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Abstract

Learning causal structures from observation and
experimentation is a central task in many domains.
For example, in biology, recent advances allow us
to obtain single-cell expression data under multiple
interventions such as drugs or gene knockouts.
However, a key challenge is that often the targets
of the interventions are uncertain or unknown.
Thus, standard causal discovery methods can no
longer be used. To fill this gap, we propose a
Bayesian framework (BaCaDI) for discovering the
causal structure that underlies data generated under
various unknown experimental/interventional con-
ditions. BaCaDI is fully differentiable and operates
in the continuous space of latent probabilistic rep-
resentations of both causal structures and interven-
tions. This enables us to approximate complex pos-
teriors via gradient-based variational inference and
to reason about the epistemic uncertainty in the pre-
dicted structure. In experiments on synthetic causal
discovery tasks and simulated gene-expression
data, BaCaDI outperforms related methods in
identifying causal structures and intervention
targets. Finally, we demonstrate that, thanks to its
rigorous Bayesian approach, our method provides
well-calibrated uncertainty estimates.

1 INTRODUCTION

Identifying causal dependencies by empirical observation
and experimentation is a problem of fundamental scientific
interest. If we understand the causal mechanisms that gov-
ern a system of interest, we can predict its behavior when
parts of system are actively manipulated from outside. For
instance, if we understand the causal structure of a gene reg-
ulatory network, we can predict the effect of drugs or gene
knockouts more reliably [Meinshausen et al., 2016]. While
identifying the true causal structure from observational data

is impossible in many cases [Pearl, 2009, Peters et al., 2017],
intervening on some variables in the system and observing
the outcome can provide valuable information helping with
identification.

In some settings, we can collect a range of datasets from the
same causal system under multiple different interventions.
For instance, recent advances in biology allow us to obtain
single-cell gene expression data under interventions such
as different drug candidates or gene knockouts [Srivatsan
et al., 2020, McFarland et al., 2020]. Causal discovery meth-
ods that can work with interventional data typically assume
knowledge of the targets, i.e., which variables have been
intervened upon, or the statistical effect of the interventions
[Hauser and Bühlmann, 2012, Wang et al., 2017, Yang et al.,
2018]. However, this limits their applicability because the in-
tervention targets and effect are often uncertain or unknown
in practice, for instance, due to unknown off-target effects
upon drug administration. An additional challenge is that
we typically only have a small number of data points per
intervention due to high experimental costs. This renders
joint inference over causal structures and interventions brit-
tle, and a rigorous treatment of uncertainty is paramount for
reaching reliable conclusions. Recent methods [Mooij et al.,
2016, Ke et al., 2019, Brouillard et al., 2020, Squires et al.,
2020] that are able to deal with imperfect or unknown in-
terventions do not account for epistemic uncertainty during
inference. Thus, they frequently fail in realistic scenarios
where interventional data is scarce.

Addressing these shortcomings, we introduce Bayesian
Causal Discovery with unknown Interventions (BaCaDI), a
fully Bayesian approach for inferring the complete set of
causal structure, functional mechanisms and intervention
targets given various unknown experimental/interventional
conditions. In particular, BaCaDI performs joint inference
over causal Bayesian Networks (CBNs) as well as inter-
vention targets and effects across multiple experimental
contexts. Our method is fully differentiable and operates in
the continuous space of latent probabilistic representations
of both BNs and interventions. This makes our approach
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particularly scalable to causal systems of many variables,
and it enables us to approximate complex posteriors via
gradient-based particle variational inference.

In a range of experiments with synthetic causal BNs as
well as a realistic gene-expression simulator, BaCaDI
outperforms related methods in recovering the underlying
causal structure and intervention targets. Moreover, the
principled treatment of uncertainty allows BaCaDI to
provide well-calibrated uncertainty estimates for its
predictions, even when the underlying Bayesian model is
misspecified as in the case of gene-expression data.

2 RELATED WORK
Causal discovery from multiple contexts. Learning a
causal structure from datasets collected from different in-
terventional contexts of the same causal system has been
referred to as Joint Causal Inference (JCI) [Mooij et al.,
2016]. Multiple methods handle such combinations of ob-
servational and interventional data [Magliacane et al., 2016,
Zhang et al., 2017, Hauser and Bühlmann, 2012, Wang
et al., 2017, Yang et al., 2018] but assume full knowledge
of the interventions. Other methods build on the notion of
invariance [Schölkopf et al., 2012, Peters et al., 2016, Mein-
shausen et al., 2016, Ghassami et al., 2017, Heinze-Deml
et al., 2018, Huang et al., 2020], but either do not general-
ize to full graphs or make restrictive assumptions about the
local causal effects.

Causal discovery with unknown interventions. Mooij
et al. [2016] and Squires et al. [2020] reduce the unknown
intervention setting to standard causal discovery tools such
as conditional independence and invariance tests. However,
such hypothesis tests typically require large datasets, mak-
ing these methods brittle for realistic datasets of small size.
Another line of recent work formulates continuous relax-
ations of the joint inference problem under unknown inter-
ventions and uses gradient-based optimization to find the
graph and intervention targets [Ke et al., 2019, Brouillard
et al., 2020, Faria et al., 2022]. Our approach uses similar
ideas to relax the semi-discrete inference problem into a
continuous one. However, we adopt a fully Bayesian ap-
proach that enables principled uncertainty quantification
and does not only give point estimates. Eaton and Murphy
[2007] is the only work we are aware of that does the same,
though only for discrete variables and with a costly dynamic
programming approach that does not scale well to larger
graphs.

3 BACKGROUND: CAUSAL DISCOVERY
Causal Bayesian Networks. A Bayesian network (BN)
(G,Θ) uses a directed acyclic graph (DAG) to model
the joint density p(x) of d variables x = x1:d via con-
ditional probabilities. The joint distribution p factorizes
as p(x1, . . . , xd|Θ,G) =

∏d
i=1 pi(xi|xpaG(i),Θ) where

paG(i) is the set of parents of node i in G and the parame-
ters Θ describe the exact local conditional distributions. In a
causal BN (CBN), the edges also describe direct causal rela-
tions. For causal structure learning, we assume that there are
no hidden confounding variables (causal sufficiency) [Pearl,
2009, Spirtes et al., 2000, Peters et al., 2017].

Interventions. In the causal graph, an intervention on the
variable i corresponds to changing the conditional distri-
bution pi and replacing it by a new distribution pIi . An
intervention is typically considered imperfect (soft) if the
distribution is changed but the dependence on the causal par-
ents remains, or perfect (hard, structural) if all dependencies
to the causal parents are removed, resulting in a mutilated
graph GIk [e.g. Pearl, 2009, Peters et al., 2017].

In this work, we assume the setting of a collection of M
interventions I := (I1, . . . IM ), where each intervention
Ik := (I tar

k ,ΘIk) acts on a set of targets I tar
k ⊆ {1, . . . , d}.

We use ΘIk to denote parameters that describe the con-
ditional distributions pIki (xi|xpaG(i),ΘIk) induced by the
intervention Ik on the target variables {xi| i ∈ I tar

k }. To
keep the notation and following exposition simple, we as-
sume perfect interventions, i.e., pIki (xi|xpaG(i),ΘIk) =

pIki (xi|ΘIk). However, all the arguments made in the re-
mainder of the paper also hold for soft interventions. The
full data distribution under intervention Ik factorizes into
the observational and interventional conditionals:

p(x|Θ,G, Ik) =
∏
i/∈Ik

pi(xi|xpaG(i),Θ)
∏
i∈Ik

pIki (xi|ΘIk)

The local conditional distributions of the variables that are
not intervened upon do not change with respect to the ob-
servational distribution, a principle often referred to as in-
variance [Peters et al., 2016] or modularity [Peters et al.,
2017].

4 BAYESIAN CAUSAL DISCOVERY
WITH MULTI-CONTEXT DATA

Problem Statement. In this section, we develop a
method for Bayesian inference of the causal Bayesian
Network (CBN) given multiple interventional datasets
generated from the same underlying causal model. This
setting is also known as learning from multiple contexts
Mooij et al. [2016]. Formally, we are given a set of M
datasets D = {D1, ...,DM} with corresponding (unknown)
interventions I = {I1, ..., IM}. Each Dk is a set of
independent samples Dk = {x(k,1), . . . ,x(k,nk)} obtained
from the interventional data distribution p(x|Θgt,Ggt, Ik)
based on the ground truth CBN (Ggt,Θgt). Observational
data, if available, can be added to D as D0 := D with
intervention targets I0 = ∅.

Our goal is to infer the ground truth CBN (Ggt,Θgt) and
interventions I given the dataset D. Compared to standard
causal inference, the key difficulty is that in addition to the



ground truth CBN, the intervention targets (i.e I tar
k ) and their

statistical effects (i.e. ΘIk ) are unknown. Therefore, we
need to perform joint inference over M mutilated graphs
that are all closely connected to an unknown “prototype”
graph. Naturally, such inference is well-posed only if the
structural changes implied by each intervention Ik are sparse
compared to the overall size of Ggt, i.e. |Ik| ≪ d.

In many relevant application domains, such as biology, the
observed samples nk are noisy and small in number. Hence,
it is paramount to not only to predict a single prototype
CBN alongside one intervention hypothesis per dataset,
but to also to reason about the epistemic uncertainty of our
empirical inferences. Such uncertainty estimates allow us
to quantify the reliability of our predictions and can be used
to actively design future experiments. We thus approach
the problem from a Bayesian perspective. This renders the
task of learning from D as a posterior inference problem,
which we are going to gradually build up in the following.

Known interventions. When the intervention targets I tar
k

and the parameters ΘIk of the intervention effect are known,
for k = 1, . . . ,M , the posterior over CBNs includes (i.) the
product of data likelihoods over all datasets in D, and (ii.) in-
terventional instead of observation likelihoods for Dk≥1,

p(G,Θ|D, I) ∝ p(G)p(Θ|G)︸ ︷︷ ︸
priors

p(D0|Θ,G)︸ ︷︷ ︸
obs. likelihood

·
M∏
k=1

p(Dk|Θ,G, Ik)︸ ︷︷ ︸
interv. likelihood

, (1)

where p(Dk|Θ,G, Ik) =
∏nk

i=1 p(x
(k,i)|Θ,G, Ik) is the

interventional likelihood for Dk given Ik = (I tar
k ,ΘIk).

