Under review as a conference paper at ICLR 2025

CANONIC SIGNED SPIKE CODING
FOR EFFICIENT SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biologi-
cal neurons and are expected to play a key role in the advancement of neural com-
puting and artificial intelligence. The conversion of Artificial Neural Networks
(ANNSs) to SNNGs is the most widely used training method, which ensures that the
resulting SNNs perform comparably to ANNs on large-scale datasets. The effi-
ciency of these conversion-based SNNs is often determined by the neural coding
schemes. Current schemes typically use spike count or timing for encoding, which
is linearly related to ANN activations and increases the required number of time
steps. To address this limitation, we propose a novel Canonic Signed Spike (CSS)
coding scheme. This method incorporates non-linearity into the encoding process
by weighting spikes at each step of neural computation, thereby increasing the
information encoded in spikes. We identify the temporal coupling phenomenon
arising from weighted spikes and introduce negative spikes along with a Ternary
Self-Amplifying (TSA) neuron model to mitigate the issue. A one-step silent pe-
riod is implemented during neural computation, achieving high accuracy with low
latency. We apply the proposed methods to directly convert full-precision ANNs
and evaluate performance on CIFAR-10 and ImageNet datasets. Our experimental
results demonstrate that the CSS coding scheme effectively compresses time steps
for coding and reduces inference latency with minimal conversion loss.

1 INTRODUCTION

Spiking Neural Networks (SNNs), recognized as the third generation of neural network models, are
inspired by the biological structure and functionality of the brain (Wang et al.l [2020). Unlike tra-
ditional Artificial Neural Networks (ANNs), which rely on continuous activation functions, SNNs
utilize discrete spiking events. This enables SNNs to capture temporal dynamics and process infor-
mation in a manner that closely resembles brain activity (Taherkhani et al.,2020). The event-driven
nature of SNNs aligns with the brain’s energy-efficient computational paradigm, offering potential
for more efficient and low-power computing systems (Yamazaki et al.| [2022).

The two primary learning algorithms for SNNs are gradient-based optimization and ANN-SNN
conversion. Directly training using supervised backpropagation is challenging due to the non-
differentiable nature of spike generation (Lee et al., [2020; 2016). The conversion-based method,
however, offers a practical approach to overcome this difficulty and has produced the best-
performing SNNs (Deng & Gu, 20215 Bu et al., 2022; Ding et al., 2021).

Encoding the ANN activations into spike trains is a prerequisite for successful ANN-SNN conver-
sion. Various coding schemes, such as rate coding and temporal coding, have been proposed to
describe neural activity (Guo et al.| [2021). Rate coding maps the number of spikes to the corre-
sponding ANN activation (Cao et al., [2015). In contrast, temporal coding focuses on the precise
timing or patterns of spikes (Rueckauer & Liu, 2018; |Kim et al., 2018 |[Han & Roy, [2020). For ex-
ample, Time-to-First-Spike (TTFS) coding maps the the activation value to the time elapsed before
the first spike (Stanojevic et al., [2022).

However, both the spike counts in rate coding and the spike timing in TTFS coding are linearly
related to the encoded activation. This necessitates a large number of time steps to provide sufficient
encoding granularity (Stanojevic et al) 2023; Meng et al.l [2022). Recent works have proposed
alleviating these problems by quantizing the ANN activations before conversion (Hu et al.l |2023;
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Bu et al., |2023; Hao et al., [2023)). This approach simplifies the encoding process but introduces
additional quantizing and training overhead. Our goal is to develop a novel encoding method that
can directly convert full-precision ANNs while reducing the number of time steps required.

. . In the study of the temporal information dynamics of
spike train

spikes, |[Kim et al.| (2022) found that after training, in-
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0 2 3 4 : time steps. This observation led us to hypothesize that

T (rate) l the spikes at earlier time steps carry more information

and contribute more to the membrane potential. Con-

O [TTTTTATTTTATTTTTRTTTTUA T o
T i i i i ------ sequently, by gradually amplifying the membrane po-
> tential over time, we increase the influence of earlier
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smallest weight being one (applied to the final spike).
This results in a significant enhancement in the encod-
\I\ _. ing capacity of the spike sequence for a given length.

more information at
earlier time steps

""""""""""""""" Due to this fixed weight pattern during neural compu-

» tation, we refer to these spikes as canonical.

However, we observed that after weighting, spikes tend
Figure 1: Different interpretations of the to concentrate in later time steps. This phenomenon oc-
same spike sequence. Z denotes the infor- curs because earlier spikes now encode larger values,
mation encoded in a spike. @' is the spike making them less likely to be fired after stimulation.
amplitude. [ is the membrane potential As the spatial depth increases, the spike distribution be-
amplification coefficient and 7" is the total comes more biased toward later time steps, leading to
length of the sequence. significant performance degradation. We refer to this

phenomenon as temporal coupling of weighted spikes.

To mitigate this, we introduce negative spikes and lower the firing threshold of neurons to promote
earlier spike emission. Neurons are also equipped with a negative spike threshold, allowing them
to generate negative spikes that correct excessive firing. This combination results in the Canonic
Signed Spike (CSS) coding scheme and the Ternary Self-Amplifying (TSA) neuron model. To better
balance the trade-off between coding time steps and inference latency in CSS coding, we introduce
a one-step silent period into the TSA neuron, which improves both performance and efficiency of
the resulting SNN.

The main contributions of this paper can be summarized as follows:

* By assigning weights to the spikes, we introduce non-linearity into the coding process and
compress the time steps to a logarithmic scale. Neurons amplify the membrane potential at
each time step, thereby obtaining more information from the preceding spikes.

* We find that weighted spikes are prone to temporal coupling during neural computation,
presenting the biggest challenge when incorporating non-linearity in spike coding. We
analyze the underlying reasons and introduces negative spikes along with the TSA neuron
model to address this issue.

* We demonstrate the effectiveness of the CSS coding scheme on the CIFAR-10 and Ima-
geNet datasets. The results show that the proposed method effectively reduces both the
required coding time steps and inference latency. Additionally, the CSS coding scheme
offers energy efficiency advantages over both rate coding and temporal coding.

