Under review as a conference paper at ICLR 2026

RESCUE: RETRIEVAL AUGMENTED SECURE CODE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances, Large Language Models (LLMs) still generate vulnera-
ble code. Retrieval-Augmented Generation (RAG) has the potential to enhance
LLMs for secure code generation by incorporating external security knowledge.
However, the conventional RAG design struggles with the noise of raw security-
related documents, and existing retrieval methods overlook the significant security
semantics implicitly embedded in task descriptions. To address these issues, we
propose RESCUE, a new RAG framework for secure code generation with two
key innovations. First, we propose a hybrid knowledge base construction method
that combines LLM-assisted cluster-then-summarize distillation with program slic-
ing, producing both high-level security guidelines and concise, security-focused
code examples. Second, we design a hierarchical multi-faceted retrieval to tra-
verse the constructed knowledge base from top to bottom and integrates multiple
security-critical facts at each hierarchical level, ensuring comprehensive and accu-
rate retrieval. We evaluated RESCUE on four benchmarks and compared it with
five state-of-the-art secure code generation methods on six LLMs. The results
demonstrate that RESCUE improves the SecurePass@ 1 metric by an average of
4.8 points, establishing a new state-of-the-art performance for security. Further-
more, we performed in-depth analysis and ablation studies to rigorously validate
the effectiveness of individual components in RESCUE. Our code is available at
https://anonymous.4open.science/r/RESCUE.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable capabilities in coding-related tasks (Peng
et al.,|2023; [Paradis et al.,2025)). However, recent studies have revealed that LLMs often generate
code with vulnerabilities (Pearce et al., 2022; |Fu et al., [2023; Majdinasab et al., 2024). [He & Vechev
(2023)); He et al.| (2024) propose to finetune LLMs with security-aware objects. Yet these methods
require significant effort in data curation and finetuning. Constrained decoding mechanisms can
prevent the model from generating insecure code without finetuning (L1 et al., 2024a; |Fu et al.| [2024).
However, they require the availability of trained security models or human-crafted rules to serve as
oracles or constraints to detect insecure code tokens during decoding. Another line of research (Nazzal
et al.,|2024; Kim et al., |2024) leverages security analysis tools such as Bandit (PyCQA| 2025} and
SpotBugs (SpotBugs| 2025) to provide vulnerability feedback for iterative code refinement. However,
these security analysis tools heavily rely on pre-defined static analysis logic and heuristics to find bugs
and vulnerabilities, which makes them less flexible to incorporate new vulnerabilities and security
knowledge. Furthermore, since these security analysis tools are often used to assess the security of
LLM-generated code in evaluation (Nazzal et al.| 2024; |Kim et al.,|2024)), using them as a verifier to
provide feedback in the code generation stage raises a data leakage concern.

Retrieval-Augmented Generation (RAG) offers a more flexible and training-free solution to incor-
porate security knowledge, such as documentation of secure coding practices and code examples.
Despite some recent investigation (Zhang et al.| 2024; Mukherjee & Hellendoorn, [2025)), existing
methods merely adapt conventional RAG methods to security domains and suffer from two limitations.
First, security-related documents often contain information not relevant to the target coding task,
which would unnecessarily distract the LLM from generating code for the target task. For instance, a
code example that demonstrates a secure coding practice may contain code logic of an example task
that is very different from the target task. Second, the retrievers used by existing methods simply

https://anonymous.4open.science/r/RESCUE

Under review as a conference paper at ICLR 2026

. ﬁ = Task Description
N
: ,-:»%@-:» SN @ b, &
= . Securlty \ Draft Cause APl
Cluster Summarize Knowledge | |
\ r ________
—=] Cluster-Then-Summarize AP Pattern () |
IR
| '\Vuln. Cause m'.
Raw NI Code
Security Y T _||level | |
Dataset = = b nan -nu
Program .
Dependence Slicing %I'Cded Hierarchical
Graph ode Security Knowledge Base

Static Program Slicing

Hierarchical Multi-
Faceted Retrieval

Figure 1: The overview framework of RESCUE.

treat all security-related information as general text and measure similarity between texts as security
relevance. They do not capture security semantics, such as the security requirements implicitly
embedded in a task description. This oversight leads to inaccurate retrieval of security-related data.

To address these limitations, we propose RESCUE, a REtrieval-augmented Secure Code gEneration
framework. RESCUE has two key innovations. First, we propose a hybrid knowledge base construction
method that combines semantic summarization with static program analysis. Given raw security data,
an LLM-assisted cluster-then-summarize pipeline first distills generalizable security knowledge as
high-level guidelines (e.g.,"replace yaml. load () with yaml.safe_load () to prevent code
execution vulnerabilities”). Then, a static program slicing procedure extracts concise, security-focused
code examples by isolating the statements relevant to vulnerability fixes while filtering out unrelated
logic. Second, we develop a hierarchical multi-faceted retrieval method that first performs a coarse-
grained search to identify relevant vulnerability types and secure code examples. In each search
iteration, our method proactively analyzes three security-critical aspects—API pattern, vulnerability
cause analysis, and code—and then fuses these separated faceted search results to obtain precise
security knowledge to guide code generation.

We evaluate RESCUE using five baseline methods and six LLMs across four benchmarks. The results
demonstrate that on average, RESCUE achieves an absolute improvement of 4.8% in SecurePass@1,
establishing a new state-of-the-art for security. Meanwhile, RESCUE retains 98.7% of the original
models’ capability of generating functionally correct code. Furthermore, we have conducted ablation
studies to confirm the contributions of both the security knowledge base construction and the proposed
hierarchical multi-faceted retrieval method to the enhanced performance of RESCUE.

In summary, our contributions are threefold: (1) We propose a novel hybrid distillation method that
synergistically combines LLM-based summarization with program slicing to construct a hierarchical
security knowledge base. (2) We design a security-aware, hierarchical multi-faceted retrieval strategy
that improves relevance by analyzing and fusing multiple security-critical aspects of a task. (3) We
perform a comprehensive evaluation that not only establishes the state-of-the-art performance on four
benchmarks but also provides in-depth analyses that validate our design choices.

2 METHOD

Figure[I]illustrates the overview of RESCUE, which operates in two core stages. In the offline stage,
we construct a hierarchical security knowledge base from raw security data. In the online stage, we
design a hierarchical multi-faceted retrieval method to query relevant security knowledge for a given
coding task. The retrieved security knowledge forms a tailored security context that augments the
prompt of task to steer the LLM toward generating secure code.

2.1 HIERARCHICAL SECURITY KNOWLEDGE BASE CONSTRUCTION

Inspired by how human experts reason about security problems using taxonomies (Igure & Williams|,
2008), we propose modeling security knowledge as a hierarchical structure, with generalizable
knowledge at the high level and concise code examples at the low level. In particular, we leverage the

Under review as a conference paper at ICLR 2026

Common Weakness Enumeration (CWE) (MITRE] 2025)) to categorize vulnerabilities and construct
this hierarchy.

In this work, we focus on constructing a security

knowledge base from historical vulnerabilities and —

their fixes. Figure [2] shows an example. Such se- |, {1 looe Hey 2

curity data are widely available in many security | def puppet_enc_default () :
databases (CVE Program| [2025]; National Institute o - .

of Standards and Technology (NIST), [2024; [GitHub), g;;;g;i;;gli) i

2024). Specifically, we use the training dataset from curd.execute ("SELECT value FROM

SafeCoder (He et al) 2024) as our raw security k;ﬁjii?f{f WHERE key = 'puppet.enc
dataset in this work. This dataset includes 704 vul- result = curd.fetchone ()

nerabilities and their fixes from CVE and GitHub classes = result['value']
projects. Please refer to Appendix [A]for more details.

Validate classes YAML

. . . . — data = yaml.load(classes)
Given the distinct nature of knowledge at different | . gico - yaml.safe load(classes)

levels, we introduce a hybrid method for constructing

the security knowledge base that combines semantic
summarization with static program analysis. At the
high level, an LLM-assisted cluster-then-summarize
pipeline distills generalizable security knowledge. At
the low level, a static program slicing procedure ex-
tracts concise, security-focused code examples by
isolating the statements relevant to vulnerability fixes
while filtering out unrelated logic.

