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Abstract

Sometimes we benefit from actions that others have taken even when we are
unaware that they took those actions. For example, if your neighbor chooses not
to take a parking spot in front of your house when you are not there, you can
benefit, even without being aware that they took this action. These “hidden gifts”
represent an interesting challenge for multi-agent reinforcement learning (MARL),
since assigning credit when the beneficial actions of others are hidden is non-trivial.
Here, we study the impact of hidden gifts with a very simple MARL task. In this
task, agents in a grid-world environment have individual doors to unlock in order
to obtain individual rewards. As well, if all the agents unlock their door the group
receives a larger collective reward. However, there is only one key for all of the
doors, such that the collective reward can only be obtained when the agents drop
the key for others after they use it. Notably, there is nothing to indicate to an
agent that the other agents have dropped the key, thus the act of dropping the key
for others is a “hidden gift”. We show that several different state-of-the-art RL
algorithms, including MARL algorithms, fail to learn how to obtain the collective
reward in this simple task. Interestingly, we find that independent model-free policy
gradient agents can solve the task when we provide them with information about
their own action history, but MARL agents still cannot solve the task with action
history. Finally, we derive a correction term for these independent agents, inspired
by learning aware approaches, which reduces the variance in learning and helps
them to converge to collective success more reliably. These results show that credit
assignment in multi-agent settings can be particularly challenging in the presence
of “hidden gifts”, and demonstrate that learning awareness in independent agents
can benefit these settings. Code here: http://bit.ly/46bJ5Tr

1 Introduction

In the world we often rely on other people to help us accomplish our goals. Sometimes, people
help us even if we aren’t aware of it or haven’t communicated a need for it. A simple example
would be if someone decides not to take the last cookie in the pantry, leaving it for others. Another
interesting example is the historical “Manitokan” practice of the plains Indigenous nations of North
America. In an expansive environment with limited opportunities for communication, people would
cache goods for others to use at effigies [Barkwell, 2015]; a temporally delayed form of reciprocal
decision making. Notably, in these cases there was no explicit agreement of a trade or articulation of
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a “tit-for-tat”[Axelrod, 1980]. Rather, people simply engaged in altruistic acts that others could then
benefit from, even without knowing who had taken the altruistic act. We refer to these undeclared
altruistic acts as “hidden gifts”.

Hidden gifts represent an interesting challenge for credit assignment in multi-agent reinforcement
learning (MARL). If one benefits from a hidden gift, assigning credit to the actions of the other is
essentially impossible, since the action was never made clear to the beneficiary. As such, standard
Bellman-back-ups [Bellman, 1954] would likely be unable to identify the critical steps that led to
success in the task. Moreover, unlike a scenario where cooperation and altruistic acts can emerge
through explicit agreement or a strategic equilibrium [Nash Jr, 1950], as in general sum games
[Axelrod, 1980], with hidden gifts the benefits of taking an altruistic action are harder to identify.

To explore the challenge of hidden gifts for MARL we built a grid-world task where hidden gifts
are required for optimal behavior [Chevalier-Boisvert et al., 2023]. We call it the Manitokan task, in
reference to the "take what you need, leave what you don’t need" inspiration from Manitokan of plains
indigenous communities. In the Manitokan task, two-or-more agents are placed in an environment
where each agent has a “door” that they must open in order to obtain an individual, immediate, small
reward. As well, if all of the agents successfully open their door then a larger, collective reward
is given to all of them. To open the doors, the agents must use a key, which the agents can both
pick up and drop. However, there is only a single key in the environment. As such, if agents are
to obtain the larger collective reward then they must drop the key for others to use after they have
used it themselves. The agents receive an egocentric, top-down image of the environment as their
observation in the task, and they can select actions of moving in the environment, picking up a key,
dropping a key, or opening a door. Since the agents do not receive information about other agents’
actions, key drops represent a form of hidden gift – which make the credit assignment problem
challenging. In particular: 1. The task is fully cooperative so there is no negative reward for holding
the key, and 2. dropping the key only leads to the collective reward if the other agents take advantage
of the gift.

We tested several state-of-the-art MARL algorithms on the Manitokan task. Specifically we tested
Value Decomposition Networks (VDN, QMIX and QTRAN) [Sunehag et al., 2017, Son et al., 2019,
Rashid et al., 2020], Multi-Agent and Independent Proximal Policy Optimization (MAPPO and
IPPO) [Schulman et al., 2017, Yu et al., 2022], counterfactual multi-agent policy gradients (COMA)
[Foerster et al., 2018, She et al., 2022], Multi-Agent Variational Exploration Networks (MAVEN)
[Mahajan et al., 2019], an information bottleneck based Stateful Active Facilitator (SAF) [Liu et al.,
2023b] and standard REINFORCE policy gradients (PG) with Actor-Critic [Williams, 1992, Sutton
et al., 1999a, 1998, She et al., 2022]. Notably, we found that none were capable of learning to drop
the key and obtain the collective reward reliably. In fact, many of the MARL algorithms exhibited a
total removal of key-dropping behavior, leading to less than random performance on the collective
reward. These failures held even when we provided the agents with objective relevant information,
providing inputs indicating which doors were open and whether the agents were holding the key.

Interestingly, when we also provided the agents with a history of their own actions as one-hot vectors,
we observed that policy gradient agents without proximal policy optimization could now solve the
collective task, whereas others still failed to do so. However, these successful agents’ showed high
variability in their success rate. Based on this, we analyzed the value estimation problem for this task
formally, and observed that the value function necessitates an approximation of a non-constant reward.
That is, the collective reward is conditioned on the other agent’s policy which is non-stationary
between policy updates. Inspired by learning awareness [Willi et al., 2022, Foerster et al., 2017], we
derived a new term in the policy gradient theorem which corresponds to the Hessian of the collective
reward objective partitioned by the other agent’s policy with respect to the collective reward. Using
this correction term, we show that we can reduce the variance in the performance of the PG agents
and achieve consistent learning to drop the key for others.

Altogether, our key contributions in this paper are:

• We introduce a novel MARL task, the Manitokan task, involving hidden gifts that is
challenging for credit assignment, but tractable for mathematical analysis.