Unknown interventions. We include unknown interven-
tions in our inference model by introducing additional priors
p(I tar

k ) and p(ΘIk |I tar
k ). Accordingly, the modified posterior

follows as

p(G,Θ, I|D) ∝ p(G)p(Θ|G)︸ ︷︷ ︸
priors

p(D0|Θ,G)︸ ︷︷ ︸
obs. likelihood

·
M∏
k=1

p(I tar
k )p(ΘIk |I tar

k )︸ ︷︷ ︸
interv. priors

p(Dk|Θ,G, Ik)︸ ︷︷ ︸
interv. likelihood

(2)

The prior p(I tar
k ) over intervention targets can incorporate

prior beliefs about the structure of interventions, e.g. that
only a sparse set of variables are subject to an intervention
at the same time. The parametrization of the interventional
distributions pIi (xi|ΘI) is informed by the application, and
reflects the general nature of interventions, e.g., gene knock-
downs in biology.

k = 1, ...,M j = 1, ..., nk

ΘIk

Θ

I tar
kΓk

x

GZ

Interv.
Context

Causal Model

Figure 1: Generative model of combining causal BNs with
interventions from different contexts.

5 A DIFFERENTIABLE GENERATIVE
MODEL OVER CBNS AND
INTERVENTIONS

In the following, we represent G ∈ {0, 1}d×d as the
adjacency matrix and I tar

k = [I tar
k,1, ..., I

tar
k,d]

⊤ ∈ {0, 1}d as
the indicator vector where I tar

k,l = 1 if the l-th variable is
intervened upon and I tar

k,l = 0 otherwise. We write I tar short
for the stack [I tar

1 , ..., I tar
M ] of intervention target masks and

ΘI := [ΘI1 , ...,ΘIM ] similarly for the intervention effect
parameters. The posterior in Eq. 2 is highly intractable as
the number of possible DAGs G grows super-exponentially
with the number of variables d [Robinson, 1973]. Further-
more, the number of possible intervention targets I tar

k grows
in the order of O(2d).

To facilitate approximate inference using Eq. 2, we harness
recent advances in Bayesian structure learning proposed
by Lorch et al. [2021] that allows for a fully differentiable
posterior over graphs. By computing the score of the pos-
terior, we can use approximate inference methods such as
variational inference [Blei et al., 2017] or Stein Variational
Gradient Descent (SVGD) [Liu and Wang, 2016].

The key idea is to transform the inference problem over
discrete structures G and I tar

k into one over continuous pa-
rameters with respect to which we can differentiate. To this
end, we introduce continuous latent variables Z and Γk for
k = 1, . . . ,M that model the generative processes of G
and I tar

k through p(G|Z) and p(I tar
k |Γk). This implies the

following factorization of the generative model in Figure 1:
p(Z,G,Θ,Γ, I,D) = p(Z)p(G|Z)p(Θ|G)︸ ︷︷ ︸

gen. process CBN

(3)

·
M∏
k=1

p(Γk)p(I
tar
k |Γk)p(ΘIk |I tar

k )︸ ︷︷ ︸
gen. process interv.

p(Dk|G,Θ, I tar
k ,ΘIk)︸ ︷︷ ︸

interv. likelihood

where we write Γ := [Γ1, ...,ΓM ] for brevity. Under this
generative model, it holds that

Ep(G,Θ,I|D)[f(G,Θ, I)] = (4)

Ep(Z,Θ,Γ,ΘI |D)

[Ep(G|Z),p(I tar|Γ)[f(G,Θ, I) ·H]

Ep(G|Z),p(I tar|Γ)[H]

]
where H = p(Θ|G)p(ΘI |I tar)p(D|G, I,Θ) with
p(D|G, I,Θ) =

∏M
k=1 p(Dk|G,Θ, I tar

k ,ΘIk) and



p(I|Γ) =
∏M

k=1 p(I
tar
k |Γk)p(ΘIk |I tar

k ). A proof is pro-
vided in Appx. A.1. Eq. 4 allows us to compute Bayesian
expectations under the posterior in Eq. 1 in terms of
the posterior p(Z,Θ,Γ,ΘI |D) over parameters that are
continuous. Before we discuss how to perform approximate
inference with p(Z,Θ,Γ,ΘI |D), we further specify some
of the conditional probabilities of our generative model and
how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
[2021], we define the latent variable Z = [U,V] as a stack
of two embedding matrices U,V ∈ Rd×d and the genera-
tive model for the adjacency matrix G by using the inner
product between the latent variables in Z:

pα(G|Z) =
d∏

i=1

d∏
j ̸=i

pα(gij |ui,vj) (5)

with pα(gij = 1|ui,vj) = σα(u
⊤
i vj)

where σα(x) = 1/(1 + exp(−αx)) is the sigmoid function
with inverse temperature α and ui, vj the i-th and j-th col-
umn vector of U and V respectively. We denote the matrix
of edge probabilities in G given Z by Gα(Z) ∈ [0, 1]d×d

with Gα(Z)ij := σα(u
⊤
i vj). The prior over Z utilizes

(i.) factorized Gaussians with a variance of η2Z = 1/d to
ensure well-behaved gradients and (ii.) an acyclicity prior
using that penalizes the expected cyclicity of G given Z:
pβ(Z) = p(U,V) ∝ exp

(
−βEp(G|Z)[h(G)]

)︸ ︷︷ ︸
acyclicity prior

·
d∏

i=1

N (ui|0, η2ZI)N (vi|0, η2ZI)︸ ︷︷ ︸
numerical stability

(6)

Here, β is the inverse temperature parameter controlling
how strongly the acyclicity is enforced, and h(G) =
tr
[
(I + 1

dG)d
]
− d ≥ 0. We make use of Theorem 1 in

Yu et al. [2019] states that G is acyclic iff h(G) = 0. As
β → ∞, the support of p(Z) reduces to all Z that model
DAGs [cf. Lorch et al., 2021].

Generative model of intervention targets I tar. Similar to
the generative model of G, we define the latent variables
Γ ∈ Rd as the logits of independent Bernoulli distributions
that model the entries of the intervention target mask I tar =
[I tar

1 , ..., I tar
M ] ∈ {0, 1}M×d:

p(I tar|Γ) =
M∏
k=1

d∏
i=1

pα(I
tar
k,i|γk,i) (7)

with pα(I
tar
k,i = 1|γk,i) = σα(γk,i)

We denote the matrix of intervention target probabilities as
I tar
α (Γ) ∈ [0, 1]M×d with I tar

α (Γ)k,i = σα(γk,i). Similar to
Z, the prior over Γ has three components: (i.) A Gaussian
term for numerical stability , (ii.) a Beta-distribution prior
that encourages σα(γk,i) to be close to 0 or 1, and (iii.) a
sparsity prior with the l1-norm of σα(Γk) and the inverse
temperature parameter λ.

p(Γ) ∝
M∏
k=1

exp (−λ∥σα(Γk)∥1)︸ ︷︷ ︸
sparse masks

·
d∏

i=1

Beta(σα(γk,i); ζ1, ζ2)︸ ︷︷ ︸
sharp masks

N (γk|0, η2γI)︸ ︷︷ ︸
numerical stability

(8)

We assume that interventions occur only infrequently, i.e.,
in expectation only on one variable. Hence, we choose
ζ1 = 1/d and ζ2 = (d − 1)/d. The sparsity prior implies
that, given an active intervention target i, it is a-priori less
likely that a variable j ̸= i is intervened upon in the same
context k.

Interventional likelihood. We obtain a differentiable ver-
sion of the interventional likelihood by sampling masks
I tar ∼ Bernoulli (σα(Γ)) with the Gumbel-Softmax trick
[Jang et al., 2016, Maddison et al., 2017] and using them as a
switch between observational and interventional likelihoods
per variable:

p(Dk|G,Θ, I tar
k ,ΘIk) = (9)

nk∏
j=1

d∏
i=1

(
p(x

(k,j)
i |xpaG(i),Θ)(1−I tar

k,i) · p(x(k,j)
i |ΘIk)

I tar
k,i

)

Stein Variational Gradient Descent. Having rewritten the
inference problem to continuous latent variables Z and Γ,
the final challenge is approximating the intractable posterior
p(Z,Θ,Γ,ΘI |D). To this end, we employ the particle vari-
ational inference approach SVGD [Liu and Wang, 2016],
which minimizes the KL divergence to the intractable distri-
bution of interest using a finite set of particles. It relies on
the score of the distribution to guide the particles towards
regions of high probability while using a kernel function
k(·, ·) between them. We employ a sum of RBF kernels as
the kernel function over Ψ := (Z,Θ,Γ,ΘI).

The proposed algorithm is summarized in Alg. 1 of Appx.
B. There, we also give details on how to derive the scores of
the log-likelihood and the chosen kernel. Figure 4 in Appx.
B illustrates an example of the returned posterior particles
for G and Itar alongside the ground truth for the case of a
linear Gaussian 5 node graph.

6 EXPERIMENTS

We evaluate BaCaDI on different causal discovery tasks with
data from multiple contexts. Our aim is to empirically inves-
tigate how accurately BaCaDI predicts the causal structure
as well as the intervention targets and how it compares to
related state-of-the-art methods. First, we focus on synthetic
datasets. Second, we use the SERGIO simulator [Dibaeinia
and Sinha, 2020] to evaluate the methods on a more realistic
task of simulated gene expression data. Finally, we analyse
how well the uncertainty estimates are calibrated.
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Figure 2: Joint post. inference over CBNs and interventions for linear Gaussian ground-truth CBNs. The results are for
data from ER-2 and SF-2 graphs with d = 20 variables and M = 20 contexts.

6.1 EXPERIMENT METHODOLOGY

Datasets. Following related work [Zheng et al., 2018, Yu
et al., 2019, Zheng et al., 2020, Annadani et al., 2021, Scher-
rer et al., 2021, Lorch et al., 2021], we perform inference
of random graphs with different local conditionals. We con-
sider Erdős-Rényi [Gilbert, 1959] and scale-free [Barabási
and Albert, 1999] random graphs with d = 20 nodes and 2d
edges in expectation (ER-2 and SF-2). We create datasets by
randomly sampling parameters or simulating data with SER-
GIO. We then split the data into training and held-out test
datasets. In all settings, we collect n0 = 100 observational
samples together with nk = 10 samples per intervention
context for k ∈ {1, . . . ,M}. We defer further details on
data generation to Appx. D.