2 RELATED WORK

Currently, the mainstream coding schemes in converted SNNs are rate coding and TTFS coding.
Rate coding represents different activities with the number of spikes emitted within a specific time
window. Early research efforts focused on reducing conversion loss, leading to methods such as
weight normalization (Diehl et al., [2015), threshold rescaling (Sengupta et al., [2019), and soft-reset
neuron models (Han et al, 2020). More recent work has shifted towards reducing the number of
time steps by optimizing neuron parameters. [Meng et al.| (2022) introduced the Threshold Tuning



Under review as a conference paper at ICLR 2025

and Residual Block Restructuring (TTRBR) method to minimize conversion error in ResNet archi-
tectures with fewer time steps. |Bu et al.| (2022) proposed optimizing the initial membrane potential
to reduce conversion loss when using a small number of time steps.

Despite these optimizations, deep networks or large datasets still require hundreds of time steps to
achieve satisfactory results. To address this, recent works in rate coding have explored quantizing
the ANNs before conversion (Hao et al., |2023; Bu et al.l 2023} [Hu et al., |2023)). This approach
directly reduces the number of activations that need to be mapped, providing an alternative way to
minimize time steps. Notably, this approach is complementary to ours. The proposed encoding
scheme can also convert quantized ANNSs and further reduce the required number of time steps.

Due to the functional similarity to the biological neural network, SNNs are highly compatible with
temporal coding. Rueckauer & Liu|(2018)) were the first to attempt converting an ANN to a TTFS-
based SNN. While this coding method significantly increased sparsity by limiting each neuron to fire
at most one spike, they observed large conversion errors, even on MNIST dataset. |Stanojevic et al.
(2022) demonstrated that an exact mapping from ANN to TTFS-based SNN is feasible but needs
hundreds of time steps for accurate encoding. |Yang et al.|(2023) proposed a TTFS-based conversion
algorithm with dynamic neuron threshold and weight regularization. They completed the conversion
with 50 time steps per layer. Despite the reduction in the number of time steps per layer, TTFS
coding still suffered from high output latency in deep networks for its layerwise processing manner.
Han & Roy|(2020) introduced the Temporal-Switch-Coding (TSC) scheme, where each input pixel
is represented by two spikes, and the time interval between them encodes pixel intensity. However,
as this time interval remains linearly related to activation, the issue of long latency persists.

Some recent works have also incorporated non-linearity into the coding process. Stockl & Maass
(2021)) and Rueckauer & Liu| (2021) used spikes to encode the ”1”’s in the binary representations
of ANN activations. However, both works did not address the temporal coupling issue caused by
weighted spikes. Instead, they adopted an approach similar to TTFS coding, where neurons must
wait for the arrival of all input spikes before firing. In contrast, our approach facilitates the greatest
extent of synchronous neural computation, thereby reducing both the coding time steps and output
latency.

3 PRELIMINARIES

3.1 SPIKING NEURONS

Spiking neurons communicate through spike trains and are interconnected via synaptic weights.
Each incoming spike contributes to the postsynaptic neuron’s membrane potential, and a spike is
generated when the potential reaches a predefined threshold. Generally, a spike sequence S![t] in
the SNN can be expressed as follows:

Sift] = > 0'oft —t;7] (1)

th/ erl
where i_is the neuron index, [ is the layer index, ¢' is the spike amplitude, d[-] denotes an unit
impuls f is the spike index, and F’ denotes a set of spike times which satisfies the firing condition:
7 o[ty 7] > 0 )

where ol[t] denotes the membrane potential before firing a spike. Conversion-based works often
employ soft-reset IF neuron model, where the membrane potential is subtracted by an amount equal
to the spike amplitude for reset. Specifically, its dynamics can be expressed as follows:

uilt] = wilt — 1] + 2i[t] - Si[¢] 3)
where ul[t] denotes the membrane potential after firing a spike and 2![t] denotes the integrated
inputs:

A = wh S + 0 )
J

where wéj is the synaptic weight and bi- is the bias. For clarity, definitions of the common symbols

are provided in

!5[t] takes the value 1 at £ = 0, and 0 otherwise
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Table 1: Common symbols in this paper.

Symbol Definition \ Symbol Definition

l Layer index 8 Amplification factor
7] Neuron index wﬁj SNN weight

St Spike sequence 1257 ANN weight

olt] Membrane potential before firing | b SNN bias

ul[t] Membrane potential after firing b ANN bias

2L[t] Integrated inputs (PSP)! T Time steps for coding
0! Spike amplitude g Initial spike amplitude

! Postsynaptic potential

3.2 ANN-SNN CONVERSION

The ANN-SNN conversion typically involves the following two key steps: 1) selecting an appropri-
ate encoding method to represent ANN activations as spike trains, and 2) adopting a suitable neuron
model that ensures the generated spike trains accurately encode the outputs of the corresponding
ANN neurons. Note that this process results from the joint effect of the encoding scheme and the
neuron model.

The most widely used and State-Of-The-Art (SOTA) approaches employ (signed) soft-reset IF neu-
rons and interprets their output through spike rates (i.e. rate coding). Let T" denote the number of
time steps, with the initial condition u4[0] = 0, we can iteratively update the membrane potential
using until t = T'. Then substitute z![t] with[Eq. (4)| and we can write:

Sr Sht P Sl‘ b WlT
N ®
J t=1

See for a detailed derivation. Note that both sides of the equation are divided by T
to better hlghhght the interpretation of >{=, Si[t}/T as a “rate”. It defines the relationship between
neuron’s input rate and output rate and can be directly related to the forward pass in a ReLU-activated
ANN:

al = max Zw a Lrbko (6)

where a! denotes the ANN activation, ng and ZA)i denote the weight and bias, respectively. Note

that in [Eq. (5)] we have: 1) £ S[tl/7 > 0, and 2) “[T]/T becomes negligible as 7" increases. These
observations suggest that mapping ANN activations to SNN spike rates can be achieved by simply
using the scaled ANN weights~|and bias.

However, with fewer time steps, the spike rate 3 Si[t]/7 can only encode a limited number of activa-
tions, while the perturbation introduced by «:[T]/T increases. These factors together result in a rapid
increase in conversion loss. This issue is inherent in any encoding scheme that relies on quantities
linearly related to the time steps. Therefore, our goal is to incorporate nonlinearity into the encoding
process to enhance the expressiveness of spike trains.