• We provide evidence that several state-of-the art MARL algorithms cannot solve the Mani-
tokan task, despite its apparent simplicity.
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• We demonstrate that when action history is provided to the agents with memory, then
independant PG agents can solve the task, but other algorithms still cannot.

• We provide a theoretical analysis of the Mantokan credit assignment problem and use it to
derive a correction term based on learning-aware approaches [Foerster et al., 2017].

• We show that the derived correction term can reduce variance in the Manitokan task and
improve convergence towards policies that involve leaving hidden gifts.

2 Related Work

2.1 Coordination and Gifting in MARL

Fully cooperative coordination games feature a single team objective requiring agents to act jointly,
often reducible to a single-agent problem with a large action space. Benchmarks include the Multi-
Agent Particle Environment (MPE) with cooperative tasks such as Spread and Speaker–Listener
[Mordatch and Abbeel, 2017, Lowe et al., 2017], Overcooked-AI [Carroll et al., 2019, Gessler et al.,
2025], the StarCraft Multi-Agent Challenge [Samvelyan et al., 2019, Ellis et al., 2023], and social-
dilemma environments like Cleanup and Harvest [Leibo et al., 2017, Lerer and Peysakhovich, 2017,
Christianos et al., 2020]. These are often studied under the centralized training with decentralized
execution (CTDE) paradigm, with methods such as COMA [Foerster et al., 2018] and QMIX [Rashid
et al., 2020] leveraging global state during training to stabilize coordination. A common approach
is to share team rewards across agents, promoting cooperation but also creating credit assignment
issues such as “lazy-agent” behavior [Liu et al., 2023a]. Individualized rewards can mitigate this but
risk undermining coordination by pulling policies away from team objectives [Wang et al., 2022].

Within this cooperative context, “gifting” has been proposed as a mechanism for reward transfer,
where one agent deliberately allocates part of its payoff to another to foster cooperation or reciprocity
[Hughes et al., 2018, Peysakhovich and Lerer, 2018, Lupu and Precup, 2020]. This can be seen as
a bounded, targeted form of social influence. Related work in single-agent RL interprets gifting as
an intrinsic “self-gift,” i.e., internally generated rewards that support exploration or long-horizon
credit assignment [Schmidhuber, 1991, Arjona-Medina et al., 2019, Sun et al., 2023]. In multi-agent
settings, intrinsic rewards have also been used to shape others’ behavior through causal influence
[Jaques et al., 2019]. However, gifting has so far been treated only as scalar reward signals, not as the
transfer of tangible, task-critical resources.

2.2 Multi-Objective RL

Many decision-making problems involve objectives whose relative importance shifts over time, creat-
ing a non-stationary optimization landscape where fixed-weight MORL methods falter [Van Moffaert
and Nowé, 2014, Roijers et al., 2013]. Dynamic-weights MORL addresses this by conditioning
policies or value functions on the current weight vector w(t), enabling a single policy to adapt across
changing trade-offs without retraining. Approaches include weight-conditioned DQNs [Mossalam
et al., 2016], policy gradients with weight inputs [Abels et al., 2019], and replay strategies for stability
under shifting scalarizations [Yang et al., 2019].

In multi-agent settings, MORL has been used to balance individual and collective goals [Hayes et al.,
2022], but prior work assumes known or designed w(t), rather than treating another agent’s policy
itself as a dynamic weight. Seldom in the world do we have ever complete control of our incentives.

3 The Manitokan task for studying hidden gifts

The Manitokan task is a cooperative MARL task in a grid world. The task has been designed to be
more complex than matrix games, such as Iterative Prisoner’s Dilemma [Axelrod, 1980, Chammah,
1965], but capable for mathematical analysis of strategic behaviour and different from past cooperative
environments (See 2). At the beginning of an episode each agent is assigned a locked door (Fig.1A)
that they can only open if they hold a key. Agents can pick up the key if they move to the grid location
where it is located (Fig.1B). Once an agent has opened their door it disappears and that agent receives
a small individual reward immediately (Fig.1C). However, there is only one key for all agents to share
and the agents can drop the key at any time if they hold it (Fig.1D). Once the key has been dropped
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the other agents can pick it up (Fig.1E) and use it to open their door as well (Fig.1F). If all doors are
opened a larger collective reward is given to all agents, and at that point, the task terminates.

We now define the notation that we will use for describing the Manitokan task and analyzing formally.
The environment is a decentralized partially observable Markov decision process (Dec-POMDP)
[Goldman and Zilberstein, 2004, Bernstein et al., 2002].

Let M = (N , T, T ,O,A,Π,R, γ), where:

• N := {1, 2, . . . , N} is the set of N agents.

• T ∈ N is the maximum timesteps in an episode.

• O := ×i∈NOi is the joint observation space for the N agents and oit ∈ Oi → N9 is a partial
observation for an agent i at timestep t. This is the only input agents take and thus the state
S = O

• A := ×i∈NAi is the joint action space and ait ∈ Ai is the action of agent i at time t.

• Π := ×i∈Nπi is the joint space of individual agent policies.

• R → R is the reward function composed of both individual rewards, rit, which agents
receive for opening their own door (i.e. an individual objective), and the collective reward,
rc, which is given to all agents when all doors are opened (i.e. a collective objective). (See
equation 1 below.)

• T : O × A → ∆(O) is the transition function specifying the probability
T (oi

′
,Ri(oi, ai)|oi, ai) that agent i transitions to oi

′
from oi by taking action ai for a

reward Ri.

• γ ∈ [0, 1) is the discount factor.

The observations, oit, that each agent receives are egocentric images of the 9 grid locations surrounding
the current position of the agent (see the lighter portions in Fig. 1). The key, the doors, and the other
agents are all visible if they are in the field of view, but not otherwise (hence the task is partially
observable). The actions the agents can select, ait, consist of ‘move forward’, ‘turn left’, ‘turn
right’, ‘pick up the key’, ‘drop the key’, and ‘open the door’. Episodes last for T = 150 timesteps at
maximum, and are terminated early if all doors are opened.

