
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RESCUE: RETRIEVAL AUGMENTED SECURE CODE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances, Large Language Models (LLMs) still generate vulnera-
ble code. Retrieval-Augmented Generation (RAG) has the potential to enhance
LLMs for secure code generation by incorporating external security knowledge.
However, the conventional RAG design struggles with the noise of raw security-
related documents, and existing retrieval methods overlook the significant security
semantics implicitly embedded in task descriptions. To address these issues, we
propose RESCUE, a new RAG framework for secure code generation with two
key innovations. First, we propose a hybrid knowledge base construction method
that combines LLM-assisted cluster-then-summarize distillation with program slic-
ing, producing both high-level security guidelines and concise, security-focused
code examples. Second, we design a hierarchical multi-faceted retrieval to tra-
verse the constructed knowledge base from top to bottom and integrates multiple
security-critical facts at each hierarchical level, ensuring comprehensive and accu-
rate retrieval. We evaluated RESCUE on four benchmarks and compared it with
five state-of-the-art secure code generation methods on six LLMs. The results
demonstrate that RESCUE improves the SecurePass@1 metric by an average of
4.8 points, establishing a new state-of-the-art performance for security. Further-
more, we performed in-depth analysis and ablation studies to rigorously validate
the effectiveness of individual components in RESCUE. Our code is available at
https://anonymous.4open.science/r/RESCUE.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable capabilities in coding-related tasks (Peng
et al., 2023; Paradis et al., 2025). However, recent studies have revealed that LLMs often generate
code with vulnerabilities (Pearce et al., 2022; Fu et al., 2023; Majdinasab et al., 2024). He & Vechev
(2023); He et al. (2024) propose to finetune LLMs with security-aware objects. Yet these methods
require significant effort in data curation and finetuning. Constrained decoding mechanisms can
prevent the model from generating insecure code without finetuning (Li et al., 2024a; Fu et al., 2024).
However, they require the availability of trained security models or human-crafted rules to serve as
oracles or constraints to detect insecure code tokens during decoding. Another line of research (Nazzal
et al., 2024; Kim et al., 2024) leverages security analysis tools such as Bandit (PyCQA, 2025) and
SpotBugs (SpotBugs, 2025) to provide vulnerability feedback for iterative code refinement. However,
these security analysis tools heavily rely on pre-defined static analysis logic and heuristics to find bugs
and vulnerabilities, which makes them less flexible to incorporate new vulnerabilities and security
knowledge. Furthermore, since these security analysis tools are often used to assess the security of
LLM-generated code in evaluation (Nazzal et al., 2024; Kim et al., 2024), using them as a verifier to
provide feedback in the code generation stage raises a data leakage concern.

Retrieval-Augmented Generation (RAG) offers a more flexible and training-free solution to incor-
porate security knowledge, such as documentation of secure coding practices and code examples.
Despite some recent investigation (Zhang et al., 2024; Mukherjee & Hellendoorn, 2025), existing
methods merely adapt conventional RAG methods to security domains and suffer from two limitations.
First, security-related documents often contain information not relevant to the target coding task,
which would unnecessarily distract the LLM from generating code for the target task. For instance, a
code example that demonstrates a secure coding practice may contain code logic of an example task
that is very different from the target task. Second, the retrievers used by existing methods simply

1

https://anonymous.4open.science/r/RESCUE

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Cluster Summarize

Cluster-Then-Summarize

Program

Dependence

Graph

Vuln. Cause

API Pattern

Hierarchical Multi-

Faceted Retrieval

Security

Knowledge

Sliced

Code

Static Program Slicing

Slicing

Raw

Security

Dataset

Code

Level

CauseDraft

… …

…

Hierarchical

Security Knowledge Base

CWE

Level

Root

Node

Vuln. Cause

API Pattern

Code

API

Task Description

Figure 1: The overview framework of RESCUE.
treat all security-related information as general text and measure similarity between texts as security
relevance. They do not capture security semantics, such as the security requirements implicitly
embedded in a task description. This oversight leads to inaccurate retrieval of security-related data.

To address these limitations, we propose RESCUE, a REtrieval-augmented Secure Code gEneration
framework. RESCUE has two key innovations. First, we propose a hybrid knowledge base construction
method that combines semantic summarization with static program analysis. Given raw security data,
an LLM-assisted cluster-then-summarize pipeline first distills generalizable security knowledge as
high-level guidelines (e.g.,“replace yaml.load() with yaml.safe_load() to prevent code
execution vulnerabilities”). Then, a static program slicing procedure extracts concise, security-focused
code examples by isolating the statements relevant to vulnerability fixes while filtering out unrelated
logic. Second, we develop a hierarchical multi-faceted retrieval method that first performs a coarse-
grained search to identify relevant vulnerability types and secure code examples. In each search
iteration, our method proactively analyzes three security-critical aspects—API pattern, vulnerability
cause analysis, and code—and then fuses these separated faceted search results to obtain precise
security knowledge to guide code generation.

We evaluate RESCUE using five baseline methods and six LLMs across four benchmarks. The results
demonstrate that on average, RESCUE achieves an absolute improvement of 4.8% in SecurePass@1,
establishing a new state-of-the-art for security. Meanwhile, RESCUE retains 98.7% of the original
models’ capability of generating functionally correct code. Furthermore, we have conducted ablation
studies to confirm the contributions of both the security knowledge base construction and the proposed
hierarchical multi-faceted retrieval method to the enhanced performance of RESCUE.

In summary, our contributions are threefold: (1) We propose a novel hybrid distillation method that
synergistically combines LLM-based summarization with program slicing to construct a hierarchical
security knowledge base. (2) We design a security-aware, hierarchical multi-faceted retrieval strategy
that improves relevance by analyzing and fusing multiple security-critical aspects of a task. (3) We
perform a comprehensive evaluation that not only establishes the state-of-the-art performance on four
benchmarks but also provides in-depth analyses that validate our design choices.

2 METHOD

Figure 1 illustrates the overview of RESCUE, which operates in two core stages. In the offline stage,
we construct a hierarchical security knowledge base from raw security data. In the online stage, we
design a hierarchical multi-faceted retrieval method to query relevant security knowledge for a given
coding task. The retrieved security knowledge forms a tailored security context that augments the
prompt of task to steer the LLM toward generating secure code.

2.1 HIERARCHICAL SECURITY KNOWLEDGE BASE CONSTRUCTION

Inspired by how human experts reason about security problems using taxonomies (Igure & Williams,
2008), we propose modeling security knowledge as a hierarchical structure, with generalizable
knowledge at the high level and concise code examples at the low level. In particular, we leverage the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Common Weakness Enumeration (CWE) (MITRE, 2025) to categorize vulnerabilities and construct
this hierarchy.

--- vulnerability.py
+++ fixing.py
def puppet_enc_default():
...
Get the default YAML
curd = db.cursor()
curd.execute("SELECT value FROM

kv_settings WHERE key = 'puppet.enc
.default'")

result = curd.fetchone()
classes = result['value']
...
Validate classes YAML

- data = yaml.load(classes)
+ data = yaml.safe_load(classes)
...

Figure 2: A known vulnerability
and its fix that demonstrates the re-
placement of unsafe yaml.load()
with yaml.safe_load(), where
red-highlighted code shows vulnerable lines
removed and green-highlighted code indi-
cates security fixes added (See Appendix E
for the complete example).

In this work, we focus on constructing a security
knowledge base from historical vulnerabilities and
their fixes. Figure 2 shows an example. Such se-
curity data are widely available in many security
databases (CVE Program, 2025; National Institute
of Standards and Technology (NIST), 2024; GitHub,
2024). Specifically, we use the training dataset from
SafeCoder (He et al., 2024) as our raw security
dataset in this work. This dataset includes 704 vul-
nerabilities and their fixes from CVE and GitHub
projects. Please refer to Appendix A for more details.

Given the distinct nature of knowledge at different
levels, we introduce a hybrid method for constructing
the security knowledge base that combines semantic
summarization with static program analysis. At the
high level, an LLM-assisted cluster-then-summarize
pipeline distills generalizable security knowledge. At
the low level, a static program slicing procedure ex-
tracts concise, security-focused code examples by
isolating the statements relevant to vulnerability fixes
while filtering out unrelated logic.

