.
Data generation details. We used Manipulate-Anything to
generate 6 demonstrations for each task and manually perform



TABLE II: Behavior Cloning with different generated data. The behavior cloning policy trained on the data generated by
provides the best performance on 10 out of 12 tasks compared to the other autonomous data generation baselines. We report
the Success Rate % for behaviour cloning policies trained with data generated from VoxPoser [22] and Code as Policies [26]
in comparison. Note that the RLBench[23] baseline uses human expert demonstrations and is considered an upper bound for
behavior cloning.

Generated data Put_block Play_jenga Open_jar Close_box Open_box Pickup_cup

VoxPoser[22] 2.67±2.31 - - - - 4.00±4.00

CAP[26] 6.67±2.31 - - - - 14.67±12.86

MA (Ours) 85.33±10.07 81.33±2.31 21.33±10.07 42.67±8.33 30.67±11.55 54.00±12.49

RLBench[23] 20.00±18.33 81.33±9.24 58.67±45.49 68.00±24.98 14.67±6.11 54.67±23.09

Generated data Take_umbrella Sort_mustard Open_wine Lamp_on Put_knife Pick_&_lift

VoxPoser[22] 4.00±4.00 0.00±0.00 1.33±2.31 5.33±4.62 1.33±2.31 5.67±1.64

CAP[26] 13.33±10.06 - - 8.00±16.00 9.33±6.11 46.67±2.31

MA (Ours) 84.00±6.93 53.33±6.11 86.67±6.11 89.33±6.11 8.00±4.00 33.33±2.31

RLBench[23] 58.67±50.80 53.33±34.02 86.67±12.86 84.00±13.86 30.67±10.07 62.67±9.24

Fig. 4: Action Distribution for Generated Data: We compare the action distribution of data generated by various methods
against human-generated demonstrations via RLBench on the same set of tasks. We observed a high similarity between the
distribution of our generated data and thehuman-generated data. This is further supported by the computed CD between our
methods and the RLBench data, which yields the lowest (CD=0.056).

scene resets when failures occur. We train a similar multi-task
PerAct for 120k iterations and evaluate the trained policies in
a manner similar to the zero-shot experiments.
Results: Manipulate-Anything is able to generate successful
demonstrations for each of the 5 real world tasks. Even
for the worst-performing task, Manipulate-Anything achieves
a success rate of more than 25%. Our approach outperforms
CAP by 38%. Consistent with the simulation results, training
with the data generated by Manipulate-Anything produces
a more robust policy compared to performing zero-shot.
Additionally, in 4 out of 5 tasks, the trained policies perform
better than the zero-shot approach. The policy underperforms
on the sort_object task, because it requires longer-horizon
memory —a known limitation pointed out in PerAct [38].

D. Ablations

For effective real-world deployment of Manipulate-Anything,
it’s crucial that the collected data supports scaling of robotics
transformers and offers diverse skills and interacted objects.
We conducted an ablation study to evaluate the quality

of Manipulate-Anything-generated data for scaling and its
generalization to language instruction changes. For scaling, we
generated behavior cloning data, ranging from 1 to 100 training
demonstrations from RLBench and Manipulate-Anything for
a single task, and trained a PerAct policy. For generalization,
we varied the sort_mustard task with different language
instructions and target objects. We compared our approach
to VoxPoser to assess robustness to object and language
instruction changes. Further implementation details are in
the supplementary materials. Result: Our scaling experiments
demonstrate that generating more training data via Manipulate-
Anything improves PerAct policy performance (Fig. 5). The
data from our approach shows a better rate of change with a
slope of 0.503 for a linear fit, compared to 0.197 for RLBench-
generated data. Additionally, Manipulate-Anything data is
more generalizable and robust to language instruction changes,
outperforming VoxPoser in task success across language and
object variations. Detailed results in the appendix.



TABLE III: Real-world Results. The model trained on the data generated by our model in the real world (no expert in the
loop) demonstrates on par results with the model trained on human expert collected data. We present a comparison of success
rates for task completion in a zero-shot manner (Code as Policies [26] and ), and using trained policies from data and human
expert data.

Open_drawer Sort_object On_lamp Open_jar Correct_dice

CAP (0-shot) 0.00± 0.00 13.33± 5.77 0.00± 0.00 6.67± 5.77 6.67± 5.77
MA (0-shot) 36.67±5.77 60.00±10.00 26.67±11.55 40.00±10.00 53.33±5.77

PerAct (MA data) 50.00± 0.00 33.33± 5.77 46.67± 5.77 56.67± 5.77 60.00± 0.00
PerAct (Human data) 53.33±11.55 36.67±5.77 60.00±0.00 76.67±5.77 80.00±10.00

Fig. 5: Scaling experiment. Scaling effect of model perfor-
mance with increasing training demonstrations.