The monotonic reward function Ri is defined as:

Ri(oit, a
i
t) :=

{
rit = ri door opened
rc =

∑N
j rj all doors opened

(1)

But in correspondence the other multi-objective problems, Ri is scalarized as R̂i = ri + ω(t)rc

where the preference weighting ω(t) = πj
t so R̂i = ri + πj

t r
c for agent i. The Manitokan task is

unique from other credit assignment work (see. 2) in MARL due to the number of keys being strictly
less than the number of agents. This scarcity requires the coordination of gifting the key between
agents as a necessary critical step for success and maximizing the cumulative return. But, notably,
unlike most other MARL settings the act of dropping the key is not actually observable by other
agents when learning a policy. When an agent picks up the key they do not know if they were the
first agent to do so or if other agents had held the key and dropped it for them. Thus, key drop acts
are “hidden gifts” between agents and the task represents a deceptively simple, but actually complex
structural credit assignment problem across learning dynamics [Tumer et al., 2002, Agogino and
Tumer, 2004, Gupta et al., 2021].

Importantly, with this set-up, the collective reward is delayed relative to any key drop actions.
Moreover, key drop actions only lead to reward if the other agents have learned to accomplish their
individual tasks. It then follows that the delay between a key drop action and the collective reward
being received will be proportional in expectation to the number of agents, rendering a more difficult
credit assignment problem for higher values of N . In the data presented here we only consider the
easiest version of the task, where N = 2.
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Figure 1: The deceivingly simple steps to success in the Manitokan task. a) Agent 1 finds the key; b)
Agent 1 then finds their door; c) Agent 1 opens their door; d) Agent 1 drops the key as a “hidden
gift”; e) Agent 3 finds their door; f) Agent 2 opens their door.

4 Results

We begin by testing the ability of various state-of-the-art model-free RL algorithms to solve this
task, both multi-agent models, and independent models. For the multi-agent models, we selected
ones that are prominently used as baselines for credit assignment in fully cooperative MARL tasks.
These included the counterfactual model COMA, the centralized critic multi-agent PPO (MAPPO),
and global value mixer models VDN, QMIX and QTRAN [Foerster et al., 2018, Yu et al., 2022,
Sunehag et al., 2017, Rashid et al., 2020, Son et al., 2019]. We used REINFORCE policy gradient
methods, and gradient decoupled independent PPO agents (IPPO) [Williams, 1992, Sutton et al.,
1999a, Schulman et al., 2017]. In order to alleviate problems with exploration and changing policies
we also tested MAVEN (which provides more robust exploration) and SAF (which is a meta-learning
approach with a communication protocol network for learning with multiple policies) [Mahajan
et al., 2019, Liu et al., 2023b]. All algorithms were built with recurrent components in their policy
(specifically, Gated Recurrent Units, GRUs [Cho et al., 2014]) in order to provide agents with some
information about task history. (See methods in Appendix A for more details on design and training.)
In our initial tests we provided only the egocentric (i.e agent’s "self" is included) observations as
input for the agents. Hyperparameters were optimized by tuning from the sets provided in the original
papers with a search to avoid overfitting on the immediate reward. As well, we trained 10 simulations
with different seeds that initialized 32 parallel environments also with different random seeds. These
parallel environments make the reward signals in each batch less sparse. For each simulation we ran
10,000 episodes for each 32 parallel environments, except in Figure 6 where we did 26,000 episodes.
Training was done with 2 CPUs for each run and SAF required an additional A100 GPU per run. An
emulator was also used to improve environment step speed [Suarez, 2024].

4.1 All algorithms fail in the basic Manitokan task

To our surprise, everything we tested converged to a level of success in obtaining the collective reward
that was below the level achieved by a fully random policy (Fig. 2a) even though reward was being
maximized. In fact, with the sole exception of MAPPO, all of the MARL models we tested (COMA,
VDN, QMIX, QTRAN) exhibited full collapse in hidden gift behavior: these models all converged
to policies that involved less than random key dropping frequency. Randomizing the policy can
slightly improve success rate but reduced cumulative reward ( 2). Notably, the agents that didn’t
show full collapse in collective success (MAPPO, IPPO, and SAF) were still successfully opening
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their individual doors, as seen by the fact that their cumulative reward was higher than the cumulative
reward obtained by a random policy (Fig. 2b). But, the MARL agents that showed total collapse of
collective behavior also showed collapse in the individual rewards. We believe that this was due to
the impact of shared value updates. With shared value updates the reward signal could be swamped
by noise from the unrewarded agents in the absence of key drops, and be confused by a lack of reward
obtained when agents’ dropped the key before opening their doors. (See more below in section 5)
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Figure 2: a) Success rate for the collective reward, i.e. percentage of trials where both agents opened
their doors. b) Cumulative reward of both agents across 10000 episodes with 32 parallel environments
limited to 150 timesteps each.

a b

To maximize the cumulative reward, agents had to learn that dropping the key after opening their
door is a necessary action to take (Fig 1d). As a consequence, the number of key drops that should
occur in an optimal policy between both agents asymptotically on average is 1 (corresponding to a
strategy of one agent always being the first to use the key) or 0.5 per agent (corresponding to both
agents sharing the role of first to use the key).

We found that the key drop rates could explain the lack of collective success in this task (others
are step minimization E12 and agent distance E.11). For most of the MARL agents (VDN, QMIX,
QTRAN, MAVEN) the key drop rate always converged to exactly zero (Fig. 3a and E.2), hence the
total collapse in collective success in the task. In the case of MAPPO, and SAF, we observed that
the agents learned to pick up the key and open their individual doors, but minimized the number of
key drops to close to zero (Fig. 3a). As a result, the collective success rate was also close to zero.
Interestingly, COMA and independent PG showed very low, but non-zero rates of key drop (Fig.
3a), however only PG exhibited a non-zero collective success rate (Fig. 2a). This was because even
though COMA agents learned to occasionally drop the key, the counter-factual baseline caused the
loss to become excessively negative (see E.1). In contrast, IPPO did not exhibit a collapse in key
drops, which explains its slightly better success in obtaining the collective reward (Fig. 2a).