4 METHODS

4.1 ASSIGNING WEIGHTS TO SPIKES

We begin by introducing an amplification factor 8 > 1 into the soft-reset IF model:

wit] = Buift — 1] + 2i[t] — Silt] )

The spile amplitude 6" is finally normalized to 1 for simplicity of implementation, which is achieved by
absorbing it into the synaptic weights. Consequently, the ANN weights still need to be scaled by a certain
factor. Note that 0" is typically determined based on the number of time steps and the range of ANN activations
in layer (.
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Following the same derivation as in[Eq. (5)] we can write:

T T T
= wy Y BTSN+ Y AT -y TS ®
J t=1 t=1 t=1

The detailed derivation can be found in Appendlx A.1] As expected, the input at time té’f raises the
membrane potential by 637~ t". As shown in , for a sequence of length 7', this enables the
use of 1, ATt S![t] rather than 3, S![t] to map the ANN activation. Note the spike at time T’

still encodes @', which is the minimum value a spike can represent and determines the granularity of
encoding.

Definition 1. Let v denote the target value. The encoding is considered accurate, denoted as S![t] ~
v, as long as |S1_, BT-1SHt] — v‘ < 6.

We allow a discrepancy of one spike amplitude between the target and encoded value, which can be
considered as a quantization error due to the finite number of time steps. According to[Eq. (8)] our
method can theoretically encode the same number of activations as linear encoding method while
log-compressing the number of required time steps. Meanwhile, serves as the core equation
for ANN-SNN conversion. We can rewrite it as follows:

T T
ZBT tsl Zw” ZBT—tS;fl[t] + ZBT_tbﬁ _ ’LL{L[T]

t=1 t=1 t=1
By comparing the above equation With Eq. (6), and noting that ) _, BT=tSL[t] > 0, we can conclude:

Observation 1. Let S;fl[ |~ aé ', and setw!; = !, and b} = bi/5, 57, respectively. To reduce

encoding errors in layer [, the residual membrane potential u.[T'] should be minimized.

Building on this insight, we now identify the factors influencing u![T], as formalized in the following
theorem:

Theorem 1. Making ul[T] < € is equivalent to satisfying the following equation:
vtO S {1727 7T}7

BT to-‘rllt_l _’_Zw”ZﬁT tSll +ZBT tbl<6+ZQIBTt )

tto tto ttU

The second term on the right-hand side of represents the maximum value a spike train after
to can encode. This imposes constraints on both the subsequent input and the membrane potential
carried over from the preceding step (the left-hand side of the equation). provides the
mathematical foundation for the next section, with its detailed derivation available in[Appendix A2

4.2 INCORPORATING NEGATIVE SPIKES

Rueckauer et al| (2017) reported that large activation values in ANNs are rare, with most values
concentrated within a smaller range. This suggests that when mapped to weighted spike trains, the
majority of spikes will occur in the later time steps (as these spikes encode smaller values). As a
consequence, [Eq. (9) becomes difficult to satisfy as ¢, approaches T": the left-hand side contains a
large amount of input, while the right -hand side provides limited encoding capacity. This mismatch
ultimately results in an increase in [T, leading to a further shift in the spike distribution.

To illustrate this more clearly, we have plotted the spike distribution in the first and last layers of
VGG-16 (in red) in alongside the distribution of the average residual membrane potential
across all neurons. As shown, the spike distribution in the last layer shifts significantly toward
later time steps compared to the first layer, a phenomenon we refer to as the temporal coupling
of weighted spikes. Additionally, the residual membrane potential exhibits a distribution resem-
bling random noise, and our experimental results indicate that this leads to nearly random classifi-
cation performance. Therefore, a new neuron model is needed to enable effective computation with
weighted spikes.
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Figure 2: (a) Spike distribution in the first layer of VGG-16. (b) Spike distribution in the last layer
of VGG-16. (c) Average residual membrane potential across all neurons in VGG-16. The red data
corresponds to the self-amplifying IF neuron model, the orange data corresponds to the TSA model,
and the green data further incorporates a one-step silent period.

Algorithm 1: The forward method of TSA

Input: input X of shape [BT, C, H, W], length of silent period L, spike amplitude 6

Output: output spike train .S of shape [BT, C, H, W]

reshape and then pad X with zeros to shape [(T+L), B, C, H, W];

membrane potential M < zeros_like (X[0]), threshold v +— 1608";

for0 <i< Ldo

| M« BM + X[i]; /* silent period =/

end

fori=0to7 —1do
M+ BM + X[i+ L]; /x accumulate input =/
S[i] + (M > v)float() — (M < —v).float() ; /* fire ternary spikes x/
M +— M —2v x S[i]; /x over firing & soft reset «/

end

4.2.1 TERNARY SELF-AMPLIFYING NEURON MODEL

Based on the above analysis, our approach begins by encouraging spikes to be generated as early
as possible. The key idea is to lower the firing threshold and incorporate negative spikes into the
encoding scheme to correct the excess information caused by over-spiking.

We set the positive firing threshold to %Ol and introduce a negative threshold of — %91 into the neuron
model, which triggers a negative spike when ol [t] falls below it. Notably, on the left side of [Eq. (9)}
this adjustment not only shifts the input spikes to earlier time steps, but also reduces u![ty — 1]. The
coefficient % is selected to confine both positive and negative membrane potential within a narrow
and balanced range. Given the above characteristics, we designate the coding method as the CSS
coding scheme and the neuron model as the TSA neuron.

Next, we establish the connection between the ANN and SNN using the proposed methods. Based

on[Observation I} we present the following theorem:
Theorem 2. Let Sj-_l[t] ~ aé-_l, wh; = wl;, and b, = bi/s>, 57t Then S'[t] ~ al, provided that
|[ul[T]| < 6.