IV. DISCUSSION

Limitations. Manipulate-Anything relies on the availability
of . While this can pose a dependence on the foundational
models with the rise of the open , we believe this issue
will be addressed soon. Future work. With the enhance-
ments of large foundational models, Manipulate-Anything,
due to its modularity, will continue to grow and scale up
to more complex tasks. Conclusion. Manipulate-Anything is a
scalable environment-agnostic approach for generating 0-shot
demonstration for robotic tasks without the use of privileged
environment information. Manipulate-Anything uses VLMs to
do high level planning and scene understanding and is capable
of error recovery. This enables high quality data generation
for behavior cloning that can achieve better performance that
using human data.

REFERENCES

[1] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A frontier large vision-language model
with versatile abilities. arXiv preprint arXiv:2308.12966,
2023.

[2] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

[3] Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian Ibarz,
Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not
as i say: Grounding language in robotic affordances. In
Conference on Robot Learning, pages 287–318. PMLR,
2023.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

[5] Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf,
Amirkeivan Mohtashami, et al. Meditron-70b: Scaling
medical pretraining for large language models. arXiv
preprint arXiv:2311.16079, 2023.

[6] Mehdi Cherti, Romain Beaumont, Ross Wightman,
Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev.
Reproducible scaling laws for contrastive language-image
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2818–
2829, 2023.

[7] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau,
Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and
Shuran Song. Universal manipulation interface: In-the-
wild robot teaching without in-the-wild robots. arXiv
preprint arXiv:2402.10329, 2024.

[8] Open X-Embodiment Collaboration. Open X-
Embodiment: Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[10] Jiafei Duan, Yi Ru Wang, Mohit Shridhar, Dieter Fox,
and Ranjay Krishna. Ar2-d2: Training a robot without a

https://arxiv.org/abs/2310.08864


robot. arXiv preprint arXiv:2306.13818, 2023.
[11] Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Sal-

vador, Luca Weihs, Kuo-Hao Zeng, Kunal Pratap Singh,
Yejin Kim, Winson Han, Alvaro Herrasti, et al. Imitating
shortest paths in simulation enables effective navigation
and manipulation in the real world. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

[12] Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao
Wan, Vaishaal Shankar, Achal Dave, and Ludwig Schmidt.
Data determines distributional robustness in contrastive
language image pre-training (clip). In International
Conference on Machine Learning, pages 6216–6234.
PMLR, 2022.

[13] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang,
Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan
Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang,
et al. Datacomp: In search of the next generation of
multimodal datasets. Advances in Neural Information
Processing Systems, 36, 2024.

[14] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Integrated task and motion planning.
Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[15] Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei
Chao, and Dieter Fox. Rvt: Robotic view transformer for
3d object manipulation. In Conference on Robot Learning,
pages 694–710. PMLR, 2023.

[16] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson
Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al.
Ego4d: Around the world in 3,000 hours of egocentric
video. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18995–
19012, 2022.

[17] Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt
language models to domains and tasks. arXiv preprint
arXiv:2004.10964, 2020.

[18] Huy Ha, Pete Florence, and Shuran Song. Scaling up and
distilling down: Language-guided robot skill acquisition.
arXiv preprint arXiv:2307.14535, 2023.

[19] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, et al. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556, 2022.

[20] Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang,
and Yang Gao. Copa: General robotic manipulation
through spatial constraints of parts with foundation
models. arXiv preprint arXiv:2403.08248, 2024.

[21] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. Inner monologue:

Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[22] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. arXiv preprint arXiv:2307.05973, 2023.

[23] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J Davison. Rlbench: The robot learning benchmark
& learning environment. IEEE Robotics and Automation
Letters, 5(2):3019–3026, 2020.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020.

[25] Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and
Nicholas Carlini. Deduplicating training data makes
language models better. arXiv preprint arXiv:2107.06499,
2021.

[26] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for embodied
control. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 9493–9500. IEEE,
2023.

[27] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco
Pavone, and Jeannette Bohg. Text2motion: From natural
language instructions to feasible plans, 2023.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in
context. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[29] Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey
Levine. Moka: Open-vocabulary robotic manipulation
through mark-based visual prompting. arXiv preprint
arXiv:2403.03174, 2024.