One complication with measuring the key drop rate is that if the agents never even pick up the key
then the key drop rate is necessarily zero. To better understand what was happening in here, we
examined the “non-zero key drop rate”, meaning the rate at which keys were dropped if they were
picked up. The non-zero key drop rate showed that the value mixer MARL agents begin by dropping
the key after picking it up some of the time, but eventually converge to a policy of simply holding or
avoiding the key (Fig. 3b). This further emphasizes the challenge of hidden gifts.

4.2 Observability of door and key status does not rescue performance in the Manitokan task

To receive the collective reward, agents needed to learn to pick up the key, use it, then drop it. If they
did these actions out of sequence (e.g. dropping the key before using it), then they can not succeed.
As such, one potential cause for collapse in performance could have been the fact that agents did not
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drops and runs.
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have an explicit signal for their door being opened or that they are holding the key (i.e. the task was
partially observable with respect to these variables). To make the task easier, we provided the agents
with this information, one which indicated whether their door was open, the other which indicated
whether they held the key. The agents now always have a cue when their individual task is completed.

Surprisingly, the agents we tested all failed to achieve collective success rates above random. In
fact, the same behavior occurred, with the MARL agents (MAPPO, QMIX, COMA) showing total
collapse, and the independent PG agents showing some collective success, but still below random
(Fig. 4a). As before, We found that only MAPPO and independent PG showed any learning in
the task, with QMIX and COMA showing collapse in the individual success rate as well (Fig. 4b).
Thus, the lack of information about the status of the door and key was not the cause of failure of the
Manitokan task.
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Figure 4: a) Success rate when each agent receives information about whether they have opened their
door or not and if they have the key or not. b) Cumulative reward of both agents with information
about whether they have opened their door or not and if they have the key or not.
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4.3 Adding action history helps independent agents but not MARL agents

Next, we reasoned that another potential cause of failure was that agents could not see themselves
drop the key. To alleviate the credit assignment, we provided the agents with an additional observation
input, namely the last action that they took as a one-hot vector. Coupled with the recurrences, this
would permit the agents to know that they had dropped the key in the past if/when the collective
reward was obtained.

When we added the past action to the observation, we found that the PG agents now showed signs of
obtaining the collective reward, much better than random (Fig. 5). This also led to better cumulative
reward (Fig. 5). However, interestingly, the other agents showed no ability to learn this task, exhibiting
the same collapse in collective success rate and same low levels of cumulative reward as before (Fig.
5a & 5b). These results indicated that there is something about the credit assignment problem in the
Manitokan task that can be addressed by the standard policy gradient objective, but not fancier trust
region mechanisms. Additionally, the PG agents still exhibited very high variance in their collective
success rate (Fig. 5), suggesting that there is something unique about the credit assignment problem
in this task. We then formally analyzed the value function of the task to better understand the credit
assignment problem therein.
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Figure 5: a) Success rate when each agent receives their last action in the observation. b) Cumulative
reward of both agents with last action information.
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5 Formal analysis and correction term

For ease of analysis we focus on the situation where N = 2, i.e. there are only two agents and we
use the language of options [Sutton et al., 1999b]. We begin by considering the objective function
for agent i with parameters Θi, for an entire episode of the Manitokan task, where we ignore the
discount factors (which don’t affect the analysis):

J(Θi) = E[
T∑

t=0

Ri(oit, a
i
t)] = E[

T∑
t=0

rit + rct ] = E[
T∑

t=0

rit] + E[
T∑

t=0

rct ] (2)

If we consider the sub-objective related solely to the collective reward Jc(Θ
i) = J(Θi) −

E[
∑T

t=0 r
i
t] = E[

∑T
t=0 r

c
t ], we can then also consider the sub-policy of the agent related to the

collective reward (πi
c), and the sub-policy unrelated to the collective reward (πi

d). If we condition
the collective reward objective on the door for agent i being open, then Jc(Θ

i) is independent of πi
d.

Therefore, when we consider the gradient for agent i of the collective objective, conditioned on their
door being open, we get:

∇Θi
Jc(Θ

i) = E[∇Θi
log πi

c(a
i|oi)Qc(o

i, ai)] = E[∇Θi
log πi

c(a
i|oi)]E[Qc(o

i, ai)] (3)
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where Qc(o
i, ai) is the value solely related to the collective reward. The gradient of this collective

objective is inversely related to the entropy of the other agent’s policy.

Theorem 1. Let Jc(Θi) = E[
∑T

t=0 r
c
t ] be the collective objective function for agent i, and assume

that agent i is the first to open their door. Then the gradient of this objective function is given by:

∇ΘiJc(Θ
i) = E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] (4)

where Ψ(πj
c , a

j , oj) = E[ 1

∇Θj log πj
c(aj |oj)

] and i ̸= j.

See P.1 for the full proof. As a sketch, we rely on two key assumptions. The first key assumption
is that agent i is the first to open their door. As a result, agent j’s entire policy is related directly to
the collective reward, and hence the sub-policy πj

d does not exist. The second key assumption is that
the other agent’s collective reward policy is differentiable. With those assumptions we can then use
the objective of agent j as a surrogate for the collective reward in the look-ahead step of the policy
gradient derivation [Sutton et al., 1998], slightly similar to mutual learning aware update rules [Willi
et al., 2022, Foerster et al., 2017]. The complete gradient objective from P.1 becomes:

∇ΘiJ(Θi) = E[∇Θi log πi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] (5)

5.1 Use of a correction term in the value function

The correction Eq. (5) should reduce the variance in the agents’ abilities to obtain the collective
reward by stabilizing their value estimate with respect to each other’s policies updating. Since the
reward is shared, agents only need to correct with their own parameters in expectation (see proof in
P. 2). This leads to a decentralized correction term of ∇Θi∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi), which we term
“Self Correction”. Hence, we tested these correction terms from the policy gradient theorem.