2.1.1 CLUSTER-THEN-SUMMARIZE

Raw vulnerability-fix instances are often extensive
and overly specific, making them unsuitable as direct general guidance. Although CWE has provided
concise descriptions, they lack actionable fixing strategies and are too abstract to be effective for
secure code generation. Prior work (He et al., 2024) demonstrates that using CWE descriptions in
context does not significantly improve the security of LLM-generated code. To address this gap, we
introduce a cluster-then-summarize pipeline to distill generalizable security knowledge from raw
vulnerability-fix instances.

First, we group the raw data instances into clusters based on their associated CWE type. Then, for
each cluster, we apply a bottom-up summarization process using an LLM. This process begins by
summarizing small, fixed-size subsets of instances. Next, it recursively summarizes the outputs from
the previous result until a single, cohesive summary is generated for the entire cluster. This hierarchi-
cal summarization approach allows us to effectively process a large volume of data while maintaining
high-quality, comprehensive outputs. Details of the algorithm are provided in Appendix C.1.

Since this preprocessing step is a one-time effort, we adopt GPT-4o in an offline setting. In the end,
this pipeline generates two summaries for each CWE category. First, it produces security guidelines
that define actionable instructions and best practices for preventing specific vulnerabilities as high-
level knowledge. Second, it summarizes vulnerability causes, which capture the root conditions and
failure patterns that lead to the occurrence of the vulnerability. These distilled causes are subsequently
leveraged in the retrieval stage as a key security aspect.

2.1.2 SECURITY-FOCUSED STATIC PROGRAM SLICING

As shown in Figure 2 and Appendix E, security code examples may contain code logic (e.g., database
connection, web scraping) that is not relevant to a target programming task at inference time. Such
code logic may distract the LLM from generating functional code aligned with the target task.
Therefore, we design a security-focused slicing method to extract concise code examples with only
security-related program statements from raw code examples.

RESCUE begins by building a Program Dependence Graph (PDG) that captures how statements in
the code depend on each other through both data and control dependence. From security patches,
it identifies points of interest by treating deleted statements as indicators of vulnerable code and
added statements as indicators of secure code. Around these points, we perform bidirectional slicing
to extract the relevant context: backward slicing traces the statements that influence the vulnerable

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

or secure code, while forward slicing captures those that are affected by it. Finally, the sliced
subgraphs from the vulnerable and secure versions are compared and complemented with missing
context, resulting in two parallel, contextually complete code variants. Appendix C.2 describes this
security-focused slicing algorithm in detail.

2.2 HIERARCHICAL MULTI-FACETED RETRIEVAL

With the knowledge base constructed, the next step is to retrieve the most relevant security knowledge
for a given task. Our design mirrors the hierarchy of knowledge base: retrieval begins at the CWE
level to identify potential relevant vulnerability types, and then narrow down to fine-grained secure
code examples. A key novelty of our method is the multi-faceted retrieval strategy, which conducts
proactive analysis to generate multiple security-aware queries. We will first explain this multi-faceted
design and then describe the hierarchical retrieval process.

2.2.1 PROACTIVE MULTI-FACETED ANALYSIS

Conventional retrieval typically relies on task functional descriptions, which lack explicit security
semantics. In contrast, our method proactively analyzes coding tasks from multiple security-critical
perspectives. This proactive stance is essential because security vulnerabilities often emerge from
subtle implementation details that are not apparent in task descriptions. Specifically, we consider
three facets:

(1) Vulnerability Cause Analysis: To explicitly clarify the security requirements and potential
attacks, we instruct LLMs to analyze the task and explain the underlying vulnerability cause Vcause
(see prompt in Appendix D.2.2).
(2) Draft Code Generation: Since vulnerabilities often manifest during the coding process, we
generate an initial code Cdraft using zero-shot prompting (details in Appendix D.2.1).
(3) API Call Extraction: Since security vulnerabilities frequently stem from API misuse (Zhang
et al., 2018; Li et al., 2021; Egele et al., 2013), we apply visitor pattern to traverse the abstract syntax
trees of the draft code Cdraft to identify all API calls.

2.2.2 HIERARCHICAL RETRIEVAL PROCESS.

Building on these proactive multi-faceted analyses, RESCUE begins a two-step retrieval process.

Step 1: CWE-level Retrieval. RESCUE first selects the top-k relevant CWE types using the first two
facets: (1) Vulnerability Cause Analysis: RESCUE uses a widely used dense retriever for RAG,
bge-base-en-v1.5 (Xiao et al., 2023), to compute scoreVCA between the task’s vulnerability cause and
the indexed vulnerability causes for each CWE type. (2) API Pattern: Since API calls are discrete,
RESCUE computes scoreAPI between the draft code’s APIs and all APIs associated with each CWE
type via a sparse retrieval, BM25 (Robertson et al., 1995).

Then, it fuses these two facet scores using a modified Reciprocal Rank Fusion (RRF) method with
thresholding and rank-based filtering. This approach is motivated by the observation that only certain
scenarios require security-specific guidance. Our modified RRF is defined as:

RRF(d) =
f∑

i=1

Vi(d) ·
1

ri(d) + α
, where Vi(d) = I(si(d) > τi) · I(ri(d) ≤ 10). (1)

Here, si(d) and ri(d) are the score and rank of item d for facet i, τi is a confidence threshold, and α
is a smoothing parameter.

Step 2: Code-level Retrieval. After narrowing down to relevant CWE types, we proceed to conduct a
fine-grained search at the lower level using the same two facets and an additional third facet, Code
Similarity. We also employ dense retrieval to obtain scoreC between the draft code and sliced secure
code examples, capturing similarity at the code level to identify relevant secure patterns.

The scores from all three facets are fused via the same modified RRF to select the most relevant
secure code examples. Finally, we use the security guidelines corresponding to the selected example’s
CWE type, along with the sliced secure code example, to construct prompts for LLMs (detailed in
Appendix D.3), guiding secure code generation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Models We evaluate RESCUE with six LLMs from different model families and with different
model sizes, including GPT-4o-mini (OpenAI, 2024), Llama3.1-8B-Instruct (Dubey et al., 2024),
Qwen2.5-Coder-7B-Instruct, Qwen2.5-Coder-32B-Instruct (Hui et al., 2024), DeepSeek-Coder-V2-
Lite-Instruct (Zhu et al., 2024), and DeepSeek-V3-0324 (Liu et al., 2024). For inference, GPT-4o-mini
and DeepSeek-V3 are accessed via official APIs, while the other models are locally deployed using
vLLM (Kwon et al., 2023) on an NVIDIA A800 80GB GPU.

Benchmarks We first evaluate RESCUE on a state-of-the-art security benchmark called Code-
Guard+ (Fu et al., 2024). CodeGuard+ incorporates and extends prior security benchmarks (Pearce
et al., 2022; Siddiq & Santos, 2022). It includes 94 security-sensitive coding scenarios, each of which
is accompanied by unit tests and CodeQL checks, enabling the testing of both functional correctness
and security. CodeQL (GitHub, 2025) is a widely used security analysis tool and has been used to
evaluate the security of LLM-generated code in several studies (He & Vechev, 2023; He et al., 2024;
Li et al., 2024a).

Furthermore, following prior work (He et al., 2024; Li et al., 2024a; Zhang et al., 2024), we also
use regular code generation benchmarks to demonstrate that RESCUE does not affect the functional
correctness of LLM-generated code while improving its security. Specifically, we evaluate RESCUE
on HumanEval+ (Liu et al., 2023a), BigCodeBench (Zhuo et al., 2025), and LiveCodeBench (Jain
et al., 2025). HumanEval+ is a popular code generation benchmark with 164 basic programming
tasks and extensive test cases. BigCodeBench is a much bigger and more challenging benchmark. It
includes 1140 programming tasks that span across various scenarios, such as data analysis and web
development, and involve complex function calls. LiveCodeBench is specifically designed to address
the data contamination problem in LLM code generation. It includes a continuously updated set of
code generation problems. We use its release-v5 version, collected by January 2025, which has
880 code generation problems.