Figure 2: A known vulnerability
and its fix that demonstrates the re-
placement of wunsafe yaml.load()
with yaml.safe_load(), where
red-highlighted code shows vulnerable lines
removed and green-highlighted code indi-
cates security fixes added (See Appendix [E]

2.1.1 CLUSTER-THEN-SUMMARIZE for the complete example).

Raw vulnerability-fix instances are often extensive

and overly specific, making them unsuitable as direct general guidance. Although CWE has provided
concise descriptions, they lack actionable fixing strategies and are too abstract to be effective for
secure code generation. Prior work (He et al., 2024)) demonstrates that using CWE descriptions in
context does not significantly improve the security of LLM-generated code. To address this gap, we
introduce a cluster-then-summarize pipeline to distill generalizable security knowledge from raw
vulnerability-fix instances.

First, we group the raw data instances into clusters based on their associated CWE type. Then, for
each cluster, we apply a bottom-up summarization process using an LLM. This process begins by
summarizing small, fixed-size subsets of instances. Next, it recursively summarizes the outputs from
the previous result until a single, cohesive summary is generated for the entire cluster. This hierarchi-
cal summarization approach allows us to effectively process a large volume of data while maintaining
high-quality, comprehensive outputs. Details of the algorithm are provided in Appendix

Since this preprocessing step is a one-time effort, we adopt GPT-40 in an offline setting. In the end,
this pipeline generates two summaries for each CWE category. First, it produces security guidelines
that define actionable instructions and best practices for preventing specific vulnerabilities as high-
level knowledge. Second, it summarizes vulnerability causes, which capture the root conditions and
failure patterns that lead to the occurrence of the vulnerability. These distilled causes are subsequently
leveraged in the retrieval stage as a key security aspect.

2.1.2 SECURITY-FOCUSED STATIC PROGRAM SLICING

As shown in Figure[2]and Appendix [E] security code examples may contain code logic (e.g., database
connection, web scraping) that is not relevant to a target programming task at inference time. Such
code logic may distract the LLM from generating functional code aligned with the target task.
Therefore, we design a security-focused slicing method to extract concise code examples with only
security-related program statements from raw code examples.

RESCUE begins by building a Program Dependence Graph (PDG) that captures how statements in
the code depend on each other through both data and control dependence. From security patches,
it identifies points of interest by treating deleted statements as indicators of vulnerable code and
added statements as indicators of secure code. Around these points, we perform bidirectional slicing
to extract the relevant context: backward slicing traces the statements that influence the vulnerable

Under review as a conference paper at ICLR 2026

or secure code, while forward slicing captures those that are affected by it. Finally, the sliced
subgraphs from the vulnerable and secure versions are compared and complemented with missing
context, resulting in two parallel, contextually complete code variants. Appendix [C.2]describes this
security-focused slicing algorithm in detail.

2.2 HIERARCHICAL MULTI-FACETED RETRIEVAL

With the knowledge base constructed, the next step is to retrieve the most relevant security knowledge
for a given task. Our design mirrors the hierarchy of knowledge base: retrieval begins at the CWE
level to identify potential relevant vulnerability types, and then narrow down to fine-grained secure
code examples. A key novelty of our method is the multi-faceted retrieval strategy, which conducts
proactive analysis to generate multiple security-aware queries. We will first explain this multi-faceted
design and then describe the hierarchical retrieval process.

2.2.1 PROACTIVE MULTI-FACETED ANALYSIS

Conventional retrieval typically relies on task functional descriptions, which lack explicit security
semantics. In contrast, our method proactively analyzes coding tasks from multiple security-critical
perspectives. This proactive stance is essential because security vulnerabilities often emerge from
subtle implementation details that are not apparent in task descriptions. Specifically, we consider
three facets:

(1) Vulnerability Cause Analysis: To explicitly clarify the security requirements and potential
attacks, we instruct LLMs to analyze the task and explain the underlying vulnerability cause Vi yyse
(see prompt in Appendix [D.2.2).

(2) Draft Code Generation: Since vulnerabilities often manifest during the coding process, we
generate an initial code Cyr,fe using zero-shot prompting (details in Appendix [D.2.T).

(3) API Call Extraction: Since security vulnerabilities frequently stem from API misuse (Zhang
et al., 2018} |Li et al.| [2021}; |[Egele et al.,|2013)), we apply visitor pattern to traverse the abstract syntax
trees of the draft code Cyp,g to identify all API calls.

2.2.2 HIERARCHICAL RETRIEVAL PROCESS.
Building on these proactive multi-faceted analyses, RESCUE begins a two-step retrieval process.

Step 1: CWE-level Retrieval. RESCUE first selects the top-k relevant CWE types using the first two
facets: (1) Vulnerability Cause Analysis: RESCUE uses a widely used dense retriever for RAG,
bge-base-en-v1.5 (Xiao et al.,[2023)), to compute scoreyca between the task’s vulnerability cause and
the indexed vulnerability causes for each CWE type. (2) API Pattern: Since API calls are discrete,
RESCUE computes scoresp; between the draft code’s APIs and all APIs associated with each CWE
type via a sparse retrieval, BM25 (Robertson et al., {1995)).

Then, it fuses these two facet scores using a modified Reciprocal Rank Fusion (RRF) method with
thresholding and rank-based filtering. This approach is motivated by the observation that only certain
scenarios require security-specific guidance. Our modified RRF is defined as:

f

RRF(d) = 3 Vi(d) -

=1

m’ where V;(d) = I(s;(d) > 7;) - I(ri(d) < 10). 1)

Here, s;(d) and r;(d) are the score and rank of item d for facet ¢, 7; is a confidence threshold, and «
is a smoothing parameter.

Step 2: Code-level Retrieval. After narrowing down to relevant CWE types, we proceed to conduct a
fine-grained search at the lower level using the same two facets and an additional third facet, Code
Similarity. We also employ dense retrieval to obtain scorec between the draft code and sliced secure
code examples, capturing similarity at the code level to identify relevant secure patterns.

The scores from all three facets are fused via the same modified RRF to select the most relevant
secure code examples. Finally, we use the security guidelines corresponding to the selected example’s
CWE type, along with the sliced secure code example, to construct prompts for LLMs (detailed in
Appendix [D.3), guiding secure code generation.

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Models We evaluate RESCUE with six LLMs from different model families and with different
model sizes, including GPT-40-mini (OpenAll 2024), Llama3.1-8B-Instruct (Dubey et al., [2024),
Qwen2.5-Coder-7B-Instruct, Qwen2.5-Coder-32B-Instruct (Hui et al., [2024)), DeepSeek-Coder-V2-
Lite-Instruct (Zhu et al.}[2024)), and DeepSeek-V3-0324 (Liu et al.,|2024). For inference, GPT-40-mini
and DeepSeek-V3 are accessed via official APIs, while the other models are locally deployed using
vLLM (Kwon et al.,[2023) on an NVIDIA A800 80GB GPU.

Benchmarks We first evaluate RESCUE on a state-of-the-art security benchmark called Code-
Guard+ (Fu et al., [2024). CodeGuard+ incorporates and extends prior security benchmarks (Pearce
et al.,[2022; |Siddiq & Santos| [2022). It includes 94 security-sensitive coding scenarios, each of which
is accompanied by unit tests and CodeQL checks, enabling the testing of both functional correctness
and security. CodeQL (GitHubl 2025)) is a widely used security analysis tool and has been used to
evaluate the security of LLM-generated code in several studies (He & Vechevl, |[2023; He et al.,2024;
Li et al., 20244).

Furthermore, following prior work (He et al., 2024} [Li et al., [2024a; Zhang et al., [2024), we also
use regular code generation benchmarks to demonstrate that RESCUE does not affect the functional
correctness of LLM-generated code while improving its security. Specifically, we evaluate RESCUE
on HumanEval+ (Liu et al.,|2023a), BigCodeBench (Zhuo et al., 2025), and LiveCodeBench (Jain
et al., 2025)). HumanEval+ is a popular code generation benchmark with 164 basic programming
tasks and extensive test cases. BigCodeBench is a much bigger and more challenging benchmark. It
includes 1140 programming tasks that span across various scenarios, such as data analysis and web
development, and involve complex function calls. LiveCodeBench is specifically designed to address
the data contamination problem in LLM code generation. It includes a continuously updated set of
code generation problems. We use its release-v5 version, collected by January 2025, which has
880 code generation problems.

