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ABSTRACT

Modeling dynamical systems combining prior physical knowledge and machine
learning (ML) is promising in scientific problems when the underlying processes
are not fully understood, e.g. when the dynamics is partially known. A com-
mon practice to identify the respective parameters of the physical and ML compo-
nents is to formulate the problem as supervised learning on observed trajectories.
However, this formulation leads to an infinite number of possible decompositions.
To solve this ill-posedness, we reformulate the learning problem by introducing
an upper bound on the prediction error of a physical-statistical model. This al-
lows us to control the contribution of both the physical and statistical compo-
nents to the overall prediction. This framework generalizes several existing hybrid
schemes proposed in the literature. We provide theoretical guarantees on the well-
posedness of our formulation along with a proof of convergence in a simple affine
setting. For more complex dynamics, we validate our framework experimentally.

1 INTRODUCTION

Dynamical systems prediction and identification find crucial applications ranging from medicine
and the study of tumors (Hanahan & Weinberg, 2011; Lu & Fei, 2014) to oceanic and climate fore-
casting (Oreskes et al., 1994; Caers, 2011). The modeling of such systems traditionally rely on
ordinary or partial differential equations (ODE/PDE) (Madec, 2008; Marti et al., 2010), and their
resolution via numerical solvers and data assimilation (Ghil & Malanotte-Rizzoli, 1991). In real
world applications, two main pitfalls occur: first the dynamics may only be partially known and thus
do not fully represent the studied phenomena (Rio & Santoleri, 2018); second, the system state may
only be partially observed as in ocean models (Gaultier et al., 2013). Machine learning (ML) has be-
come a complementary approach to traditional physics based models (denoted MB for model based)
(Reichstein et al., 2019; Dueben & Bauer, 2018). Both offer advantages: whereas MB approaches
generalize and extrapolate better, ML high expressivity approaches benefit from the ongoing growth
of available data such as satellite observations, with reduced costs compared to data assimilation.

In that perspective, recent lines of work tackle the learning of hybrid models relying on prior physi-
cal knowledge and machine learning (Yin et al., 2021; Mehta et al., 2020). Efficiently learning such
decompositions actually means solving two different tasks: system identification, i.e. estimating the
parameters of the physical model, and prediction, i.e. recovering the trajectories associated to the
dynamics. Both are essential for hybrid MB/ML models of dynamical systems. Whereas predic-
tion aims at robust extrapolation, identification accounts for physical interpretability of the MB/ML
model. While solving both problems using model-based formulation admits well-known numeri-
cal solutions, for example using the adjoint method (Le Dimet & Talagrand, 1986; Courtier et al.,
1994), the combination of physical models and deep learning is still an open area of research. In this
context, ML applications mainly focus on the prediction task, at the expense of the system identifica-
tion: Willard et al. (2020) underlines the lack of generalizability of black-box ML models and their
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inability to produce physically sound results. Indeed, Ayed et al. (2020) show that without any prior
knowledge, the recovered estimates of a dynamical system states are not physically plausible despite
accurate predictions. Moreover, as noted by Yin et al. (2021), learning a linear MB/ML decompo-
sition with the sole supervision on the system trajectories is ill-posed and admits an infinite number
of decompositions. Such observations highlight the need to incorporate physically motivated con-
straints in the learning of hybrid models, e.g. through regularization penalties, and several works
propose additional constraints to guide the model towards physical solutions (Jia et al., 2019; Yin
et al., 2021; Linial et al., 2021). Finally, to complete prior dynamical knowledge with a data-driven
component and ensure interpretability of the decomposition, we work out a principled framework
that generalizes previous attempts in the regularization of hybrid models. Our contributions are :

* In section 3.1, we introduce a novel way to recover well-posedness and interpretability in
the learning of hybrid MB/ML models via the control of an upper bound. We extend our
framework to incorporate auxiliary data when available to handle complex real-world data.

* In section 3.2, we propose a novel alternate-optimization algorithm to learn hybrid models.

* In section 3.3, we provide an analysis of the convergence of the proposed algorithm on a
simplified case and experimentally evidence the soundness of our approach on more com-
plex settings of increasing difficulty including challenging real world problems (section 4).

2 BACKGROUND AND PROBLEM SETUP

We consider a dynamical system with state at time t denoted Z¢ = Z(t). Z; might be fully or
only partially observed: we write Z¢y = (X¢; Yt), where Xt is the observed component and Yy the
unobserved one. The evolution of Z is governed by a differential equation with dynamics :

%:E Xt = Tx(Zv) (1)
dt — dt VYt Ty (Zo)

The objective is to predict trajectories of X, i.e. to model the evolution of the observable part fol-

lowing L%t = £, (Z;). For simplicity, we omit the index X in fx and write f(}) = fx (}).
g “at plicity.

Dynamical Hypothesis We assume partial knowledge of the dynamics of the observed Xy:

dXx
ot = @) = @) + fu(@0) @)
where fix 2 Hy is a known operator with unknown parameters *, and f, 2 Hy is the unknown

residual dynamics. Hyx and Hy, denote function spaces, see discussion in appendix B.

Learning Problem Our objective is to approximate T with a function h learned from the observed
data. According to eq. (2), we assume h = hyx + hy. hg 2 Hy, i.e. belongs to the same hy-
pothesis space as fi: it has the same parametric form. Its parameters are denoted k. Note that
he(:; *) = fk. hy 2 Hy, is represented by a free form functional with parameters , e.g. a neural
network. The learning problem is to estimate from data the parameters of hy so that they match
the true physical ones and hy to approximate at best the unknown dynamics f. In this regard, an
intuitive training objective is to minimize a distance d between h = hy + hy and f:

d(h;f) =Ez.p.kh(Z2) f(2)kz; 3)

where pz is the distribution of the state Z that accounts for varying initial states. Each Z defines
a training sample. Minimizing eq. (3) with h = hy + hy, enables to predict accurate trajectories
but may have an infinite number of solutions and h, may bypass the physical hypothesis hi. Thus,
interpretability is not guaranteed. We now develop our proposition to overcome this ill-posedness.

3 METHOD

In hybrid modeling, two criteria are essentials: 1. identifiability, i.e. the estimated parameters of hy
should correspond to the true physical ones; 2. prediction power, i.e. the statistical component hy,
should complete hy so that h = hyi + hy performs accurate prediction over the system states. To
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control the contribution of each term hy and hy, we work upper bounds out of eq. (3) (section 3.1).
We then propose to minimize d(h; ) while constraining the upper bounds, which provide us with
a well-posed learning framework (section 3.2). Besides, we show that several previous works that
introduced constrained optimization to solve related problems are specific cases of our formulation
(Yin et al., 2021; Jia et al., 2019; Linial et al., 2021). Finally, we introduce an alternate optimization
algorithm which convergence is shown in section 3.3 for a linear approximation of f.

3.1 STRUCTURAL CONSTRAINTS FOR DYNAMICAL SYSTEMS

To ensure identifiability, we derive regularizations on hy and hy, flowing from the control of an upper
bound of d(h; f). In particular, to minimize d(hy; fx) would enable us to accurately interpret hy as
the true fx, and hy, as the residual dynamics f,. However, since we do not access the parameters of
Tk, computing d(hy; k) is not tractable. We then consider two possible situations. In the first one,
the only available information on the physical system is the parametric form of fi (or equivalently
of hy), training thus only relies on observed trajectories (section 3.1.1). In the second one, we
consider available auxiliary information about fy that will be used to minimize the distance between
hy and fi (section 3.1.2). While the first setting is the more general, the physical prior it relies on is
often insufficient to effectively handle real world situations. The second setting makes use of more
informative priors and better corresponds to real cases as shown in the experiments (section 4.2).

3.1.1 CONTROLLING THE ML COMPONENT AND THE MB HYPOTHESIS

We propose a general approach to constrain the learning of hybrid models when one solely access
the functional form of hy. In this case, to make hx accountable in our observed phenomena, a
solution is to minimize d(hg; f). Following the triangle inequality we link up both errors d(h; f)
and d(hg; ) (computations available in appendix C.1):

d(h;¥)  d(h; hi) +d(h; F) = d(hy; 0) + d(hi; F) )

We want the physical-statistical model h = hy + hy, to provide high quality forecasts. Minimizing
the sole upper bound does not ensure such aim, as hy, is only penalized through d(hy;0) and is
not optimized to contribute to predictions. We thus propose to minimize d(h; ) while controlling
both d(hy; 0) and d(hg; ). Such a control of the upper bound of eq. (4) amounts to balancing the
contribution of the ML and the MB components. This will be formally introduced in section 3.2.