To reduce the randomness of code generation, we generate 100 samples for each problem on
CodeGuard+ and HumanEval+. Since BigCodeBench and LiveCodeBench have over 10× more
problems than CodeGuard+ and HumanEval+, we generate 10 samples on these two benchmarks.

Metrics Following prior work (Zhang et al., 2024; He et al., 2024; Li et al., 2024a; He & Vechev,
2023), we used SecureRate to measure the security of LLM-generated code. SecureRate is defined
as the proportion of generated code samples that pass the security checks, e.g., CodeQL checks
in CodeGuard+ (Fu et al., 2024). For functional correctness measurement, we followed recent
work (Zhuo et al., 2025; Jain et al., 2025) to use the unbiased Pass@k (Chen et al., 2021).

In the meantime, we observe that SecureRate overlooks the functional correctness of the generated
code. For instance, a code snippet that does nothing will always be secure but is meaningless in
practice. As shown in Table 1, several methods excessively sacrifice functionality to achieve higher
SecureRate scores, which fails to reflect genuine security improvements. Therefore, we introduce a
new metric for security evaluation, SecurePass@k, which jointly evaluates functionality and security:

SecurePass@k := E
Problems

[
1−

(
n−sp

k

)(
n
k

)]
(2)

where n is the total number of generated samples, k represents the number of our observed samples,
and sp means the number of samples that pass both unit tests and CodeQL security checks.

Specifically, we report SecureRate, Pass@1, and SecurePass@1 on the CodeGuard+ benchmark, since
it includes both security checks and unit tests. For HumanEval+, BigCodeBench, and LiveCodeBench,
we only report Pass@1 since they only include unit tests to check functional correctness.

Baseline Methods We compare our approach with five state-of-the-art baseline methods, each
representing a different strategy for secure code generation: (1) SecCoder (Zhang et al., 2024) is a
RAG method that retrieves the most similar secure code example to facilitate in-context learning. To
ensure a fair comparison, we utilize the same retriever bge-base-en-v1.5 (Xiao et al., 2023) and the raw
security data introduced in Section 2 as retrieval documents. (2) Codexity (Kim et al., 2024) utilizes
an external security tool to identify vulnerabilities for generated code and then iteratively refines

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the code based on detection results, up to three iterations. To avoid data leakage, we use another
widely adopted security tool, semgrep (Semgrep, 2025), instead of CodeQL. (3) SafeCoder (He et al.,
2024) adopts a specialized instruction-tuning method for code security. We use the training dataset
and hyperparameters from the original paper to finetune the LLMs used in our experiments. Given
the limited computational resources, we only fine-tune Qwen2.5-Coder-7B-Instruct, Llama3.1-8B-
Instruct, and Deepseek-Coder-V2-Lite-Instruct, excluding larger models and closed-source models.
(4) CoSec (Li et al., 2024a) manipulates the decoding process by controlling the output token logits
based on a small trained security-specialized model. For implementation, we use the same training
dataset as in the original paper. Since this method requires training a smaller model that uses the
same tokenizer to perform its decoding, we select Qwen2.5-Coder-0.5B-Instruct as the small security-
specialized model for Qwen2.5-Coder-7B and 32B and Llama3.1-1B-Instruct for Llama3.1-8B.
Other models are either closed-source or lack a smaller version from the same model family. (5)
INDICT (Le et al., 2024) is a multi-agent debate framework with external security tools to generate
both security and helpfulness critiques for iterative code refinement. Following the original setup, we
set the iteration round to three and use all four tools for code generation.

Other Implementation Details We use tree-sitter (Brunsfeld & Github) to implement static
program analysis, slicing, and API extraction. To control the length of sliced code, our method
performs 2-hop program slicing. During generation, we set the temperature to 0.2. To balance the
precision and recall, we use a top-k value of 4. To only search security knowledge for security-relevant
problems, the thresholds for the facets of API, vulnerability cause, and code are set to 4.0, 0.75, and
0.65, respectively. We follow prior work (Cormack et al., 2009) to set the RRF parameter α to 60.

3.2 MAIN RESULTS

As shown in Table 1, RESCUE consistently outperforms all existing methods in terms of Se-
curePass@1, the metric that balances security and functional correctness of generated code. Specif-
ically, RESCUE achieves 4.8% absolute improvement on average compared with the second-best
baseline. We also observed that several existing approaches sacrifice functional correctness for
security. For example, though INDICT (Le et al., 2024) achieves a higher SecureRate than RESCUE,
it has the lowest Pass@1 among all methods. Furthermore, when evaluated on the three benchmarks
on functional correctness, RESCUE achieves comparable performance compared with the original
models. This indicates that RESCUE does not severely damage the functional correctness of gen-
erated code while improving its security. Appendix B.1 provides a more direct comparison of the
performance improvements achieved by each method.

In contrast, another RAG-based method, SecCoder (Zhang et al., 2024), does not significantly improve
SecurePass@1 or SecureRate. This suggests that simply applying conventional RAG for secure code
generation cannot fully exert the security knowledge. Section 3.3 shows the ablation study results of
the hierarchical knowledge base and retrieval method in RESCUE.

3.3 IN-DEPTH ANALYSIS RESULTS

To thoroughly analyze each component of RESCUE, we conducted extensive experiments on the
CodeGuard+ benchmark using three models: Deepseek-Coder-V2-Lite, Qwen2.5-Coder-7B, and
Llama3.1-8B. We selected these models because they represent three widely adopted model families
and have demonstrated strong performance when integrated with our proposed method.

3.3.1 ABLATION STUDY ON SECURITY KNOWLEDGE BASE CONSTRUCTION

To better understand the contributions of the security knowledge base construction components,
specifically security guideline extraction and program slicing, we performed ablation studies using
five variants: (1) w/o construction: Does not utilize the constructed security knowledge base and
instead directly employs the raw security data. (2) w/o guideline: Removes the security guidelines
from the constructed security knowledge base, providing only relevant secure code examples to the
model. Since sliced code examples are used in both the retrieval and generation stages, we designed
three additional detailed variants for further investigation: (3) w/o slicing: Completely removes
the slicing component, using original (unsliced) code in both retrieval and generation stages. (4)
w/o psretrieval: Replaces sliced code with original code only during the retrieval stage. (5) w/o
psgeneration: Replaces sliced code with original code only during the generation stage. Table 2 shows
the experimental results, from which we derive the following key observations:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across six LLMs and four benchmarks: CodeGuard+, HumanEval+
(HE+), BigCodeBench (BCB), and LiveCodeBench (LCB). For each model, bold indicates the best
score, and underline indicates the second-best result. Notably, SafeCoder requires fine-tuning the
LLMs and CoSec requires training a smaller model with the same tokenizer, therefore, we evaluate
both methods on applicable open-source LLMs.

Model Method CodeGuard+ HE+ BCB LCB
SP@1 SR Pass@1 Pass@1 Pass@1 Pass@1

DeepSeek-Coder-V2-Lite

LLM alone 59.7 65.1 86.8 73.0 39.5 24.4
SecCoder 55.6 63.7 82.9 64.7 40.9 23.9
Codexity 58.4 70.3 80.1 70.4 35.2 24.4
INDICT 49.5 72.3 62.5 57.9 32.4 23.4
SafeCoder 60.3 68.6 81.7 61.2 14.8 13.4
RESCUE 65.6 72.8 87.9 70.4 39.1 25.2

Qwen2.5-Coder-7B

LLM alone 51.2 61.3 83.3 77.1 45.2 24.5
SecCoder 54.9 65.6 79.8 74.6 42.3 24.2
Codexity 51.4 68.1 77.7 75.1 44.9 24.8
INDICT 41.9 84.1 48.5 71.3 33.8 22.4
CoSec 52.8 64.6 82.8 68.0 19.0 23.3
SafeCoder 56.5 74.0 75.1 67.7 43.0 19.6
RESCUE 64.8 72.1 86.2 77.8 42.9 24.3

Qwen2.5-Coder-32B

LLM alone 59.3 66.0 88.3 80.0 54.1 22.3
SecCoder 58.1 66.6 84.7 82.9 53.9 25.2
Codexity 57.1 71.6 80.7 79.5 53.4 22.0
INDICT 40.4 84.4 48.1 65.9 33.8 20.9
CoSec 41.9 54.9 65.1 78.0 52.7 23.4
RESCUE 65.1 81.5 80.6 80.8 49.9 27.1