Baselines. We compare BaCaDI to existing algorithms that
are capable of joint causal inference from multiple contexts
with unknown interventions. This includes the constraint-
based methods UT-IGSP [Squires et al., 2020] and the JCI
framework with the PC algorithm (JCI-PC) [Mooij et al.,
2016], and the score-based method DCDI [Brouillard et al.,
2020] that can handle unknown interventions. JCI-PC and
UT-IGSP are based on conditional independence or invari-
ance tests. For DCDI, we use a neural network to model
the local conditionals with Gaussian additive noise (DCDI-
G). This is the same model class and capacity as BaCaDI
with a nonlinear likelihood model. Since all of these meth-
ods arrive only at a single DAG estimate, we use the non-
parametric DAG bootstrap approach [Friedman et al., 2013,
Agrawal et al., 2019] to obtain an approximate distribu-
tion over DAGs and intervention targets. Throughout the
experiments, 20 bootstrap samples are used.

BaCaDI instantiations. We instantiate BaCaDI using 20
particles for SVGD and run it for 2000 steps. Unless spec-
ified otherwise, we model interventions using a Gaussian
likelihood pIki (xi|ΘIk) = N (xi|µI

k,i, σI) with fixed vari-
ance σI

2 = 0.5. We infer the means ΘIk = [µI
k,1, ..., µ

I
k,d]

using a wide Gaussian prior p(ΘIk |I tar
k ) =∏

i∈I tar
k
p(µI

k,i|I tar
k,i = 1) =

∏
i∈I tar

k
N (µI

k,i|0, 10).
This reflects an uninformative prior over a large effect

range of the interventions. The local conditionals for the
observational likelihood are either modelled as linear or
nonlinear models with additive Gaussian noise. The latter
uses 1 hidden-layer neural networks (NN) with 5 hidden
units. We use 20 particles to instantiate the SVGD algorithm.
More details about the models can be found in Appx. D.1.

Metrics. Our reported metrics focus on the essential aspects
of our inference problem: causal graph prediction, interven-
tion detection, and inference of the full CBN conditionals.

Causal Discovery: We focus on the Structural Interven-
tional Distance (SID) [Peters and Bühlmann, 2015] that
quantifies the closeness between two DAGs in terms of how
well their interventional adjustment sets coincide. Since
we perform posterior inference, we consider the expected
SID: E-SID(p,Ggt) :=

∑
G p(G|D) · SID(G,Ggt). Since

UT-IGSP and JCI-PC only return a CPDAGs of the Inter-
ventional Markov Equivalence Class (I-MEC), we calculate
its lower and upper bound of the SID, and report their mid-
point as the E-SID (see Appx. D.5). Furthermore, we com-
pute the area under the precision recall curve (AUPRC) for
pairwise edge prediction based on the posterior marginals
p(gij = 1|D).

Interventions: We report interventional AUPRC (INTV-
AUPRC) for the classification of targets.

Learning conditionals: We compute the average negative
interventional log-likelihood (I-NLL) (see Appx. D.5) on
M test = 10 heldout interventional datasets. Since UT-IGSP
and JCI-PC are not equipped with local conditional distri-
butions, we use the linear Gaussian maximum-likelihood
parameters (MLE) that are computed in closed-form [Hauser
and Bühlmann, 2014] to compute the heldout I-NLL.

Result aggregation. For all methods and settings, we
perform a search over a specified range of hyperparameters
with at least 20 settings. For a specific choice of hyperpa-
rameters, we collect results over 30 different random graphs
and pick the hyperparameters that resulted in the lowest
I-NLL across the 30 instances in the held-out interventional
dataset. We report the median of each metric together with
its 90% confidence interval based on empirical percentiles.
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Figure 3: Joint posterior over CBNs and interventions for simulated gene expression data with d = 20 variables and M = 10
interv. contexts. BaCaDI makes significantly better causal mechanism predictions than the baselines and accurately identifies
the correct intervention targets.

6.2 EXPERIMENT RESULTS ON SYNTHETIC
DATA

First, we study the performance of BaCaDI and the baselines
on joint causal inference from synthetic data. We focus on
hard interventions that set the value of the targeted variable
to a Gaussian with a randomly chosen mean bounded away
from zero. Each interventional dataset is generated by inter-
vening on a specific variable. We target all variables in the
graph, i.e., the number of interventional contexts is M = d.
In total, this results in 300 samples for synthetic datasets
with d = 20 variables. We first consider linear Gaussian
CBNs where each variable is a linear combination of its
parents with additive Gaussian noise. The corresponding
results for ER-2 and SF-2 are shown in Fig. 2.

Across the four synthetic evaluation settings, BaCaDI’s
causal structure predictions are the closest to the ground-
truth CBN a) in terms of their intervention implications (i.e.,
E-SID, I-NLL) as well as b) for predicting individual edges
(i.e., AUPRC). In most cases, our method outperforms
the baselines by a significant margin. Moreover, BaCaDI
achieves strong AUPRC scores for the prediction of
intervention targets. Among the baselines, UT-IGSP is the
best at detecting interventions, largely on par with BaCaDI.
Although UT-IGSP also achieves high AUPRC for the
linear SF-2 setting, the method significantly falls behind
BaCaDI in other settings and metrics.

6.3 EXPERIMENTS ON SIMULATED
GENE-REGULATORY NETWORKS

We evaluate all methods in a realistic application domain
using SERGIO [Dibaeinia and Sinha, 2020], a simulator
for single-cell expression data of gene regulatory networks.
Given a user-defined causal graph G, SERGIO utilizes
stochastic differential equations to simulate the gene
expression dynamics and generate realistic single-cell tran-
scriptomic datasets, which correspond to samples from the
steady state of this dynamical system. Since real-world gene
regulatory networks resemble scale-free structures [Albert,
2005, Ouma et al., 2018], we use randomly sampled SF-2
graphs with d = 20. In this domain, we perform M = 10
gene knockout interventions on a single randomly selected

target per context, resulting in a dataset size of 200 including
the observational samples. See Appx. D.3 for more details.

Our Bayesian formulation allows us to embed prior knowl-
edge into the inference process in a principled manner. Since
we perform knockout interventions, we expect intervention
values to be close to zero and exhibit low variance. To reflect
this prior belief, we set the intervention noise to σI

2 = 0.01
and use the prior p(µI

k,i|I tar
k,i = 1) = N (µI

k,i|0, 1).

Accuracy. Fig. 3 shows the results for the SERGIO datasets.
As in the synthetic CBN domain, BaCaDI infers the
ground-truth graph most accurately given the provided
data. Moreover, it is very accurate in predicting intervention
targets as reflected by the intervention target AUPRC score,
where it benefits from the prior.

Uncertainty. We utilize the concept of calibration
[Gneiting et al., 2007, Kuleshov et al., 2018] to quantify
the reliability of our uncertainty estimates. The results are
shown in Appx. E.3. Notably, BaCaDI is the only method
that takes into account the epistemic uncertainty when
dealing with limited data and shows that its probabilistic
predictions are reliable.

7 CONCLUSION

We introduce BaCaDI, a fully-differentiable Bayesian causal
discovery framework for data generated under various
unknown experimental/interventional conditions. BaCaDI
performs approximate inference jointly over the underlying
graph, mechanisms, and unknown interventions. A key
feature is its principled treatment of epistemic uncertainty
which allows it to work reliably even when data is scarce,
providing well-calibrated uncertainty estimates alongside
its structural predictions. Our work is motivated by the
challenging problem of inferring the causal mechanisms
of gene regulatory networks from real single-cell gene
expression data. Our experimental results for the simulated
gene expression data show that BaCaDI brings us one step
closer to this ambitious goal. To ultimately reach it, a range
of further challenges, such as dealing with the experimental
measurement noise incurred by single-cell sequencing
techniques, will have to be overcome by future work.
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A PROOFS

A.1 LATENT POSTERIOR EXPECTATION

Recall that we have the generative model under which we factorize

p(Z,G,Θ,Γ, I,D) = p(Z)p(G|Z)p(Θ|G)︸ ︷︷ ︸
gen. process CBN

M∏
k=1

p(Γk)p(I
tar
k |Γk)p(ΘIk |I tar

k )︸ ︷︷ ︸
gen. process interv.

p(Dk|G,Θ, I tar
k ,ΘIk)︸ ︷︷ ︸

interv. likelihood

where we write Γ := [Γ1, ...,ΓM ]. For brevity, we can express this as

p(Z,G,Θ,Γ, I,D) = p(Z)p(G|Z)p(Θ|G) · p(Γ)p(I tar|Γ)p(ΘI |I tar) · p(D|G, I,Θ)

where p(D|G, I,Θ) = p(D|G,Θ, I tar,ΘI) =
∏M

k=1 p(Dk|G,Θ, I tar
k ,ΘIk).

This gives us

Ep(G,Θ,I|D)[f(G,Θ, I)]

=
∑
G

∫
Θ

∑
I tar

∫
ΘI

p(G,Θ, I|D)f(G,Θ, I)dΘdΘI

=
∑
G

∫
Θ

∑
I tar

∫
ΘI

p(G, I tar,Θ,ΘI |D)f(G,Θ, I)dΘdΘI

(splitting I to I tar,ΘI)

=
∑
G

∫
Θ

∑
I tar

∫
ΘI

p(G, I tar,Θ,ΘI ,D)f(G,Θ, I)
p(D)

dΘdΘI

=
∑
G

∫
Θ

∑
I tar

∫
ΘI

∫
Z

∫
Γ

p(Z,G,Γ, I tar,Θ,ΘI ,D)f(G,Θ, I)
p(D)

dZdΓdΘdΘI

(extending by Z,Γ)

=

∫
Z,Γ,Θ,ΘI

∑
G,I tar

p(Z,G,Γ, I tar,Θ,ΘI ,D)f(G,Θ, I)
p(D)

dZdΓdΘdΘI

(rearranging)

=

∫
Z,Γ,Θ,ΘI

∑
G,I tar

p(Z)p(G|Z)p(Θ|G)p(Γ)p(I tar|Γ)p(ΘI |I tar)p(D|G, I,Θ)f(G,Θ, I)
p(D)

dZdΓdΘdΘI

(by the generative model)

= Ep(Z,Θ,Γ,ΘI |D)

 ∑
G,I tar

p(G|Z)p(Θ|G)p(I tar|Γ)p(ΘI |I tar)p(D|G, I,Θ)f(G,Θ, I)
p(Θ,ΘI ,D|Z,Γ)


(since p(Z,Θ,Γ,ΘI |D) =

p(Z)p(Γ)p(Θ,ΘI ,D|Z,Γ)
p(D)

)

= Ep(Z,Θ,Γ,ΘI |D)