Link to the Literature The least action principle on the ML component i.e. constraining d(hy,; 0)
is invoked for a geometric argument in (Yin et al., 2021), and appears as a co-product of the intro-
duction of d(hy; f) in eq. (4). Optimizing d(h; ) to match the physical model with observations
is investigated in (Forssell & Lindskog, 1997).

The general approach of eq. (4) allows us to perform prediction (via h) and system identification
(via hg) on simple problems (see section 4.1). The learning of real-world complex dynamics, via
data-driven hybrid models, often fails at yielding a physically sound estimation, as illustrated in
section 4.2. This suggests that learning complex dynamics requires additional information. In many
real-world cases, auxiliary information is available in the form of measurements providing comple-
mentary information on fy. Indeed, a common issue in physics is to infer an unobserved variable of
interest (in our case fi parameters ?) from indirect or noisy measurements that we refer to as proxy
data. For instance, one can access a physical quantity but only at a coarse resolution, as in (Um et al.,
2020; Belbute-Peres et al., 2020) and in the real world example detailed in section 4.2. We show in
the next subsection how to incorporate such an information in order to approximate d(hy; ).

3.1.2 MATCHING THE PHYSICAL HYPOTHESES: INTRODUCING AUXILIARY DATA

We here assume one accesses a proxy of fy, denoted ff " 2 Hy. Our goal is to adapt our framework
to incorporate such auxiliary information, bringing the regularization induced by fE " within the
scope of the control of an upper bound. This enables us to extend our proposition towards the
solving of real world physical problems, still largely unexplored by the ML community. We have:

d(h; ) d(h;he) +d(hi; FE) + = d(hy; 0) + d(hi; £ + )

where is a constant of the problem that cannot be optimized (see appendix C.2). In that context,
we can benefit from auxiliary information providing us with coarse estimates of *, denoted P',
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such thatf ' = hk( Py fy. To use the available to guide our estimation towards the
true parameters of fx, a simple solution is to directly enforce the minimizationdghy;f}")

in the parameter space by minimizikgy P'k,, where  are the parameters bi. Indeed
becausé andf!" have identical parametric forms (as both belong to the same functional space
Hy), m|n|m|zmgk K Prky will bring hy closer tof " and thus td . As above, we propose to
minimized(h;f ) while controlling bothd(hy; 0) andd(hk '), as described in section 3.2.

Link to the Literature  In (Linial et al., 2021 P’ stands for true observations used to constrain a
learned latent space, minimizimtjhy ; f pr) Jia et al. (2019) uses synthetic datd gsto pre-train

their model which amounts to the control an upper bound, see appendix C.3. Finally, this setting
nds an extension, when the modg]l" is a learned model, for example trained using eq. (4), leading

to a self-supervision approach described in appendix C.4.

3.2 LEARNING ALGORITHM AND OPTIMIZATION PROBLEM

From the upper bounds, we rst recover the well-posedness of the optimization and derive a theo-
retical learning scheme (section 3.2.1). We then discuss its practical implementation (section 3.2.2).

3.2.1 WELL-POSEDNESS ANDALTERNATE OPTIMIZATION ALGORITHM

Recovering Well-Posedness We reformulate the ill-posed learning ofing, ., 21 1, d(h; ),
by instead optimizingl(h; f ) while constraining the upper bounds. Let us de$eandS, as

Sc=fhe2Hyj () g Si=fhy2H,jdhy;0) g (6)

where ; , are two positive scalars andhy) =d( hg;f) in the case of section 3.1.1 and
“(he) =d( hg; f ") inthe case of section 3.1.2. Our proposition then amounts to optinZimg )
over the Minkowski-sunsy + Sy = fh=hy+ hy jhg 2Sk;hy 2S,g:

hzmlirJ ., d(h;f); (7)
This constrained optimization setting enables us to recover the well-posedness of the optimization
problem under the relative compactness of the family of fundtgn(proof in appendix D.3).

Proposition 1 (Well-posedness)Under the relative compactness 8f, eqd.(7) nds a solutionh
that writes ash = hy + hy 2 Sg + S;. Moreover, this solution is unique.

Alternate Optimization Algorithm  As the terms in both upper bounds of egs. (4) and (5) specif-
ically address eithelny or h,, we isolate losses relative tge andh, and alternate projections of
hy on S andh, on S, as described in Algorithm 1. Said otherwise, we Ielarhy alternately
optimizinghg (hy being xed) andh, (hx being xed). In practice, we rely on a dual formulation
(see section 3.2.2 and the SGD version of Algorithm 1 in Appendix F).

Algorithm 1 Alternate estimation: General Setting
Result: Convergedhy andh,

Sethd =0; h? =min, 24, d(hg;f),tol 2 R
while d(h;f) > tol do

hg*™* =argmin d(hc + hi;f);  hj**  =argmin d(hi™ + hy;f) ®)
hy 2S & hy2S,

n n+1
end

The convergence of the alternate projections is well studied for the intersection of convex sets or
smooth manifolds (von Neumann, 1950; Lewis & Malick, 2008) and has been extended in our
setting of Minkowski-sum of convex sets (Lange et al., 2019). Becdusede ned in eq. (3) is
convex,S, andSy are convex sets as soonkdg andH , are convex (Appendix A). Thus, @(:; f)

is strongly convex, ed. (8) nds one and only one solution (Boyd et al., 2004). However, neither the
convexity ofH, nor of Hy is practically ensured. Nonetheless, we recover the well-posedness of
eg. (7) and show the convergence of Algorithm 1 in the simpli ed case whé@n af ne function
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of X (see section 3.3). For complex PDE where convexity may not hold, we validate our approach
experimentally and we evidence in section 4 that this formulation enables us to recover both an
interpretable decompositidn= hy + h, and improved prediction and identi cation performances.

3.2.2 RRACTICAL OPTIMIZATION

Equation (6) involves the choice of and . In practice, we implement the projection algorithm
by descending gradients on the parametets.adndh,, with respect to the following losses:

Li(he) = nd(h;f)+ n(h)  Lu(hy)= nd(h;f)+ p, d(hy;0) )
where ; n,; n, are positive real values, dynamically increased/decreased during training. In-
deed,d(hy;0) can be interpreted assability loss preventing the neural networks to trump the

physical component. On the other hadhy; f ) can be interpreted has aritialization lossyield
a rst estimate of  explaining the dynamics.

Yet, f being unknown:d(h;f) is not tractable. To estimai#(h;f ), we rely on the trajectories
associated to the dynamics. We minimize the distance between the ODE pwad ; de ned
byhandf,d ( n; ¢),overallinitial conditionsX o:
t
d(n )= Ex, kn(:X0) (:Xo)k,d (10)
to
We have:d ( n; f) =0, d(h;f)=0. De nitions of ows for ODE and in depth considera-
tion on these distances are available in appendix A. The gradiedtq of; ;) with respect to the
parameters offiy or hy can be either estimated analytically using the adjoint method (Chen et al.,
2018) or using explicit solvers, e.g. Rk45, and computing the gradients thanks to the backpropaga-
tion, see (Onken & Ruthotto, 2020). To compute eq. (10), we rely on a temporal samphkhg of
our datasets are composedsequences of observations of lenbthX " = (X{ ;11 X{ +n 1)
where each sequene follows eq. (2) and corresponds to one initial condit)oh. We then sam-
ple the space of initial conditior%{o to compute a Monte-Carlo approximationdo( ; ¢). Let
ODESolve be the function integrating any arbitrary initial state up to timet with dynamicsh,
so thatx; = ODESolve (xt,; h;t). The estimate off ( n; ) then writes as:
13 X . .
d(n; ) = ODEsolve (Xy,;h;t;) Xt'j
i=1 j=1

Note that the way to comput@DEsolve differs across the experiments (see section 4).

3.3 THEORETICAL ANALYSIS FOR ALINEAR APPROXIMATION

We investigate the validity of our proposition when approximating an unknown derivative with an
af ne function (interpretable rst guess approximators). We here condideas a linear function.