With action history inputs, we trained PG agents over seven days to ensure that we could see
convergence. We examined the original PG agents and compared them to both PG agents with the
correction term above, and the self-correction term. Additionally, we examined PG agents with a
maximum entropy term, which should also reduce the variance in the learned policies [Ahmed et al.,
2019, Haarnoja et al., 2018, Eysenbach and Levine, 2022]. We found that all of the agents converged
to a fairly high success rate over time (Fig. 6a) and high cumulative reward (Fig. 6b). But, the
variance was markedly different. The variance of the standard PG agents was quite high, and the
variance of the max-entropy agents were not any lower throughout the majority of the episodes, with
the exception of the very early episodes (Fig. 6c). In contrast, the variance of the agents with the
correction term was a bit lower. But, interestingly, the agents with the self-correction term showed the
lowest variance. We believe that this may be due to added noise from considering multiple policies in
the update. Altogether, these results show that the correction term reduces variance in performance
in the hidden gift problem, but is more prominent when decentralized with self-correction. This is
interesting, in part, because it shows that it may be possible to resolve the complexities of hidden gift
credit assignment using self-awareness, rather than full collective agent awareness.

6 Discussion

In this work we developed a MARL task to explore the complexities of learning in the presence of
“hidden gifts”, i.e. cooperative acts that are not revealed to the recipient. The Manitokan task we
developed, inspired by the concept in Indigenous plains communities across North America, requires
agents to open doors using a single shared key in the environment. Agents must drop the key for
other agents after they have used it if they are to obtain a larger collective reward. But, these key drop
acts are not apparent to the other agents, making it difficult to assign credit between policy updates.

We observed that in the basic version of the Manitokan task none of the algorithms we tested were
able to solve it. This included both policy gradient agents (PG, PPO), meta-learning agents (SAF),
enhanced exploration agents (MAVEN), counterfactual agents (COMA), and agents with collective
value functions (VDN, QMIX, QTRAN, and MAPPO). When we added additional information to the
observations the more sophisticated models tested were still not able to solve this task. However, with
previous action information, the actor-critic REINFORCE PG agents could solve the task, though
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Figure 6: a) Success rate of PG agents comparing the vanilla PG model against PG with a maximum
entropy term, PG with the correction term, and PG with the self-correction term. b) Cumulative
reward of PG agents c) Variance in collective success rate across episodes.
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with high variance. Formal analysis of the value function for the Manitokan task showed that it
contains a second-order term related to the collective reward that can reduce instability in learning.
We used this to derive a correction for the PG agents that successfully reduced the variance in their
performance. Altogether, our results demonstrate that hidden gifts introduce challenging credit
assignment problems that many state-of-the-art MARL algorithms cannot overcome.

6.1 Limitations

We intentionally used a grid world task to make formal analysis more tractable. But, there remains a
question of whether the simplicity of the task actually made the credit assignment problem harder. It
is possible that in an environment with more salient information and actions available to the agents
the models could have solved the task. For example, if some form of explicit communication between
agents was permitted rather than the latent communication fo SAF [Liu et al., 2023b], then perhaps it
would be possible for agents to first learn to communicate their gifts to each other, only to have them
become implicit and unspoken over time. This may have been how similar practices developed in the
plains of North America.

Another limitation is the limited memory provided by the GRU architecture. It is possible that with
a more explicit form of memory (e.g. a long context-window transformer [Ni et al., 2023, Chen
et al., 2021, Cross et al., 2025] or a retrieval augmented model through time [Hung et al., 2019]
agents could more easily assign credit to their gifting behavior. However, SAF [Liu et al., 2023b] is a
retrieval augmented model through space.

6.2 Rethinking reciprocity

A broader implication from our work is that the emergence of reciprocity in a multi-agent setting can
be complicated when acts of reciprocity themselves are partially or fully unobservable and therefore
temporally indirect [Nowak and Sigmund, 2005, Santos et al., 2021]. One potential interesting way
of dealing with these situations would be to develop agents that are good at either predicting the
actions of other agents or influencing other agents with implicit information [Jaques et al., 2019,
Xie et al., 2021], which would ease the inference that other agents have taken altruistic actions. The
reciprocity in MARL settings with any form of “hidden gift” may generally be aided by the ability of
RL agents to successfully predict the actions of others when information is asymmetric. Given that
the correction term that we derived from our formal analysis was motivated by the gradient steering
effect in various learning aware approaches [Willi et al., 2022, Foerster et al., 2017, Meulemans
et al., 2025, Aghajohari et al., 2024], it seems reasonable to speculate that abstracting properties from
learning awareness have an untapped potential exterior to the domains in which they were designed.
Even in inhibiting cooperation (see E.15).
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M Methods

Methods This section contains the hyperparameters for the results, hardware details for training and
minor details on the task setup.

M.1 Hyperparameters

Table 2: Model architecture and hyperparameters used for MAPPO.
Component Specification
Policy Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-

layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer Categorical (input=64,
output=6)

Value Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output = 64,
with LayerNorm), 1 layer MLP(input = 64, output = 1,
ReLU)

Optimizer Adam, learning rate: 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ 0.95
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number of

agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
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Table 3: Model architecture and hyperparameters used for IPPO.
Component Specification
Policy Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-

layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer Categorical (input=64,
output=6)

Value Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer MLP(input = 64, output
= 1, ReLU)

Optimizer Adam
Learning rate 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ Not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00

Table 4: Model architecture and hyperparameters used for PG.
Component Specification
Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1

layer GRU (input = 64, output = 64), 1 layer
MLP (input=64, output=6)

Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Target Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 32
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32
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Table 5: Model architecture and hyperparameters used for COMA.
Component Specification
Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer

GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-layer
MLP (input = 64, output=64, ReLU), 1-layer MLP
(input=64, output=6)

Target Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-layer
MLP (input = 64, output=64, ReLU), 1-layer MLP
(input=64, output=6)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 320
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32
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Table 6: Model architecture and hyperparameters used for SAF.
Component Specification
Policy Network Architecture (Disjoint) 2-layer MLP (input = 64, output=128, Tanh),
Value Network Architecture (Joint) 2-layer MLP (input = 80, output=128, Tanh),
Shared Convolutional Encoder (Joint) 1-Layer CNN (outchannels = 64, kernal = 2)
Knowledge Source Architecture (Joint)

