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Abstract

Selecting drugs most effective against a tumor’s specific transcriptional signature
is an important challenge in precision medicine. To assess oncogenic therapy
options, cancer cell lines are dosed with drugs that can differentially impact cellular
viability. Here we show that basal gene expression patterns can be conditioned
by learned small molecule structure to better predict cellular drug sensitivity,
achieving an R? of 0.7190+0.0098 (a 5.61% gain). We find that 1) transforming
gene expression values by learned small molecule representations outperforms
raw feature concatenation, 2) small molecule structural features meaningfully
contribute to learned representations, and 3) an affine transformation best integrates
these representations. We analyze conditioning parameters to determine how small
molecule representations modulate gene expression embeddings. This ongoing
work formalizes in silico cellular screening as a conditional task in precision
oncology applications that can improve drug selection for cancer treatment.

1 Introduction

Ideally, personalized tumor profiling could be used to predict an individual patient’s clinical response
to a chemotherapeutic agent. The abundance of omics information fuels the promise of such
data-driven personalized medicine [[14]. Although many approaches attempt to model tumor drug
response as a function of cellular features, this remains an open challenge. Previous work focuses on
predicting summary metrics of drug sensitivity, such as inhibitory concentration of a drug at 50%
cellular viability (IC50) or area under the dose-response curve (AUC). To maximize the therapeutic
window of cancer chemotherapeutics, which can have severe side effects, dosage choice is also a key
component of precision oncology efforts.

Publicly-available characterizations of cancer model systems such as immortalized cell lines facilitate
development of pharmacogenomic models to guide personalized treatment. Many machine learning
methods operate under the hypothesis that tumor molecular state determines drug sensitivity. We focus
on modeling cellular drug sensitivity as a function of gene expression patterns that depends on small
molecule structure and dosage. We hypothesize that models with stronger relational inductive biases,
defined by a conditional formulation and expressed by architectural assumptions, will outperform a
naive modeling approach. Neural networks are well suited for conditional model formulation due
to their architectural flexibility, proven success integrating diverse data types, and most importantly,
ability to learn hierarchical feature representations [4, [7]].

To our knowledge, previous work modeling cellular sensitivity has only explored integration of
different data types as features via concatenation [4} 2. Given the broad success of conditioning
inputs by learned feature representations in visual question-answering, style transfer, generative
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modeling, and other domains [[15}[10]], we investigate the effects of applying learned transformations
to in silico sensitivity screens of cellular models. We modulate gene expression patterns by small
molecule representations through learned shifting, scaling, and affine transformations. We compare
the predictive performance of these models to baselines such as a model that concatenates raw
features. Finally, we investigate conditioning parameters and perform controls such as removing
small molecule structural information to understand model dependence on these features.

2 Related Work

We expect that combining structured representations of biological information with drug informa-
tion will improve prediction performance of cellular viability. By designing models with stronger
relational inductive biases, we can investigate methods of integrating learned representations [} [7].
Traditional machine learning methods gain performance by integrating multiple independent datasets
and annotated biological pathway information [8]. Multi-drug models significantly outperform
single-drug models [[13]]. In the precision oncology domain, deep learning has been applied to cancer
classification, prediction of drug response and drug synergy, drug repositioning, and drug discovery
[3]. Chang et al. [2]] predict drug IC50s by feature extraction of 787 cell line mutational signatures and
244 small molecule fingerprints, which they integrate by “virtual docking”, or concatenation, followed
by additional convolutional layers. Their investigation compares learned data type representations,
but does not assess methods of integration. Additionally, the validation datasets include virtually
all cell lines and drugs already available in the training datasets. Chiu et al. [4] pre-train mutation
and expression encoders on TCGA data by means of an autoencoder. The authors then train the
initialized encoders on CCLE data. The network concatenates extracted cellular features as input into
an IC50 prediction network. By contrast, in this work, we assess the impact of integrating learned
representations for cellular features with small molecule features for the prediction of individual cell
line sensitivity to oncogenic therapies.

3 Methods
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Figure 1: Dataset layout. 545 small molecule drugs tested across a range of dosages in up to 830
unique cancer cell lines comprise 5,767,552 average percent cellular viability measurements. Cell
lines were split into 5 folds and models were trained and validated on L1000 gene expression values,
conditioned by small molecule structures and dosages, for prediction of percent cellular viability.

We leveraged well-characterized cellular cancer models from large-scale drug screens. The Cancer
Therapeutics Response Portal (CTRP) reports the percent viability of 830 cancer cell lines in response
to 545 small molecules across a range of dosages (umol) after data processing [[16]. We generated
512-bit RDKit Morgan fingerprints from small molecule SMILES and concatenated them with
compound dosages. For molecular characterization of cellular models we queried the Cancer Cell
Line Encyclopedia (CCLE) [11]]. The Dependency Map Portal provided access to uniformly processed
versions of both datasets [9]]. We include standardized RNA-seq Transcripts Per Million (TPM) data
from the CCLE for cellular state features. To accelerate training time and limit potential overfitting,
we restrict cellular features to the L1000 gene set. The final dataset consists of approximately 5.7
million labeled examples, which we randomly split into into 5 cross-validation folds, stratified by cell
line, to asses model generalizability to unseen tumor types (Figure [I)).
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We formulate the cellular drug sensitivity prediction task as the conditional model:

y = f(z|n) (1)

where y is cellular sensitivity, z is a matrix of standardized RNA-seq TPM values by cell line, and
n is a matrix of drug dosages and chemical structure fingerprints. Phenotypic response—percent
viability—of a cell line depends upon how cells respond to a given small molecule perturbation. As
such, we hypothesize that better integration of cell state features with drug structure and dose features
will result in more accurate predictions of cellular response.