We do not assume any information énthus relieving this section from the need of an accurate
prior knowledgef . In this context, we show the convergence of the learning scheme introduced
in Algorithm 1 with * = d( hg;f), demonstrating the validity of our framework in this simpli ed
setting. For more complex cases, for which theoretical analysis cannot be conducted, our framework
is validated experimentally in section 4. All proofs of this section are conducted using the distance
d . LetX® be the unique solution to the initial value problem:

% = f(Xy) with Xizo = Xo (112)
With hg (X)) = AX andhy(X) = Da, the af ne approximation of writes as:
% = AXi+ Da with Xizg = Xg (12)

whereA 2 M ,,(R), Da 2 RP. We write X P the solution to eq. (12) and* the solution to
eq. (12) wherDp = 0. Thg alternate projection algorithmzwith the distadcenrites as:
t t

A =argmin XS() XP(),d+ a  XS() X*() ,d (13)
A to to
z
DA =argmin t X3() XP() ,d + pkDak, (14)
Da to
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where p; a > 0. As the optimization of eq. (13) is not convex 8n the solution existence and
uniqueness is not ensured. The well-posednessAvean be recovered by instead considering a
simple discretization scheme, e.8f+1 (AX¢+ Da) t+ X and solving the associated least
square regression, which well-posedness is guaranteed, see details in appendix D.2. Such strategy is
common practice in system identi cation. Theoretical considerations on existence and uniqueness
of solutions to egs. (13) and (14) are hard to retrievé i§ an invertible matrix:

Proposition 2 (Existence and Uniquenessf A is invertible, There exists a uniqua , hence a
uniqueX P, solving eq(14). (proof in appendix D.4)

Finally, formulating Algorithm 1 as a least square problem in an af ne setting (see appendix D.5),
we prove the convergence of the alternate projection algorithm (appendix D.6) :

Proposition 3. For p and a suf ciently high, the algorithm that alternates between the estimation
of A and the estimation dD 5 following eqs(13)and(14)converges.

4 EXPERIMENTS

We validate Algorithm 1 on datasets of increasing dif culty (see appendix E), where the system state
is either fully or partially observed (resp. section 4.1 and section 4.2). We no longer rely on an af ne
prior and explicith, andh,, for each dataset. Performances are evaluated via standard metrics: MSE
(lower is better) and relative Mean Absolute Error (rtMAE, lower is better). We assess the relevance
of our proposition based on egs. (4) and (5), against NeuralODE (Chen et al., 2018), Aphynity (Yin
et al., 2021) and ablation studies. We denote Ours eq. (4) (resp. Ours eq. (5)) the results when
T =d(hg;f)i.eeq. (4), (resp. = d( hk;flfr) i.e. eqg. (5)) Wherd(hg;f) (resp.d(hy;0)) is not
considered in the optimization, we refer to the resulid(asf )+d( hy; 0) (resp.d(h;f )+d( hg;f)).
Whenh is trained by only minimizing the discrepancy between actual and predicted trajectories the
results are denoted «Ondigh; f )». We report between brackets the standard deviation of the metrics
over5 runs and refer to Appendices F and G for training information and additional results.

4.1 FULLY OBSERVABLE DYNAMICS

To illustrate the learning scheme induced by eq. (4), we focus on fully observed low dimensional dy-
namics: a simple example emerging from Newtonian mechanics and a population dynamics model.

Damped Pendulum (DPL) Now a standard benchmark for hybrid models, we consider the motion
of a pendulum of length damped due to viscous friction (Greydanus et al., 2019; Yin et al., 2021).
Newtonian mechanics provide an ODE describing the evolution of the angfiéhe pendulum:

X g=Lsin(x)+ kx =0 (15)

We suppose access to observations of the systematatéx; x). We consider as physical motion
hypothesiic (x; k) = « sin(x). The true pulsation = g=L of the pendulum has to be estimated
with . The viscous friction termix remains to be estimated Iy, .

Population Dynamics (LV) Lotka-Volterra ODE system models a prey/predator population dy-
namics describing the growth of the prex3 (ithout predatorsy(), and the extinction of predators
without preys, the non linear terms expressing the encounters between both species:

X=x Xy; and y= y+ xy (16)

We observe the system stale = (x;y) and set as prior knowledgé (x;y) = ( ix;  2y).
?=(; )hastobeestimated by =( %, 2).hy, accounts for the non linear terroy; xy ).

Experimental Setting For both DPL and LV experiments, we consider the following setting: we
sample the space of initial conditions building 100/50/50 trajectories for the train, validation and test
sets. The sequences share the same parameters; respe{@i,\.le)yfor DPL, and(; ; ; ) for

LV. The parametery is set to a neuron (of dimensidnin the pendulum ana for LV) and h,, is a
2-layer MLP. Further experimental details are available in appendices E.1, E.2 and F.
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Table 1: Experimental Results for PDL and LV data. The presented metric for parameter evaluation is the
rMAE reported in%. Pred. columns report the prediction log MSE on trajectories on test set.

Model PDL Lv

IMAE( «; ?) Pred. logMSE IMAE ; ?) Pred. logMSE
Ours eq. (4) 1.56 (0.009) -13.7 (0.84) 7.80 (0.011)  -9.28 (0.75)
Only d(h; f) 9.35 (0.04) -13.3(0.65) 24.5 (0.017) -9.21 (0.91)
d(h:f)+d( hy:f) 1.82 (0.01) -13.4 (0.56) 7.91(0.02) -9.01 (0.99)
d(h: f)+d( hy:0) 11.1 (0.03) -12.9 (0.29) 9.80 (0.098) -9.45 (0.55)
Aphynity 6.15 (0.009) -12.2 (0.13) 21.1(0.016)  -9.89 (0.53)
NeuralODE - -10.1 (0.32) - -9.11 (1.1)

Identi cation and Prediction Results Table 1
shows that despite accurate trajectory forecasting, the
unconstrained setting «Ondifh; f )» fails at estimating
the models parameters, showing the need for regular-
ization for identi cation. Constraining the norm of the
ML component can be insuf cient: for LV data, both
Aphynity andd(h;f ) + d( hy; 0) do not accurately es-
timate the model parameters. However, the control of
d(hg;f), following eq. (4), signi cantly improves the
parameter identi cation for both datasets. Indeed, in
the PDL casehy andf are (pseudo)-periodic of the . .
same period, hence the gai%pin the)pgrformances. pgure 1. Afne Case : Evolution of the MSE
nally, our proposition based on eq. (4) is able to identiﬁf*“’"een estimated dynamicé;(©) and the
the parameters of DPL and LV equation with a preci’® o€ & D) with the number of gradients

. - . . Steps for linearized DPL.
sion of respectively:56%and7:8% beating all consid-
ered baselines. Regarding prediction performances, in under-constrained settings @0}y
in Table 1),h, learns to corrects the inaccurdtg. Table 1 and gs. 4 and 5 (appendix G.1) show
that our proposition provides more consistent prediction performances. These experiments con rm
that the constraints ohy andh, arising from the control of the upper bound of eq. (4) increase
interpretability and maintain prediction performances.

Throwback to the Af ne Case We verify the convergence proved in section 3.3 using the damped
pendulum (eqg. (15)) linearized in the small oscillations regime (see appendix E.1). Making an af ne
hypothesis following eq. (12), we apply our alternate projection algorithm and optina® D 5
alternately using SGD. Figure 1 shows that we are able to accurately esfnzateD using our
proposition, recovering both the oscillation pulsation and the damping coef cient.

4.2 HGH DIMENSIONAL DYNAMICS

We now address the learning of transport equations, describing a wide range of physical phenomena
such as chemical concentration, uid dynamics or material properties. We evaluate the learning
setting induced by eq. (4) and (5) on two physical datasets depicting the evolution of the temperature
T advected by a time-dependent velocity dldand subject to forcin®, following:

@T

—+r1 :(TU)= S(U 17

gt T TV =S) (17)
The system staté = (T;U; S) is partially observed, we only accebs Every quantities, observed
or to estimate, are regularly sampled on a spatiotemporal grid: at each timettegime varying
velocity eld U; writes adJ; = (ug; Vi) andug, V¢, T; and the forcing tern®; are all of size&64 64.

Experimental Setting We consider as physical prior the advectionf&T; ) = r (T k).
Thus,  is time-dependent, as we learn it to approximate U. We identify the velocity eld
from observations of, learning a mapping betwe@nandU parameterized by a neural network
G ,sothaty = G (Ty ;5 Tt) U, which is common practice in oceanography (Béréziat &
Herlin, 2015).G is optimized following eq. (9).S remains to be learned by,. hy implements
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Table 2: Results for Adv+S and Natl data. We report the MSELQO) on the predicted observatiofs the
velocity elds U and the source teri@ over 6 time steps on test set.