Query Projector 1-layer MLP (input = 128, output=64, Tanh)
State Projector 1-layer MLP (input = 128, output=64, Tanh)
Perceiver Encoder (latents = 4, latent input = 64, cross attention channels

= 64, cross attention heads = 1, self attention heads = 1,
self attention blocks = 2 with 2 layers each)

Cross Attention (heads = 1, query input = 64, key-value input = 64,
query-key input = 64, value channels = 64, dropout =
0.0)

Combined State Projector 1-layer MLP (input = 128, output=64, Tanh)
Latent Encoder 1-layer MLP (input = 128, output=64, Tanh), 1-layer

MLP (input = 64, output=64, Tanh ),1-layer MLP (input
= 64, output=16, Tanh )

Latent Encoder Prior 1-layer MLP (input = 64, output=64, Tanh), 1-layer
MLP (input = 64, output=64, Tanh ),1-layer MLP (input
= 64, output=16, Tanh )

Policy Projector 1-layer MLP (input = 128, output=164, Tanh)
Optimizer Adam, epsilon 1× 10−5

learning rate 3× 10−4

Discount Factor γ 0.99
GAE Parameter λ GAE not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.01
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 5
Epochs per Update 15
Gradient Clipping 9
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
Number of policies 4
Number of slot keys 4
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Table 7: Model architecture and hyperparameters used for VDN.
Component Specification
Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer

GRU (input = 128, output = 64), 1 layer MLP (in-
put=128, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 128, output = 64), 1 layer MLP (in-
put=128, output=6)

Mixer Network Architecture Tensor sum of states
Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

21



Table 8: Model architecture and hyperparameters used for QMIX.
Component Specification
Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer

GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=52)
Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-layer

MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=1)
Target Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-layer
MLP (input = 64, output=52)

Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-layer

MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=1)
Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 9: Model architecture and hyperparameters used for QTRAN.
Component Specification
Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer

GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-layer
MLP (input = 32, output=32, ReLU), 1-layer MLP
(input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Target Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-layer
MLP (input = 32, output=32, ReLU), 1-layer MLP
(input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 10: Model architecture and hyperparameters used for MAVEN.
Component Specification
Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer

GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Noise Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
Target Noise Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
RNN Aggregator 1-layer GRU (input=116, output=2)
Discriminator 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP (input=32, output=2),
Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Target actor optimizer Adam, alpha 0.99, epsilon 1× 10−5

Use skip connection in mixer False
Use RNN aggregation False
Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

M.2 Compute

For each simulation 2 CPUs were allocated and the 32 parallel environments were multithreaded.
All models expect for SAF were able to run without GPUs while SAF used a single A100 for each
simulation. All models, except for VDN, QMIX and QTRAN can finish at 10000 episodes for all
10 simulations within 4 days while the aforementioned models take 7 days. It is possible to use a
GPU for these value mixer models for faster data collection but this was not done to collect the data.
The correction term experiments take 7 days to collect 26000 episodes and do not benefit from GPUs
since their networks are too small. The Hessian term can be approximated with finite difference
technique or with Pearlmutter’s trick.

M.3 Manitokan task setup

The Manitokan Task is a grid world for tractable analysis. The key, agents and doors are randomly
initialized at the beginning of each episode and the actions drop and toggle were additionally pruned
when an agent is not holding a key for reasonable environment logic but are not necessary to be
removed for the task to work. Everything else was described in 3.
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E Additional Experiments

The experiments provided below offer insights into the challenge of the Manitokan Task, and further
empirical validation of the correction and self correction terms.

E.1 COMA’s loss becomes negative
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Figure 7: a) Policy loss of the COMA model b) Counterfactual baseline in the COMA policy update

COMA persistently collapsed even though it exhibited similar learning behaviour to PG (a closely
related model). The policy loss and baseline curves show increasing instability with large variance
spikes before converging to a value around 0.0. Perhaps this collapse is from the difficulty of leaving
a hidden gift between individual and collective incentives. The original COMA paper Foerster et al.
[2018] even mentions a struggle for an agent overcoming an individual reward, although exterior to
hidden gifts, may be cause for the instability.
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E.2 Key drops across all parallel environment for value mixer models collapses
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Figure 8: Keydrops averaged over all parallel environments including ones with zero drops with
models that mix values into a global value function (VDN, QMIX, QTRAN and MAVEN).

The non-zero key drop rate in the main results Fig 3b showed a wider variation between agents and
small learning effect. The decreased variance in the appendix Fig 8 is most likely attributed to agents
not finding the key at all due to noise from the global value updates. The second QMIX agent also
contains a burst in key drops towards the end with
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E.3 Changing which agent steps first in an episode harms performance
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Figure 9: a) The contribution of an agent’s reward accumulation to success weighted by their total
reward comparing policy gradient agents with action history of the same agent stepping first (i.e.
agent 1 then agent 2), alternating agents stepping first (i.e. agent 1 steps first on odd numbered
episodes and agent 2 steps first in even numbers episodes), and a random agent is selecting to step
first. b) Success rate between different step ordering each episode.

The collective success residual is calculated as (rc − ri)× ri where (rc − ri) describes how much
an agent i is contributing to the collective success while weighting it by ri shows if the agents are
increasing that success rate. Interestingly, alternating which agent goes first between episodes creates
oscillations in the collective success rate residual where one agent receiving more reward means the
other agent receives less. Greatly reducing the success. Moreover, randomly selecting an agent to go
first biases the first agent to increase their reward and almost removes all success. These effect may
be caused by uncertainty associated with which agent can reach the key when the other agent is in
sight.
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E.4 Randomizing the policy can increase collective success slightly
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Figure 10: a) Comparing agents of MAPPO, IPPO, VDN and QMIX models with a randomization
applied to their policies b) The cumulative reward for randomized policy agents

PPO agents had their value function learning rates set to 0.001 while the policy learning rates where
kept as 0.000001. This meant the policy would always prefer initial episodes and converge quickly to
those while the value function weighting them more evenly to converge further in the training process.
VDN and QMIX use epsilon greedy in their strategy and simply increasing the time of decay for this
mechanism led these agents to be more random throughout the experiment.