[∑
G,I tar p(G|Z)p(Θ|G)p(I tar|Γ)p(ΘI |I tar)p(D|G, I,Θ)f(G,Θ, I)

p(Θ,ΘI ,D|Z,Γ)

]
(rearranging )

= Ep(Z,Θ,Γ,ΘI |D)

[∑
G,I tar p(G|Z)p(Θ|G)p(I tar|Γ)p(ΘI |I tar)p(D|G, I,Θ)f(G,Θ, I)∑

G,I tar p(G, I tar,Θ,ΘI ,D|Z,Γ)

]
(law of total probability )

= Ep(Z,Θ,Γ,ΘI |D)

[∑
G,I tar p(G|Z)p(Θ|G)p(I tar|Γ)p(ΘI |I tar)p(D|G, I,Θ)f(G,Θ, I)∑

G,I tar p(G|Z)p(Θ|G)p(I tar|Γ)p(ΘI |I tar)p(D|G, I,Θ)

]



(by the generative model )

= Ep(Z,Θ,Γ,ΘI |D)

[Ep(G|Z),p(I tar|Γ)[f(G,Θ, I)p(Θ|G)p(ΘI |I tar)p(D|G, I,Θ)]

Ep(G|Z),p(I tar|Γ)[p(Θ|G)p(ΘI |I tar)p(D|G, I,Θ)]

]

A.2 SCORES

We will derive the gradients of the unnormalized posterior since

∇Z log p(Z,Γ,Θ,ΘI |D) =∇Z log p(Z,Γ,Θ,ΘI ,D)−∇Z log p(D) (10)
=∇Z log p(Z,Γ,Θ,ΘI ,D) (11)

and analogously for the gradients w.r.t. to other variables Z,Γ,Θ,ΘI .

By basic rules of probability theory and using the identity∇x log p(x) = ∇xp(x)/p(x), we obtain

∇Z log p(Z,Γ,Θ,ΘI ,D) = (12)
=∇Z log p(Z) +∇Z log p(Θ,ΘI ,D|Z,Γ) (13)

=∇Z log p(Z) +
∇Zp(Θ,ΘI ,D|Z,Γ)
p(Θ,ΘI ,D|Z,Γ)

(14)

=∇Z log p(Z) +
∇Z [

∑
G

∑
I tar p(G|Z)p(I tar|Γ)p(Θ,ΘI ,D|G, I tar)]∑

G

∑
I tar p(G|Z)p(I tar|Γ)p(Θ,ΘI ,D|G, I tar)

(15)

=∇Z log p(Z) +
∇ZEp(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]

Ep(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]
(16)

and analogously

∇Γ log p(Z,Γ,Θ,ΘI ,D) = (17)
=∇Γ log p(Γ) +∇Γ log p(Θ,ΘI ,D|Z,Γ) (18)

=∇Γ log pΓ) +
∇Γp(Θ,ΘI ,D|Z,Γ)
p(Θ,ΘI ,D|Z,Γ)

(19)

=∇Γ log p(Γ) +
∇Γ [

∑
G

∑
I tar p(G|Z)p(I tar|Γ)p(Θ,ΘI ,D|G, I tar)]∑

G

∑
I tar p(G|Z)p(I tar|Γ)p(Θ,ΘI ,D|G, I tar)

(20)

=∇Γ log p(Γ) +
∇ΓEp(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]

Ep(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]
. (21)

B ALGORITHM DETAILS

B.1 BACKGROUND: BAYESIAN INFERENCE OF BNS

Given i.i.d. observationsD = {x(1), . . . ,x(N)}, Bayesian inference over BNs means constructing a full posterior probability
density over BNs that model the observations. Following Friedman and Koller [2003], given a prior distribution over DAGs
p(G) and a prior over BN parameters p(Θ|G), Bayes’ Theorem yields the joint and marginal posterior distributions

p(G,Θ|D) ∝ p(G)p(Θ|G)p(D|G,Θ) (22)
p(G|D) ∝ p(G)p(D|G) , (23)

where p(D|G,Θ) =
∏n

i=1 p(x
(i)|G,Θ) the likelihood of the independent observations in D and

p(D|G) =
∫
p(Θ|G)p(D|G,Θ)dΘ is the marginal likelihood. Thus, p(D|G) in Eq. 23 is only available in closed form

for special conjugate cases. The Bayesian formalism allows us to compute expectations of the form

Ep(G,Θ|D)

[
f(G,Θ)

]
or Ep(G|D)

[
f(G)

]
(24)



for any function f of interest. For instance, for Bayesian model averaging, we would use f(G,Θ) = p(x|G,Θ) or
f(G) = p(x|G), respectively [Madigan and Raftery, 1994, Madigan et al., 1995]. In active learning of CBNs, a commonly
used f is the information gain in G from an intervention [Tong and Koller, 2001, Murphy, 2001, Cho et al., 2016, Agrawal
et al., 2019]. Inferring the posterior is computationally challenging since there are O(d!2(

d
2)) possible DAGs with d nodes

[Robinson, 1973]. Hence, computing the normalization constant p(D) is also generally intractable.

B.2 STEIN VARIATIONAL GRADIENT DESCENT OVER CBNS AND INTERVENTIONS

Estimating Gradients of the Log-Posterior. The score w.r.t. auxiliary variables Z and Γ requires marginalization over the
corresponding discrete structures G and I tar; in particular

∇Z log p(Z,Θ,Γ,ΘI |D) = ∇Z log p(Z) +
∇ZEp(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]

Ep(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]
(25)

∇Γ log p(Z,Θ,Γ,ΘI |D) = ∇Γ log p(Γ) +
∇ΓEp(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]

Ep(G|Z)Ep(I tar|Γ) [p(Θ,ΘI ,D|G, I tar)]
(26)

where p(Θ,ΘI ,D|G, I tar) = p(Θ|G)
∏m

k=1 p(Dk|G,Θ, I tar
k ,ΘIk)p(ΘIk |I tar

k ). The expectations in Eq. 25 and Eq. 26 can
be estimated by sampling the intervention masks I tar ∼ Bern (σα(Γ)) and the adjacency matrices G ∼ Bern

(
σα(UV⊤)

)
in a differentiable manner with the Gumbel-Softmax trick [Jang et al., 2016, Maddison et al., 2017]. For obtaining a
differentiable observational log-likelihood, we mask individual log-likelihood summands based on G, as discussed in
Sec 4.3 of Lorch et al. [2021]. In a similar fashion, we use the I tar to switch between observational and interventional
likelihoods per variable:

log p(Dk|G,Θ, I tar
k ,ΘIk)=

nk∑
j=1

d∑
i=1

(1− I tar
k,i) · log p(x

(k,j)
i |xpaG(i),Θ)I tar

k,i · log p(x
(k,j)
i |ΘIk))

SVGD instantiation. In Sec. 5 we have introduced a fully differentiable Bayesian model which translates the posterior
inference over discrete graphs G and intervention targets Itar into an inference problem over the continuous latent variables
Z and Γ. In this section, we discuss how to approach the final challenge of approximating the intractable posterior
p(Z,Θ,Γ,ΘI |D) over our continuous latent variables.

To this end, we employ the particle variational inference approach SVGD [Liu and Wang, 2016] which approximates the
intractable distribution of interest by a finite set of particles. SVGD uses the score of the distribution to guide the particles
towards regions of high probability while using a kernel function k(·, ·) between them. The latter introduces repulsive forces
which make the particles disperse well across the domain. For a brief review of SVGD, please see Appx. F. We employ a
sum of RBF kernels (details in Appx. B.4) as the kernel function over Ψ := (Z,Θ,Γ,ΘI). We also considered a product
of RBF kernels, though, found that the additive kernel composition performed better.

Starting with an initial set of L particles {Ψ(l)
0 }Ll=1 = {(Z(l)

0 ,Γ
(l)
0 ,Θ

(l)
0 ,Θ

(l)
I,0)}Ll=1, we perform T iterations of particle

SVGD updates. Following Lorch et al. [2021], we use annealing schedules αt →∞ and βt →∞ so that our continuous
relaxations Gα(Z) and I tar

α (Γ) converge to DAGs and actual sets of intervention targets (details in Appx B.3). We return
{(G∞(Z

(l)
T ),Θ

(l)
T , I tar

∞(Γ
(l)
T ),Θ

(l)
I,T )}Ll=1 as the particle approximation of the posterior p(G,Θ, Itar,ΘI |D) with discrete

DAGs and interventions targets. Figure 4 illustrates an example of the returned posterior particles for G and Itar alongside
the ground truth for the case of a linear Gaussian 5 node graph. The proposed algorithm is summarized in Alg. 1. While
SVGD yields a set of particles of with equal weights, we weight each particle by its unnormalized posterior probability
p(G,Θ,ΘI , I tar, |D) for performing approximate Bayesian model averaging. We find that this improves the empirical
performance.

Although we employ SVGD, our general framework from Sec. 5 can also be instantiated with other score-based sampling [e.g.
Welling and Teh, 2011, Chen et al., 2014] or variational inference methods [Blei et al., 2017]. Such alternatives may become
favorable for systems of many variables, since the size of the adjacency matrix G grows quadratically in d and the respective
kernel component between G’s becomes useless in high-dimensions.

B.3 ANNEALING OF α AND β

The latent variables Z and Γ probabilistically model the causal graph G and intervention target masks I tar. In a similar way,
they can be viewed as as continuous relaxations of G and I tar respectively, where the α trades-off between smoothness
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Figure 4: Instead of just one point estimate, BaCaDI yields particle approximations of the posteriors p(G|D) and p(I tar|D).
We visually compare the posterior particles with the ground truth Ggt and I tar

gt for a SF-2 graph with d = 5 nodes and
M = 3 contexts. Blue colors represent edges or targets.

and accuracy of these relaxations. If α→∞, the sigmoid σα(·) converges to the unit step function so that the probability
distributions p(G|Z) and p(I tar|Γ) become deterministic indicator functions, representing only single discrete graph
G∞(Z) ∈ {0, 1}d×d and target mask I tar

∞(Γ) ∈ {0, 1}M×d. To be able to make this simplification, as proposed in Lorch
et al. [2021], we anneal αt such that αt →∞ and, at terminal iteration of the SVGD training loop, convert Z and Γ into
their discrete counterparts G∞(Z) and I tar

∞(Γ). Similarly, we set an annealing schedule βt →∞ for inverse temperature
parameter in the latent prior pβ(Z) such that and we only model DAGs as the training progresses.