Adv+S Natl
U S T U S

Ours eq. (4) 0.74(0.05) 1.99(0.13) 0.17(0.01)8.27 (0.06) 11.72(0.07) 6.01(0.08)
Ourseq. (5) - - - 6.86 (0.12) 6.81(0.07) 4.35(0.11)
Aphynity ~ 0.85(0.35) 3.07(0.74) 0.18(0.05) 8.18(0.16) 11.75(0.49) 6.02 (0.02)
NeuralODE 1.35(0.02) - - 8.83(0.98) - -

Models

a differentiable semi-Lagrangian scheme (Jaderberg et al., 2015) (see appendix Eh3)israd
ResNet.G is a UNet. Training details and a schema of our model are to be found in appendix F.

Synthetic Advection and Source (Adv+S) To
test the applicability of the learning setting in-
duced by eq. (4) on partially observed settings,
we rst study a synthetic setting (denoted Adv+S)
of eq. (17) by generating velocity elds, simu-
lated following (Boffetta et al., 2001) and adding
a source terns inspired by (Frankignoul, 1985).
The simulation details are given in appendix E.3.

Real Ocean Dynamics (Natl) We consider a

dataset emulating real world observations of the

North ATLantic ocean (denoted Natl) (Ajayi et al.,

2019). Modeling the evolution of in Natl is

challenging as its dynamics is chaotic and highly

non-linear. This simulation is representative of the

complexity encountered in real world data. The

principled approach of eq. (4) is insuf cient here

and one must resort to additional physical inform@—,gure 2: Best viewed in colorEstimations o, T
tion. We illustrate section 4.2 and make use of au¥ndu = ( u;v) on Adv+S. Prediction ranges from
iliary data: satellite observations provide a coargeo 20 half-days.

estimate of surface velocity elds (appendix E).

The goal is to re ne the approximated velocity elds to t the ocean dynamics. We proceed as
described in eqg. (5) and enfordehk;flfr) supervisingG  with the proxy data (appendix E.3).

Identi cation and Prediction Results Table 2 indicates that for Adv+S dataset, we estimate ac-
curately the unobserved velocity elds. Qualitatively, Figure 2 shows that controlling our proposed
upper bound eq. (4) facilitates the recovery of truthful velocity eldislong with an accurate pre-
diction of T. For the highly complex Natl, Table 2 shows that the introduction of auxiliary data
following the formulation in eq. (5) signi cantly helps identi cation, as the dynamics is too com-
plex to be able to recover physically interpretable velocity elds using the bound of eq. (4).
Regarding prediction performances on the Adv+S data, Table 2 shows that thanks to our truthful
estimates otJ, our model provides more precise prediction than NODE and Aphynity. For real
world data, thanks to the proxy data our model recovers better velocity elds terms while providing
a better estimate fof. Besides, adding prior knowledge in the prediction systems improves pre-
diction performances: appendix G shows that NODE minimd{ésf ) by predicting average and
blurred frames. This shows the need for regularization when learning on structured physical data.

Ablation Study We present in Table 3 an ablation study on the Adv+S dataset evidencing the
in uence of our learning choices on the resolution of both identi cation and prediction tasks (see
appendix G for detailed results). “Joint” rows of Table 3 indicate that the learnihg ahdhy is

done simultaneously. Table 3 shows that the sole optimizatiat{luoff ) fails at estimating phys-
ically soundedU. This evidences the ill-posedness in such unconstrained optimization. Table 3
indicates that all introduced regularizations improve the recovery @f.r.t. the «Onlyd(h;f)»
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baseline, while adding(hy; 0) signi cantly improves both prediction performances and velocity
elds estimation. We highlight that the alternate optimization performs better compared to optimiz-
ing jointly all parameters ofiy andh,. Notably, our proposition to optimizZe, andh, alternately
beats all baselines on bothprediction andJ identi cation (Table 3, Joint rows). Finally, jointly
trained models fail at estimatirlg in Table 3, forcindh, to capture the whole dynamics.

Table 3: Ablation Study on Adv+S. We report the MSE 100) on the predicted observatiohsthe velocity
elds U and the source teri@ over 6 time steps. “Joint” rows refer to the simultaneous optinfhoéndhy, .

Training  Models T ] S

Ours U known) 0.52 n/a 0.19

Ours eq. (4) 0.74 (0.05) 1.99(0.13) 0.17(0.01)
Alternate Onlyd(h;f) 1.02 (0.16) 4.08(0.23) 0.19(0.06)

d(h:f)+d(hgf) 1.02(0.09) 3.66(0.15) 0.19 (0.03)
d(h:f)+d(hy;0) 0.77(0.06) 2.38(0.17) 0.19(0.01)
ours eq. (4) 1.44 (0.08) 3.30(0.18) 0.30 (0.03)
Only d(h: f ) 1.38(0.19) 6.96 (0.21) 0.39 (0.08)

Joint

5 RELATED WORK

Grey-box or hybrid modeling, combining ODE/PDE and data based models, has received an increas-
ing focus in the machine learning community (Rico-Martinez et al., 1994; Thompson & Kramer,
1994; Raissi et al., 2020b). Hybrid approaches allow for alleviated computational costs for uid
simulation (Tompson et al., 2017; De Avila Belbute-Peres et al., 2020; Wandel et al., 2021), and
show better prediction performances through data speci ¢ constraints that preserve physics (Raissi
et al., 2020a; Jia et al., 2019). They offer increased interpretability via constraints on convolutional
Iters (Long et al., 2018; 2019) or on learned residual (Geneva & Zabaras, 2020). Physical knowl-
edge, introduced through ODE/PDE regularization (Psichogios & Ungar, 1992; Bongard & Lipson,
2007; de Bézenac et al., 2018) or Hamiltonian priors (Greydanus et al., 2019; Lee et al., 2021),
increases generalization power w.r.t pure ML approaches. Closer to our work, (Mehta et al., 2020;
San & Maulik, 2018; Young et al., 2017; Saha et al., 2020) study the learning of a physical model
augmented with a statistical component. Yin et al. (2021) tackle the same task, ensuring the unique-
ness in the decomposition by constraining the norm of the ML component. We generalize latter
approaches and address the well-posedness in the learning of hybrid ML/MB models through ad-
ditional regularization on the estimated parameters of the physical part. Indeed, to describe natural
phenomena relying on hybrid MB/ML models, one major task lies in the estimation of the MB part
parameters. This can be done using neural networks (Raissi et al., 2019; Mehta et al., 2020). How-
ever, identi cation tasks being intrinsically ill-posed (Sabatier, 2000), imposing prior knowledge or
regularization is necessary to ensure sound estimations (Stewart & Ermon, 2017). Yet, using only
prediction as supervision, the recovered parameters are not physically interpretable (de Bézenac
et al., 2018; Ayed et al., 2020). To ensure unigueness of the estimation solution, Ardizzone et al.
(2018) use invertible neural networks. Linial et al. (2021); Tait & Damoulas (2020); Saemundsson
et al. (2020) combine variational encoding (Kingma & Welling, 2013) and a PDE model, sampling
the space of initial conditions and parameters to solve both identi cation and prediction. However,
such methods only deal with low-dimensional dynamics. Besides low dimensional systems, we also
show the soundness of our approach on complex high dimensional and partially observed dynamics.

6 DISCUSSION

We propose in this work an algorithm to learn hybrid MB/ML models. For interpretability purposes,
we impose constraints owing from an upper bound of the prediction error and derive a learning
algorithm in a general setting. We prove its well posedness and its convergence in a linear ap-
proximation setting. Empirically, we evidence the soundness of our approach thanks to ablation
studies and comparison with recent baselines on several low and high dimensional datasets. This
work can see several extensions: considering non uniform 2 or 3-D grid for climate models, further
considerations on the investigated upper bounds, or different decomposition hypothesis.
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A DISTANCE

A.1 DISTANCE BETWEEN DYNAMICS

We here give the de nition of the distanak Letu andv be two functions ol ?(RP; RP). We
consider the distance:
d(u;v) = Ex p, ku(X) v(X)k, (18)

Naturally, eq. (18) veri es the triangle inequality, the symmetry and the positiveness. Moreover, in
this case, for all functions, d(:; f ) is convex. Indeed, fan, v two functions, and 2 [0; 1]:
diu +(1 Wif)=Ex p o ku(X)+(1 W(X)  F(X)k,
= Ex poku(X) £ (X) (1 HF(X)+(1 W(X)k,
Ex p ku(X) f(X)k,+( YEx p kv(X) T (X)k,

Hence the convexity ofi(:;f). This consideration suf ces to ensure the convexitySpfand S,
de ned in section 3.