Llama3.1-8B

LLM alone 53.7 63.7 82.8 58.8 36.0 15.0
SecCoder 48.4 60.6 75.4 51.0 35.6 14.9
Codexity 50.8 68.5 73.7 57.7 37.3 14.7
INDICT 16.0 79.8 19.8 15.2 8.8 7.4
CoSec 53.9 62.2 78.3 55.7 4.9 5.8
SafeCoder 52.4 69.4 72.4 54.0 31.4 11.0
RESCUE 56.2 69.7 77.6 54.6 31.8 14.7

GPT-4o-mini

LLM alone 58.2 68.9 80.7 83.6 54.6 37.6
SecCoder 57.8 71.2 79.7 82.6 54.0 37.4
Codexity 55.5 77.0 72.5 83.3 52.6 38.1
INDICT 31.1 85.5 36.8 51.2 26.0 35.7
RESCUE 63.0 77.6 77.3 81.3 45.2 37.5

DeepSeek-V3-0324

LLM alone 64.6 71.4 87.4 72.9 61.5 64.3
SecCoder 64.7 74.8 83.4 79.6 61.7 63.6
Codexity 63.5 77.4 80.0 74.3 60.9 64.1
INDICT 29.6 85.6 32.4 68.3 31.9 63.6
RESCUE 69.7 79.1 83.5 89.1 60.2 64.3

Table 2: Results of ablation studies on security knowledge base construction, evaluating five variants
of the security knowledge base with three models on the CodeGuard+ benchmark across four metrics:
number of input tokens (#Token), SecurePass@1 (SP@1), SecureRate (SR), and Pass@1 (P@1). The
bold number indicates the best performance, and “—” represents dismissal.

Setting DSC-V2-Lite-Instruct Qwen2.5-Coder-7B-Instruct Llama3.1-8B-Instruct
#Token↓ SP@1 SR P@1 #Token↓ SP@1 SR P@1 #Token↓ SP@1 SR P@1

RESCUE 503 65.6 72.8 87.9 397 64.8 72.1 86.2 428 56.2 69.7 77.6
w/o construction — 55.6 61.9 81.0 — 53.9 63.6 75.4 — 45.3 58.8 73.3
w/o guideline — 63.3 72.1 86.2 — 63.9 72.2 86.4 — 51.4 65.3 76.9
w/o slicing 661 61.0 70.5 80.6 506 62.6 71.3 83.1 610 52.7 68.8 74.3
w/o psgeneration 753 64.8 71.9 86.5 595 66.1 71.3 87.6 698 53.5 67.0 75.4
w/o psretrieval 435 63.1 73.1 83.4 358 64.8 71.4 86.6 359 54.0 71.3 76.5

Raw security data alone does not improve performance; constructing a security knowledge
base is essential. Comparing RESCUE with the w/o construction variant, we observe a significant
performance drop in all metrics when using raw security data directly. This is because irrelevant code
logic distracts the models during code generation and the noise of irrelevance also leads to inaccurate
retrieval results. Thus, constructing a refined security knowledge base is crucial.

Security guidelines enhance security performance. The results of the w/o guideline variant show a
decrease in SP@1 compared to RESCUE. For instance, the SP@1 metric in Llama3.1-8B-Instruct
drops by 4.8 points, highlighting the substantial contribution of security guidelines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Program slicing improves security performance and reduces token costs. The results of the
w/o slicing variant demonstrate the effectiveness of program slicing in enhancing performance.
Additionally, finer-grained ablation results from the w/o psretrieval and w/o psgeneration variants
reveal that program slicing is beneficial in both the retrieval and generation stages. Specifically,
slicing helps retrieve more relevant security knowledge and provides concise yet informative code
examples during generation. Finally, we note that applying sliced code during generation substantially
reduces the number of input tokens. Additional analysis comparing lines of code before and after
program slicing is provided in the Appendix B.2.

3.3.2 IMPACT ANALYSIS OF HIERARCHICAL RETRIEVAL

1 2 3 4 5
Number of Selected Nodes (k)

55.8

56.0

56.2

56.4

56.6

SP
@

1
(%

)

Llama

Without Hierarchy

1 2 3 4 5
Number of Selected Nodes (k)

60

62

64

SP
@

1
(%

)

Deepseek

Without Hierarchy

1 2 3 4 5
Number of Selected Nodes (k)

63.0

63.5

64.0

64.5

SP
@

1
(%

)

Qwen

Without Hierarchy

Figure 3: Comparison of SecurePass@1(SP@1) performance across hierarchical and non-hierarchical
settings for three LLMs, DeepSeek-Coder-V2-Lite (Deepseek), Llama3.1-8B-Instruct (Llama),
Qwen2.5-Coder-7B (Qwen), at varying numbers of selected CWE types (k).

To analyze the effectiveness of our hierarchical design, we conducted an impact analysis by varying
the the parameter k in top-k relevant CWE types from 1 to 5 and comparing against non-hierarchical
baselines, as shown in Figure 3. The peak results of hierarchy consistently outperform the non-
hierarchical setting across all LLMs. Interestingly, the performance exhibits an inverted U-shaped
trend as k increases: smaller k values may restrict the model to local optima, while larger k values
introduce noise, diminishing performance. Based on these insights, we select k = 4 as the optimal
configuration for all experiments.

3.3.3 ABLATION STUDY ON MULTI-FACETED RETRIEVAL

Table 3: Results of ablation studies on multi-faceted retrieval, evaluating seven combinations of
API pattern (API), vulnerability cause analysis (VA), and code across three different LLMs on the
CodeGuard+ benchmark. In the table, “✓” indicates the adoption of a facet, while “—” represents its
dismissal. The bold number indicates the best performance.

Facet DeepSeek-Coder-V2-Lite Llama3.1-8B Qwen2.5-Coder-7B
API VA Code SP@1 SecurityRate Pass@1 SP@1 SecurityRate Pass@1 SP@1 SecurityRate Pass@1

✓ ✓ ✓ 65.6 72.8 87.9 56.2 69.7 77.6 64.8 72.1 86.2
✓ — ✓ 62.7 71.5 84.8 53.4 67.7 77.0 63.8 70.6 86.2
✓ ✓ — 64.1 73.5 84.5 54.8 68.0 77.0 64.6 71.5 86.1
— ✓ ✓ 61.3 72.4 83.0 51.7 68.4 75.4 65.0 72.3 85.3
✓ — — 61.4 71.7 82.9 52.1 67.4 76.6 62.2 69.9 84.9
— ✓ — 63.2 71.9 86.2 53.6 70.0 73.2 66.2 72.5 86.2
— — ✓ 57.1 68.3 82.1 51.1 62.5 81.2 61.7 69.1 84.8

To systematically evaluate the contribution of each facet to retrieval performance, we conducted an
ablation study covering all seven possible combinations of the three facets under consideration. We
make two key observations based on the results in Table 3:

Multi-faceted retrieval mostly outperforms single-facet approaches. Overall, single-facet retrieval
methods show limited and inconsistent effectiveness. In contrast, our multi-faceted retrieval effectively
leverages complementary strengths from individual facets, outperforming each single-facet method.
Notably, combining all three facets mostly achieves the best overall performance across nearly all
scenarios, highlighting the advantage of integrating diverse security-related facets.

Our proposed API pattern and vulnerability cause facets significantly outperform the code
similarity facet. The code-only facet consistently lags behind other facet combinations, reinforcing
that dense retrieval approaches based solely on code similarity are insufficient. Incorporating API

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

pattern and vulnerability cause facets substantially enhances retrieval accuracy, demonstrating their
effectiveness in capturing meaningful semantic context beyond mere syntactic similarity.

3.4 IMPACT ANALYSIS OF SUMMARIZATION LLMS

Table 4: Impact of different summarization
and generation model combinations. The im-
provements hold across models, showing that
gains stem from the pipeline rather than re-
liance on GPT-4o.