To reduce the randomness of code generation, we generate 100 samples for each problem on
CodeGuard+ and HumanEval+. Since BigCodeBench and LiveCodeBench have over 10x more
problems than CodeGuard+ and HumanEval+, we generate 10 samples on these two benchmarks.

Metrics Following prior work (Zhang et al., 2024} |He et al., [2024} L1 et al.,[2024a; He & Vechevl,
2023)), we used SecureRate to measure the security of LLM-generated code. SecureRate is defined
as the proportion of generated code samples that pass the security checks, e.g., CodeQL checks
in CodeGuard+ (Fu et al., [2024). For functional correctness measurement, we followed recent
work (Zhuo et al., 2025}, Jain et al.| [2025) to use the unbiased Pass@Fk (Chen et al. [2021).

In the meantime, we observe that SecureRate overlooks the functional correctness of the generated
code. For instance, a code snippet that does nothing will always be secure but is meaningless in
practice. As shown in Table[T] several methods excessively sacrifice functionality to achieve higher
SecureRate scores, which fails to reflect genuine security improvements. Therefore, we introduce a
new metric for security evaluation, SecurePass@Fk, which jointly evaluates functionality and security:

(")

1~k @)
(%)

where n is the total number of generated samples, k represents the number of our observed samples,

and sp means the number of samples that pass both unit tests and CodeQL security checks.

SecurePass@Qk .= E

Problems

Specifically, we report SecureRate, Pass@ 1, and SecurePass @1 on the CodeGuard+ benchmark, since
it includes both security checks and unit tests. For HumanEval+, BigCodeBench, and LiveCodeBench,
we only report Pass@1 since they only include unit tests to check functional correctness.

Baseline Methods We compare our approach with five state-of-the-art baseline methods, each
representing a different strategy for secure code generation: (1) SecCoder (Zhang et al.| [2024)) is a
RAG method that retrieves the most similar secure code example to facilitate in-context learning. To
ensure a fair comparison, we utilize the same retriever bge-base-en-vi.5 (Xiao et al.,2023)) and the raw
security data introduced in Section as retrieval documents. (2) Codexity (Kim et al., [2024) utilizes
an external security tool to identify vulnerabilities for generated code and then iteratively refines

Under review as a conference paper at ICLR 2026

the code based on detection results, up to three iterations. To avoid data leakage, we use another
widely adopted security tool, semgrep (Semgrep), 2025)), instead of CodeQL. (3) SafeCoder (He et al.,
2024) adopts a specialized instruction-tuning method for code security. We use the training dataset
and hyperparameters from the original paper to finetune the LLMs used in our experiments. Given
the limited computational resources, we only fine-tune Qwen2.5-Coder-7B-Instruct, Llama3.1-8B-
Instruct, and Deepseek-Coder-V2-Lite-Instruct, excluding larger models and closed-source models.
(4) CoSec (Li et al., 2024a)) manipulates the decoding process by controlling the output token logits
based on a small trained security-specialized model. For implementation, we use the same training
dataset as in the original paper. Since this method requires training a smaller model that uses the
same tokenizer to perform its decoding, we select Qwen2.5-Coder-0.5B-Instruct as the small security-
specialized model for Qwen2.5-Coder-7B and 32B and Llama3.1-1B-Instruct for Llama3.1-8B.
Other models are either closed-source or lack a smaller version from the same model family. (5)
INDICT (Le et al.} 2024) is a multi-agent debate framework with external security tools to generate
both security and helpfulness critiques for iterative code refinement. Following the original setup, we
set the iteration round to three and use all four tools for code generation.

Other Implementation Details We use t ree—sitter (Brunsfeld & Github) to implement static
program analysis, slicing, and API extraction. To control the length of sliced code, our method
performs 2-hop program slicing. During generation, we set the temperature to 0.2. To balance the
precision and recall, we use a top-k value of 4. To only search security knowledge for security-relevant
problems, the thresholds for the facets of API, vulnerability cause, and code are set to 4.0, 0.75, and
0.65, respectively. We follow prior work (Cormack et al.,[2009) to set the RRF parameter « to 60.

3.2 MAIN RESULTS

As shown in Table [I, RESCUE consistently outperforms all existing methods in terms of Se-
curePass @ 1, the metric that balances security and functional correctness of generated code. Specif-
ically, RESCUE achieves 4.8% absolute improvement on average compared with the second-best
baseline. We also observed that several existing approaches sacrifice functional correctness for
security. For example, though INDICT (Le et al}2024)) achieves a higher SecureRate than RESCUE,
it has the lowest Pass@ 1 among all methods. Furthermore, when evaluated on the three benchmarks
on functional correctness, RESCUE achieves comparable performance compared with the original
models. This indicates that RESCUE does not severely damage the functional correctness of gen-
erated code while improving its security. Appendix [B.T|provides a more direct comparison of the
performance improvements achieved by each method.

In contrast, another RAG-based method, SecCoder (Zhang et al.,[2024), does not significantly improve
SecurePass@1 or SecureRate. This suggests that simply applying conventional RAG for secure code
generation cannot fully exert the security knowledge. Section[3.3]shows the ablation study results of
the hierarchical knowledge base and retrieval method in RESCUE.

3.3 IN-DEPTH ANALYSIS RESULTS

To thoroughly analyze each component of RESCUE, we conducted extensive experiments on the
CodeGuard+ benchmark using three models: Deepseek-Coder-V2-Lite, Qwen2.5-Coder-7B, and
Llama3.1-8B. We selected these models because they represent three widely adopted model families
and have demonstrated strong performance when integrated with our proposed method.

3.3.1 ABLATION STUDY ON SECURITY KNOWLEDGE BASE CONSTRUCTION

To better understand the contributions of the security knowledge base construction components,
specifically security guideline extraction and program slicing, we performed ablation studies using
five variants: (1) w/o construction: Does not utilize the constructed security knowledge base and
instead directly employs the raw security data. (2) w/o guideline: Removes the security guidelines
from the constructed security knowledge base, providing only relevant secure code examples to the
model. Since sliced code examples are used in both the retrieval and generation stages, we designed
three additional detailed variants for further investigation: (3) w/o slicing: Completely removes
the slicing component, using original (unsliced) code in both retrieval and generation stages. (4)
W/0 pSretrieval: Replaces sliced code with original code only during the retrieval stage. (5) w/o
DSgeneration: Replaces sliced code with original code only during the generation stage. Table@]shows
the experimental results, from which we derive the following key observations:

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across six LLMs and four benchmarks: CodeGuard+, HumanEval+
(HE+), BigCodeBench (BCB), and LiveCodeBench (LCB). For each model, bold indicates the best
score, and underline indicates the second-best result. Notably, SafeCoder requires fine-tuning the
LLMs and CoSec requires training a smaller model with the same tokenizer, therefore, we evaluate
both methods on applicable open-source LLMs.