A.2 DISTANCE BETWEEN FLOWS

Consider the ODE witX (t); Xo 2 RP:
dX (1)
dt

=f(X(®); X(t=0)= Xo (19)

Equation (19) admits a unique solution as soof &s Lipschitz. We noteX ? this solution. Then,
we can de ned the ow ; of such ODE as:

[0T] RP ! RP

t Xo! (tXo)= X'() (20)
With the de nition of eq. (20), we can de n%the distance between two ows of ODE as:
d(u 1)=Bxe px, KultXo) r(tXo)kdt (21)

to
d is positive and symmetric. Let,, , be two ows, we have the triangle inequality:
z

d(u )= Bxo px, K ultXo) 1(tXo)kdt
z°
= Bxo o, K u(tXo)  v(tXo)+ v(tXo)+ ¢ (tXo)kdt
z°
Exo pv, K u(tXo)  v(tXo)k+ Kk o(tXo)+ (X o)kdt

to

d(v; v)+d(v; f)

Let ; be xed, we also have the convexity df (:; ;) with respect to the rst argument. Indeed
for 2 [0;1]:
Z

d( ¢+(1 ) vif)= Ex, Px o k uw(tXo)+(1 ) v i (t; X o)kdt
z°
= EXO Px o k u(t;XO)+(1 ) Y f(t;XO) (1 ) f(t;XO)kdt

to

d(u; v)+(1 )d(v; f)

However, in this case the convexity is not ensured with respactatadvThis is the reason why for
theoretical investigations, we consider the distashagstead ofd .

Nonethelessd ( ; ¢)=0 =) u= f =) u=f.
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B REMARK ON ADDITIVE DECOMPOSITION

First, note that in the case of a metric space the decomposition as de ned in eq. (2) always exists.
We now detail an intuition for the well-posedness of such decomposition.

Let Hx be a closed convex subset of functions of an Hilbert sg&ce; > ), andf the function
we want to approximate with partial knowledge (represented by the space of hypothesikhen,
thanks to Hilbert projection lemma, we have the uniqueness of the miniminginggy , kf ok,
i.e it exists one uniqubk 2 Hy suchthat8g2 H;kf hgk k f gk

Finally, the additive decomposition hypothesis presents a remarkable advantage in the case of a
vector space. Indeed, i is a (closed) vector space, leff be its supplementary i&, then we
have the uniqueness in the decompositiors fy, + fHZ ,wherefHE 2H} andfy, 2Hy.

The existence and unigueness owing directly from the additive decomposition hypothesis, this can
explain why such assumption is common when bridging ML and MB hypothesis.

C UPPERBOUNDS

C.1 DeRIVATION OF EQUATION (4)

The rst upper bound is a simple use of the triangle inequality:

d(h;f)=d(h;f)+d( hef) d(hg;f)
d(hg;f)+ jd(h;f) d(hg;f)j
d(hy;f)+d(h;hg)

C.2 DERIVATION OF EQUATION (5)

To derive the second upper bound, we assume‘ﬂﬁattomes from an overall dynami€$" obeying
the additive decomposition hypothesis of eq. (2) sotfiaandf /" veries: fP" = ' +f . First,
with computations similar to eq. (4), we have:

d(h;f) d(h;fP)y+d(fP;f) (22)

Then:
d(h;fP) =d(h;f ) +d(hi f)  d(hicfP)
d(hic; £2) + jd(hi £P7) - d(hic )]
d(hi; £27) + jd(h; £P7)  d(h;f ) d(h;f &) +d(he; fE)j
d(hi; £ ) + jd(h; fP)  d(h; )i+ jd(hi; £¢7)  d(h; hy)j
d(hic; ") +d(FP73FR7) +d( h; i) (23)
Combining Equations (22) and (23), we retrieve eq. (5):
d(h;f) d(he;f)+d(h;h) +d(FP ;) +d(fP;f) (24)

and we have:=d( fP;ff)+d(fP;f). isa constantofthe problem that cannot be optimized.

C.3 UPPERBOUND USING AUXILIARY DYNAMICS fP'

Letf P" be the dynamics of model data, we can link up the error madedaytrue data (following
dynamics ) and the error made By on model data (with dynamids") via:

d(h;f) d(h;fP)y+d(fP;f) (25)
Thus a pre-training on auxiliary data of dynamfd$ amounts to control the teruf(h; f *") in the
upper-bound of eq. (25).
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C.4 S&ELF-SUPERVISION

Leth = hy + hy be the function to learn ar@ the recognition network providing an estimale
of the parameters from an initial sequenﬁbfe{ A Xt' +k t)- Thislearning setting corresponds to
how velocity elds are learned from consecutive measurements of the tracerTeidsection 4.2.

To computed(hy; f pr) in the case whereP" = h? whereh? = h7 + h? is a learned model, we rely
on the computed associated th; (thanks for example to the algorlthm of section 3.2 associated
to eq. (4)) to generate a synthetlc dataset with achievable supervision in the space of the parameters

K-

From a real initial sequenceéxto;::"X'0+k ), we can estimate the unknown parame-
ter I associated to sequende with the recognition networkG’ learned with h?, i.e

= G? Xt'o;::"xt'0+k ¢ - Then, integrating from the initial conditio)étio, we generate a tra-
Jectory of known parameters, with dynamicsh? denoted by:X"' = X”t'o; L 'X" . Sampling
the space of initial conditions, we obtain a synthetic datagtl; 1);:::;(X™; m) enabling us
to perform self -supervision fdB . Let ’\'k be the parameters estlmated ®y from the simulated
Xt Xl we make the following approximation:

X
dhcf) = (26)
m._, 2

D PROOFs

D.1 NOTE ON THECONVEXITY OF Sk AND S,

Convexity of Sk

Proof. Letu;v 2 Si:
dtu+(@ ¢tv;f)=ktu+(@1 t)v fk=ktu ttf+1 t)v (1 vOfk
ta+(1 t) 1= 1
Hence the convexity oy . O

Convexity of S

Proof. Lett 2 [0;1]andu;v 2 S,.
dthg;hg +tu+(1 t)v)=dO;tu+(1  t)v)
td(u;0)+ (1 t)d(v;0)
2
Hence the convexity df,. O

D.2 ODE IDENTIFICATION

Consider the following setSx = fX (t) 2 C1([0; T]; RP) such that9A 2 M p;p(R);XO = AX g,
whereT > 0.

Sa is not a convex set. Considarandv in Sa, and consideAY andAY so thatu%(t) = Alu(t)
andv¥(t) = AVv(t). For 2]0;1[; we have:
[u+@ W= u%+@ N
= AUu+(l AV
In general the last term is not equalAd' **  )V(u +(1  )v), for some matrba * *¢ v,

ThusS, is not a convex set. However, discretizing the trajectories and employing a simple integra-
tion scheme leads to conS|der>|?g the following cost function:

L(A)= Kk XS(t+1) (A t+I1d)XA(t) k3; (27)
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As a least square regression probldngA) is convex with respect téd. A least square regres-
sion setting can also be recovered using more complex integration schemes, or several time steps
integration.

D.3 PROOF FORWELL-POSEDNESS OFEQUATION (7)

We set ourselves in the Hilbert space of squared integrable functions with the canonical scalar prod-
uct L2(RP;RP);<;> . For further consideration on such functional space we refer to (Droniou,
2001).

We assume thadtlx henceSy is convex and a relatively compact family of functions.

Convexityof Sy + S, LetS= S+ S, = ff j9f 2S;fy 2Sy;f = fx + fug.
Letf;g 2S and 2]0;1[:
f+@ J)g=fe+@Q Jw+fu+@ )o2Sk+ S

Hence the convexity ds.

CLOSENESS OFS, We show thatS, is a closed set. Indeeds, = g ([0; .]), where
g(u) = kuk, Becausqy is 1-Lipschitz (using the triangle inequalityy,is continuous. Therefore
Su is closed set as the inverse image of a closed set by continuous function.