Importantly, this annealing process simplifies the expectation in Eq. 4 to

Ep(G,Θ,I|D)[f(G,Θ, I)]

= Ep(Z,Θ,Γ,ΘI |D)

[Ep(G|Z),p(I tar|Γ)[f(G,Θ, I)p(Θ|G)p(ΘI |I tar)p(D|G, I,Θ)]

Ep(G|Z),p(I tar|Γ)[p(Θ|G)p(ΘI |I tar)p(D|G, I,Θ)]

]

→ Ep(Z,Θ,Γ,ΘI |D)[f(G∞,Θ, I∞)] ,

(27)

where I∞ := (I tar
∞(Γ),ΘI). This holds since the inner expectations evaluate to a single point for αt, βt → ∞ and thus

cancel out.

B.4 SVGD KERNEL

In our experiments, we employ an additive RBF kernel. We also considered a product of RBF kernels, though, found that the
additive kernel composition performed better. This additive kernel is defined as

k ((Z,Θ,Γ,ΘI), (Z
′,Θ′,Γ′,Θ′

I))

:= exp

(
−∥Z− Z′∥2

2τZ

)
+ exp

(
−∥Γ− Γ′∥2

2τγ

)
+ exp

(
−∥Θ−Θ′∥2

2τθ

)
+ exp

(
−∥ΘI −Θ′

I∥2

2τθ

) (28)

with lengthscales τZ , τγ , τθ. For brevity, we also write k(Ψ,Ψ′) for (28) where Ψ := (Z,Θ,Γ,ΘI). For SVGD, the kernel
introduces repulsive forces which make the particles disperse well across the domain (see F). Importantly, the lengthscale
hyperparameters provide the possibility to fine-tune the repulsion and hence calibrate our inference model. We show this in
Sec. E.3.

B.5 ALGORITHM OVERVIEW

We provide a pseudocode of our algorithm with its SVGD instantiation in Alg. 1.

C MARGINAL INFERENCE WITH THE BGE SCORE

In addition to joint posterior inference that includes the parameters Θ of the model, we also consider the marginal posterior
p(G|D). We employ the commonly used Bayesian Gaussian Equivalent (BGe) marginal likelihood that scores Markov



Algorithm 1 BaCaDI with SVGD for inference of p(G,Θ, I tar,ΘI |D)

Input: Set of datasets D = {D0, ...,DM} from the same causal system under different contexts
Input: Kernel k, schedules for αt, βt, and stepsizes ηt
Output: Set of CBN and intervention particles {(G(l),Θ(l), I tar,(l),Θ

(l)
I )}Ll=1

1: Initialize set of latent and parameter particles {Ψ(l)
0 }Ll=1 = {(Z(l)

0 ,Γ
(l)
0 ,Θ

(l)
0 ,Θ

(l)
I,0)}Ll=1

2: for iteration t = 0 to T − 1 do
3: Estimate∇ log p(Z,Θ,Γ,ΘI |D) for each Ψ

(l)
t = (Z

(l)
t ,Θ

(l)
t ,Γ

(l)
t ,Θ

(l)
I,t) ▷ see Eq 25, 26

4: for particle m = l to L do
5: Z

(l)
t+1 ← Z

(l)
t + ηt ϕ

Z
t (Ψ

(l)
t ) ▷ SVGD steps

where ϕZ
t (·) :=

1

L

M∑
l=L

[
k
(
Ψ

(l)
t , ·

)
∇

Z
(l)
t

log p(Ψ
(l)
t |D) +∇

Z
(l)
t
k
(
Ψ

(l)
t , ·

) ]
6: Θ

(l)
t+1 ← Θ

(l)
t + ηt ϕ

Θ
t (Ψ

(l)
t )

7: Γ
(l)
t+1 ← Γ

(l)
t + ηt ϕ

Γ
t (Ψ

(l)
t )

8: Θ
(l)
I,t+1 ← Θ

(l)
I,t + ηt ϕ

ΘI
t (Ψ

(l)
t )

where ϕΘ
t ,ϕΓ

t ,ϕ
ΘI
t are analogous to ϕZ

t but use gradients ∇
Θ

(l)
t
,∇

Γ
(l)
t
,∇

Θ
(l)
I,t+1

9: return {(G∞(Z
(l)
T ),Θ

(l)
T , I tar

∞(Γ
(l)
T ),Θ

(l)
I,T )}Ll=1 ▷ see Appx. B.3

equivalent structures equally [Geiger and Heckerman, 1994, 2002]. This model factorises the marginal likelihood into
components for each node given its parents. Details on the computation of the BGe score are provided by Kuipers et al.
[2014]. Other good explanations are given by Grzegorczyk [2010] and Kuipers and Moffa [2022].

Compared to the case of considering parameters Θ, the marginal likelihood does not yield factorization over different
datasets. That is,

p(D|G, I tar) ̸=
M∏
k=1

p(Dk|G, I tar
k )

Instead, we have to consider the fused data from all contexts by

X =


xT
1

xT
2
...

xT
N

 ∈ RN×d with c =


c1
c2
...
cN

 ∈ {0, . . . ,M}N (29)

for N =
∑M

k=1 nk and variables ci ∈ {0, . . . ,M} that indicate from which context sample xi originates. As before, ci = 0
denotes the observational context.

Interventions. When considering hard interventions, we cut off the connections of a variable to its parents. This effectively
means that the data at this variable only contributes a constant (wrt. the current hypothesis graph) factor to the likelihood,
and thus the scoring of a hypothesis graph should not be affected. In other words, when computing the score for a certain
variable j in the graph G, we drop all datapoints in X where j was the target of a hard intervention and then compute the
BGe score for the remaining datapoints X̂j . In our implementation, we achieve this by masking out datapoints in X. This
enables us to still make use of the Gumbel-Softmax estimator for the Bernoulli intervention targets.

Priors. Following the notation of Geiger and Heckerman [2002] and Kuipers et al. [2014], we use the standard effective
sample size hyperparameters αµ = 1 and αω = d+ 2. Moreover, we use the diagonal form as the Wishart inverse scale
matrix for the Normal-Wishart parameter prior underlying the BGe score (cf. [Grzegorczyk, 2010]) with a prior mean of
µ = [0, . . . , 0]T .

For interventions, we use the same approach but set the prior values µ to the real intervention mean from which the
interventions where sampled. We then compute a BGe score for the intervened datapoints given an empty graph in order to
have comparable likelihood. This helps when estimating the intervention targets that otherwise

Experiments. We evaluate BaCaDI using the marginal BGe score to the baselines of JCI-PC and UT-IGSP. Note that the
algorithms of both JCI-PC and UT-IGSP are not affected by the different score; the difference is the scoring of the predicted
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Figure 5: Additional results for Linear Gaussian BNs with d = 20 nodes. Here, we use the BGe score [Geiger and
Heckerman, 1994, 2002] that marginalizes out the parameters of a linear Gaussian model. We again see how BaCaDI better
predicts causal mechanisms across all settings. Note that DCDI-G is not included since it always performs joint inference
with parameters.

graph structures, where we compute a likelihood score using the marginal BGe (replacing the MLE parameter estimate). We
do not compare to DCDI-G as it always performs joint inference with parameters. Similar to Sec. 6, we focus on linear
Gaussian BNs with d = 20 nodes. We report the results in Fig. 5. As done previously, we select the models with the lowest
heldout I-NLL.

We again see how BaCaDI outperforms related methods in most metrics, particularly E-SID and I-NLL. Only UT-IGSP
performs competitively for AUPRC and INTV-AUPRC of SF graph structures, but fails to be on par with BaCaDI in
other settings. These results resonate with the other experimental evaluations, showing promising results for making causal
structure predictions.

D EXPERIMENTAL SETUP

In the following, we describe the models, datasets and implementations that were used to perform experiments in detail.

D.1 MODEL DETAILS & BACADI

First, we discuss the models of graphs as well as the exact usage of BaCaDI 1.

Graphs. We consider DAGs that follow either Erdős-Rényi (ER) [Gilbert, 1959] or scale-free (SF) [Barabási and Albert,
1999] distributions. ER graphs follow a prior distribution

p(G) ∝ q∥G∥1(1− q)(
d
2)−∥G∥1 (30)

that describes that each edge exists independently w.p. q. For SF graphs, we define a prior

p(G) ∝
d∏

i=1

(1 + ∥Gi∥1)−3 (31)

analogous to their power law degree distribution p(deg) ∼ deg−3. Gi describes the i-th row of the adjacency matrix. For
all our experiments, we use priors that result in 2d edges in expectation. Building on Lorch et al. [2021], BaCaDI can
incorporate such a graph distribution in the prior p(Z) (see Sec. 4.2 in their paper).

Overview: Gaussian BNs. As instantiations of BaCaDI ’s inference models that describe the local conditional distributions,
we consider Bayesian networks with additive Gaussian noise. This means that the variables x = (x1, . . . , xd) follow a
distribution

p(xi|Θ,G) = N (f(xpaG(i),Θ), σi) (32)

1Some parts of the model descriptions follow the appendix in [Lorch et al., 2021] and are included for completeness.



For the inference with BaCaDI , we assume a fixed observation noise σ2
i = σ2 = 0.1.

The function f can be modelled in different ways as follows.

Linear BNs. Linear Gaussian BNs model the mean of a given variable as a linear function of its parents:

p(x|Θ,G) = N ((G ◦Θ)Tx, σI), (33)

where ◦ denotes the element-wise multiplication. We use this parametrization as it allows for constant dimensionality of
Θ ∈ Rd×d and the elementwise multiplication only keeps the parents of each variable. Moreover, this allows the use of the
Gumbel-Softmax estimator in Eq. 25.

As a prior, we use a standard Gaussian p(Θi,j |Gi,j = 1) = N (0, 1).

Nonlinear BNs. The local conditionals can be extended to nonlinear dependencies modelled by neural networks. We
consider feed-forward neural networks of the form

FFN(x;Θ) := Θ(L)σ(. . . ,Θ(1)x+ θ
(1)
b ) . . . ) + θ

(L)
b , (34)

where Θ = ((Θ(L), θ
(L)
b ), . . . , (Θ(1), θ

(1)
b )) describe the parameters of the l-th layer for l ∈ {1, . . . , L}. The function σ is

the element-wise nonlinear activation function and θ
(l)
b is the bias. This then gives the distribution

p(x|Θ,G) =

d∏
i=1

N (xi;FFN(GT
i ◦ x;Θi), σ). (35)

Note that we thus have one neural network defined by Θi for each of the local conditional distributions of variable i, that is,
d networks in total. For all experiments, we use one hidden layer with 5 units and the sigmoid activation function.