This policy randomization process very slightly improved these agents the success rates’ compared to
those in the main results Fig 2a but decreased the cumulative reward for the PPO agents than those in
Fig 2b. The random policy aligned VDN and QMIX to the random action baseline more or less, and
avoided collapse.

28



E.5 Behavioural variations appear between models with inter agent distance and minimizing
the steps to the first reward
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Figure 11: a) Euclidean distance between agents averaged over parallel environments and simulations
across our tested models b) Euclidean distance comparing policy gradient agents with action history
and variance reduction terms.

Although the 2-agent Manitokan Task is a four by four grid world, we measured the euclidean
distance between agents to see if they become more coordinated or adversarial when learning hidden
gifting. In Fig 11a, PG agents exhibited the highest exploration phase but eventually converged to a
lower distance. MAPPO agents also has a similar but substantially smaller exploration effect in the
very beginning while SAF did not have any exploration phases. IPPO and MAVEN agents similarly
hovered below the random baseline but MAVEN agents were closer to each other. COMA agents
begin around random but converge to be closer to each other as well. Value mixer agents VDN,
QMIX and QTRAN all are on average closer to each other but QTRAN agent agents converge further
apart.

In Fig 11b, vanilla and max entropy PG agents with action history become asymptotically closer to
each other while the correction term agents converge further apart from them. The variance reduction
in self correcting agents is also noticeable.
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Figure 12: a) Timestep the first reward an agent received. b) Timestep the first reward a policy
gradient agent with action history received.

The reducing the timestep of the first reward is a way to measure if agents are improving their policies
if cumulative reward also increases. In (Fig 12a), PG, IPPO, MAPPO and SAF all converge quickly
while PG and MAPPO learn policies of reducing the step slightly below random. COMA converges
at a low timestep but this is most likely due to the collapse. MAVEN oscillates at a timestep better
than random but never converges and doesn’t seem to learn a good policy and VDN, QMIX, and
QTRAN collapse consistently with other results in Section 3.

While in Fig 12b, all PG models with action history reduce their initial reward timesteps but models
with the correction term converge slower.
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E.6 Modifying the reward function enhances perspective on the challenge of the Manitokan
task
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Figure 13: a) Success rate of policy gradient agents with action history comparing the normal reward
function with an oracle reward term (i.e. an agent receives a reward of 1 once for dropping the key
after opening their door), a punishment term (i.e.. a negative reward of 1 is applied each step an
agent holds their key after opening their door) and a reward injection term (i.e. randomly distributing
normally smaller rewards around the standard rewards decaying over episodes) b) Cumulative reward
to compare the modified reward functions

The reward function R in equation 1 to study hidden gifting behavior is both sparse with a hard
to predict collective reward conditioned on the other agent’s policy. We tested additional re-
ward conditions on PG agents with action history to see if sample efficiency improvement can
be found. Particularly, the oracle reward: rit the first key dropped after agent i’s door is opened ,
is the critical step to take for hidden gifting and when implemented the collective suc-
cess rate increased quicker than the normal reward function. The punishment reward:
−0.5 for each step agent i is holding the key after their door was opened, is also meant to induce
gifting behavior but agents seemed to avoid the key altogether. Lastly, the injection reward where a
set of rewards rd < ri are normally distributed around rewards ri and rc which also served as the
mean. rd was additionally reduced each episode for agents to prefer the standard rewards. Injection
reduced the success rate severely but also reduced variance in accumulating the expected reward.

These minor modifications reemphasize the difficulty in hidden gifting, where our most performative
agents still struggle even when rewarded for the optimal action.
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Figure 14: a) Success rate between policy gradient agents comparing a disassociation of the reward
function (i.e.. just the individual reward and the collective rewards) b) Cumulative reward of the same
dissociated reward function agents

For a further investigation of the reward function, we tested a dissociation of the individual reward ri

and the collective reward rc with action history PG agents. Using only the individual reward removed
collective success altogether but agents converged at a higher percentage of the cumulative reward
(i.e.. whoever gets to the key first). The sole collective reward did not cause a failure in collective
behavior but severely inhibited it. With both these reward dissociation, agents fail to learn hidden
gifting.
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E.7 The self correction term is empirically sound in contraposition
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Figure 15: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different set
of 32 parallel environments

For all previous experiments, the correction term was maximized to induce agents towards dropping
the key for the other agent (i.e. hidden gifting). Contrapositively however, this term for an agent i
could also be minimized through negation −E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] in the policy update
and doing so led agents to actively "compete" for the key and avoid dropping it all together. In Fig
15a, the rewards for both agents increases with variance spikes while the collective success rate
goes down. These results demonstrate a stronger implication of the self-correction in the collective
behaviour of agents than just as a variance reducer.

Fig 15b displays the individual simulations with standard deviation of the 32 parallel environments.
Specifically, the reward curves sharply drop and return after agents have learned to open their doors.
This tradeoff in the individual reward accumulation is a detriment to the collective success rate but
perhaps in other situations, the negative correction term can help avoid undesired rewarded behaviour.
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E.8 The policy gradient objective is better than the q-learning in single agent key-to-door
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Figure 16: a) Comparison of single agent PPO, PG and DQN agents where one agent needs to open a
one door after finding one key

As a baseline, PPO, PG and DQN agents are compared on the individual objective of the main task.
Here PPO and PG agent retain the same hyperparameter except the learning rate for both actor and
critic in PPO was reduced from tuning to avoid overfitting. The DQN agent required 1 simulation at a
time rather than 32 in parallel but was not able to converge above 50% success after an extensive
hyperparameter search. This demonstrates the performative of on-policy policy gradient objective
over the off-policy q-learning objective in temporal credit assingment.

34



P Proofs

P.1 Correction term

We begin by deriving the standard policy gradient theorem [Sutton et al., 1998, 1999a] under the
assumptions in Section 4 that an agent i is first to open their door and that the collective reward rc is
differentiable through another agent js objective. The objective J(Θi) for agent i is to maximize the
expected cumulative sum of rewards within an episode E[

∑T
t Ri(oit, a

i
t)] with the reward function

R in equation 1 where a value function V (Θi, oi) = E[Ri(oi, ai)].