Sequential Limit  We now show tha$ is a closed set thanks to the sequential characterisation: let
f " a converging sequence of elementSaind denoté its limit. We prove thaf " converges ir8.

Becausen;f, 2S,we havef" = f? + f, wheref | 2 S, andf ¢ 2 Sy.

Thanks to the relative compactnessSpf we can extract a converging sub-sequence, of indexes
fromf sothatf,’ ! fy 2 Sk.
Becausd " ! f,the sub-sequendé convergesf™ | f.

By de nition, ' is a sequence 0B, and we also have that;’ = f™ f'. Because the
right member of the equation converges (as a sum of converging functions), the left member of the
equation converges i.&,’ converges.

Since S, is a closed sef ! converges inS,. We write f its limit. Therefore, f)’ =
fn fl?‘ I f fy=1f,28S,. Hencef = f, + f withfy 2 S, andfy 2 Si.

ThereforeS is a closed set.

Finally, we can apply Hilbert projection lemma on the closed conve$setd retrieve the unique-
ness of the minimizer of eq. (7).

Remark The relative compactness of a family of functions is a common assumption in functional
analysis. For example, in the study of differential equation Cauchy-Peano theorem provides the
existence to the solution of an ODE under the assumption of relative compactness.

Also, Ascoli theorem provides the relative compactness of a family of funcorunder
the hypothesis of the equi-continuity & and the relative compactness of the image space
A(x) = ff (x)jf 2Fg.

D.4 PROOF OFPROPOSITIONZ

We now set ourselves in the Hilbert spate?([0; T]; RP);<;>  of squared integrable functions,
where<;> is the canonical scalar productof([0; T]; RP).

Proof. Let A be a given invertible matrix. We consider the following sp&e = fX 2
CY([0; T];RP) such that9D 2 RP; X% = AX + D andX(t = 0) = Xog, whereT > 0. We
show thatSp is a closed convex set.
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Convexity Indeed, let 2]0;1[andu;v2Sp. u +(1 )v is differentiable and:
[u+@ WV°= u%+@ W=A(u+@ )IV)+D;
WhereD = D , +(1 )Dy. Henceu +(1 WW2Sp.
Closeness via Af ne-Space To prove the closeness 85, we prove that it is an af ne space of
nite dimension.
Let g the application that to any vectdr 2 RY associate the solutiok® .
LetDo 2 RP, we show thagp, : D! g(Do+ D) g(Dy) is a linear application.
Naturally, forgp,(Oge) =0 2. Then forD 6 Ore We have:
U,(D)= e (Xo+ A Y(Do+ D)) A '(Do+D) €' (Xo+A Do)+ A 'Do
=eMA 1D
Thereforegp, is a linear function and is an af ne function.

Moreover,g is an injection. Indeed, if two functions are equals, then they have at most one inverse
image byg thanks to Cauchy-Lipschitz theorem. Therefore it de nes a bijectioR%in g(RY).
Since,Sp = g(RY), Sp is an af ne space of dimensiomandg is continuous in particular for the
canonical norm induced dn?([0; T]; R?). ThereforeSp is an af ne space of nite dimension and

is a closed set.

Finding a Unigye Minimizer We conclude by applying Hilbert projection lemma: our problem

of minimizing OT XS() XP() ,amounts to an orthogonal projection problem. Becéahise
is a closed convex set, we have existence and uniqueness of such projection. Therefore, it exists a
unique functionXp 2 Sp and a unique vectdd minimizing its distance to the functiods. O

D.5 ALGORITHM IN LINEAR SETTING

We detail in Algorithm 2 the alternate projection algorithm in a linear setting. We denote
Y =(X{+ :X{4n )andX = (tho;xt|0+(n 1: +). For readability purposes we set = 1.

Algorithm 2 Alternate estimation: Linear Setting

Resul: A2M ,,,(R);D 2 RP

k=0,D°=0,A,' =0 A3 = minakY XAk

while kDX DX k> andkAk Ak k> do
D1 =minp kY XAX Dk3+ kDK3
Al =mina KY XA DK1k3+ KY XAK3
k k+1

end

D.6 PROOF TOPROPOSITION3

Naturally, one could estimate jointly andA using least square regression. However, the idea is to
verify the convergence of such alternate algorithm in a simple case. We conduct the proof for the
rst dimension of Y to lighten notations, meaning that we are regressing the rst dimensidh of
against thex .

A similar reasoning for the other dimension completes the proof.
Proof. We rst give the analytical solution fob. Let A" be xed.

Estimation of D Consider:
Lo = kY XA" DK+ kDK (28)
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oL_ X A _
@d_o, 2 I=1(y| XiA" d)+2d =0
x
, Qd+ d = (yi XA")
i=1
X
, dQ+ )= (i XiAT)
i=1
_ Y XA
, d= T+ =

P
whereY XA = L' % (v XiA").

Estimation of A LetD be xed and consider:

La=kY XA DK+ kY XAK (29)

Similarly, we aim to cancel the rst derivative df 5 with respect to all parameters & =
(a1; 3 ap):
Q x
—2=0, 2 xg( aXpt +axp d
i=1
x
2 Xij (i @Xio+  + 8Xip)=0
i=1
, 2XY(Y XA D) 2XYY XA)=0
, (1+ X'™XA XYY D) X'Yv=o0
, I+ X'XA=X'Y +(Y D)
B IX!

;A: 1+

1+ )y D (30)

whereB = X 'X . Equation (30) indicates that as sooD @onvergesA" converges. Thus, we now
prove the convergence ¢D"). Then, forn > 1 consider:

D" pn =ﬁv XAT Y XAn 1
= i XA AT
= 1+ :Ql)(1+ )XB IXt[@a+ )y D" [@+ )Y D 1]
= @ soyas ) <8 XD o
ceey e I

whereK = kXB 1Xtk.

Therefore, for; , sufciently large, W < 1. kD, Dy 1k converges as a positive
decreasing sequence. Finally, the sequen¢®g) converge and so the sequencéAf,).

In conclusion, the proposed algorithm converges. O
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E DATASETS

In this section, we provide exhaustive simulation details for the damped pendulum, Lotka-Volterra,
and both geophysical datasets.

E.1 DAMPED-PENDULUM

For the damped pendulum data, eq. (15) is integrated with= 0:2s using a Runge-Kutta 4-
5 scheme fromt = 0 up tot = 10s. Both the pulsation o and the damping coef cienk are
xed across the dataset. We generate 100/50/50 sequences respectively for train, validation and test

sampling over the initial conditionssothgt ) U [ =2, =2] [ 0:1;0:1] .

Small Oscillations To linearize the pendulum, we consider the small oscillations regime and take
the initial conditions sothat(; ) U [ =6; =6] [ 0:1;0:1] . In that case eq. (15) writes
as:

- (31)

O e

and following notations of section 3.3, we hai&; =0 andA = 1

E.2 LOTKA-VOLTERRA

For Lotka-Volterra data, eq. (16) is integrated with = 0:05 using a Runge-Kutta 4-5 scheme
fromt = 0 up tot = 20. All parameters; ; ; are set tol across the dataset. We generate
100/50/50 sequences respectively for train, validation and test sampling over the initial prey and
predators populations so thay) U [0;2] .

Practical Issues and Adaptation Assumingthat and have positive values makes the following
problem arises: the trajectories de ned by for the prey are unbounded, whereas the trajectories
de ned by eqg. (16) are. Minimizing(hg;f ) over long term horizon will lead in an underestimation
of to match the bounded behaviour of true data. Therefore, we enfijlgef ) on the prey
component as soon as the number of predator is small. In practice, we set this threghiid to

E.3 CGEOPHYSICALDATASETS

We present in this section introductory tools for the understanding of the uid dynamics data pre-
sented in section 4.2. We rstintroduce the physical modeling of ocean dynamics. Then, we outline
the Adv+S dataset simulation which draws from ocean modeling. Finally, we introduce the Natl
dataset and the proxy data used in the experiments.

Introduction To Ocean Modeling The increase in ocean observations thanks to satellites and
oats enabled a great development in Earth modeling over the last decades. The ocean circula-
tion, that is the current velocity elds dynamics, are now realistically modeled in tri-dimensional
structured models such as NEMO (Madec, 2008).