Note S![t] can now represent negative activations with negative spikes. To handle this, we constrain
the absolute value of u![T] and apply additional logic to zero out sequences that encode negative
values (a ReLU counterpart). The above theorem supposes that the input has been encoded and then
provides the method for output encoding. Next, we give the method to encode the network input:

Theorem 3. Let the input pixel value be a9 and 3 < 2. By Initializing the membrane potential u?[0]
with @i /87, the resulting spike train SP[t] ~ a with T steps.

The proofs of the above two theorems can be found in By encoding input with
and constraining u![T] of each hidden layer within the requirements of an
ANN is then converted to a CSS-coded SNN.



Under review as a conference paper at ICLR 2025

., (@) resnet18 on cifarl0 o0 (b) vggl16 on imagenet 460 (¢) Tesnet18 on cifarl0
— B=11 R o551
> B=13 S 95.04
:‘% B =15 % 94.5 1
5 B =17 o 01.0 1‘.1 1‘.2 1‘.3 1‘,4 1‘5 1‘6 1.‘7 1.‘8 1.‘9 2.0
© .
. — B=19

S e (d) vggl6 on imagenet
g_ X755

.75.04
(9]
Q745
© 40

61 0.2 0.3. 0.4 0.5 0.6 0.7 07.1 0.2 03_ 0.4 0.5 0.6 0.7 1.0 1‘.1 1‘.2 1‘.3 114 1‘5 1‘6 1.‘7 1.‘8 1.‘9 2.0
residual mem. residual mem.

Figure 3: Impact of 5 on residual membrane potential and accuracy. All the membrane potentials
are normalized. Note the spike amplitude is 1. For ResNet-18 on CIFAR-10: (a) and (b) Residual
membrane potential distributions under different 5. (¢) and (d) Accuracy variations corresponding
to different 3.

4.2.2 ONE-STEP SILENT PERIOD

Although the TSA neuron effectively controls [T within an acceptable range, the results in
(orange) demonstrate that temporal coupling persists. Inspired by the layerwise processing manner
in TTFS coding (Stanojevic et al., 2022)), we incorporate a one-step silent period into the TSA
neuron model. During this period, neurons integrate input and perform stepwise weighting but are
prohibited from firing. This one-step output delay introduces a new term, #!37—*~1 (i.e. spike
from ¢t =ty — 1), to the right-hand side of |[Eq. (9)L making it easier to minimize uﬁ [T].

to g@l accordingly. Similarly, the membrane potential is reduced by 36" for reset. In|Algorithm 1
we provide pseudo code for the forward propagation process of TSA neurons. The mathematical

description of the TSA neuron model can be found in[Appendix A.5]

The silent period method assigns distinct computation time windows to TSAs at different depths,
aligning with the temporal shift of the input spike distribution. This partially sacrifices synchronous
processing at each time step, leading to increased output latency. For an L-layer network, the output
layer will start to fire spikes only after L steps. However, with each layer operating in a pipelined
manner, the efficiency and accuracy gain outweighs the drawback of the increased latency. In[Ap-|
we set up an ablation study to evaluate the effectiveness of this trade-off.

Since the input information is amplified by 3 after the silent period, the firing threshold is ad%'usted

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Determination of Spike Amplitude. We use a strategy similar to rate coding (Rueckauer et al.,
2017) to derive a suitable §': after observing the ANN activations over a portion of the training set,
we calculate the 99.99th percentile pl of the activation distribution, and then set §' to p’/zt gT—t.

This setting ensures that the vast majority of the activations remain below the maximum encod-
able value, Zt L BT’t, and increases the network’s robustness to outlier activations. For ImageNet,
we further fine-tune the spike amplitude; additional details on this process can be found in

pendix A.

Choice of the Amplification Factor. To investigate the impact of 3, we conducted experiments
using ResNet-18 on CIFAR-10 and VGG-16 on ImageNet. We plotted the distribution of the residual
membrane potential for different values of 3 (which serves as an indicator of temporal coupling) and
provided the corresponding accuracy curves in|Fig. 3|

As shown, accuracy generally increases and then decreases as 3 varies. As 3 increases, the weight
difference between spikes grows, causing input spikes to cluster at later time steps and increasing
the likelihood of temporal coupling. Conversely, a decrease in /3 requires a larger #' to provide
the same encoding capacity, which in turn leads to a higher quantization error. Notably, for 5 >
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Table 2: Coding time steps and inference latency under different neural coding schemes, evaluated
on CIFAR-10 and ImageNet datasets.

. ANN Coding Coding Inference SNN

Methods Architecture Accuracy Scheme Time Steps Latency  Accuracy
FS-conversion (Stockl & Maass/[2021)  ResNet-20 91.58% FS 10 200 91.45%
TTRBR (Meng et al.|[2022) ResNet-18 95.27% rate 128 128 95.18%
TSC (Han & Roy|[2020) VGG-16 93.63% TSC 512 512 93.57%
S | LC-TTFS (Yang et al.[[2023) VGG-16 92.79% TTFS 50 800 92.72%
| Exact mapping (Stanojevic et al.]2023) VGG-16 93.68% TTFS 64 1024 93.64%
§ Calibration (Li et al.|[2021) VGG-16 95.72% rate 128 128 95.65%
O | OPI (Bu et al.|[2022) VGG-16 94.57% rate 128 128 94.50%
ResNet-20 92.10% 12 32 92.06%
CSS-SNN ResNet-18 95.24% CSS 12 30 95.30%
VGG-16 95.89% 10 26 95.88%
OPI (Bu et al.|[2022) VGG-16 74.85% rate 256 256 74.62%
TSC (Han & Roy|[2020) VGG-16 73.49% TSC 1024 1024 73.33%
RMP-SNN|Han et al.|(2020) VGG-16 73.49% rate 2048 2048 72.78%
% Calibration (L1 et al.|[2021) VGG-16 75.36% rate 256 256 74.23%
z | TSC (Han & Roy|[2020) ResNet-34 70.64% TSC 4096 4096 69.93%
gn CalibrationLi et al.|(2021) ResNet-34 75.66% rate 256 256 74.61%
g | FS-conversion (Stockl & Maass/[2021)  ResNet-50 75.22% FS 10 500 75.10%
~ | TTRBR (Meng et al.[|2022) ResNet-50 76.02% rate 512 512 75.04%
VGG-16 75.34% 12 28 75.24%
CSS-SNN ResNet-34 76.42% CSS 14 48 76.22%
ResNet-50 80.85% 16 66 80.10%

1.4, the network exhibits relatively stable performance, with the accuracy difference becoming less
pronounced as 3 increases.