CodeGuard+ HE+ BCB LCB
SP@1 SR Pass@]l Pass@l Pass@l Pass@]

LLMalone 59.7 65.1 86.8 73.0 39.5 24.4
SecCoder 55,6 63.7 82.9 64.7 40.9 23.9

Model Method

. Codexity 584 703 801 704 352 244
DeepSeck-Coder-V2-Lite |\ ryyor 495 723 625 579 324 234
SafeCoder 603 686 817 612 148 134
RESCUE 65.6 728 87.9 70.4 39.1 25.2
LLMalone 512 613 833 771 452 245
SecCoder 549 656 798 746 423 242
Codexity 514 681 777 751 449 248
Qwen2.5-Coder-7B INDICT 419 841 485 713 338 224
CoSec 528 646 828 680 190 233
SafeCoder 565 740 751 617 430 196

RESCUE 64.8 72.1 86.2 77.8 429 24.3

LLM alone 59.3 66.0 88.3 80.0 54.1 22.3
SecCoder 58.1 66.6 84.7 82.9 539 25.2

Codexity 571 716 807 795 534 220
Qwen2.5-Coder-32B INDICT 404 844 481 659 338 209
CoSec 419 549 651 780 527 234

RESCUE 65.1 815 80.6 80.8 49.9 271
LLM alone 53.7 63.7 82.8 58.8 36.0 15.0

SecCoder 484 60.6 75.4 51.0 35.6 14.9
Codexity 50.8 68.5 73.7 57.7 37.3 14.7
Llama3.1-8B INDICT 16.0 79.8 19.8 15.2 8.8 74
CoSec 539 622 78.3 55.7 4.9 5.8
SafeCoder 524 694 72.4 54.0 314 11.0
RESCUE 56.2 69.7 77.6 54.6 31.8 14.7
LLM alone 582 68.9 80.7 83.6 54.6 37.6
SecCoder 57.8 712 79.7 82.6 54.0 374
GPT-40-mini Codexity 555 77.0 72.5 83.3 52.6 38.1
INDICT 31.1 855 36.8 51.2 26.0 35.7
RESCUE 63.0 77.6 71.3 81.3 45.2 37.5

LLMalone 646 714 87.4 72.9 61.5 64.3
SecCoder 64.7 748 83.4 79.6 61.7 63.6
DeepSeek-V3-0324 Codexity 635 714 80.0 74.3 60.9 64.1
INDICT 29.6 85.6 324 68.3 31.9 63.6
RESCUE 69.7 79.1 835 89.1 60.2 64.3

Table 2: Results of ablation studies on security knowledge base construction, evaluating five variants
of the security knowledge base with three models on the CodeGuard+ benchmark across four metrics:
number of input tokens (#Token), SecurePass@1 (SP@1), SecureRate (SR), and Pass@1 (P@1). The

bold number indicates the best performance, and “—” represents dismissal.
Setting DSC-V2-Lite-Instruct Qwen2.5-Coder-7B-Instruct Llama3.1-8B-Instruct
#Token] SP@1 SR P@1 #Token] SP@1 SR P@1 #Token] SP@1 SR P@l
RESCUE 503 656 728 879 397 648 72.1 86.2 428 562 69.7 177.6
w/o construction — 556 619 81.0 — 539 63.6 754 — 453 588 733
w/o guideline — 633 72.1 86.2 — 639 722 864 — 514 653 769
w/o slicing 661 61.0 70.5 80.6 506 626 713 83.1 610 527 68.8 743
W/0 PSgeneration 753 648 719 86.5 595 66.1 713 87.6 698 535 67.0 754
W/O PSretrieval 435 63.1 731 834 358 64.8 714 86.6 359 540 713 765

Raw security data alone does not improve performance; constructing a security knowledge
base is essential. Comparing RESCUE with the w/o construction variant, we observe a significant
performance drop in all metrics when using raw security data directly. This is because irrelevant code
logic distracts the models during code generation and the noise of irrelevance also leads to inaccurate
retrieval results. Thus, constructing a refined security knowledge base is crucial.

Security guidelines enhance security performance. The results of the w/o guideline variant show a
decrease in SP@ 1 compared to RESCUE. For instance, the SP@ 1 metric in Llama3.1-8B-Instruct
drops by 4.8 points, highlighting the substantial contribution of security guidelines.

Under review as a conference paper at ICLR 2026

Program slicing improves security performance and reduces token costs. The results of the
w/o slicing variant demonstrate the effectiveness of program slicing in enhancing performance.
Additionally, finer-grained ablation results from the w/o ps;ciricval and W/0 pSgeneration variants
reveal that program slicing is beneficial in both the retrieval and generation stages. Specifically,
slicing helps retrieve more relevant security knowledge and provides concise yet informative code
examples during generation. Finally, we note that applying sliced code during generation substantially
reduces the number of input tokens. Additional analysis comparing lines of code before and after
program slicing is provided in the Appendix [B.2}

3.3.2 IMPACT ANALYSIS OF HIERARCHICAL RETRIEVAL

Llama Deepseek Qwen
56.6
64.5
__56.4 _ 644 —
g 2 X 64.0
— 56.24 — 62 =] Without Hierarchy
® © © 63.5
& 56.0 4 & &
. . 60 1) : 63.0 1
55.8 Without Hierarchy Without Hierarchy
T T T T T T T T T T T T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of Selected Nodes (k) Number of Selected Nodes (k) Number of Selected Nodes (k)

Figure 3: Comparison of SecurePass@ 1(SP@1) performance across hierarchical and non-hierarchical
settings for three LLMs, DeepSeek-Coder-V2-Lite (Deepseek), Llama3.1-8B-Instruct (Llama),
Qwen2.5-Coder-7B (Qwen), at varying numbers of selected CWE types (k).

To analyze the effectiveness of our hierarchical design, we conducted an impact analysis by varying
the the parameter £ in top-k relevant CWE types from 1 to 5 and comparing against non-hierarchical
baselines, as shown in Figure 3} The peak results of hierarchy consistently outperform the non-
hierarchical setting across all LLMs. Interestingly, the performance exhibits an inverted U-shaped
trend as k increases: smaller k values may restrict the model to local optima, while larger &k values
introduce noise, diminishing performance. Based on these insights, we select £ = 4 as the optimal
configuration for all experiments.

3.3.3 ABLATION STUDY ON MULTI-FACETED RETRIEVAL

Table 3: Results of ablation studies on multi-faceted retrieval, evaluating seven combinations of
API pattern (API), vulnerability cause analysis (VA), and code across three different LLMs on the

CodeGuard+ benchmark. In the table, “v"” indicates the adoption of a facet, while “— represents its
dismissal. The bold number indicates the best performance.
Facet DeepSeek-Coder-V2-Lite Llama3.1-8B Qwen2.5-Coder-7B
API VA Code | SP@1 SecurityRate Pass@1 | SP@1 SecurityRate Pass@1 | SP@1 SecurityRate Pass@]1
v v v 65.6 72.8 87.9 56.2 69.7 77.6 64.8 72.1 86.2
v — v 62.7 71.5 84.8 534 67.7 77.0 63.8 70.6 86.2
v v — 64.1 73.5 84.5 54.8 68.0 77.0 64.6 71.5 86.1
— v v 61.3 72.4 83.0 51.7 68.4 75.4 65.0 72.3 853
v — — 61.4 71.7 82.9 52.1 67.4 76.6 62.2 69.9 84.9
— v — 63.2 71.9 86.2 53.6 70.0 73.2 66.2 72.5 86.2
— — v 57.1 68.3 82.1 51.1 62.5 81.2 61.7 69.1 84.8

To systematically evaluate the contribution of each facet to retrieval performance, we conducted an
ablation study covering all seven possible combinations of the three facets under consideration. We
make two key observations based on the results in Table [3}

Multi-faceted retrieval mostly outperforms single-facet approaches. Overall, single-facet retrieval
methods show limited and inconsistent effectiveness. In contrast, our multi-faceted retrieval effectively
leverages complementary strengths from individual facets, outperforming each single-facet method.
Notably, combining all three facets mostly achieves the best overall performance across nearly all
scenarios, highlighting the advantage of integrating diverse security-related facets.

Our proposed API pattern and vulnerability cause facets significantly outperform the code
similarity facet. The code-only facet consistently lags behind other facet combinations, reinforcing
that dense retrieval approaches based solely on code similarity are insufficient. Incorporating API

Under review as a conference paper at ICLR 2026

pattern and vulnerability cause facets substantially enhances retrieval accuracy, demonstrating their
effectiveness in capturing meaningful semantic context beyond mere syntactic similarity.

3.4 IMPACT ANALYSIS OF SUMMARIZATION LLMS

Since our pipeline employs GPT-4o for the summa- Taple 4: Impact of different summarization
rization step, one potential concern is whether the and generation model combinations. The im-

observed improvements stem merely from relying provements hold across models, showing that
on a powerful black-box model. To address this, we gains stem from the pipeline rather than re-

conduct an impact analysis by replacing GPT-40 with {jance on GPT-4o.
three open-source summarization models: Qwen2.5- Summarization Model Generation Model SP@1 SR P@1

Coder-7B, Llama3.1-8B, and DeepSeek-V3. In this Qwen25-Coder-7B 607 720 833
. Qwen2.5-Coder-7B Llama3.1-8B 569 69.2 789
setting, the summarization model is used to distill DeepSeck-V3 699 800 83.0
security knowledge, while the generation model is Qwen23-Coder- 7B 556 69.5 79.8
. . . Llama3.1-8B Llama3.1-8B 51.2 66.7 759
applied during the online stage for secure code gener- DeepSeek-V3 715 792 852
ation. As shown in Table[4] the performance gains Qwen2.5-Coder- 7B 592 713 803
0 . -V3 L1- . . .
do not depend on GPT-4o; they consistently arise "5V A PRSI S

from our pipeline design. Even with smaller open-
source models, the framework achieves comparable improvements.