Such models rely on in-depth physical knowledge of the studied system and its representation
through partial differential equations. Integrated over depth, the equations associated to the transport
of the Sea Surface Temperatdréy a time-varying horizontal velocity eld) can be written as:

@T_

ot (TU)+ DT + FT (32)
%LtJ: (Ur)u+f~rU g% h+DY+FY (33)

wheref is the Coriolis parametehn the depth of the surface layer obtained from sea surface height
(SSH) observationsy’the reduced gravity which takes the strati cation in density of the ocean into
account such thag® g:10 3. In a two-dimensional setting, (T U) refers to the advection of a
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scalar quantityl by a velocity eldU = (u;v) and writes ast (TU) = Slu + %I,v. The mixing
terms, referred to @ T=Y and the forcing& "=V, are not known.

In the context of the presented work, the physical sfate ( T;; U;), fx andfy from eq. (1) can
be interpreted as follow$:x represents the dynamics of the obserVede.fx (T)= r (TU)+
DT + FT ineq. (32).fy represents the dynamics ofin eq. (33), i.e.fy (U;h) = (Ur U +
frU g¥h+DV+FY.

Whereasdl is observed by satellite) is not known. However, the Sea Surface Height (SSH) could
be used to compute coarse estimated ofndeed, under hypothesis such as stationafgy € 0),
incompressibility (U:r )U = 0)), forcings can be omited. In this case, eq. (33) can be rewritten
into

fAU= g¥h (34)
When projected ontg andy axis, eq. (34) becomes
@h @h
fv = o=, fu= ¢"—; 35
9 @% 9 @y (39)

Note that eq. (34) and eq. (35) do not hold at ne scales as the stationarity and incompressibility
assumptions only hold at large scale. In this case, thel5&hh be regarded as a stream function.

Both datasets considered in the paper follow the same equations approximating the tracer equation
(eq. (17)) inspired by eq. (32):
eT_
@t
We study the equations 32 and 33 in an incremental approach. In the following parts, we describe
how T, U andS are computed in both datasets Adv+S and Natl.

r (TU)+ S (36)

E.3.1 Abv+S

We rst investigate a dataset generated following simplifying assumptions (Adv+S). We don't rely
on trueU andS, we instead build them so that they correspond to our hypothesis.

Building a Velocity Field U Under stationarity and incompressibility hypothesiscan be ap-
proximated from a stream functidt. Note that, in this dataself] is not equal to the SSH, it is
simulated following (Boffetta et al., 2001):
y BU)_codx 37)
1+ k2B ()2 sin2kx
As introduced precedently (see eq. (34)), eq. (33) can be simpli ed and we cotdpsiieu; v) so
that it follows: o o

— V= — 38
@y @x (28)
Note thatB varies periodically with time according ® = Bo + cos(t + ). We compute 10
different velocity elds sampling random paramet&s; k; c;!; ;

H(x;y;t) = tanh[p

Building a Source TermS In eq. (32), the diffusion ter® T is omitted. We generate the source
termS so that it represents the forcing tefd in eq. (36). To illustrate heat exchanges, we draw
from Frankignoul (1985). This source term is a non linear transformatidh =f( u; v) multiplied

by the difference between the ocean temperature and a reference temperature:

0 if & <10

1 otherwise.

whereT, is the sequence mean image (computed without source).

S(U;T)=we (T Te) where we=

Dataset Generation Using computed) and S, we integrate eq. (36) with t = 8640s over

30 days, using a Semi-Lagrangian scheme (see explanations below). We generate 800/100/200
sequences respectively for train, validation and test sampling over the initial conditions, which are
images of sizé&64 64 sampled from Natl dataset. Finally, for integration, we impose East-West
periodic conditions, implying that what comes out the left part re-enters at the right, and reciprocally.
We also impose velocity to be null on both top and bottom parts of the image.
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Semi-Lagrangian Integration Unlike Eulerian scheme, relying on time discretization of the
derivative, the semi Lagrangian scheme relies on the constancy of the solution of a PDE& along
characteristic curve Consider a solution to the advection equation, i.e. eq. (36) ®ith0. The
method of characteristics consists in exhibiting curpgs); t(s)) along which the derivative of the
solutionT is simple, i.e%(x(s);t(s)) = 0. For a 1D constant advection scheme, computations
lead to:

dt

— =1 = =t

ds

dx

—=U = = + Ut
ds ) X = Xp

giving therefore,T(x;t) = To(x Ut), linking the value of the solution at all time to its initial
condition. Therefore from a single observatiort@tit suf ces to estimate the original departure
pointsxo, Ut to infer the prediction at.

However, wherlJ is not constant in time, the method remains doable, not along charactkmnissic
de ned by : ko + Ut), but along characteristimurveswhich are given by:

dt
dx
F u(x;t) (39)

A great deal in the semi-Lagrangian literature involves solving correctly eq. (39). We use the con-
ventional mid-point integration rule and the semi-Lagrangian is implemented using Pytorch function
gridsample , following in (Jaderberg et al., 2015). Further developments can be found for exam-
ple in (Diamantakis, 2014).

E.3.2 NaTL

This second dataset depicts the actual ocean circulation, i.e. we consider both eq. (32) and eq. (33).
In this case, no assumptions are madeJoandS represents both diffusion ternis” and forcing
termsFT. We access daily data over a year of ocean surface temperature of the North Atlantic
observations model resulting from (Ajayi et al., 2019)The dataset covers280km 256km

zone at 1.5km resolution, in the North Atlantic Ocean.

In this real-life dataset, sea surface height (SSH) partial derivative with respeetnidy serves as
proxies to the (unobserved) velocity elds. Indeed, recall that simplifying hypotheses led us to
eq. (35).

We divide the Natl zone into 270 patches of sk 64. For each region, we extract sea surface
temperatures, velocity elds, source terms and height variables. We sample 200/20/50 sequences of
1 year, for respectively train, validation and test. In this cages 86400s (1 day).

F TRAINING DETAILS
All experiments were conducted on NVIDIA TITAN X GPU using Pytorch (Paszke et al., 2019).

Hyper-Parameters Interpretation From eq. (4), two independent terms appear justifying an al-
ternate projections approach.

First, we highlight that strictly minimizingl(hy; f ) biases our estimation df,. However, it may
yield a good estimation dfy provided thaf, contributes signi cantly to the prediction 6f Hence,

we interpret this loss as anitialization loss. Thus, in most applications, we progressively decrease
its magnitude along training as detailed in appendices F.1 to F.3.

On the other handd(h,; 0) aims at constraining the free form functib to make its action as
small as possible. We interpret this loss atability penalty.

!Details available at : https://meom-group.github.io/swot-natl60/access-data.html
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Finally, aiming to recover exact trajectories of observations, we proceed as suggested in (Yin et al.,
2021) progressively increasing the hyper-parameters associai€at fo).

The practical implementation is summarized in the following algorithm:

Algorithm 3 Alternate estimation: Practical Setting

Initialization: 2 =0; 2=minn 4, d(hi;f), h, her hy
for epoch=1: Negpochs dO
for batch=1: By do

| TT= 0 [adtiD)+ n ()]
end

for batch= By : B, do

| 1= 0 ar L[ad(iD)+ h,d(hu0)]

F.1 DAMPED PENDULUM

Architecture Details The physical parameters to be learned is a scalar of dimefisenmdh,, is
a 1-hidden layer MLP witl200-hidden neurons with leaky-relu activation.

Optimization For this dataset we use RMSProp optimizer with learning €0804 for 100
epochs with batch size 128. We supervise the trajectories tp=to t 50, i.e we enforcel
over(top + t;:;;tg +50 t). Overall the number of optimization subsequences for training is
17000. We alternate projection @ andS, by descending the gradiefif-batches orhy then
10-batches o, .

Hyperparameters We initialize ,, = 0:1 and decrease it geometrically down tg, = 0:001
We initialize = 0:1 and increase it geometrically up tg = 100. p, is xed through training
at0:1.

The hyper-parameters were chosen by randomly exploring the hyper-parameters space by sampling
themsothat U (1;0:1;:::;10 4). We select the ones with the lowest prediction errors, i.e with
lowestd (h;f).

For the ablation study of Table 1, we sefXthe hyper-parameters associated to the non-considered
loss.

The training time for this dataset is 1 hour.

F.2 LOTKA-VOLTERRA

Architecture Details The physical parameters to be learned is a vector of dime@sasoounting
for (; ) in eq. (16), andh, is a 1-hidden layer MLP witt200-hidden neurons with leaky-relu
activation.