Summarization Model Generation Model SP@1 SR P@1

Qwen2.5-Coder-7B
Qwen2.5-Coder-7B 60.7 72.0 83.3
Llama3.1-8B 56.9 69.2 78.9
DeepSeek-V3 69.9 80.0 83.0

Llama3.1-8B
Qwen2.5-Coder-7B 55.6 69.5 79.8
Llama3.1-8B 51.2 66.7 75.9
DeepSeek-V3 71.5 79.2 85.2

DeepSeek-V3
Qwen2.5-Coder-7B 59.2 71.3 80.3
Llama3.1-8B 56.5 72.1 77.7
DeepSeek-V3 68.6 79.5 82.7

Since our pipeline employs GPT-4o for the summa-
rization step, one potential concern is whether the
observed improvements stem merely from relying
on a powerful black-box model. To address this, we
conduct an impact analysis by replacing GPT-4o with
three open-source summarization models: Qwen2.5-
Coder-7B, Llama3.1-8B, and DeepSeek-V3. In this
setting, the summarization model is used to distill
security knowledge, while the generation model is
applied during the online stage for secure code gener-
ation. As shown in Table 4, the performance gains
do not depend on GPT-4o; they consistently arise
from our pipeline design. Even with smaller open-
source models, the framework achieves comparable improvements.

3.5 OTHER ANALYSIS

We provide a statistical analysis of the CWE type distribution in Appendix B.4, which demonstrates
the generalizability of our method, as only half of the CWE types appear in the training data.
In addition, we present a step-by-step breakdown of the computational overhead of RESCUE in
Appendix B.3. While RESCUE introduces some additional time cost to achieve the improvements,
the overhead remains acceptable and can be further reduced through engineering optimizations.

4 RELATED WORK
Retrieval-Augmented Code Generation Recent research has investigated RAG to enhance code
generation (Yang et al., 2025; Lu et al., 2022; Gao et al., 2024; Tan et al., 2025). Several studies
focus on repository-level retrieval for code generation (Wu et al., 2024; Zhang et al., 2023). Others
introduce external API documentation to aid generation involving unfamiliar APIs (Zan et al., 2022;
Zhou et al., 2023; Liu et al., 2023b; Gu et al., 2025). Additionally, retrieval of functionally similar
examples has been used to enhance functional correctness (Parvez et al., 2021; Su et al., 2024; Nashid
et al., 2023). In contrast, our method specifically targets retrieval of security knowledge to improve
the security of generated code without compromising functional correctness.

Secure Code Generation Existing studies have identified significant security concerns in LLM-
generated code (Hou et al., 2024; GitHub, 2024; Cursor, 2024). To mitigate these, recent approaches
include fine-tuning models on security-specific datasets or tasks (He & Vechev, 2023; He et al.,
2024; Hajipour et al., 2024; Li et al., 2024b), and training-free approaches such as prompt engi-
neering (Tony et al., 2024), security analysis tool integration (Kim et al., 2024; Nazzal et al., 2024),
agent (Le et al., 2024), and RAG frameworks (Mukherjee & Hellendoorn, 2025; Zhang et al., 2024).
Specifically, SecCoder (Zhang et al., 2024) retrieves secure code examples with dense retriever and
SOSecure (Mukherjee & Hellendoorn, 2025) retrieves StackOverflow content with BM25. Our work
automatically constructs a hierarchical security knowledge base from raw security data and proposes
a specially designed retrieval method.

5 CONCLUSION

This work introduces RESCUE, a novel retrieval-augmented secure code generation framework that
adopts a hybrid distillation method to construct a hierarchical security knowledge base and employs a
hierarchical multi-faceted retrieval method. Compared to five state-of-the-art methods across four
benchmarks and six models, RESCUE demonstrates substantial improvements in security without
compromising functional correctness. Further in-depth analyses highlight the necessity of knowledge
base construction and validate the effectiveness of our proposed hybrid distillation method. Additional
thorough analyses confirm the advantages of our hierarchical multi-faceted retrieval design.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. The primary goal of this research is to enhance the
security of code generated by Large Language Models (LLMs), thereby reducing the prevalence of
software vulnerabilities. We believe this work has a positive ethical impact by contributing to more
secure and reliable software development practices.

The dataset used to construct our security knowledge base is derived from publicly available sources
and consists of known vulnerabilities and their fixes from CVEs and public GitHub projects. Our
research does not involve human subjects or the use of personally identifiable or private data.

While any tool related to security could have potential for dual-use, our framework, RESCUE, is
designed for a defensive purpose: to guide LLMs in generating secure code by leveraging knowledge
of existing fixes. The methodology focuses on abstracting and applying secure coding patterns rather
than discovering new exploits. We use publicly accessible LLMs and open-source tools, and our
contributions aim to mitigate existing security risks in AI-assisted programming.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To facilitate this, we provide
comprehensive resources and detailed descriptions throughout the paper. Our full implementation
of the RESCUE framework is available at the anonymous repository link provided in the abstract:
https://anonymous.4open.science/r/RESCUE.

REFERENCES

Max Brunsfeld and Github. Tree-sitter: An incremental parsing system for programming tools. URL
https://tree-sitter.github.io/tree-sitter/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In Proceedings of the 32nd international ACM
SIGIR conference on Research and development in information retrieval, pp. 758–759, 2009.

Cursor. Cursor, 2024. URL https://www.cursor.com/. Accessed: 2024-12-23.

CVE Program. Cve - common vulnerabilities and exposures, 2025. URL https://www.cve.
org/. Accessed: 2025-05-14.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study of
cryptographic misuse in android applications. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13, pp. 73–84, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN 9781450324779. doi: 10.1145/2508859.2516693.
URL https://doi.org/10.1145/2508859.2516693.

Yanjun Fu, Ethan Baker, Yu Ding, and Yizheng Chen. Constrained decoding for secure code
generation. arXiv preprint arXiv:2405.00218, 2024.

Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, Jiaxin Yu, and Jinfu Chen.
Security weaknesses of copilot generated code in github. arXiv preprint arXiv:2310.02059, 2023.

Xinyu Gao, Yun Xiong, Deze Wang, Zhenhan Guan, Zejian Shi, Haofen Wang, and Shanshan Li.
Preference-guided refactored tuning for retrieval augmented code generation. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering, ASE ’24, pp.
65–77, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712487.
doi: 10.1145/3691620.3694987. URL https://doi.org/10.1145/3691620.3694987.

10

https://anonymous.4open.science/r/RESCUE
https://tree-sitter.github.io/tree-sitter/
https://www.cursor.com/
https://www.cve.org/
https://www.cve.org/
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/3691620.3694987

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

GitHub. Github security advisories, 2024. URL https://github.com/advisories. Ac-
cessed: 2025-05-14.

GitHub. Github copilot, 2024. URL https://github.com/features/copilot/. Ac-
cessed: 2024-12-23.

GitHub. Codeql. https://codeql.github.com/, 2025. Accessed: 2025-02-14.

Wenchao Gu, Juntao Chen, Yanlin Wang, Tianyue Jiang, Xingzhe Li, Mingwei Liu, Xilin Liu, Yuchi
Ma, and Zibin Zheng. What to retrieve for effective retrieval-augmented code generation? an
empirical study and beyond, 2025. URL https://arxiv.org/abs/2503.20589.

Hossein Hajipour, Lea Schönherr, Thorsten Holz, and Mario Fritz. Hexacoder: Secure code generation
via oracle-guided synthetic training data. arXiv preprint arXiv:2409.06446, 2024.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial
testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1865–1879, 2023.

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin Vechev. Instruction tuning for secure
code generation. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
18043–18062. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
he24k.html.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic
literature review. ACM Trans. Softw. Eng. Methodol., 33(8), December 2024. ISSN 1049-331X.
doi: 10.1145/3695988. URL https://doi.org/10.1145/3695988.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Vinay M. Igure and Ronald D. Williams. Taxonomies of attacks and vulnerabilities in computer
systems. IEEE Communications Surveys & Tutorials, 10(1):6–19, 2008. doi: 10.1109/COMST.
2008.4483667.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
uation of large language models for code. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.