3.5 OTHER ANALYSIS

We provide a statistical analysis of the CWE type distribution in Appendix [B.4] which demonstrates
the generalizability of our method, as only half of the CWE types appear in the training data.
In addition, we present a step-by-step breakdown of the computational overhead of RESCUE in
Appendix [B.3] While RESCUE introduces some additional time cost to achieve the improvements,
the overhead remains acceptable and can be further reduced through engineering optimizations.

4 RELATED WORK

Retrieval-Augmented Code Generation Recent research has investigated RAG to enhance code
generation (Yang et al., [2025} |Lu et al.l [2022; |Gao et al., [2024; [Tan et al., [2025). Several studies
focus on repository-level retrieval for code generation (Wu et al., [2024; Zhang et al., 2023)). Others
introduce external API documentation to aid generation involving unfamiliar APIs (Zan et al., 2022}
Zhou et al., [2023}; [Liu et al., [2023b} |Gu et al., [2025)). Additionally, retrieval of functionally similar
examples has been used to enhance functional correctness (Parvez et al., 2021} |Su et al., [2024; |Nashid
et al.| 2023)). In contrast, our method specifically targets retrieval of security knowledge to improve
the security of generated code without compromising functional correctness.

Secure Code Generation Existing studies have identified significant security concerns in LLM-
generated code (Hou et al., 2024} |GitHub| [2024; |Cursor}, 2024)). To mitigate these, recent approaches
include fine-tuning models on security-specific datasets or tasks (He & Vechev, 2023} |He et al.,
2024} Hajipour et al 2024; |Li et al 2024b)), and training-free approaches such as prompt engi-
neering (Tony et al.,|2024), security analysis tool integration (Kim et al.,|2024; |[Nazzal et al., 2024)),
agent (Le et al.,|2024)), and RAG frameworks (Mukherjee & Hellendoorn, 2025} |Zhang et al.| [2024)).
Specifically, SecCoder (Zhang et al.,[2024) retrieves secure code examples with dense retriever and
SOSecure (Mukherjee & Hellendoorn, [2025) retrieves StackOverflow content with BM25. Our work
automatically constructs a hierarchical security knowledge base from raw security data and proposes
a specially designed retrieval method.

5 CONCLUSION

This work introduces RESCUE, a novel retrieval-augmented secure code generation framework that
adopts a hybrid distillation method to construct a hierarchical security knowledge base and employs a
hierarchical multi-faceted retrieval method. Compared to five state-of-the-art methods across four
benchmarks and six models, RESCUE demonstrates substantial improvements in security without
compromising functional correctness. Further in-depth analyses highlight the necessity of knowledge
base construction and validate the effectiveness of our proposed hybrid distillation method. Additional
thorough analyses confirm the advantages of our hierarchical multi-faceted retrieval design.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. The primary goal of this research is to enhance the
security of code generated by Large Language Models (LLMs), thereby reducing the prevalence of
software vulnerabilities. We believe this work has a positive ethical impact by contributing to more
secure and reliable software development practices.

The dataset used to construct our security knowledge base is derived from publicly available sources
and consists of known vulnerabilities and their fixes from CVEs and public GitHub projects. Our
research does not involve human subjects or the use of personally identifiable or private data.

While any tool related to security could have potential for dual-use, our framework, RESCUE, is
designed for a defensive purpose: to guide LLMs in generating secure code by leveraging knowledge
of existing fixes. The methodology focuses on abstracting and applying secure coding patterns rather
than discovering new exploits. We use publicly accessible LLMs and open-source tools, and our
contributions aim to mitigate existing security risks in Al-assisted programming.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To facilitate this, we provide
comprehensive resources and detailed descriptions throughout the paper. Our full implementation
of the RESCUE framework is available at the anonymous repository link provided in the abstract:
https://anonymous.4open.science/r/RESCUE.

REFERENCES

Max Brunsfeld and Github. Tree-sitter: An incremental parsing system for programming tools. URL
https://tree-sitter.github.io/tree-sitter/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In Proceedings of the 32nd international ACM
SIGIR conference on Research and development in information retrieval, pp. 758-759, 2009.

Cursor. Cursor, 2024. URL https://www.cursor.com/L Accessed: 2024-12-23.

CVE Program. Cve - common vulnerabilities and exposures, 2025. URL https://www.cve,
org/. Accessed: 2025-05-14.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study of
cryptographic misuse in android applications. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS *13, pp. 73-84, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN 9781450324779. doi: 10.1145/2508859.2516693.
URL https://doi.org/10.1145/2508859.2516693.

Yanjun Fu, Ethan Baker, Yu Ding, and Yizheng Chen. Constrained decoding for secure code
generation. arXiv preprint arXiv:2405.00218, 2024.

Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, Jiaxin Yu, and Jinfu Chen.
Security weaknesses of copilot generated code in github. arXiv preprint arXiv:2310.02059, 2023.

Xinyu Gao, Yun Xiong, Deze Wang, Zhenhan Guan, Zejian Shi, Haofen Wang, and Shanshan Li.
Preference-guided refactored tuning for retrieval augmented code generation. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering, ASE *24, pp.
65-77, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712487.
doi: 10.1145/3691620.3694987. URL https://doi.org/10.1145/3691620.3694987.

10

https://anonymous.4open.science/r/RESCUE
https://tree-sitter.github.io/tree-sitter/
https://www.cursor.com/
https://www.cve.org/
https://www.cve.org/
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/3691620.3694987

Under review as a conference paper at ICLR 2026

GitHub. Github security advisories, 2024. URL https://github.com/advisories. Ac-
cessed: 2025-05-14.

GitHub. Github copilot, 2024. URL https://github.com/features/copilot/. Ac-
cessed: 2024-12-23.

GitHub. Codeql. https://codegl.github.com/, 2025. Accessed: 2025-02-14.

Wenchao Gu, Juntao Chen, Yanlin Wang, Tianyue Jiang, Xingzhe Li, Mingwei Liu, Xilin Liu, Yuchi
Ma, and Zibin Zheng. What to retrieve for effective retrieval-augmented code generation? an
empirical study and beyond, 2025. URL https://arxiv.org/abs/2503.20589,

Hossein Hajipour, Lea Schonherr, Thorsten Holz, and Mario Fritz. Hexacoder: Secure code generation
via oracle-guided synthetic training data. arXiv preprint arXiv:2409.06446, 2024.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial
testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1865-1879, 2023.

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin Vechev. Instruction tuning for secure
code generation. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
18043-18062. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/v235/
he24k.html.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic
literature review. ACM Trans. Softw. Eng. Methodol., 33(8), December 2024. ISSN 1049-331X.
doi: 10.1145/3695988. URL https://doi.org/10.1145/3695988.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Vinay M. Igure and Ronald D. Williams. Taxonomies of attacks and vulnerabilities in computer
systems. IEEE Communications Surveys & Tutorials, 10(1):6—19, 2008. doi: 10.1109/COMST.
2008.4483667.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
uation of large language models for code. In The Thirteenth International Conference on Learning
Representations, 2025. URL |https://openreview.net/forum?id=chfJJYC3iLl

Sung Yong Kim, Zhiyu Fan, Yannic Noller, and Abhik Roychoudhury. Codexity: Secure ai-assisted
code generation. arXiv preprint arXiv:2405.03927, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hung Le, Doyen Sahoo, Yingbo Zhou, Caiming Xiong, and Silvio Savarese. Indict: Code generation
with internal dialogues of critiques for both security and helpfulness. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Dong Li, Meng Yan, Yaosheng Zhang, Zhongxin Liu, Chao Liu, Xiaohong Zhang, Ting Chen,
and David Lo. Cosec: On-the-fly security hardening of code llms via supervised co-decoding.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 1428—-1439, Vienna Austria, September 2024a. ACM. ISBN 9798400706127. doi:
10.1145/3650212.3680371.