Optimization We use Adam optimizer with learning ra®e0005for 200 epochs with batch size

128. Overall the number of sequences for training is 15000. We supervise the trajectories up to
t= t 25ieweenforcel over(to+ t;:;;tg+25 t). We alternate projection o8 andS,

by descending the gradieb®-batches oy then10-batches o, .

Hyperparameters We initialize ,, = 0:1 and decrease it geometrically down tg, = 0:001
We initialize , = 0:001and increase it geometrically upt@q = 1. 4y, is xed through training
at0:001
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The hyper-parameters were chosen by randomly exploring the hyper-parameters space by sampling
them so that U (1;0:1;:::;10 4). We select the ones with the lowest prediction errors (i.e
lowestd(h;f)).

For the ablation study of Table 1, we selXthe hyper-parameters associated to the non-considered
loss.

The training time for this dataset is 2 hours.

F.3 ADV+S

Architectures Details The physical parameters to be estimated are the velocity @ldsf dimen-
sion(2;64;64). As U varies over time, we follow data assimilation principles to map a sequence
of 4 consecutive measurements of the tracer €ldo the associated velocity eld (Gaultier et al.,
2013). To do so, we parameterize a recognition netv@rkoy U-net with at most 512 latent chan-
nels also following the implementation of (Isola et al., 2017), taking as input a sequence of 4 time
steps ofT: (Ti,; 5 Teo+3 t). The residual dynamids, is learned by a convolutional ResNet, with

1 residual block taking as entry the same sequende. diVe implementy via a semi-lagrangian
scheme, taking as inplit and the estimated; to predictT;.; .

Optimization We use Adam optimizer with learning ra@e€001for 30 epochs with batch size 32.
We supervise the trajectories uptte  t 6, i.e we enforcal on(T,+ ;55 Teo+6 ). Overall
the number of sequences for trainin@BB80Q We alternate projection d& andS, by descending
the gradient-batches omy then6-batches orhn, .

Figure 3: Best viewed in color Schematic view of our model in the context of section 5.2, applied on the
Adv+S dataset.

Hyperparameters, setting of eq. (4) We initialize ,, = 0:1and decrease it geometrically down
to n, =0:00001 We initialize , = 0:01and increase it geometrically every epoch up e =
100Q 1, is xed through training aD:1. We select the hyperparameters with the lowest prediction
errors (i.e lowestd(h;f)). For the ablation study of Table 1, we setGdhe hyper-parameters
associated to the non-considered loss.

The training time for this dataset is 8 hours.
F.4 NatL

Architecture Details The architectures in this setting are identical to the ones described in ap-
pendix F.3.

Optimization We use Adam optimizer with learning ra®00001for 50 epochs with batch size
32. Overall the number of sequences for trainin§4900 We enforced over6 time-steps, i.e we
supervise the predictions on timestefts:+ t;::;to+6 t). We use dropout in boté andh,.
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Hyperparameters, setting of eq. (4) For this setting, , geometrically increases from 0.01 up to
100. We initialize p, = 0:1 and decrease it geometrically down tg, = 0:00001 4, is xed
through training a0:1. We alternate projection d& andS, by descending the gradieb®-batches
on bothhy, andh,.

The selected model is the one with lowest prediction errors on validation set (i.e ld@e$t)),
sampling uniformly the hyperparameters: U (1;0:1;:::;10 ).

Hyperparameters, setting of eq. (5) Because the dynamics of Natl is highly non linear and
chaotic, we follow (Jia et al., 2019) and rst warm-up the parameters recognition ne@orn
the velocity elds proxies follOepochs. For this settingy, geometrically increase fro®0L1 up to

1. p, issetequalton. p, is xed through training aD:01.

After warm-up, we alternate projection @ andS, by descending the gradieh©0-batches on
hx and3000n h,. In this setting of eq. (5), the selected model is the one with low@stf ) +
d(hg;f}") error, sampling uniformly the hyperparameters:U (1;0:1;:::;10 4).

The training time for this dataset is 12 hours.

Baselines We train NODE (Chen et al., 2018) and Aphynity (Yin et al., 2021) on both the Adv+S
and Natl dataset. For the training of Aphinity, we set the learning ra@e0801 and train on30
epochs. We initialize = 0:01 and increase it geometrically every epoch up o= 100. 4,

is xed through training a0:1. For the training of NODE, we set the learning rat®®0004and

train on50 epochs. To perform prediction, we rst encode theonsecutive measurementsiofas

a3 64 64state) then learn to integrate this state in time thanks to a netiwolkis a 3-layer
convolutional networks, with 64 hidden channels. It is integrated using RK4 scheme available from
https://github.com/rtgichen/torchdiffeq

G ADDITIONAL RESULTS AND SAMPLES

G.1 RESULTS FORPENDULUM AND LOTKA-VOLTERRA DATASETS

We provide respectively in gs. 4 and 5 phase diagrams for the damped pendulum and Lotka-Volterra
experiments. Both graphs in the phase space indicate that the trajectories and their nature are well
handled by the learned decomposition, providing a periodic phase space for Lotka-Volterra ( g. 5),
and a converging spiral for the damped pendulum ( g. 4).

G.2 RESULTS FORADV+SAND NATL

In this section, we provide additionial results on both Adv+S and Natl datasets. A thorough abla-
tion study (table 4) gives results with constant hyperparameieand p, (row Vanilla Optim),

which validates our hyper-parameters interpretation. Indeed, the results are better when respectively
increasing and decreasing and p, . Besides, the row Ours eq. (5) refers to a training performed

as introduced in appendix C.4 witl" = h? trained on eq. (4). Figure 7 shows predictions up to 4
days on the Adv+S data. Finally, gs. 9 and 11 provide results on Natl dataset associated to training
relying on both eq. (4) and eq. (5) and with NODE (Chen et al., 2018).
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Figure 4: Damped Pendulum Phase Diagram. The true phase diagram (blue) and learned (orange dashed) are
close, indicating consistency in the prediction
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Figure 5: Lotka-Volterra Phase Diagram. The true phase diagram (blue) and learned (orange dashed) are close,
indicating consistency in the prediction
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Table 4: Ablation Study on Adv+S. We report the MSE ( 100) on the predicted observations T, the estimated
velocity fields U and the residual source term S over 6 and 20 time steps from an initial datum to. Unlike
alternate training, i.e. Algorithm 1, “Joint” rows refer to the simultaneous optimization of hi and hy.

o th+6 to+20
Training  Models T U S T U S
Ours (U known) 0.52 n/a 0.19 20 n/a 0.32
Ours eq. (4) 0.74 199 0.17 849 226 0.3l
only d(h; f) 1.02 4.08 0.19 1059 4.19 0.32

Altornae. 9T +d(hic ) 102 366 019 1142 384 034
d(h;f) +d(h;h) 077 238 019 95 245 034

Ours eq. (5) 075 277 017 836 284 0.29
Vanilla optim. 151 377 03 1333 4.1 5.5
Joint | Ours eg. (4) 144 33 03 128 35 05
only d(h; f) 138 696 039 119 7.09 054
t+1 =2 t+3 t+4 1+5 t+6 t+1 +2 =3 +4 t+5 +6
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Figure 6: Best viewed in color. Estimations, targets and differences between estimations and targets on T,
U = (u;v) and S for Adv+S. Each column refers to a time step, ranging from 1 to 6 half-days. On the left,
true and estimated U = (u; V) over 6 time steps, and differences between targets and estimations. On the right,
prediction of T and S over 6 time steps, and differences between targets and estimations.
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Figure 7: Best viewed in color. Estimations and targets on T, U = (u;V) and S for Adv+S. Each column
refers to a time step, ranging from 1 to 8 half-days. On the left, sequence of T inputs (4 time steps). In the
middle, prediction of T, U = (u;V) and S over 8 time steps. On the right, true T, U and S over 8 time steps.

Figure 8: Best viewed in color. Estimations, targets and differences between estimations and targets on T,
U = (u;v) and S for Adv+S. Each column refers to a time step, ranging from 1 to 5 half-days. On the left,
true T, U and S over 5 time steps.. In the middle, prediction of T, U = (u; V) and S over 8 time steps. On the
right, differences between targets and estimations.

Figure 9: Best viewed in color. Sequence of estimations on U = (u; V) for the Natl data. The second and third
row respectively refer to training according to eq. (4) and eq. (5). The loss term d(hi; fY") in eq. (5) enables
our model to learn more accurate velocity fields than when only trained following eq. (4).
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