Sung Yong Kim, Zhiyu Fan, Yannic Noller, and Abhik Roychoudhury. Codexity: Secure ai-assisted
code generation. arXiv preprint arXiv:2405.03927, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hung Le, Doyen Sahoo, Yingbo Zhou, Caiming Xiong, and Silvio Savarese. Indict: Code generation
with internal dialogues of critiques for both security and helpfulness. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Dong Li, Meng Yan, Yaosheng Zhang, Zhongxin Liu, Chao Liu, Xiaohong Zhang, Ting Chen,
and David Lo. Cosec: On-the-fly security hardening of code llms via supervised co-decoding.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 1428–1439, Vienna Austria, September 2024a. ACM. ISBN 9798400706127. doi:
10.1145/3650212.3680371.

11

https://github.com/advisories
https://github.com/features/copilot/
https://codeql.github.com/
https://arxiv.org/abs/2503.20589
https://proceedings.mlr.press/v235/he24k.html
https://proceedings.mlr.press/v235/he24k.html
https://doi.org/10.1145/3695988
https://openreview.net/forum?id=chfJJYC3iL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junjie Li, Fazle Rabbi, Cheng Cheng, Aseem Sangalay, Yuan Tian, and Jinqiu Yang. An ex-
ploratory study on fine-tuning large language models for secure code generation. arXiv preprint
arXiv:2408.09078, 2024b.

Xia Li, Jiajun Jiang, Samuel Benton, Yingfei Xiong, and Lingming Zhang. A large-scale study on
api misuses in the wild. In 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), pp. 241–252, 2021. doi: 10.1109/ICST49551.2021.00034.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023a.

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du, Ying Wang, and Xin Peng. Codegen4libs: A
two-stage approach for library-oriented code generation. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 434–445, 2023b. doi: 10.1109/
ASE56229.2023.00159.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. ReACC:
A retrieval-augmented code completion framework. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6227–6240, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.431. URL
https://aclanthology.org/2022.acl-long.431/.

Vahid Majdinasab, Michael Joshua Bishop, Shawn Rasheed, Arghavan Moradidakhel, Amjed Tahir,
and Foutse Khomh. Assessing the security of github copilot’s generated code-a targeted replication
study. In 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 435–444. IEEE, 2024.

MITRE. Common weakness enumeration (cwe), 2025. URL https://cwe.mitre.org/.
Accessed: 2025-05-14.

Manisha Mukherjee and Vincent J Hellendoorn. Sosecure: Safer code generation with rag and
stackoverflow discussions. arXiv preprint arXiv:2503.13654, 2025.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 2450–2462. IEEE, 2023.

National Institute of Standards and Technology (NIST). National vulnerability database (nvd), 2024.
URL https://nvd.nist.gov/. Accessed: 2025-05-14.

Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, and NhatHai Phan. Promsec: Prompt opti-
mization for secure generation of functional source code with large language models (llms). In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security,
pp. 2266–2280, 2024.

OpenAI. Gpt-4o mini model card, 2024. URL https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/. Accessed: 2025-02-
12.

Elise Paradis, Kate Grey, Quinn Madison, Daye Nam, Andrew Macvean, Vahid Meimand, Nan
Zhang, Ben Ferrari-Church, and Satish Chandra. How much does ai impact development speed?
an enterprise-based randomized controlled trial. In 2025 IEEE/ACM 47th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 618–629. IEEE,
2025.

12

https://aclanthology.org/2022.acl-long.431/
https://cwe.mitre.org/
https://nvd.nist.gov/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Retrieval
augmented code generation and summarization. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2719–2734, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.232. URL
https://aclanthology.org/2021.findings-emnlp.232/.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE
Symposium on Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot. arXiv preprint arXiv:2302.06590, 2023.

PyCQA. bandit. https://github.com/PyCQA/bandit, 2025.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
et al. Okapi at TREC-3. British Library Research and Development Department, 1995.

Inc. Semgrep. Semgrep: Code scanning at ludicrous speed. https://semgrep.dev, 2025.

Mohammed Latif Siddiq and Joanna CS Santos. Securityeval dataset: mining vulnerability examples
to evaluate machine learning-based code generation techniques. In Proceedings of the 1st Inter-
national Workshop on Mining Software Repositories Applications for Privacy and Security, pp.
29–33, 2022.

SpotBugs. Spotbugs: Find bugs in java programs, 2025. URL https://spotbugs.github.
io/.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao
Yu. EvoR: Evolving retrieval for code generation. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 2538–2554, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.143. URL https://aclanthology.org/2024.
findings-emnlp.143/.

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing Li, Haotian Zhang, and Yuqun Zhang.
Prompt-based code completion via multi-retrieval augmented generation. ACM Trans. Softw. Eng.
Methodol., March 2025. ISSN 1049-331X. doi: 10.1145/3725812. URL https://doi.org/
10.1145/3725812. Just Accepted.

Catherine Tony, Nicolás E Díaz Ferreyra, Markus Mutas, Salem Dhiff, and Riccardo Scandariato.
Prompting techniques for secure code generation: A systematic investigation. arXiv preprint
arXiv:2407.07064, 2024.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xiaofei Ma. Repoformer:
Selective retrieval for repository-level code completion. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=moyG54Okrj.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li, Xing Hu, Kui Liu, and Xin Xia. An empirical
study of retrieval-augmented code generation: Challenges and opportunities. ACM Trans. Softw.
Eng. Methodol., February 2025. ISSN 1049-331X. doi: 10.1145/3717061. URL https:
//doi.org/10.1145/3717061. Just Accepted.

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Wang Yongji, and Jian-Guang Lou. When language
model meets private library. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2022, pp. 277–288, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.findings-emnlp.21. URL https://aclanthology.org/2022.findings-emnlp.
21/.

13

https://aclanthology.org/2021.findings-emnlp.232/
https://github.com/PyCQA/bandit
https://semgrep.dev
https://spotbugs.github.io/
https://spotbugs.github.io/
https://aclanthology.org/2024.findings-emnlp.143/
https://aclanthology.org/2024.findings-emnlp.143/
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://openreview.net/forum?id=moyG54Okrj
https://doi.org/10.1145/3717061
https://doi.org/10.1145/3717061
https://aclanthology.org/2022.findings-emnlp.21/
https://aclanthology.org/2022.findings-emnlp.21/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Boyu Zhang, Tianyu Du, Junkai Tong, Xuhong Zhang, Kingsum Chow, Sheng Cheng, Xun Wang, and
Jianwei Yin. Seccoder: Towards generalizable and robust secure code generation. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 14557–14571,
2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
generation. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=q09vTY1Cqh.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung Kim. Are
code examples on an online q&a forum reliable? a study of api misuse on stack overflow. In
Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, pp. 886–896,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356381. doi:
10.1145/3180155.3180260. URL https://doi.org/10.1145/3180155.3180260.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ZTCxT2t2Ru.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

A DATA COLLECTION

Our method adopts a large-scale security training dataset collected by SafeCoder (He et al., 2024).
We select Python, C, and C++ instances, removing empty and duplicate instances and resulting in
a raw security dataset D containing 372 instances for Python and 332 instances for C/C++. Each
instance includes vulnerable code, secure code, and the CWE type.

B ADDITIONAL EXPERIMENTS

B.1 ANALYSIS OF AVERAGE METHOD IMPROVEMENTS

Table 5: Average improvement (∆) of different methods relative to their respective LLM Alone base-
lines. The improvements are averaged across applicable LLMs for four benchmarks: CodeGuard+,
HumanEval+ (HE+), BigCodeBench (BCB), and LiveCodeBench (LCB). All values represent the
mean change in percentage points.

Method CodeGuard+ (∆) HE+ (∆) BCB (∆) LCB (∆)
SP@1 SR Pass@1 Pass@1 Pass@1 Pass@1

SecCoder -1.20 1.02 -3.90 -1.67 -0.42 0.18
Codexity -1.67 6.08 -7.43 -0.85 -1.10 -0.00
CoSec -5.20 -3.10 -9.40 -4.73 -19.57 -3.10
INDICT -23.03 15.88 -43.53 -18.40 -20.70 -2.45
SafeCoder 1.53 7.30 -7.90 -8.67 -10.50 -6.63
RESCUE 6.28 9.40 -2.70 1.43 -3.63 0.83

14

https://openreview.net/forum?id=q09vTY1Cqh
https://doi.org/10.1145/3180155.3180260
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=YrycTjllL0

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 IMPACT OF PROGRAM SLICING ON CODE LENGTH

Table 6: Average Lines of Code (LoC) for Vulnerable and Secure Samples Before and After Program
Slicing. On average, program slicing reduced code lines by 81.5%, removing lines unrelated to the
security aspects under consideration.