∇ΘiJ(Θi) = ∇Θi(
∑
ai∈A

πi(ai|oi)Q(oi, ai)) (6)

is the differentiated objective with respect to agent i.

∑
ai∈A

(∇Θiπi(ai|oi)Q(oi, ai) + πi(ai|oi)∇ΘiQ(oi, ai)) (7)

by product rule expansion.

∇Θiπi(ai|oi)Q(oi, ai)+πi(ai|oi)∇Θi(
∑
oi′ ,Ri

T (oi
′
, Ri(oi, ai)|oi, ai)(Ri(oi, ai)+V (Θi, oi

′
) (8)

Here, Eq. (8) is summed over all actions
∑

ai∈A. Notably the value function can be used to predict a
look-ahead of the next reward with a next observation oi

′
and T is the transition probability.

Now we construct the other agent’s value estimate as a surrogate for the future collective reward.
The individual reward is a constant and disappears by passing the gradient but we can isolate the
collective reward as sub-objective for a sub-policy with a linearity assumption.

E[
T∑

t=0

Rj(ojt , a
j
t )] = E[

T∑
t=0

rjt + rct ] = E[
T∑

t=0

rjt ] + E[
T∑

t=0

rct ] (9)

Eq. (1), only rj degenerates to 0 while rc is differentiable w.r.t to another agent j.

To isolate the sub-objective for the collective policy, start with the reward maximization objection.

J(Θj) = E[
T∑
t

Rj(ojt , a
j
t )] (10)

J(Θj) = E[
T∑

t=0

rjt ] + E[
T∑

t=0

rct ] (11)

by linearity in Eq. (2) of Rj .

J(Θj)− E[
T∑

t=0

rjt ] = E[
T∑

t=0

rct ] = Jc(Θ
j) (12)
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∇ΘjJc(Θ
j) = E[∇Θj log πj

c(a
j |oj)Qc(o

j , aj)] (13)

∇ΘjJc(Θ
j) = E[∇Θj log πj

c(a
j |oj)]E[Qc(o

j , aj)] (14)

Since the individual policy on finding the key and opening the door is assumed to be learned from
Eq. (3) then the agent’s policies are probabilistically independent from each other.

Let Ψ(πj
c , o

j , aj) = 1

E[∇Θj log πj
c(aj |oj)]

where Ψ is the reciprocal of the expected collective policy
for agent j. So we can clarify the term

∇ΘjJc(Θ
j)

E[∇Θj log πj
c(aj |oj)]

= ∇ΘjJc(Θ
j)Ψ(πj

c , o
j , aj) = E[Qc(o

j , aj)] (15)

πi(ai|oi)(
∑
oi′ ,Ri

T (oi
′

+1, R
i(oi, ai)|oi, ai)(∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +∇ΘiV (Θi, oi
′
)) (16)

Now in Eq. (16) the correction term as a surrogate for the collective reward in the look ahead step
from Eq. (8).

Let Φ(oi) =
∑

ai∈A(∇Θiπi(ai|oi)Q(oi, ai) for readability and Let ρi(oi → oi
′
) =

πi(ai|oi)(
∑

oi′ ,Ri T (oi
′
, Ri(oi, ai)|oi, ai) for further readability.

Φ(oi) +
∑
oi

ρi(oi → oi+1)(∇ΘiV (Θi, oi+1) +∇Θi∇ΘjJc(Θ
j)Ψ(πΘj , aj , oj)) (17)

The previous, Eq. (17), can then be recursively expanded out further Φ(oi) +
∑

oi ρ
i(oi →

oi+1)(Φ(o
i
+1) + ∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +
∑

oi+1
ρi(oj+1 → oj+2)(∇ΘiV (Θi, o+2) +

∇Θi∇ΘjJ(Θj
c, o

j)Ψ(πj
c , a

j , oj))

∑
xi,xj∈O

∞∑
k=0

ρi(o → xi, k)(Φ(xi) +∇Θi∇ΘjJc(Θ
j
c)Ψ(πj

c , a
j , xj)) (18)

Let η(o) =
∑∞

k=0 ρ
i(oi → oi

′
, k) to clarify the transitions.

∑
o

η(o)(Φ(o)+∇Θi∇ΘjJc(Θ
j)) ∝

∑
o

η(o)∑
o η(o)

(Φ(o)+∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj) (19)

since the normalized distribution is a factor of the sum.
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Then let
∑

s
η(o)∑
o η(o) =

∑
o∈O d(o)

∑
o∈O

d(o)(
∑
ai∈A

(∇Θiπi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (20)

∑
o∈O

d(o)(
∑
ai∈A

(πi(ai|oi)Q(oi, ai)
∇Θiπi(ai|oi)
πi(ai|oi)

+∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (21)

, the log-derivative trick can pull out the gradient.

∑
s∈S

d(s)(
∑
ai∈A

((ai|oi)Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (22)

Finally, the full gradient objective from Eq. (5) is constructed

∇ΘiJ(Θi) = E[Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJ(Θj , oj)Ψ(πΘj , aj , oj))] □

P.2 Self correction term

Considering Eq. (3) and Eq. (4) the correction term for agent i is equivalent to the expected collective
reward value estimate of

E[∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = E[Qc(o

j , aj)] (23)

In turn, the collective value estimate is an approximated prediction of the collective reward at any
time

E[Qc(o
j , aj)] ≈ E[rc] (24)

.

However the collective reward is also an approximate of the agent i’s collective reward values
estimate, if they opened their door first, which is again equivalent to the correction term of agent j

E[rc] ≈ E[Qc(o
i, ai)] = E[∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] (25)

Therefore, in expectation, the correction terms of both agents are equivalent and objective sharing is
not necessary,

E[∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = E[∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] □

Very critically, this equivalence is in expectation and therefore is not an instance of a linear calculation
or transform but the average value of one agent’s correction term is the same as another when in
similar context like opening their door first.
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