11

https://github.com/advisories
https://github.com/features/copilot/
https://codeql.github.com/
https://arxiv.org/abs/2503.20589
https://proceedings.mlr.press/v235/he24k.html
https://proceedings.mlr.press/v235/he24k.html
https://doi.org/10.1145/3695988
https://openreview.net/forum?id=chfJJYC3iL

Under review as a conference paper at ICLR 2026

Junjie Li, Fazle Rabbi, Cheng Cheng, Aseem Sangalay, Yuan Tian, and Jinqiu Yang. An ex-
ploratory study on fine-tuning large language models for secure code generation. arXiv preprint
arXiv:2408.09078, 2024b.

Xia Li, Jiajun Jiang, Samuel Benton, Yingfei Xiong, and Lingming Zhang. A large-scale study on
api misuses in the wild. In 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), pp. 241-252, 2021. doi: 10.1109/ICST49551.2021.00034.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558-21572, 2023a.

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du, Ying Wang, and Xin Peng. Codegen4libs: A
two-stage approach for library-oriented code generation. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 434-445, 2023b. doi: 10.1109/
ASES56229.2023.00159.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. ReACC:
A retrieval-augmented code completion framework. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6227-6240, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.431. URL
https://aclanthology.org/2022.acl-1long.431/.

Vahid Majdinasab, Michael Joshua Bishop, Shawn Rasheed, Arghavan Moradidakhel, Amjed Tahir,
and Foutse Khomh. Assessing the security of github copilot’s generated code-a targeted replication
study. In 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 435-444. TIEEE, 2024.

MITRE. Common weakness enumeration (cwe), 2025. URL https://cwe.mitre.org/l
Accessed: 2025-05-14.

Manisha Mukherjee and Vincent J Hellendoorn. Sosecure: Safer code generation with rag and
stackoverflow discussions. arXiv preprint arXiv:2503.13654, 2025.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 2450-2462. IEEE, 2023.

National Institute of Standards and Technology (NIST). National vulnerability database (nvd), 2024.
URL https://nvd.nist.gov/L Accessed: 2025-05-14.

Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, and NhatHai Phan. Promsec: Prompt opti-
mization for secure generation of functional source code with large language models (1lms). In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security,
pp- 22662280, 2024.

OpenAl Gpt-40 mini model card, 2024. URL |https://openai.com/index/
gpt—-4o-mini-advancing-cost—-efficient—-intelligence/. Accessed: 2025-02-
12.

Elise Paradis, Kate Grey, Quinn Madison, Daye Nam, Andrew Macvean, Vahid Meimand, Nan
Zhang, Ben Ferrari-Church, and Satish Chandra. How much does ai impact development speed?
an enterprise-based randomized controlled trial. In 2025 IEEE/ACM 47th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 618-629. IEEE,
2025.

12

https://aclanthology.org/2022.acl-long.431/
https://cwe.mitre.org/
https://nvd.nist.gov/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Under review as a conference paper at ICLR 2026

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Retrieval
augmented code generation and summarization. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2719-2734, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.232. URL
https://aclanthology.org/2021.findings—-emnlp.232/l

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE
Symposium on Security and Privacy (SP), pp. 754-768. IEEE, 2022.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot. arXiv preprint arXiv:2302.06590, 2023.

PyCQA. bandit. https://github.com/PyCQA/bandit} 2025.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
et al. Okapi at TREC-3. British Library Research and Development Department, 1995.

Inc. Semgrep. Semgrep: Code scanning at ludicrous speed. https://semgrep.dev, 2025.

Mohammed Latif Siddiq and Joanna CS Santos. Securityeval dataset: mining vulnerability examples
to evaluate machine learning-based code generation techniques. In Proceedings of the 1st Inter-
national Workshop on Mining Software Repositories Applications for Privacy and Security, pp.
29-33,2022.

SpotBugs. Spotbugs: Find bugs in java programs, 2025. URL https://spotbugs.githubl
io/l

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao
Yu. EvoR: Evolving retrieval for code generation. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 2538-2554, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.143. URL |https://aclanthology.org/2024,
findings—-emnlp.143/.

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing Li, Haotian Zhang, and Yuqun Zhang.
Prompt-based code completion via multi-retrieval augmented generation. ACM Trans. Softw. Eng.
Methodol., March 2025. ISSN 1049-331X. doi: 10.1145/3725812. URL https://doi.org/
10.1145/3725812| Just Accepted.

Catherine Tony, Nicolds E Diaz Ferreyra, Markus Mutas, Salem Dhiff, and Riccardo Scandariato.
Prompting techniques for secure code generation: A systematic investigation. arXiv preprint
arXiv:2407.07064, 2024.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xiaofei Ma. Repoformer:
Selective retrieval for repository-level code completion. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=moyG540kr .

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li, Xing Hu, Kui Liu, and Xin Xia. An empirical
study of retrieval-augmented code generation: Challenges and opportunities. ACM Trans. Softw.
Eng. Methodol., February 2025. ISSN 1049-331X. doi: 10.1145/3717061. URL |https
//doi.org/10.1145/3717061. Just Accepted.

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Wang Yongji, and Jian-Guang Lou. When language
model meets private library. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2022, pp. 277-288, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022 findings-emnlp.21. URL https://aclanthology.org/2022.findings—emnlp,
21/.

13

https://aclanthology.org/2021.findings-emnlp.232/
https://github.com/PyCQA/bandit
https://semgrep.dev
https://spotbugs.github.io/
https://spotbugs.github.io/
https://aclanthology.org/2024.findings-emnlp.143/
https://aclanthology.org/2024.findings-emnlp.143/
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://openreview.net/forum?id=moyG54Okrj
https://doi.org/10.1145/3717061
https://doi.org/10.1145/3717061
https://aclanthology.org/2022.findings-emnlp.21/
https://aclanthology.org/2022.findings-emnlp.21/

Under review as a conference paper at ICLR 2026

Boyu Zhang, Tianyu Du, Junkai Tong, Xuhong Zhang, Kingsum Chow, Sheng Cheng, Xun Wang, and
Jianwei Yin. Seccoder: Towards generalizable and robust secure code generation. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 14557-14571,
2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
generation. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URLhttps://openreview.net/forum?id=q09vTY1Cghl

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung Kim. Are
code examples on an online q&a forum reliable? a study of api misuse on stack overflow. In
Proceedings of the 40th International Conference on Software Engineering, ICSE *18, pp. 886-896,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356381. doi:
10.1145/3180155.3180260. URL https://doi.org/10.1145/3180155.3180260.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=2TCxT2t2Ru.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTj11LO.

A DATA COLLECTION

Our method adopts a large-scale security training dataset collected by SafeCoder (He et al., |2024)).
We select Python, C, and C++ instances, removing empty and duplicate instances and resulting in
a raw security dataset D containing 372 instances for Python and 332 instances for C/C++. Each
instance includes vulnerable code, secure code, and the CWE type.

B ADDITIONAL EXPERIMENTS

B.1 ANALYSIS OF AVERAGE METHOD IMPROVEMENTS

Table 5: Average improvement (A) of different methods relative to their respective LLM Alone base-
lines. The improvements are averaged across applicable LLMs for four benchmarks: CodeGuard+,
HumanEval+ (HE+), BigCodeBench (BCB), and LiveCodeBench (LCB). All values represent the
mean change in percentage points.

CodeGuard+ (A) HE+ (A) BCB(A) LCB(AQ)

Method

SP@1 SR Pass@1 Pass@1 Pass@1 Pass@1
SecCoder -1.20 1.02 -3.90 -1.67 -0.42 0.18
Codexity -1.67 6.08 -7.43 -0.85 -1.10 -0.00
CoSec -5.20 -3.10 -9.40 -4.73 -19.57 -3.10
INDICT -23.03 15.88 -43.53 -18.40 -20.70 -2.45
SafeCoder 1.53 7.30 -7.90 -8.67 -10.50 -6.63
RESCUE 6.28 9.40 -2.70 1.43 -3.63 0.83

14

https://openreview.net/forum?id=q09vTY1Cqh
https://doi.org/10.1145/3180155.3180260
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=YrycTjllL0

Under review as a conference paper at ICLR 2026

B.2 IMPACT OF PROGRAM SLICING ON CODE LENGTH

Table 6: Average Lines of Code (LoC) for Vulnerable and Secure Samples Before and After Program
Slicing. On average, program slicing reduced code lines by 81.5%, removing lines unrelated to the
security aspects under consideration.