Category Before Slicing (Avg. LoC) After Slicing (Avg. LoC)

Vulnerable Code Samples 89.5 16.1
Secure Code Samples 91.3 17.3

We first performed a statistical analysis of the average number of lines of code in the raw security
dataset. The findings indicate that the average length of the raw vulnerable and secure code samples
was 89.5 and 91.3 lines, respectively. In contrast, after program slicing, the average lengths of the
corresponding code samples were reduced to 16.1 and 17.3 lines. This reduction suggests that, on
average, 81.5% of the raw code lines are unrelated to the security aspects under consideration.

B.3 OVERHEAD AND TIME ANALYSIS

To evaluate the computational overhead of RESCUE, we conducted experiments on the CodeGuard+
benchmark under the same settings as described in the main paper. Specifically, we tested three
models: Qwen2.5-Coder-7B-Instruct, Llama-3.1-8B-Instruct, and DeepSeek-V3. The first two were
deployed locally using the same setup as in the paper, while DeepSeek-V3 was accessed via API. For
a fair comparison, we disabled all multiprocessing operations and executed the pipeline sequentially.
We then performed a fine-grained breakdown of the execution time at each step of the RESCUE online
generation process.

Table 7: Average execution time (in seconds) for each step in the RESCUE online generation process.
Model Draft Code Vulnerability CWE-Level Code-Level Augmented

Generation Cause Analysis Retrieval Retrieval Generation
Qwen2.5-Coder-7B 2.8412 2.7365 0.0191 2.5892 3.2097
Llama-3.1-8B 3.5318 1.4546 0.0181 2.4340 3.5409
DeepSeek-V3 12.7992 4.3321 0.0197 2.6314 10.9561

The results, shown in Table 7, indicate that most of the additional overhead arises from the Draft
Generation and Vulnerability Cause Analysis steps, which involve multiple LLM calls. In contrast,
hierarchical retrieval is relatively lightweight: both CWE-level and code-level retrieval contribute
only marginal time costs.

Overall, the overhead introduced by RESCUE is acceptable and can be further reduced. For instance,
concurrent LLM calls can significantly mitigate the cost of generation and analysis steps, while
efficient engineering optimizations may further improve system performance. These findings suggest
that our method is scalable, and that retrieval overhead will remain manageable even on larger
datasets.

B.4 CWE DISTRIBUTION ANALYSIS AND GENERALIZABILITY

To further demonstrate the generalizability of our method, we analyze the distribution of CWE types
in both the training set and the evaluation benchmark. Table 8 summarizes the number of CWE types
covered by each programming language. Notably, the benchmark contains a wider variety of CWE
types than the training data, including many categories that do not appear during training.

As shown in Table 8, the CWE categories in the benchmark exceed those in the training data. This
demonstrates that our method is not limited to vulnerabilities explicitly included in the knowledge
base, but can generalize to unseen types.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Distribution of CWE types in training set and benchmark. The benchmark contains a broader
coverage of CWE types, highlighting the generalization capability of our method.

Programming Language # CWE Types
in Training Set

CWE Types
in Benchmark

Unique CWE Types
in Benchmark

Python 9 23 15
C/C++ 12 17 7

C METHOD DETAILS

C.1 CLUSTER-THEN-SUMMARIZE

This appendix provides the details of the cluster-then-summarize pipeline for constructing compact
security knowledge snippets from large collections of raw instances. The pipeline consists of two
major components: (1) grouping raw instances into clusters and (2) recursively summarizing them in
a bottom-up manner until a single consolidated snippet is obtained for each cluster.

1. Cluster formation. Given a dataset D of raw instances, we first partition D into clusters
C = {C1, C2, . . . , Cm} based on a predefined taxonomy or grouping criterion. Each cluster Ci

gathers instances that share similar patterns, making it possible to produce more coherent summaries.

2. Subset partitioning. Each cluster Ci is further divided into fixed-size subsets of at most b
elements, where b is a tunable parameter (default: 10). This step ensures that each subset can be fully
processed within the input context of the summarizer model.

3. First-level summarization. For every subset B within a cluster, the summarizer model M is
applied to generate a first-level snippet that condenses the main patterns and knowledge contained in
the subset. Collecting these results yields the first-level snippet set S1

i = {s11, s12, . . . } for cluster Ci.

4. Recursive hierarchical summarization. At each subsequent level j ≥ 2, the set of snippets
from the previous level Sj−1

i is again partitioned into batches of size up to b. The summarizer model
is then applied to each batch to generate a higher-level snippet. Formally,

Sj
i ←

⋃
batch B⊂Sj−1

i

M(B).

This process repeats until the number of snippets reduces to one (or a very small set), which becomes
the final consolidated snippet for cluster Ci.

5. Output. The final output of the pipeline is a set of security knowledge snippets {k1, k2, . . . , km},
one for each cluster. These snippets serve as compact and generalizable abstractions distilled from
raw instances.

The prompt for security guideline and vulnerability cause can be found at Appendix D.1 and
Appendix D.2.2.

C.2 SECURITY-FOCUSED STATIC PROGRAM SLICING

RESCUE begins by constructing a Program Dependence Graph (PDG) from a given code example,
defined as

PDG = (N,E),

where N is the set of program statements and E is the set of edges comprising data dependencies Edd

and control dependencies Ecd. Specifically, Edd captures relationships where a statement consumes
data produced by another, while Ecd models control-flow relationships, indicating that the execution
of a statement depends on an earlier control statement, such as a conditional branch.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1: Cluster-then-Summarize Pipeline
Input: Raw dataset D of instances; batch size b; summarizer model M
Output: Security knowledge snippets K = {k1, k2, . . . , km}
// 1. Group raw instances into clusters
C ← Cluster(D);
foreach cluster Ci ∈ C do

// 2. Partition cluster into subsets of size up to b
B ← Partition(Ci, b);
S ← [];
foreach subset B ∈ B do

s←M.Summarize(B);
S.append(s);

// 3. Recursively summarize until one snippet remains
while |S| > 1 do

S′ ← [];
foreach batch BS ∈ Partition(S, b) do

s′ ←M.Summarize(BS);
S′.append(s′);

S ← S′;
// 4. Store the final snippet for cluster Ci

ki ← S[0];
K.append(ki);

return K

Next, RESCUE identifies points of interest in the code relevant to security. Deleted statements in a
security patch are treated as points of interest for vulnerable code, whereas added statements indicate
points of interest for secure code.

Formally, the program slicing process is modeled as a reachability problem over the PDG. Given a
set of points of interest P ⊂ N , the backward slice is computed as the set of nodes that can reach any
node in P within h hops:

S(PDG,P, h) = {m ∈ N | ∃π(m,n), 1 ≤ |π| ≤ h & n ∈ P}, (3)

where π(m,n) is a path in the PDG, and the path length |π| is bounded by h hops.

Finally, RESCUE performs bidirectional slicing: backward slicing identifies nodes influencing the
points of interest, and forward slicing captures statements affected by them. To ensure contextual
completeness, subgraphs from vulnerable and secure code versions are compared, and each subgraph
is complemented with statements from the other version outside the patch. This process reconstructs
two contextually sliced code variants for secure code analysis and generation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2: Bidirectional Security-Relevant Slicing in RESCUE

Input: Program Dependence Graph PDG = (N,E), points of interest Pv,Ps ⊂ N , hop limit h
Output: Vulnerable slice Sv , Secure slice Ss

Function Slice(PDG,P, h):
Initialize slice S ← ∅;
foreach node n ∈ N do

if ∃π(n, p), 1 ≤ |π| ≤ h, p ∈ P then
S ← S ∪ {n};

return S;
Function BidirectionalSlice(PDG,P, h):

Sback ← Slice(PDG,P, h) ; // Backward slice
PDGrev ← reverse all edges in PDG;
Sforward ← Slice(PDGrev,P, h) ; // Forward slice via reversed PDG
return Sback ∪ Sforward;

Sv ← BidirectionalSlice(PDG,Pv, h);
Ss ← BidirectionalSlice(PDG,Ps, h);
return Sv, Ss

D PROMPT TEMPLATE

This appendix section describes the details of our used prompt templates.