As a prior for the parameters, we analogously use a standard Gaussian with mean 0 and variance 1.

Interventions. We model interventions using a Gaussian likelihood pIki (xi|ΘIk) = N (xi|µI
k,i, σI) with fixed vari-

ance σI
2 = 0.5. We infer the means ΘIk = [µI

k,1, ..., µ
I
k,d] for which we set a wide Gaussian prior p(ΘIk |I tar

k ) =∏
i∈I tar

k
p(µI

k,i|I tar
k,i = 1) =

∏
i∈I tar

k
N (µI

k,i|0, 10). This reflects an uninformative prior over a large effect range of the
interventions.

Initialization. For the linear Gaussians, the parameters are initialized closed to zero via Θinit ∼ N (0, σinitI) with σinit = 0.3.
The closeness to zero is important to avoid inducing a bias at the start of the SVGD inference process. Similarly, we sample
ΘI,init ∼ N (0, σI,initI) with σ2

I,init = 0.1.

For nonlinear Gaussians, we use the Glorot (sometimes called Xavier) normal to initialize the weights of the neural networks.
[Glorot and Bengio, 2010].

D.2 DATA GENERATION FOR THE SYNTHETIC CAUSAL INFERENCE TASKS

The data generation is done as follows: we first sample a random graph (either ER or SF) and then sample random
parameters. We collect data samples by iterating through the topological ordering of the graph and sample a variable given
its local parents. Since we consider additive Gaussian models, each variable is described by a distribution of the form
xi|Θ,G ∼ N (f(xpaG(i),Θ), σi) where f is either a linear function or a nonlinear feedforward neural network (cf. Sec.
D.1). The noise variables σi are sampled per variable and fixed once from σ2

i ∼ U [0.05, 0.15]. If the noise variables had the
same variance across all variables in the graph, this would render identification possible [Peters and Bühlmann, 2014].

Parameters. The parameters and generative models are initialized as follows:

• Linear BNs: We sample the parameters Θ uniformly and independently from U([−2,−0.5] ∪ [0.5, 2]) in order to bound
the weights sufficiently away from zero.

• Nonlinear BNs: The NNs for each local conditional are the same model as used for BaCaDI as well as DCDI-G, that is, a
fully connected NN with single hidden layer of size of 5 with biases. The nonlinear activation function is sigmoid. All
weights and biases are drawn randomly and independently from a Gaussian N (0, 1).



Interventions. As described in the main text, we perform hard interventions on every node for the 20-node graphs. We
create random values by first sampling µ̂k,i ∼ N (0, 2) and then setting µI

k,i = sign(µ̂k,i) · 5 + µ̂k,i. This ensures that the
interventions performed are bounded away from zero and out-of-distribution. If a variable xi is the target of the intervention
in context k, we then have pIki (xi|ΘIk) = pIki (xi|µI

k,i) = N (xi;µ
I
k,i, σI), where σ2

I = 0.5.

D.3 DATA GENERATION WITH THE SERGIO GENE-EXPRESSION SIMULATOR

SERGIO [Dibaeinia and Sinha, 2020] is a single-cell expression simulator guided by Gene Regulatory Networks (GRN). The
software tool can generate realistic single-cell transcriptomics datasets based on a user-defined graph input that describes the
gene-regulatory network. SERGIO uses a stochastic differential equation (SDE), the so-called chemical Langevin equation
(CLE), to simulate a gene’s expression dynamics as a function of the changing levels of its regulators. Of interest to us, the
simulations resemble the data collected by modern high-throughput, single-cell RNA sequencing (scRNA-seq) technologies.
For more details, please consider the original paper by Dibaeinia and Sinha [2020]. We give a brief overview of how we
simulate scRNA-seq data with SERGIO.

We use an implementation that is adapted from the open-surce code available under
https://github.com/PayamDiba/SERGIO which is published under a GPL-3.0 license.

Simulation. SERGIO generates synthetic scRNA-seq data D for a given causal graph with d genes in two stages: first, it
collects clean gene expression snapshots; then they are altered by technical noise. The N observations in D correspond to
N cell samples, i.e. one row in D describes the joint expression of the d genes in a single cell.

In the first stage, SERGIO samples clean gene expressions through snapshots at random timesteps from the steady state of a
dynamical system. In this regulatory process, the genes are expressed at rates influenced by other genes using the chemical
Langevin equation (CLE). The source nodes in the causal graph G are denoted master regulators (MRs), whose expressions
evolve at constant product and decay rates. The expressions of all downstream genes evolve non-linearly under production
rates caused by the expression of their causal parents in G. In addition, cell types are defined by specifications of the MR
production rates, which significantly influence the evolution of the system. Thus, the data contains variation due to biological
noise within collections of cells of the same type as well as across cell types. Ultimately, we generate single-cell samples
collected from ten cell types [Dibaeinia and Sinha, 2020].

In the second stage, the clean gene expressions sampled previously are corrupted with technical noise that resembles
the noise phenomena found in real scRNA-seq data. For simplicity, we do not make use of the technical noise for our
experiments.

Interventions. We consider knockout interventions that clip a specific gene to zero. To that end, we extend SERGIO by
forcing the production rate of knocked-out genes to be zero during simulation. As described in the main text, we do this for
M = 10 gene targets and arrive at 11 contexts (including the observational setting).

Parameters. Given a causal graph G, the data generation to simulate c cell types of d genes is governed by the following
parameters:

• k ∈ Rd×d : interaction strengths (only used if edge i→ j exists in G)

– We sample each ki,j ∼ U [1, 5].

• b ∈ Rd×c
+ : MR production rates (only used if gene j is a source node in G)

– We sample each bi,j ∼ U [1, 3].

• γ ∈ Rd×d
+ : Hill function coefficients controlling nonlinearity of interactions

– We fix a single γconst = 2.0 and set γi,j = γconst.

• λ ∈ Rd : decay rates per gene

– We fix each λi = 0.8.

• ζ ∈ Rd
+ : scale of stochastic process noise in chemical Langevin equation simulating the dynamical system.

– We fix ζ = 1.0.

We standardize the collected data for all methods by subtracting the empirical mean and dividing by the standard deviation.



D.4 BASELINES & IMPLEMENTATION

In this section, we provide additional details on the baseline methods and their implementations used in our experiments.
Our source-code and instructions on how to reproduce results are available under https://www.dropbox.com/sh/5
vtj4zp9h8sr9zq/AACkJ5naAxhXnpIByNEezI4Ia?dl=0.

For all methods, we use implementations adapted from the source code of DCDI available under https://github.c
om/slachapelle/dcdi (where the authors also included their baselines’ code). The implementation of JCI-PC is a
modified version of the R package using code from the JCI repository https://github.com/caus-am/jci/tree/
master/jci. UT-IGSP has an implementation available from https://github.com/uhlerlab/causaldag.

DAG Bootstrap. To compare all methods for Bayesian model averaging, we employ the nonparametric DAG bootstrap
[Friedman et al., 2013]. It performs model averaging by bootstrapping the observations D to yield a collection of synthetic
data sets, each of which is used to learn a single graph. We sample with replacement for each dataset Dk individually.
The collection of unique single graphs approximates the posterior by weighting each graph by its unnormalized posterior
probability.

All of the methods are evaluated with 20 bootstrap samples, i.e. the same number of samples as particles used for the SVGD
instantiation of BaCaDI. The only exception is DCDI-G, where we only use 5 bootstrap samples due to longer runtimes.

JCI-PC. The Joint Causal Inference (JCI) framework [Mooij et al., 2016] introduces a general formulation to extend the
initial causal graph by auxiliary nodes that describe the different contexts, effectively performing causal discovery over a
graph of size d+M . This can be instiantiated with different standard algorithms. We use the PC algorithm [Spirtes et al.,
2000] that relies on conditional independence tests (CI) to discover the Markov Equivalence Class (MEC), i.e. the skeleton
of a graph with v-structures as well as possible identifiable edge directions. We use the Gaussian CI tests that are best-suited
for the Gaussian BNs that we consider with the threshold parameter αJCI.

For computing the graph metrics, we compute the E-SID between the CPDAGs of the GT graph and predictions of JCI-PC.
Additionally, we favor JCI-PC when computing AUPRC scores. See Sec. D.5 for more details.

To arrive at a DAG that we can use to estimate MLE parameters and compute log-likelihood metrics, we generate a consistent
expansion of the CPDAG as defined by Chickering [2002]. That is, we generate a DAG s.t. the CPDAG has the same
skeleton and v-structures and every directed edge in the CPDAG has the same direction in the DAG. To that end, we perform
a random consistent expansion as described by Dor and Tarsi [1992].

UT-IGSP. The interventional greedy sparsest permutation (IGSP) method [Wang et al., 2017, Yang et al., 2018] proposes an
algorithm that learns causal structures via local scores based on CI relations and permutation search. The work is extended
by Squires et al. [2020] to the case of unknown targets (UT-IGSP). Analogous to JCI-PC, we make use of Gaussian CI
and invariance tests with parameters αUT-IGSP and αUT-IGSP

inv . Since we consider a low sample setting, it is possible that the
algorithm as provided by their open source implementation does not succeed when computing the correlation matrix. This is
because it computes a correlation matrix which becomes singular in case the number of samples is smaller than the number
of variables considered, thus rendering an inversion of this matrix impossible. In case this happens, we retry the inference
with a halved αUT-IGSP confidence threshold. The maximum number of restarts is set to 10. Should this maximum be reached,
the bootstrap sample is simply dropped.

Similar to JCI-PC, for computing the graph metrics, the E-SID is computed as the midpoint of the lower and upper bound
between the CPDAGs of the GT graph and predictions of UT-IGSP. Additionally, we favor UT-IGSP when computing
AUPRC scores. See Sec. D.5 for more details.

Moreover, we obtain a DAG by the random consistent expansion of the CPDAG (as described above for JCI-PC) to compute
the log-likelihood metrics.

DCDI-G. The work of Brouillard et al. [2020] introduced a model for Differentiable Causal Discovery from Interventional
Data (DCDI) that performs causal structure learning via the augmented Lagrangian method. They do so by formulating a
continuous-constrained optimization problem that relies on stochastic gradient descent and neural networks to fit the local
conditionals.