Based on these observations, we set 3 to 1.5 for two key reasons: it lies near the midpoint of the
range, and more importantly, it allows for membrane potential amplification through simple shifting
and addition operations, which is energy-efficient and facilitates future hardware implementation.

5.2 OVERALL PERFORMANCE

In[Table 2] we compared the time steps and inference latency under different coding schemes, which
reflect the throughput and latency of the network, respectively. Note all SNNs are converted from
full-precision ANNSs to ensure a fair comparison. Furthermore, the accuracy of the ANNs utilized
in each work is also provided.

Reduction in Coding Time Steps. The coding time steps refer to the number of time steps required
to encode the activations into a spike train. This metric indicates how well the encoding scheme can
represent information within a given time frame and reflects the efficiency of the method.

For simpler classification tasks such as CIFAR-10, CSS coding scheme demonstrated nearly loss-
less conversion with a significant reduction in the number of required time steps. Compared to linear
coding schemes like rate coding, CSS reduces time steps by more than tenfold for both VGG-16 and
ResNet-18, while simultaneously reducing the conversion loss. While the FS coding scheme also
applied weighted spikes and required fewer time steps for ResNet-20, it experienced greater con-
version loss compared to our method. On the more complex ImageNet dataset, the higher precision
demands for encoding further highlighted the benefits of spike weighting. For example, |Li et al.
(2021)) reported a conversion error exceeding 1% on ResNet-34 with 256 time steps, whereas our
method achieved only 0.2% conversion loss with just 14 time steps. FS-coding achieved smaller
conversion loss for ResNet-50 with fewer time steps; however, this came at the cost of a latency
eight times greater than that of ours.

Reduction in Inference Latency. Inference latency refers to the time elapsed from the beginning
of input encoding to the receipt of the classification result, and is also measured in time steps. It
indicates how efficiently the encoding scheme transmits information through neural computation
across the network layers.

In CSS coding scheme, each layer of TSA neurons incorporates a one-step silent period, making the
inference latency equal to the sum of layer counts and coding time steps. In contrast, both TTFS
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Table 3: Performance of Fast-SNN, Offset, and CSS on ImageNet after converting 3-bit VGG-16.
The results for both Fast-SNN (Hu et al., 2023)) and Offset (Hao et al., [2023) are self-implemented
using their publicly available repositories, ensuring identical pre-conversion ANN accuracy.

Methods |  T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8
Offset (rat 64.90% 70.85% 72.06% 72.53% 72.79% 72.92% 73.05% 73.01%
set(rate) | (129 geps) (130 steps) (131 steps) (132 steps) (133 steps) (134 steps) (135 steps) (136 steps)
Fast.SNN (rat 3.19% 52.74% 68.13% 71.26% 72.21% 72.64% 72.87% 72.97%
ast (rate) (1 step) (2 steps) (3 steps) (4 steps) (5 steps) (6 steps) (7 steps) (8 steps)
2.87% 68.53% 72.81% 73.25% 73.23% 73.24% 73.23% 73.24%

CSss (17 steps) (18 steps) (19 steps) (20 steps) (21 steps) (22 steps) (23 steps) (24 steps)

coding and FS coding require each layer to wait for the arrival of all inputs. While this approach fa-
cilitates lossless conversion, it completely sacrifices the synchronous processing capability of SNNs,
leading to increased output latency (i.e. the product of layer counts and coding time steps). For in-
stance, in the CIFAR-10 classification task, the inference latency reported by |Stanojevic et al.|(2023))
on VGG-16 is about 40 times that of our method. FS coding, as a nonlinear encoding scheme, per-
forms well in both coding steps and conversion loss, but its output latency remains a major weakness;
on ResNet-20, its latency exceeds that of CSS by over six times. Rate coding enables synchronous
processing, but its inference latency is constrained by the large number of coding time steps. In
the ImageNet classification task, for example, rate-coded ResNet-34 has a latency five times greater
than our method.

5.3 COMBINATION WITH QUANTIZED ANNS

SOTA performance SNNs (Hu et al., 2023; [Hao et al., 2023) are typically achieved by converting
quantized ANNSs, while still utilizing rate coding. To ensure that only the encoding scheme varies,
we convert ANNs with identical precision. Experiments were conducted using a 3-bit VGG-16 on
ImageNet, with the results presented in[Table 3] 7" represents the number of coding time steps, and
the inference latency is given in round brackets. Note we set 3 to 2 for quantized networks as this
ensures the encoded values align well with the quantized activations. Additionally, the membrane
potential amplification can be achieved using only shifting operations.

Compared to Fast-SNN, our method achieves ANN-level accuracy with fewer time steps by lever-
aging weighted spikes. The IF neurons in Fast-SNN, which do not require a silent period, naturally
exhibit better output latency. In contrast, Offset improves accuracy with minimal time steps by cal-
ibrating the initial membrane potential of neurons. However, this comes at the cost of significantly
increased output latency, as each layer requires p time steps (with p = 8 for ImageNet, consistent
with the original paper) to determine how to calibrate the initial membrane potential. This per-layer
latency accumulates across the network, similarly to the silent period in our approach.

Theoretically, the benefits of our method become more pronounced with higher ANN bit precision
(as shown in [Table 2)), as spike weighting exponentially reduces the number of time steps. While
rate coding also perform well with reduced time steps, they rely heavily on low-bit quantization.
This introduces overhead in training and often sacrifices accuracy. CSS coding scheme provides
an alternative approach to achieving low time steps in SNNs without relying on aggressive quanti-
zation. Furthermore, our method can be seamlessly combined with quantized ANNs, enabling the
development of higher-performance SNNs.