Category Before Slicing (Avg. LoC) After Slicing (Avg. LoC)
Vulnerable Code Samples 89.5 16.1
Secure Code Samples 91.3 17.3

We first performed a statistical analysis of the average number of lines of code in the raw security
dataset. The findings indicate that the average length of the raw vulnerable and secure code samples
was 89.5 and 91.3 lines, respectively. In contrast, after program slicing, the average lengths of the
corresponding code samples were reduced to 16.1 and 17.3 lines. This reduction suggests that, on
average, 81.5% of the raw code lines are unrelated to the security aspects under consideration.

B.3 OVERHEAD AND TIME ANALYSIS

To evaluate the computational overhead of RESCUE, we conducted experiments on the CodeGuard+
benchmark under the same settings as described in the main paper. Specifically, we tested three
models: Qwen2.5-Coder-7B-Instruct, Llama-3.1-8B-Instruct, and DeepSeek-V3. The first two were
deployed locally using the same setup as in the paper, while DeepSeek-V3 was accessed via API. For
a fair comparison, we disabled all multiprocessing operations and executed the pipeline sequentially.
We then performed a fine-grained breakdown of the execution time at each step of the RESCUE online
generation process.

Table 7: Average execution time (in seconds) for each step in the RESCUE online generation process.

Model Draft Code Vulnerability = CWE-Level Code-Level Augmented
Generation Cause Analysis Retrieval Retrieval Generation
Qwen2.5-Coder-7B 2.8412 2.7365 0.0191 2.5892 3.2097
Llama-3.1-8B 3.5318 1.4546 0.0181 2.4340 3.5409
DeepSeek-V3 12.7992 4.3321 0.0197 2.6314 10.9561

The results, shown in Table[/| indicate that most of the additional overhead arises from the Draft
Generation and Vulnerability Cause Analysis steps, which involve multiple LLM calls. In contrast,
hierarchical retrieval is relatively lightweight: both CWE-level and code-level retrieval contribute
only marginal time costs.

Overall, the overhead introduced by RESCUE is acceptable and can be further reduced. For instance,
concurrent LLM calls can significantly mitigate the cost of generation and analysis steps, while
efficient engineering optimizations may further improve system performance. These findings suggest
that our method is scalable, and that retrieval overhead will remain manageable even on larger
datasets.

B.4 CWE DISTRIBUTION ANALYSIS AND GENERALIZABILITY

To further demonstrate the generalizability of our method, we analyze the distribution of CWE types
in both the training set and the evaluation benchmark. Table [§| summarizes the number of CWE types
covered by each programming language. Notably, the benchmark contains a wider variety of CWE
types than the training data, including many categories that do not appear during training.

As shown in Table[§] the CWE categories in the benchmark exceed those in the training data. This
demonstrates that our method is not limited to vulnerabilities explicitly included in the knowledge
base, but can generalize to unseen types.

15

Under review as a conference paper at ICLR 2026

Table 8: Distribution of CWE types in training set and benchmark. The benchmark contains a broader
coverage of CWE types, highlighting the generalization capability of our method.

Programming Language #CWE Types # CWE Types # Unique CWE Types

in Training Set in Benchmark in Benchmark
Python 9 23 15
C/C++ 12 17 7

C METHOD DETAILS

C.1 CLUSTER-THEN-SUMMARIZE

This appendix provides the details of the cluster-then-summarize pipeline for constructing compact
security knowledge snippets from large collections of raw instances. The pipeline consists of two
major components: (1) grouping raw instances into clusters and (2) recursively summarizing them in
a bottom-up manner until a single consolidated snippet is obtained for each cluster.

1. Cluster formation. Given a dataset D of raw instances, we first partition D into clusters
C = {C1,Cs,...,Cy} based on a predefined taxonomy or grouping criterion. Each cluster C;
gathers instances that share similar patterns, making it possible to produce more coherent summaries.

2. Subset partitioning. Each cluster C; is further divided into fixed-size subsets of at most b
elements, where b is a tunable parameter (default: 10). This step ensures that each subset can be fully
processed within the input context of the summarizer model.

3. First-level summarization. For every subset B within a cluster, the summarizer model M is
applied to generate a first-level snippet that condenses the main patterns and knowledge contained in
the subset. Collecting these results yields the first-level snippet set S} = {s},si, ...} for cluster C;.

4. Recursive hierarchical summarization. At each subsequent level j > 2, the set of snippets

from the previous level Sf s again partitioned into batches of size up to b. The summarizer model
is then applied to each batch to generate a higher-level snippet. Formally,

S+ |J M.

batch BCS? ™!

This process repeats until the number of snippets reduces to one (or a very small set), which becomes
the final consolidated snippet for cluster C;.

5. Output. The final output of the pipeline is a set of security knowledge snippets {k1, ks, ..., km },
one for each cluster. These snippets serve as compact and generalizable abstractions distilled from
raw instances.

The prompt for security guideline and vulnerability cause can be found at Appendix and

Appendix [D.2.7]
C.2 SECURITY-FOCUSED STATIC PROGRAM SLICING

RESCUE begins by constructing a Program Dependence Graph (PDG) from a given code example,
defined as

PDG = (N, E),
where NV is the set of program statements and E is the set of edges comprising data dependencies Eq4q
and control dependencies E.4. Specifically, E44 captures relationships where a statement consumes

data produced by another, while E.; models control-flow relationships, indicating that the execution
of a statement depends on an earlier control statement, such as a conditional branch.

16

Under review as a conference paper at ICLR 2026

Algorithm 1: Cluster-then-Summarize Pipeline

Input: Raw dataset D of instances; batch size b; summarizer model M
Output: Security knowledge snippets K = {k1, k2, ..., km}

// 1. Group raw instances into clusters
C < Cluster(D);
foreach cluster C; € C do
// 2. Partition cluster into subsets of size up to b
B « Partition(C}, b);
S+« [];
foreach subset B € B do

$ <= M .Summarize(B);

S.append(s);
// 3. Recursively summarize until one snippet remains
hile |S| > 1 do

S [];

foreach batch Bg € Partition(S, b) do

s’ + M.Summarize(Bg);
L S’.append(s’);
S« 5

// 4. Store the final snippet for cluster C;
K.append(k;);

return K

=

Next, RESCUE identifies points of interest in the code relevant to security. Deleted statements in a
security patch are treated as points of interest for vulnerable code, whereas added statements indicate
points of interest for secure code.

Formally, the program slicing process is modeled as a reachability problem over the PDG. Given a
set of points of interest P C N, the backward slice is computed as the set of nodes that can reach any
node in P within A hops:

S(PDG,P,h)={m e N|In(m,n),1 <|r| <h & n € P}, 3)
where 7(m, n) is a path in the PDG, and the path length || is bounded by h hops.

Finally, RESCUE performs bidirectional slicing: backward slicing identifies nodes influencing the
points of interest, and forward slicing captures statements affected by them. To ensure contextual
completeness, subgraphs from vulnerable and secure code versions are compared, and each subgraph
is complemented with statements from the other version outside the patch. This process reconstructs
two contextually sliced code variants for secure code analysis and generation.

17

Under review as a conference paper at ICLR 2026

Algorithm 2: Bidirectional Security-Relevant Slicing in RESCUE

Input: Program Dependence Graph PDG = (N, E), points of interest P,,, Ps C N, hop limit h
Output: Vulnerable slice S,,, Secure slice S,
Function Slice (PDG,P,h):
Initialize slice S < 0;
foreach node n € N do
if 37 (n,p),1 < |n| < h,p € P then
L | S« Su{n};

return S;

Function BidirectionalSlice (PDG,P,h):

Shack < Slice (PDG,P,h) ; // Backward slice
PDG,, « reverse all edges in PDG;

Storward & Slice (PDGyey,P,h) ; // Forward slice via reversed PDG
return Sback: U Sforward;

Sy < BidirectionalSlice (PDG,Py,h);
Sy + BidirectionalSlice (PDG,Ps, h);
return S,,, S,

D PROMPT TEMPLATE
This appendix section describes the details of our used prompt templates.