One means of conditional biasing is simple concatenation of a neural network’s input features.
Alternatively, hierarchical representations based on gene expression could instead be combined with
learned small molecule feature representations in downstream layers such that a network learns
conditional transformation parameters. In our experiments, we assess models that conditionally
modulate gene expression features by small molecule features through several different learned
transformations.

Under Perez et al. [15]]’s general formulation of this approach, termed the feature-wise linear modula-
tion (FILM) of input features, an affine transformation of inputs by conditional information captures
cases of input feature scaling and/or shifting (Figure [2). Model parameters may be learned by
functions, g and h, dependent on conditional information, n:

v =9g(n); B = h(n) 2)
Learned parameters then modulate intermediate features of a neural network by element-wise trans-
formation:

flzln) = Fxvy+p A3)

where F' denotes the activations of a neural network at a given layer.

Chemical Fingerprint  Dosage L1000 Gene Expression

/ A \r‘}\‘\ s A \

[2]aJo]-JoJo]x [45]95]31] .. [39]89]78]20]
g g

[ Embedding Block ] { Embedding Block ]
- g ) Yil,c 'Bil.c - g

[ FiLM Generator J [ FiLM Layer J
g

[ Linear Block ]
1]

2 p2

Yic: Bl'c [ FiLM Layer ]
]

[ Linear Block ]
g

Percent Cellular
Viability

Figure 2: Architecture of conditional cellular sensitivity model. L1000 gene expression represen-
tations (right) are conditioned by small molecule representations (left) using an architecture based
on FiLM. Learned parameters are applied element-wise for modulation of input features to predict
cellular percent viability as a function of cellular gene expression conditioned on drug chemical
structure. v and /3 subscripts refer to the i** input’s ¢! feature map.

4 Experiments and Results

We assess several means to integrate learned cellular and learned drug structure information in
a single model. As a baseline, we compare the “vanilla” approach of raw feature concatenation
to three methods of learned feature conditioning [15]. We compare modulation methods by the
average maximum coefficient of determination (R?) of models with similar architecture and training
regimens, trained and validated on the same data folds (Table[I). We find that modulation of gene
expression features by learned molecular representations (B2 = 0.7190) outperforms raw feature
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concatenation (R? = 0.6629). Small molecule representation integration by scaling (R? = 0.7105),
shifting (R? = 0.7052), and linear modulation (R? = 0.7190) perform similarly, demonstrating
that a learned affine transformation captures conditioning of inputs in this domain better than raw
feature concatenation. Furthermore, the FILM model captures the true distribution of percent cellular
viability better than the vanilla model. The vanilla model fails to capture low percent cellular viability
values (Figure [ST). As a consequence of this formulation, the conditioning model architecture
implicitly learns valuable “task representations”, i.e. small molecule representations that influence
gene expression [10]. Decomposition of learned parameters by t-SNE qualitatively reveals that small
molecule dosage dominates the conditioning layer, which is unsurprising given the common sigmoidal
relationship between drug response and small molecule concentration (Figure[3) [12]]. To quantify
the extent to which the dosage variable drives the conditioning, we replaced small molecule structural
features with unique but structurally uninformative identifiers of the same length in the concatenation
model. This straw model that lacks chemical structure fails catastrophically (R? = 0.3327) (Table|l)
[5, 16]]. These results provide evidence that small molecule structural features are essential in the
formulation of our prediction task. Our code is available at| https://github.com/keiserlab/film-gex/|

Model R? + std. error
Drug ID only  0.3327 + 0.0977
Vanilla 0.6629 = 0.0075
Shift 0.7052 +£0.0144
Scale 0.7105 £ 0.0104
FiLM 0.7190 = 0.0098

Table 1: Average coefficients of determination under 5-fold cross validation and identical training
regimens for models predicting drug-conditioned cellular viabilities from gene expression. FiILM
models outperform scaling or biasing modulation of gene expression values. A straw model trained
on data absent of structural features (Drug ID only) fails to explain comparable amounts of percent
cellular sensitivity variance.
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Figure 3: Parameters cluster by small molecule dosage in t-SNE of 32 dimensional FiLM parameters,
supporting the substantial role of drug dosage in the model’s modulation.
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5 Conclusion and Future Directions

We set out to evaluate methods of integrating diverse information by formulating cellular response
to a drug perturbation as a conditional model. We compare a conventional neural network model
architecture to a set of models with stronger inductive biases. We evaluate conditional modulation
of gene expression by learned small molecule representations through shifting, scaling, and affine
transformations. Our results show that an explicit conditional model formulation, regardless of
applied feature-wise modulation, enhances prediction of cellular sensitivity from diverse data types.
The overall success of this task is difficult to compare across reports due to model, data, and outcome
subtleties, which we recognize as a benchmarking hurdle. In future work we would be interested to
consider cellular features beyond L.1000’s 978 gene expression values and simple small molecule
fingerprints for better performance. Additionally, more direct comparisons to previous work can
be made by restricting the task to prediction of IC50, albeit at substantial detriment to dataset
size. Another avenue of pursuit within this conditional framework is in silico evaluation of drug
synergy/antagonism, in which combinations of task representations modulate cellular features at
intermediate network layers. In general, it appears promising to frame biological experimentation as
a conditional model, in which effect on a baseline biological state depends upon addition or removal
of specific perturbations, whose learned feature representations modulate the model.
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Figure S1: The FILM model captures the low-end distribution of true percent cellular viability better
than the vanilla model.
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