For a fair comparison, we employ the exact same model as used for the nonlinear Gaussian BNs used in BaCaDI, that
is, a feedforward neural network with one hidden layer of size 5 and Gaussian additive noise. This model is also called
DCDI-G in [Brouillard et al., 2020], however, a smaller model than the default configuration that was used in their paper (2
hidden layers with 16 hidden units); with that, we performed initial experiments, but saw strong overfitting and thus reduced

https://www.dropbox.com/sh/5vtj4zp9h8sr9zq/AACkJ5naAxhXnpIByNEezI4Ia?dl=0
https://www.dropbox.com/sh/5vtj4zp9h8sr9zq/AACkJ5naAxhXnpIByNEezI4Ia?dl=0
https://github.com/slachapelle/dcdi
https://github.com/slachapelle/dcdi
https://github.com/caus-am/jci/tree/master/jci
https://github.com/caus-am/jci/tree/master/jci
https://github.com/uhlerlab/causaldag


model-capacity. As elementwise activation function, we use the leaky ReLU with negative slope of 0.25 as suggested by
their work. Additionally, to have comparable log-likelihood metrics, we fix the noise variables to σ2 = 0.1 just as done for
BaCaDI. These noise variables could generally be learned by both models.

Since DCDI-G takes longer to compute, we restrict the number of bootstrap samples to 5.

D.5 METRICS

Here, we describe the evaluation metrics more in detail.

Our reported metrics focus on three essential aspects of our inference problem: causal graph prediction, intervention
detection, and learning the local conditionals of individual variables/nodes. We describe the metrics in the following.

• SID: The Structural Interventional Distance (SID) [Peters and Bühlmann, 2015] quantifies the closeness between two
DAGs in terms of how well their interventional adjustment sets coincide. Since we perform posterior inference and arrive
at a distribution over graphs, we consider the expected SID:

E-SID(p,Ggt) :=
∑
G

p(G|D) · SID(G,Ggt) (36)

We use the implementation provided by the Causal Discovery Toolbox [Kalainathan and Goudet, 2019].
Since UT-IGSP and JCI-PC only return a CPDAGs of the Interventional Markov Equivalence Class (I-MEC), we calculate
its lower and upper bound of SIDs in the I-MEC, and report their midpoint as the E-SID. Note that the DAG bootstrap
variants for all baselines as well as BaCaDI use the weighted mixture rather than the empirical distribution of samples;
the weight is based on the achieved unnormalized log-likelihood on the bootstrap sample.

• SHD: Another commonly used metric is the structural hamming distance (SHD) that reflects the graph edit distance to the
ground truth. However, it often does not properly reflect the closeness of two DAGs in terms of their causal interpretation.
For instance, the trivial prediction of the empty graph achieves competitive SHD scores for the sparse graphs we consider
in this paper. In our main text, we thus focus on the E-SID as well as other metrics that together better assess the quality
of causal graph predictions. For completeness, we report the E-SHD results in Appx. E.6.

• Threshold metrics: Treating the edge prediction as a classification task, we compute the area under the precision recall
curve (AUPRC) for pairwise edge prediction based on the posterior marginals p(gij = 1|D). This marginal is simply
defined as averaging the presence of edges in the posterior samples: p(gij = 1|D) = Ep(G|D)1[gij = 1]. Note that this is
a more suitable metric than, e.g., the AUROC, as sparse graphs translate to highly imbalanced edge classification tasks.
For both baselines JCI-PC and UT-IGSP, which both possibly return a CPDAG with edges that are undecided, we favor
them when computing the AUPRC metric. We orient a predicted undirected edge correctly when a ground truth edge
exists and only count a falsely predicted undirected edge as a single mistake.

• Interventional AUPRC: Similarly, we report the interventional AUPRC (INTV-AUPRC) for the classification of targets.
This again captures how well an algorithm predicts which variables have been intervened on. Since we are performing
sparse interventions, this better captures a model’s performance for a highly imbalanced classification task.

• I-NLL: We compute the average negative interventional log-likelihood (I-LL) on M test = 10 heldout interventional
datasets Dtest = {Dtest

1 , ...,Dtest
10 }, where different interventions are performed compared to the training datasets. Each

interventional test dataset comprises 100 samples, and has known intervention targets I tar
test,k and effect distributions

p(xi|ΘItest,k)

The I-NLL is computed via

I-NLL(p,Dtest) := − 1

M test

M test∑
k=1

Ep(G,Θ|D)

[
1

|Dtest
k |

log p(Dtest
k |G,Θ, I tar

test,k,ΘItest,k)

]
.

Since UT-IGSP and JCI-PC are not equipped with local conditional distributions, we use the linear Gaussian maximum-
likelihood parameters (MLE) that can be computed in closed-form [Hauser and Bühlmann, 2014] to compute the heldout
I-NLL. Note that for the nonlinear datasets, this creates a model mismatch since the closed form is only available for the
linear Gaussian BNs.
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Figure 6: Nonlinear Gaussian. Joint posterior inference over BCNs and interventions for nonlinear Gaussian ground-truth
BCNs. The results are for data from ER-2 (top) and SF-2 (bottom) graphs with d = 20 variables and M = 20 contexts.
BaCaDI consistently gives the best causal structure and intervention predictions.

D.6 HYPERPARAMETER SEARCH

To ensure a fair comparison, we perform a hyperparameter search for all baselines. The search ranges can be found in Table
1. Throughout all experiments, we use at least 20 hyperparameter samples and aggregate results over 30 different random
seeds and graphs. For the results of BaCaDI in the main text, we fix the hyperparameters α = 0.01, β = 2 and λ = 1, which
are the linear scale for the temperature parameter of the sigmoids, the linear scale for the sparsity regularizer and the sparse
intervention regularizer, respectively.

Method Hyperparameter Comment Search range

BaCaDI
τZ Kernel lengthscale log10 U [−1, 1.7]
τγ Kernel lengthscale log10 U [−1, 1.7]
τθ Kernel lengthscale log10 U [1.2, 5]

JCI-PC αJCI CI tests log10 U [−5,−1]

UT-IGSP αUT-IGSP CI tests log10 U [−5,−1]
αUT-IGSP

inv Invariance tests log10 U [−5,−1]

DCDI-G

batch size - U({16, 32, 64})
λR Sparsity coefficient for interventions log10 U [−8,−1]
λ Sparsity coefficient for graph log10 U [−3,−1]
h Convergence threshold log10 U [−8,−6]

Table 1: Hyperparameter search space for all methods

E ADDITIONAL EXPERIMENTS

E.1 SYNTHETIC NONLINEAR DATASETS

In addition to the results for synthetic linear Gaussian BNs in Sec. 6, we perform experiments for synthetic nonlinear
Gaussian BNs. As described in Sec. D.1 and Sec. D.2, the local conditionals are modelled by feedforward neural networks
and hence the same model as used DCDI-G and the nonlinear BaCaDI. The corresponding results can be found in Fig. 6.

Analogous to the previous evaluations, BaCaDI gives predictions that are the closest to the ground-truth CBN. It strongly
outperforms the baselines in terms of the E-SID and AUPRC while achieving low I-NLL and high INTV-AUPRC. Among
the baselines, UT-IGSP is the best at detecting interventions, largely on par with BaCaDI, but it fails behind in the other
metrics.



E.2 LARGER DATASETS

We report additional results when doubling the dataset size, i.e. we collect n0 = 200 observational samples and nk = 20
samples per interventional context. The results for synthetic linear and nonlinear Gaussian BNs can be found in Fig. 7 and
Fig. 8, respectively.
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Figure 7: Linear Gaussian with more data. Joint posterior inference over BCNs and interventions for linear Gaussian
ground-truth BCNs. The results are for data from ER-2 (top) and SF-2 (bottom) graphs with d = 20 variables and M = 20
contexts. We here double the dataset size to N = 600 samples in total. Similar to the previous setting with lower sample
sizes, BaCaDI consistently is the most competitive method.
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Figure 8: Nonlinear Gaussian with more data. Joint posterior inference over BCNs and interventions for nonlinear
Gaussian ground-truth BCNs. The results are for data from ER-2 (top) and SF-2 (bottom) graphs with d = 20 variables and
M = 20 contexts. We here double the dataset size to N = 600 samples in total. Again, BaCaDI performs the best across
all metrics.

E.3 CALIBRATION

Having compared BaCaDI with the baselines across the metrics for causal structure learning in the previous sections and
the main text, we now provide additional experiments to show how BaCaDI incorporates epistemic uncertainty. To quantify
the reliability of our uncertainty estimates, we utilize the concept of calibration [Gneiting et al., 2007, Kuleshov et al.,
2018] to quantify the reliability of our uncertainty estimates. We show the results in Appx. E.3. Notably, BaCaDI is the
only method that takes into account the epistemic uncertainty when dealing with limited data and shows that its probabilistic
predictions are reliable. Formally, we consider a probabilistic predictor to be well calibrated if in expectation, its α-%
confidence intervals cover α-% of the true targets.

We visualize this in Fig. 9 for the task of predicting edges in CBNs. The plot compares the confidence intervals for varying
thresholds of α with the empirical coverage, that is, the average percentage of edges present in the ground-truth graphs.
Perfectly calibrated predictions exhibit a proportional one-to-one relationship between confidence level and empirical
coverage, indicated by the black straight line in Fig. 9. All three baseline methods are severely underconfident in their
predictions. BaCaDI, in contrast, produces edge predictions that are close to the ideal calibration line. This indicates that
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Figure 9: Calibration plot for edge predictions with SERGIO simulated data. The x-axis shows varying thresholds of the
confidence level α compared to the empirical coverage of the edges on the y-axis. Error bars show the 90% confidence
intervals across datasets. Only BaCaDI makes well-calibrated predictions.

BaCaDI properly takes into account the epistemic uncertainty when dealing with limited data and shows that its probabilistic
predictions are reliable. Additionally, BaCaDI offers the possibility to fine-tune the calibration of the predictor through
the SVGD kernel parameters.

Calibration for synthetic datasets. We show the calibration for all methods with the synthetic datasets used in the main text.
The calibration plots can be found in Fig. 10. Notably, BaCaDI is the only method that does not give grossly overconfident
predictions. Instead, it is conservative in predicting edges for the linear BNs, and gets closest to the ideal calibration line for
nonlinear BNs.

Ablation study. In addition to well capturing the causal mechanisms when performing posterior inference, we now
demonstrate the flexibility of calibrating the inference of BaCaDI. Through the use of SVGD and a kernel that can be
designed specifically for the application, BaCaDI can be fine-tuned to a desired calibration. We show different inference
results in Fig. 11 for linear as well as nonlinear datasets. Depending on the lengthscale hyperparameters for the kernel in
28, we see that the predictions of BaCaDI can be easily adapted to varying levels. It thus properly takes into account the
epistemic uncertainty when dealing with limited data.