D.1 SECURITY GUIDELINES EXTRACTION

D.1.1 INITIAL GUIDELINE SUMMARIZATION

Listing 1: This prompt describes how to extract initial security guidelines at the bottom.

Extract common security knowledge from the provided multiple cases
. Identify and summarize distinctive guidelines.

Output Format
Provide a clear and concise summary of each guideline in a

sentence. Ensure that each guideline is distinct.

Output Example
- Use parameterized queries instead of string interpolation or

concatenation to prevent SQL injection attacks.

Extract security guidelines from the following cases:

Vulnerability-Fix Data List

Case 1
Vulnerable Code
{vulnerable code 1}

Security Patch
{security patch 1}

Case 2
Vulnerable Code
{vulnerable code 2}

Security Patch

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

{security patch 2}

...

D.1.2 INTERMEDIATE GUIDELINE SUMMARIZATION

Listing 2: This prompt is used to iteratively summarize the intermediate security guidelines.

Merge extracted security guidelines by combining those with
identical meanings into a single, clear, and concise sentence
for each guideline.

Extracted Guidelines 1
{intermediate guidelines 1}

Extracted Guidelines 2
{intermediate guidelines 2}
...

D.2 PROACTIVE ANALYSIS

D.2.1 ZERO-SHOT CODE GENERATION

The completion models directly use the target coding task as prompt.

Listing 3: The chat models—Deepseek-V3 and GPT-4o-mini—employ this prompt template for
zero-shot code generation.

Generate the following {lang} code.

Code Snippet and Task Requirement
```{lang}
{code}
```

D.2.2 VULNERABILITY CAUSE ANALYSIS

Listing 4: This prompt is used to analyze and identify the potential vulnerability cause in advance.

Identify and summarize the cause of the potential vulnerability in
a concise and informative paragraph before proceeding with

code generation. The output should at least include the name
of the vulnerability and its cause. Focus solely on the
underlying cause of the vulnerability without mentioning any
fixing information.

The output should be a text-only paragraph, without any other
structure.

Example
** Input **:
```python
def build_board(conn, game,size):

# we'll build the empty board, and then fill in with the move
list that

# we get from the DB.
board = []
for i in range(size):

board.append([""]*size)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

# search for all moves that have happenend during this game.
cursor = conn.cursor()

```

** Output **:
The potential vulnerability is related to an SQL Injection

vulnerability. This vulnerability occurs because the code
implies the execution of SQL queries based on user-supplied
inputs without implementing proper validation or sanitization
mechanisms. The use of `conn.cursor()` to execute presumably
dynamic SQL commands indicates that if user inputs are
directly incorporated into those commands, it could lead to
unauthorized access or manipulation of the database. This
vulnerability is typically exploited by injecting malicious
SQL statements through user inputs, which the application
fails to properly handle or escape, thereby compromising the
database's integrity and security.

Please identify and summarize the task below:
```{lang}
{code}
```

D.3 SECURITY KNOWLEDGE AUGMENTED CODE GENERATION

Listing 5: This prompt is used for completion models, including all locally deployed models.
General Security Guidelines
```
{security_guidelines}
```

Example
Secure Code Example
```{language}
{secure_code}
```

Secure Code Example
```{lang}
{code}

Listing 6: This prompt is used for chat models, including GPT-4o-mini and Deepseek-V3.
Given the security knowledge:
```markdown
General Security Guidelines
```
{security_guidelines}
```

Example
Secure Code Example
```{language}
{secure_code}
```
```

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Your task is to complete the following {lang} code.
### Code Snippet
```{lang}
{code}
```

When completing, you should consider the following:
1. You must not change the code snippet part in the completed code

, including the function signature, import statements.
2. You can refer to the provided security knowledge but not simply

copy and paste. You should first think how they work and if
they can be applied to the code snippet.

Your response should start with ```{lang}

E VULNERABILITY-FIX INSTANCE EXAMPLE

Listing 7: The complete example of a vulnerability-fix instance. the red highlighted text means the
deleted statements and the gree highlighted text means the added statements. This instance has about
50 lines of code. However, it contains only one line related to security. And the majority of the
function is to implement the database query.
--- vulnerability.py

+++ fixing.py

@@ -1,55 +1,55 @@

@app.route('/puppet/default', methods=['GET', 'POST'])
@cortex.lib.user.login_required
def puppet_enc_default():

"""Handles the Puppet ENC Default Classes page"""

# Check user permissions
if not does_user_have_permission("puppet.default_classes.view"):
abort(403)

# Get the default YAML out of the kv table
curd = g.db.cursor(mysql.cursors.DictCursor)
curd.execute("SELECT `value` FROM `kv_settings` WHERE `key` = 'puppet.enc.default'")
result = curd.fetchone()
if result == None:
classes = "# Classes to include on all nodes using the default settings can be entered

here\n"
else:
classes = result['value']

# On any GET request, just display the information
if request.method == 'GET':
return render_template('puppet/default.html', classes=classes, active='puppet', title="

Default Classes")

# On any POST request, validate the input and then save
elif request.method == 'POST':
# Check user permissions
if not does_user_have_permission("puppet.default_classes.edit"):
abort(403)

# Extract data from form
classes = request.form.get('classes', '')

# Validate classes YAML
try:

- data = yaml.load(classes)
+ data = yaml.safe_load(classes)

except Exception as e:
flash('Invalid YAML syntax: ' + str(e), 'alert-danger')
return render_template('puppet/default.html', classes=classes, active='puppet', title="

Default Classes")

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

try:
if not data is None:

assert isinstance(data, dict)
except Exception as e:
flash('Invalid YAML syntax: result was not a list of classes, did you forget a trailing

colon? ' + str(e), 'alert-danger')
return render_template('puppet/default.html', classes=classes, active='puppet', title="

Default Classes")

# Get a cursor to the database
# Update the system
curd.execute('REPLACE INTO `kv_settings` (`key`, `value`) VALUES ("puppet.enc.default", %

s)', (classes,))
g.db.commit()

cortex.lib.core.log(__name__, "puppet.defaultconfig.changed", "Puppet default
configuration updated")

# Redirect back
flash('Puppet default settings updated', 'alert-success')

return redirect(url_for('puppet_enc_default'))

F LIMITATIONS

Our evaluation framework uses static security analysis tools, which can generate false positives and
negatives. For instance, complex inter-procedural analyses may not be fully captured, leading to
discrepancies in evaluation results.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we employed a large language model (LLM) solely as a writing assistant
for text refinement. Specifically, the LLM was used to polish grammar, improve clarity, and adjust
wording for better readability.

22


	Introduction
	Method
	Hierarchical Security Knowledge Base Construction
	Cluster-then-Summarize
	Security-Focused Static Program Slicing

	Hierarchical Multi-Faceted Retrieval
	Proactive Multi-Faceted Analysis
	Hierarchical Retrieval Process.


	Experiments
	Experiment Setup
	Main Results
	In-depth Analysis Results
	Ablation Study on Security Knowledge Base Construction
	Impact Analysis of Hierarchical Retrieval
	Ablation Study on Multi-Faceted Retrieval

	Impact Analysis of Summarization LLMs
	Other Analysis

	Related Work
	Conclusion
	Data Collection
	Additional Experiments
	Analysis of Average Method Improvements
	Impact of Program Slicing on Code Length
	Overhead and Time Analysis
	CWE Distribution Analysis and Generalizability

	Method Details
	Cluster-then-Summarize
	Security-Focused Static Program Slicing

	Prompt Template
	Security Guidelines Extraction
	Initial Guideline Summarization
	Intermediate Guideline Summarization

	Proactive Analysis
	Zero-Shot Code Generation
	Vulnerability Cause Analysis

	Security Knowledge Augmented Code Generation

	Vulnerability-Fix Instance Example
	Limitations
	The Use of Large Language Models (LLMs)