[30] Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect:
Summarizing robot experiences for failure explanation
and correction, 2023.

[31] Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao,
Jacky Liang, Ishita Dasgupta, Annie Xie, Danny Driess,
Ayzaan Wahid, Zhuo Xu, Quan Vuong, Tingnan Zhang,
Tsang-Wei Edward Lee, Kuang-Huei Lee, Peng Xu,
Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman,
Nicolas Heess, Chelsea Finn, Sergey Levine, and Brian
Ichter. Pivot: Iterative visual prompting elicits actionable
knowledge for vlms, 2024.

[32] Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Se-
woong Oh, and Ludwig Schmidt. Quality not quantity: On
the interaction between dataset design and robustness of
clip. Advances in Neural Information Processing Systems,
35:21455–21469, 2022.

[33] Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Se-



woong Oh, and Ludwig Schmidt. Improving multimodal
datasets with image captioning. Advances in Neural
Information Processing Systems, 36, 2024.

[34] Vivek Ramanujan, Thao Nguyen, Sewoong Oh, Ali
Farhadi, and Ludwig Schmidt. On the connection between
pre-training data diversity and fine-tuning robustness.
Advances in Neural Information Processing Systems, 36,
2024.

[35] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for
training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294,
2022.

[36] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade W Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, Patrick Schramowski, Srivatsa R Kundurthy, Kather-
ine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and
Jenia Jitsev. LAION-5b: An open large-scale dataset
for training next generation image-text models. In
Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=M3Y74vmsMcY.

[37] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport:
What and where pathways for robotic manipulation. In
Conference on Robot Learning, pages 894–906. PMLR,
2022.

[38] Mohit Shridhar, Lucas Manuelli, and Dieter Fox.
Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages
785–799. PMLR, 2023.

[39] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating
situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 11523–11530. IEEE, 2023.

[40] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open
motion planning library. IEEE Robotics & Automation
Magazine, 19(4):72–82, 2012.

[41] Yonglong Tian, Lijie Fan, Kaifeng Chen, Dina Katabi,
Dilip Krishnan, and Phillip Isola. Learning vision from
models rivals learning vision from data. arXiv preprint
arXiv:2312.17742, 2023.

[42] Vishaal Udandarao, Ameya Prabhu, Adhiraj Ghosh, Yash
Sharma, Philip HS Torr, Adel Bibi, Samuel Albanie, and
Matthias Bethge. No" zero-shot" without exponential data:
Pretraining concept frequency determines multimodal
model performance. arXiv preprint arXiv:2404.04125,
2024.

[43] Chen Wang, Haochen Shi, Weizhuo Wang, Ruohan Zhang,
Li Fei-Fei, and C Karen Liu. Dexcap: Scalable and
portable mocap data collection system for dexterous
manipulation. arXiv preprint arXiv:2403.07788, 2024.

[44] Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar,
Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu, and
Xiaolong Wang. Gensim: Generating robotic simula-
tion tasks via large language models. arXiv preprint
arXiv:2310.01361, 2023.

[45] Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Zackory Erickson, David Held, and Chuang Gan. Genbot:
Generative simulation empowers automated robotic skill
learning at scale. arXiv, 2023.

[46] Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Yian Wang, Katerina Fragkiadaki, Zackory Erickson,
David Held, and Chuang Gan. Robogen: Towards
unleashing infinite data for automated robot learning via
generative simulation. arXiv preprint arXiv:2311.01455,
2023.

[47] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao
Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Automated dense reward function
generation for reinforcement learning. arXiv preprint
arXiv:2309.11489, 2023.

[48] Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang,
Russell Howes, Vasu Sharma, Shang-Wen Li, Gargi
Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer.
Demystifying clip data. arXiv preprint arXiv:2309.16671,
2023.

[49] Wentao Yuan, Adithyavairavan Murali, Arsalan Mousa-
vian, and Dieter Fox. M2t2: Multi-task masked trans-
former for object-centric pick and place, 2023.

[50] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. Lima: Less is more for alignment. Advances
in Neural Information Processing Systems, 36, 2024.

https://openreview.net/forum?id=M3Y74vmsMcY

	Introduction
	Related work
	Task plan generation
	Action generation module
	Sub-goal verification

	Experiments
	Zero-shot Performance in Simulation
	Behavior cloning with demonstrations from Manipulate-Anything
	Real-world experiments
	Ablations

	Discussion