5.4 ENERGY CONSUMPTION ANALYSIS

In this section, we estimate the energy consumption of our methodsﬂ with the results summarized in
The results show that the CSS-coded SNNs achieve at least a fivefold reduction in energy
consumption compared to the original ANN. TTFS (Stanojevic et al.| [2023) coding demonstrates
extremely low energy consumption due to its theoretical minimum spike count. While our method
does not inherently exhibit sparse characteristics, the reduction in coding time steps mitigates this
disadvantage. By further compressing the number of time steps, our approach achieves a 10%

3Energy consumption measurements were performed using the code from https://github.com/
1CGY96/syops—counter
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Table 4: Energy consumption of SNNs on CIFAR-10.

SyOPs Energy
Methods Arch. Accuracy T  Latency (ACs) MACs Consumption
ANN VGG-11 | 93.82% N/A NA | 0 153.2M 0.7047m]
CSS VGG-11 | 93.78% 8 19 | 0 132.4M 0.1191mJ
ANN VGG-16 | 95.88%  N/A NA | 0 313.88M 1.4438m]J
TTFS* VGG-16 93.53% 64 1024 120.53M 0 0.1085mJ
CSS VGG-16 95.84% 8 24 308.35M 0 0.2775m]
Csst VGG-16 95.14% 2 18 102.19M 0 0.0920mJ
ANN ResNet-18 | 9525%  N/A NA | 0 2.22G 10.21mJ
rate (Fast-SNN)T  ResNet-18 95.42% 7 7 1.02G 12.42M 0.9751mJ
rate (Faset-SNN) ResNet-18 | 95.23% 6 6 8783M  10.65M 0.8395mJ
CSsft ResNet-18 | 95.31% 3 21 730.65M  1.84M 0.6660mJ
Csst ResNet-18 | 95.24% 2 20 489.93M 1.91M 0.4497mJ

t The results from converting quantized ANNs.
* |Stanojevic et al.|(2023) reported an average spike rate of 38% per neuron on VGG-16, which we used to calculate
the SyOPs and estimate the energy consumption.

ResNet-34 on ImageNet
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Figure 4: Inference latency with and without negative spikes. The solid line represents the results

with negative spikes, while the dashed line indicates the results without negative spikes. The lines
of different colors correspond to different lengths of the silent period as shown in the legend.

reduction in energy consumption compared to TTFS. Additionally, we include Fast-SNN (Hu et al.|
2023) as a strong baseline for (signed) rate coding. The results show that our method outperforms
Fast-SNN with more than a 30% reduction in energy consumption, while maintaining comparable
accuracy.

5.5 THE ROLE OF NEGTIVE SPIKES

In this section, we validate the role of negative spikes in achieving low-latency nonlinear encoding
through an ablation study. Experiments were conducted using ResNet-34 on ImageNet, where we
gradually increased the silent period length from zero, in the absence of negative spikes. The results,
shown in[Fig. 4} reveal that a silent period of at least four steps is required to match the performance
gains introduced by negative spikes. This results in a nearly 100-step increase in inference latency.
The introduction of negative spikes and TSA neurons in the CSS coding scheme is crucial for break-
ing temporal coupling, distinguishing our approach from other coding schemes that use weighted
spikes (Rueckauer & Liu, [2021} [Stockl & Maass, 2021} |Kim et al., 2018).

6 CONCLUSION AND DISCUSSION

In this work, we compress the coding time steps by assigning weights to spikes, enabling each spike
to carry more information. We also introduce negative spikes to break temporal coupling, effectively
reducing inference latency. The resulting CSS encoding scheme enhances the throughput, inference
speed and energy efficiency of converted SNNs, while minimizing conversion loss.
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A APPENDIX

A.1 PROOFS OF EQUATIONS

Proof of [Eq. (8)] (A similar derivation leads to[Eq. (3))
T T T
= wyy BTSN+ Y AT -y TS (A1)
j t=1 t=1 t=1

Proof. Starting with the initial condition u[0] = 0 and|Eq. (7), we can write:
ui[1] = z[1] - S
Next, we derive the expression for u![2] by substitute the above into|Eq. (7)
uif2] = B(=i1] = Si[1]) + =i[2] - Si[2]
We can generalize this process to iteratively compute the membrane potential upto ¢t = 7:

ui[T] = ZﬁT ‘(=[] = Sil)

t=1

substituting 2![¢] from [Eq. (4){and rearranging the terms, we get:

wlT] = BT wlysy ]+ bf — SifH)

t=1 j

Reorganizing the terms by summation yields:

Z wl, Z BT + §Tj BT, — sz BrtSi
t=1 t=1 t=1
O
A.2  PROOFS OF THEOREMS
Theorem 1. Making uﬁ [T] < e is equivalent to satisfying the following equation:
Vit € {1,2,---, T},
(A2)

/BTto-‘rllt_l_’_Zw”ZﬁT tSll +ZBT tbl<6+zelBTt

t=to t=to t=to

Proof. We first prove the forward direction. Given that u![T] < ¢, we can express it using [Eq. (7)

and [Eq. (4)) as follows:
T -1 +wasj T + b < e+ 6" (A3)

Continue the above process, and we have:

1j*=j

BT — 2]+ > wh BSHT — +6bl+Zw ST b <e+0' +800 (Ad)
J

The above process can be repeated until we obtain an equation involving u}[0]. The left-hand side
of each equation regarding u![t], where ¢ € {1,2,---, T}, can be organized to demonstrate that the
forward reasoning is valid.
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Then we proceed to prove the backward direction. For any ¢ € {1,2,---, T}, by iteratively updat-
ing the membrane potential using [Eq. (7)|from ¢ = ¢, until ¢ = T', and substitute z![t] with|Eq. (4)}
we can get:

T T T
ul[T] = BT ulltg — 1]+ ) 0wl TS e+ > g7l - Y pTSHE (A5

j t=to t=to t=to
Note that >°, BT~1S![t] < >°, 6'8T~t. Then we can write:
T T
ui[ ] ﬂT t0+1 l + Zwm Z BTftsé—l[t] + Z ﬁTftbé o Z alBTft
t—t t=t t=t (A6)
0 =to =to
<e
O
Theorem 2. Let Sé_l[t] ~ aé»_l, wh; = wlj;, and b, = bi/s>, st Then SL[t] ~ a', provided that
|ul[T]| < 6.
Proof. [Eq. (8)|can be organized into the following form:
T T
> BT S ] Z w}; Z BTTESIT M + > BT — [T (A7)
t=1 t=1 t=1