E.4 OBSERVATIONAL VS. INTERVENTIONAL DATA

As an interesting use case, we now evaluate how interventional data helps predicting the causal structure with BaCaDI. In
general, intervening on variables in the system and observing the outcome provides information that helps discovering the
causal mechanisms; in the perfect setting, when the interventions are fully known, they increase identifiability (reducing the
interventional Markov equivalence class) [Hauser and Bühlmann, 2012]. However, the information gain can be limited when
the interventions are unknown [Squires et al., 2020].

We investigate how BaCaDI can leverage such unknown interventions compared to using just observational data. To
that end, we evaluate 3 different settings: i) when only observational data is available, ii) interventional data with full
knowledge of the interventions, and iii) unknown interventions. When the interventions are known, the posterior inference
of BaCaDI can be reduced to Eq. 1.

We consider nonlinear Gaussian BNs for d = 20 node graphs. All methods receive the exact same number of samples
for inference. That is, we collect n0 = 300 samples from the ground-truth BN without interventions for the observational
dataset; the interventional datasets, as before, have n0 = 100 observations and nk = 10 samples per interventional context.
We report the results in Fig. 12.

We can see how BaCaDI achieves much better results when interventional data is available. The case of known interventions
serves as a natural baseline, where BaCaDI achieves the best performance and gets closest in recovering the true causal
structure. This is most clearly shown by the E-SID and AUPRC scores. Notably, BaCaDI is able to get close this baseline
even when interventions are unknown and outperforms the setting where just observational data is available. This shows the
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(c) Nonlinear Gaussian BNs | ER-2
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Figure 10: Calibration plots for the synthetic datasets. The top row shows the calibration plots for linear Gaussian BNs
for ER graphs (left) and SF graphs (right). The bottom row shows the nonlinear Gaussian BNs. All results correspond to
the same models and configuration as the results reported in the main text. Notably, BaCaDI is the closest to the ideal
calibration line for nonlinear BNs.

benefit of performing and collecting interventions even when some of the effects may be unknown and is a promising result
for future work.

E.5 50 NODE GRAPHS

As additional experiments, we perform posterior inference for larger graphs with 50 nodes in total. Analogous to the previous
evaluations, we consider synthetic linear Gaussian BNs with hard interventions on every node. We use a larger dataset of
n0 = 200 observational samples and nk = 20 samples per interventional context. We show the results in Fig. 13. We see
how BaCaDI scales to larger graphs, performing competitively across all metrics. In particular, it outperforms the baselines
by a large margin in terms of the E-SID and AUPRC for ER graphs.

E.6 STRUCTURAL HAMMING DISTANCE

For completeness, we include the Expected Structural Hamming Distance (E-SHD) metric for all results discussed in
the main text for d = 20 node graphs in Table 2. Analogous to the E-SID, the E-SHD is defined as E-SHD(p,Ggt) :=
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Figure 11: Calibration plot sweeps. We show calibration plots for varying kernel lengthscales for d = 20 node SF graphs
for linear Gaussian BNs (left) and nonlinear Gaussian BNs (right). BaCaDI offers the possibility to fine-tune the calibration
of the predictive model depending on the application and desired results. It thus can properly take into account the epistemic
uncertainty when dealing with limited data.

∑
G p(G|D) · SHD(G,Ggt). The SHD simply reflects the graph edit distance where wrongly inverted edges are counted

as only one error. However, while it captures closeness to the ground truth graph, trivial predictions like the empty graph
achieve competitive results for sparse graphs. For example, in the setting of d = 20 nodes and 2d edges in expectation, the
empty graph will achieve a E-SHD of 40 in expectation. Similar conclusions hold if only a handful of edges are predicted.
In the main text, we thus resort to the E-SID as well as additional metrics that together establish the quality of the causal
predictions.

JCI-PC UT-IGSP DCDI-G BaCaDI (LinG) BaCaDI (NonlinG)

Linear Gaussian BNs graphs:

ER 38.97 (1.65) 41.38 (2.53) 63.29 (4.52) 50.32 (10.98) -
SF-2 37.42 (0.32) 34.35 (1.18) 51.68 (3.67) 36.48 (6.12) -

Nonlinear Gaussian BNs graphs:

ER 38.93 (1.65) 35.09 (1.76) 64.91 (2.61) - 18.73 (1.85)
SF-2 37.00 (0.00) 33.75 (0.48) 57.92 (2.69) - 23.55 (1.43)

SERGIO graphs

SF-2 44.29 (0.70) 45.05 (1.88) 56.39 (1.63) 108.71 (3.75) 115.04 (6.22)

Table 2: Expected Structural Hamming Distance. We report the E-SHD for all methods for the main results with d = 20
node graphs. We aggregate results over 30 different seeds and report the mean and standard error. While the E-SHD is a
simple and commonly used metric, it can be misleading. For sparse graphs, the trivial prediction of the empty graph achieves
competitive E-SHD scores; similar assessments can be made for predictions with only a few edges. We include the results
for completeness.
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Figure 12: Comparison: Observational data vs. known and unknown interventions. Additional results comparing
BaCaDI with observational data against known and unknown interventions for nonlinear Gaussian BNs for d = 20 node
graphs. As a natural baseline, the setting of knowing the intervention targets and effects leads to the best performance across
all metrics. When the interventions are unknown, BaCaDI achieves results close to this baseline. Notably, it outperforms the
setting where just observational data is available.
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Figure 13: Linear Gaussian BNs with 50 nodes. Additional results comparing BaCaDI on larger graphs with d = 50
nodes for Linear Gaussian BNs for ER-2 (top) and SF-2 (bottom). BaCaDI performs competitively across all metrics. In
particular, it makes significantly better causal mechanism predictions for ER graph as captured by the E-SID.

E.7 RUNTIMES

We report the average runtimes (in minutes) for all methods and main results for d = 20 node graphs in Table 3.

E.8 COMPUTATIONAL RESOURCES

All experiments reported in this paper were performed in bulk and in parallel on 2-core CPU nodes of an internal cluster. No
GPUs were used. We estimate the total compute to roughly amount to 40000 hours of CPU time.



JCI-PC UT-IGSP DCDI-G BaCaDI (LinG) BaCaDI (NonlinG)

Linear Gaussian BNs graphs:

ER 2.07± 0.16 1.31± 0.22 260.03±56.11 51.68±13.12 -
SF-2 2.17± 0.15 1.46± 0.09 176.89±30.46 60.57±22.95 -

Nonlinear Gaussian BNs graphs:

ER 1.89± 0.07 1.16± 0.06 143.88±12.53 - 491.26±91.74
SF-2 1.92± 0.06 1.41± 0.06 145.43±25.83 - 519.79±97.95

SERGIO graphs

SF-2 2.36± 0.09 0.42± 0.20 128.04± 9.97 45.11± 1.52 323.11±101.15

Table 3: Average runtimes for all methods for the main results with d = 20 node graphs. We aggregate results over 30
different seeds and report the mean and standard deviation. All numbers given are in minutes.



F STEIN VARIATIONAL GRADIENT DESCENT

We here give the most important points of the Stein Variational Gradient Descent (SVGD) introduced by Liu and Wang
[2016]. Fundamentally, the work of Liu and Wang [2016] connects the mathematical notions of probability discrepancies
with a variational inference method, which closely resembles the gradient descent algorithm. For a comprehensive overview,
we refer to the original paper.

Stein’s identity and discrepancy. Formally, let p(x) be a continuously differentiable (i.e. smooth) density supported on
X ⊆ Rd. For a smooth vector function ϕ(x), the Stein’s identity states that for sufficiently regular ϕ, we have

Ex∼p[Apϕ(x)] = 0, (37)

where Apϕ(x) = ϕ(x)∇x log p(x)
T +∇xϕ(x) (38)

where Ap is the Stein operator acting on the function ϕ. This equation can be subsequently used as a discrepancy measure:
when considering the expectation over a smooth density q different than p, we obtain the so called Stein discrepancy by
considering the "maximum violation of Stein’s identity". That is, we have

S(q, p) = max
ϕ∈F

[Ex∼q[trace(Apϕ(x))]
2] (39)

for a choice of a set of functions F , for instance the reproducing kernel Hilbert space (RKHS) denoted byHd.

Variational Inference using smooth transforms. The goal of variational inference is to approximate a target distribution p
using a simpler distribution q∗ which minimizes the KL-divergence

q∗ = argmin
q∈Q

KL(q||p) (40)

In order to minimize the KL-divergence, the authors in [Liu and Wang, 2016] consider incremental transforms formed by a
small perturbation to the identity map that make up the set of distributions Q. That is, the transform T : X → X is defined
as

T(x) = x+ ϵϕ(x) (41)

where ϕ is a smooth function that characterizes the perturbation direction. As a key result, Liu and Wang [2016] connect
these transforms to the Stein operator and the derivative of the KL divergence. The authors show that if the function ϕ lies in
the ball of the vector valued RKHSHd, the direction of the steepest descent on the KL divergence between a fixed q and the
target p is given by

ϕ∗
q,p = Ex∼q[k(x, ·)∇x log p(x) +∇xk(x, ·)] (42)

where one can easily identify the form of the Stein operator. What is more, the value of the obtained gradient equals the
(negative) kernelized Stein discrepancy measure −S(q, p).

General Algorithm. This mathematical result suggests an iterative method that transforms an initial reference distribution
q0 to the target distribution p. Starting with a finite set of random particles {x(m)}Mm=1, for some iteration t each particle is
updated deterministically according to

x
(m)
t+1 ← x

(m)
t + ϵtϕ(x

(m)
t+1) (43)

where

ϕ(x) =
1

M

M∑
l=1

k(x
(l)
t+1,x)∇x log p(x) +∇xk(x

(l)
t+1,x) (44)

These steps iteratively decrease the KL divergence between qt and p, ultimately converging.

Importantly, the advantage of SVGD is that it only depends on the gradient of the kernel k(x, ·) that can be defined
for the application, as well as the score function ∇x log p(x) which can be computed without knowing the (intractable)
normalization constant of p. On an intuitive level, the first part of the perturbation direction expression drives the particles to
high density regions close to the mode of the target distribution p, whereas the term∇xk(x, ·) acts as a repulsive force that
prevents the particles from collapsing together.
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