D.1 SECURITY GUIDELINES EXTRACTION

D.1.1 INITIAL GUIDELINE SUMMARIZATION

Listing 1: This prompt describes how to extract initial security guidelines at the bottom.

Extract common security knowledge from the provided multiple cases
Identify and summarize distinctive guidelines.

Output Format

Provide a clear and concise summary of each guideline in a
sentence. Ensure that each guideline is distinct.

Output Example

- Use parameterized queries instead of string interpolation or
concatenation to prevent SQL injection attacks.

Extract security guidelines from the following cases:
Vulnerability-Fix Data List

Case 1

Vulnerable Code

{vulnerable code 1}

Security Patch
{security patch 1}

Case 2
##4# Vulnerable Code

{vulnerable code 2}

Security Patch

18

Under review as a conference paper at ICLR 2026

{security patch 2}

D.1.2 INTERMEDIATE GUIDELINE SUMMARIZATION

Listing 2: This prompt is used to iteratively summarize the intermediate security guidelines.

Merge extracted security guidelines by combining those with
identical meanings into a single, clear, and concise sentence
for each guideline.

Extracted Guidelines 1
{intermediate guidelines 1}

Extracted Guidelines 2
{intermediate guidelines 2}

D.2 PROACTIVE ANALYSIS
D.2.1 ZERO-SHOT CODE GENERATION
The completion models directly use the target coding task as prompt.

Listing 3: The chat models—Deepseek-V3 and GPT-40-mini—employ this prompt template for
zero-shot code generation.

Generate the following {lang} code.

Code Snippet and Task Requirement
""" {lang}
{code}

D.2.2 VULNERABILITY CAUSE ANALYSIS

Listing 4: This prompt is used to analyze and identify the potential vulnerability cause in advance.

Identify and summarize the cause of the potential vulnerability in
a concise and informative paragraph before proceeding with
code generation. The output should at least include the name
of the vulnerability and its cause. Focus solely on the

underlying cause of the vulnerability without mentioning any
fixing information.
The output should be a text-only paragraph, without any other

structure.
Example
x Input »=*:
T Tpython

def build_board(conn, game,size):
we'll build the empty board, and then fill in with the move
list that
we get from the DB.
board = []
for i in range(size):
board.append([""] *size)

19

Under review as a conference paper at ICLR 2026

search for all moves that have happenend during this game.
cursor = conn.cursor ()

x Output xx:

The potential vulnerability is related to an SQL Injection
vulnerability. This wvulnerability occurs because the code
implies the execution of SQL queries based on user-supplied
inputs without implementing proper validation or sanitization
mechanisms. The use of “conn.cursor() to execute presumably
dynamic SQL commands indicates that if user inputs are
directly incorporated into those commands, it could lead to
unauthorized access or manipulation of the database. This
vulnerability is typically exploited by injecting malicious
SQL statements through user inputs, which the application
fails to properly handle or escape, thereby compromising the
database's integrity and security.

Please identify and summarize the task below:
""" {lang}
{code}

D.3 SECURITY KNOWLEDGE AUGMENTED CODE GENERATION

Listing 5: This prompt is used for completion models, including all locally deployed models.

General Security Guidelines

{security_guidelines}

Example

Secure Code Example
""" {language}
{secure_code}

Secure Code Example
" {lang}
{code}

Listing 6: This prompt is used for chat models, including GPT-40-mini and Deepseek-V3.

Given the security knowledge:
* T "markdown
General Security Guidelines

{security_guidelines}

Example

Secure Code Example
""" {language}
{secure_code}

20

Under review as a conference paper at ICLR 2026

Your task is to complete the following {lang} code.
Code Snippet

""" {lang}

{code}

When completing, you should consider the following:
1. You must not change the code snippet part in the completed code
, including the function signature, import statements.
2. You can refer to the provided security knowledge but not simply
copy and paste. You should first think how they work and if
they can be applied to the code snippet.

Your response should start with {lang}

E VULNERABILITY-FIX INSTANCE EXAMPLE

Listing 7: The complete example of a vulnerability-fix instance. the red highlighted text means the
deleted statements and the gree highlighted text means the added statements. This instance has about
50 lines of code. However, it contains only one line related to security. And the majority of the
function is to implement the database query.

——— vulnerability.py
+++ fixing.py
@@ -1,55 +1,55 @@

Qapp.route (' /puppet/default', methods=['GET', 'POST'])
@cortex.lib.user.login_required
def puppet_enc_default () :

"""Handles the Puppet ENC Default Classes page"""

Check user permissions
if not does_user_have_permission ("puppet.default_classes.view"):
abort (403)

Get the default YAML out of the kv table
curd = g.db.cursor (mysgl.cursors.DictCursor)
curd.execute ("SELECT “value®™ FROM “kv_settings®™ WHERE “key™ = 'puppet.enc.default'")
result = curd.fetchone ()
if result == None:
classes = "# Classes to include on all nodes using the default settings can be entered
here\n"
else:
classes = result['value']

On any GET request, just display the information
if request.method == 'GET':
return render_template ('puppet/default.html', classes=classes, active='puppet',6 title="
Default Classes"

On any POST request, validate the input and then save
elif request.method == 'POST':
Check user permissions
if not does_user_have_permission ("puppet.default_classes.edit"):
abort (403)

Extract data from form
classes = request.form.get ('classes', '')

Validate classes YAML

try:
- data = yaml.load(classes)
+ data = yaml.safe_load(classes)
except Exception as e:
flash('Invalid YAML syntax: ' + str(e), 'alert-danger')
return render_template ('puppet/default.html', classes=classes, active='puppet',6 title="

Default Classes")

21

Under review as a conference paper at ICLR 2026

try:

if not data is None:

assert isinstance (data, dict)

except Exception as e:

flash('Invalid YAML syntax: result was not a list of classes, did you forget a trailing

colon? ' + str(e), 'alert-danger')
return render_template ('puppet/default.html', classes=classes, active='puppet', title="
Default Classes")

Get a cursor to the database

Update the system

curd.execute ('REPLACE INTO “kv_settings”™ (“key ™, “value”) VALUES ("puppet.enc.default", %
s)', (classes,))

g.db.commit ()

cortex.lib.core.log(__name__, "puppet.defaultconfig.changed", "Puppet default
configuration updated")

Redirect back

flash ('Puppet default settings updated', 'alert-success')

return redirect (url_for ('puppet_enc_default'))

F

LIMITATIONS

Our evaluation framework uses static security analysis tools, which can generate false positives and
negatives. For instance, complex inter-procedural analyses may not be fully captured, leading to
discrepancies in evaluation results.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we employed a large language model (LLM) solely as a writing assistant
for text refinement. Specifically, the LLM was used to polish grammar, improve clarity, and adjust
wording for better readability.

22

	Introduction
	Method
	Hierarchical Security Knowledge Base Construction
	Cluster-then-Summarize
	Security-Focused Static Program Slicing

	Hierarchical Multi-Faceted Retrieval
	Proactive Multi-Faceted Analysis
	Hierarchical Retrieval Process.

	Experiments
	Experiment Setup
	Main Results
	In-depth Analysis Results
	Ablation Study on Security Knowledge Base Construction
	Impact Analysis of Hierarchical Retrieval
	Ablation Study on Multi-Faceted Retrieval

	Impact Analysis of Summarization LLMs
	Other Analysis

	Related Work
	Conclusion
	Data Collection
	Additional Experiments
	Analysis of Average Method Improvements
	Impact of Program Slicing on Code Length
	Overhead and Time Analysis
	CWE Distribution Analysis and Generalizability

	Method Details
	Cluster-then-Summarize
	Security-Focused Static Program Slicing

	Prompt Template
	Security Guidelines Extraction
	Initial Guideline Summarization
	Intermediate Guideline Summarization

	Proactive Analysis
	Zero-Shot Code Generation
	Vulnerability Cause Analysis

	Security Knowledge Augmented Code Generation

	Vulnerability-Fix Instance Example
	Limitations
	The Use of Large Language Models (LLMs)