Given that Sé-*l [t] ~ aé- !, we use al ! to denote the difference between the encoded value and the

activation, defined as 0’; ' => 5T tS;fl [t] — aéfl. Substituting aéfl and 0! into[Eq. (A7), we

can write:
T

T
> BTl Zwm +ol )+ BT — [T
t=1

t=1

- Zwij (@ + o7ty + b — [T (A8)
J

= Zﬁ)ijaéfl + Z;i — ui[T] + Z’UA}MO'; L
J J

According to[Definition 1| we have —6' < a;-_l < 6'. Considering that ' is typically kept small to
provide fine-grained encoding and 1;; is generally symmetrically distributed around zero, we can ig-

nore the last term on the right-hand side of the equation. Since S![T'] can encode negative values, we
implemented a ReLU counterpart to zero out these spike sequences, corresponding to the max(+, 0)

operation in [Eq. (6)] Combining|[Eq. (A8)|with the condition |u!(T')| < 6" and |Definition 1} we can

conclude that S![t] ~ al. O

Theorem 3. Let the input pixel value be a? and B < 2. By Initializing the membrane potential u$ 0]
with ai /37, the resulting spike train S?[t] ~ a9 with T steps.
Proof. We proof this theorem by mathematical induction. Let @ ;- and m%. denote the encoded value

and the maximum encodable value, respectively, i.e. aj = Z TSV, mS = >, 0087,

step 1. For T' = 1, it’s obvious that:

~0 0 0 0 0
|ai70—ai‘<0 , a; < myg A9
~0 _ .0 0~ ,,0 (A9)
a; o0 =My y Ay Z My
step 2. Assume the statement is true for T = ¢, i.e. we have:
0 0 0 0 0
’ame—ai‘<9 y < My, ALO
-0 _ .0 0~ ,,0 ( )
Aj to = My, y Ay Z My
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0
my

Note the relationship between 6° and m{ : 6° =

still holds.

0

%

W Then we prove that for T' = tg+ 1,

case (1). For a; < mgo 11: Consider the first o steps. It can be observed that this process is

_ 14B4fplo!

equivalent to encoding ¢7/g with m(t)0 = m?o +1- Then we have:

1+B+--+p%0
0 0 0
~0 a; Miy+1 a; 0
o T B S TR Rt g g (A1)
0
~0 0 a; 0
A tg = My ) E > my,
For % < m?ﬂ, we can write:
0 0 0
-0 a; By, 11 2m, 41 0
a, — < =20 Al2
B @it 8 1+84---+p80 ~14+8+---+4 Bto ( )
For % >my
slio | g0 LkBEt gt
ito o | Yi T 1 . to to+1
B +B84+---+p (A13)

0 1+ﬁ+...+/8t0—1_ o
— Myy41 1+ﬂ+"'+ﬁto

0
S Mgt

0
According to[Theorem 1| 3 ’d?’to - %’ < 26° is equivalent to |ul[to + 1]| < 6° (as there’s neither

input nor bias term). Also note |uf[to + 1]| = |a?, ., — a?|. Then we have |af, |, —a?| < 6°.

case (2). Fora) > mj{ ,;:

ad 1 1+ 8+ + Blo1
Fzﬁmg°+1> 1+ 8+ + pho Miy+1 = M, (Al4)
Then we have:
0 to—1 0
0 ai| _ o pltB+-4B0 My +1 _ g0
Blasw — | =@ — B g g e 2 T .. 1 = (A15)

which means the neuron will fire a spike at ¢ = ¢y + 1, leading to dgto +1 =mj ;. Combining case
(1) and (2), and we have:

~0 0 0 0 0
’ai,t0+1 - ai‘ <607, a; <my iy AlL6
~0 _ .0 0 0 ( )

Qi to+1 = Mygt1 y Ay Z My 4 q
step 3. By the principle of mathematical induction, VI € N*:

~0 0 0 0 0
’ai7Tfai| <6” ,a; <mp Al7
-0 _ .0 0> 0 ( )

a; = Mg , @ Z M

Considering our initialization strategy for 6° and subsequent data-based amplification, we can al-
ways ensure that a) < m{.. Thus, |l ;, — af| < 6°, which means S?[t] ~ a. O

A.3 SPIKE AMPLITUDE ADJUSTMENT

Eq. (9)| suggests that increasing ' can relax the constraints on the input. Let 6! denote the initial
spike amplitude. After getting the initialized value, we use a subset of the training set to perform
forward propagation for the CSS-based SNN, and then calculate the 99.9th percentile u' of the

distribution of u![T’] for each layer I. If u' exceeds #!, we amplify ' by a factor s'. Note that

increasing 6 raises the firing threshold at the same time, making the change in u}[T] a complex

nonlinear process. To determine a suitable s, we simplify the problem by assuming that u![T]
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Figure 5: Trade-off between the coding time steps and inference latency. The dashed line represents
the results obtained without the silent period, while the solid line represents the results achieved
after incorporating the silent period. (a) Coding time steps on CIFAR-10. (b) Inference latency on
CIFAR-10. (c) Coding time steps on ImageNet. (d) Inference latency on ImageNet.

accumulates uniformly over time. Thus, if the increment of 6! is A@', then u![T] will decrease by
AGLY, BTt Accordingly, s' is determined using the following equation:

ut — 6 l ! T—t
ST ut —0'>0.05-) "8
t
—60'—0.01- -
s—=144% > thtﬁ +0.04 ,0.05-25T—tzul—el>o.o1-25T—t
t t t
4'(Ul—91) T—t l l
= ,0.01-) " = ul — 6 >0

t

(A18)
To ensure that the spike amplitude can still be effectively adjusted when ' slightly exceeds 6, we
increase the value of s’ for this range.

Note that an increase in #' makes the decoupling conditions for layer [ 4 1 harder to meeﬂ Con-
sequently, in deeper layers, the initial spike amplitude must be amplified by a large factor. This
requires a sufficiently small 6' to preserve adequate encoding granularity after scaling, which in turn
necessitates a larger number of time steps. We address this issue by delaying the TSA output, which
eliminates the need for 6! amplification.

It is important to note that this adjustment lacks strict mathematical support and serves as a heuristic
for fine-tuning the spike amplitude. The introduction of negative spikes remains the core mechanism
for breaking temporal coupling.

A.4 CODING TIME STEPS VS. INFERENCE LATENCY

According to the analysis in|[Appendix A.3| relying solely on §' amplification to break temporal cou-

pling would require smaller 6 in deeper layers, which leads to an increase in coding time steps. To
address this, we introduce a one-step silent period to achieve a trade-off between coding time steps

*In|Eq. (9)} the spike amplitude of the previous layer is included in S;fl [t].
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and inference latency. In this section, we conducted an ablation study to assess the effectiveness
of this approach. We performed classification tasks on CIFAR-10 using VGG-16 and ResNet-20,
and on ImageNet using VGG-16 and ResNet-34. (a) and (c) present the relationship between
coding time steps and accuracy, while (b) and (d) show the relationship between inference
latency and accuracy.

The experimental results indicate that even with no silent period, deeper networks experience larger
latency due to increased coding time steps. This can also be understood as neurons in each layer
require time to accumulate membrane potential before firing. Thus, incorporating a silent period
has a limited effect on increasing inference latency, but plays a significant role in reducing coding
time steps. For example, in ResNet-20 on CIFAR-10, the silent period increased latency from 20
to 30 steps but halved the coding time steps, greatly improving throughput. This effect becomes
more pronounced with increased network depth or dataset scale. For instance, with ResNet-34 on
ImageNet, the silent period added only about 5 steps to inference latency while reducing coding
time steps by approximately 30 steps. Overall, incorporating the silent period effectively reduces
the required number of time steps for encoding, substantially improving throughput with minimal
impact on latency.

It is important to note that although the requirement ofTheorem 2] can be satisfied by amplitude
adjustment on training set, this does not ensure optimal performance on the test set. By contrast,
silent period provides a data-independent approach to break temporal coupling, resulting in more
stable and consistent performance improvements.

A.5 MATHEMATICAL DESCRIPTION OF THE TSA NEURON

To generalize the representation, let T denote the length of the silent period. For a TSA neuron in the
I-th layer, when the time step t € {1,2, ..., T,l}, the membrane potential remains u[t] = u}[0] = 0,

and no spikes are generated. After this period, the neuron processes inputs in cycles z)f length T+ 7.
Let T denote the start of the k-th cycle, i.e. TF = Tsl + k(Ts + T) + 1, and let T} denote the
end of the cycle, i.e. Ty = Til + (k + 1)(Ts + T'), with k being a natural number. Without loss of

generality, we consider the case where t € {TX, T +1,...,TF}.

The set of its spike times can be expressed as follows:

l Lf
F! = {tif

The spike sequence it emits, Sﬁ [t], can then be written as:

St = 3 sen (og [tﬁﬂ) 0Lt — 1) (A20)

b/ el

Ts

01
Al > 20

e (TE 4+ T, T + T+ 1, 7Tf}} (A19)

where 6[-] denotes an unit impulse, sgn(-) is the sign function and #' is the spike amplitude. The
update process of the membrane potential can be expressed as follows:
uilt] = Built — 1] + 2[t] — 8™ Sit] (A21)

where z![t] denotes the integrated inputs:

A = wh S + 0 (A22)
J

A.6 PSEUDO CODE FOR CONVERSION PROCESS

See The spike amplitude for each layer is determined using the method outlined in
Note that this value is absorbed into the weights and bias, so after conversion, the spike
amplitudes for TSA neurons are all normalized to 1. For data-based spike amplitude adjustment, we
first complete the above conversion process using the initial spike amplitudes. Then, based on the
residual membrane potentials observed in the resulting SNN, we update the spike amplitudes. These
updated values are then used to re-convert the ANN. The process can be repeated as may times as
needed.
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Algorithm 2: Algorithm for ANN-SNN conversion

Input: ANN model f A(W, 5), encode time steps 7', amplification factor /3, spike amplitude '
for each layer [, total layer number L

Output: SNN models fs(W,b)

reshape and pad X to [T, B, C, H, W] with zeros to shape [(T+L), B, C, H, W];

membrane potential M <« zeros_like (X[0]), threshold v < 168%;

set CSS encoder for the input layer; /% see */

for1 <l < Ldo

W« "lafvi/l; /* norms #' in SNN to 1 x/
v Zf;ll BLo! v,
replace ReLU activation with TSA and ReLU counterpart.

end

A.7 IMPLEMENTATION OF THE RELU COUNTERPART

In the actual implementation, we fuse the ReLU counterpart into the TSA neuron model to speed up
program execution. We refer to this model as TSA-ReLU neuron. Below, we continue the notation

from to present the mathematical model of TSA-ReLU. Without loss of generality,
we consider the case where t € {TF, Tk + 1,...,TF}. We use hl[t] and g![t] to represent the
accumulated input and output of TSA-ReL.U, respectively:
t max(t,Tf-i—T)
lt) =) wy Y BTSN+ Y, BTTh
J tT:T:’ T=TF (A23)
gilt] = > BTS
T=min(TF+Ts,t)
Then we set o![t] according to the following equation:
hilt] = gilt]  hilt] > 0,8 > Ty + T
o[t = { — g[t] R[] < 0,t>TF 4+ T, (A24)
0 < TF 4T,
The firing condition of TSA-ReLU is the same as that of TSA, and is given by[Egs. (A19)|and [(A20)}

18



	Introduction
	Related Work
	Preliminaries
	Spiking Neurons
	ANN-SNN Conversion

	Methods
	Assigning Weights to Spikes
	Incorporating Negative Spikes
	Ternary Self-Amplifying Neuron Model
	One-Step Silent Period


	Experiments
	Experimental Setup
	Overall Performance
	Combination with Quantized ANNs
	Energy Consumption Analysis
	The Role of Negtive Spikes

	Conclusion and Discussion
	Appendix
	Proofs of Equations
	Proofs of Theorems
	Spike Amplitude Adjustment
	Coding Time Steps vs. Inference Latency
	Mathematical Description of the TSA Neuron
	Pseudo Code for Conversion Process
	Implementation of the ReLU Counterpart


