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ABSTRACT

Data-Free Class Incremental Learning (DFCIL) aims to sequentially learn tasks
with access only to data from the current one. DFCIL is of interest because it
mitigates concerns about privacy and long-term storage of data, while at the same
time alleviating the problem of catastrophic forgetting in incremental learning. In
this work, we rethink saliency in DFCIL and propose a new framework, which
we call RObust Saliency Supervision (ROSS), for mitigating the negative effect
of saliency drift. Firstly, we use a teacher-student architecture leveraging low-
level tasks to supervise the model with global saliency. We also apply boundary-
guided saliency to protect it from drifting across object boundaries at intermediate
layers. Finally, we introduce a module for injecting and recovering saliency noise
to increase robustness of saliency preservation. Our experiments demonstrate that
our method can achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet
and ImageNet-Subset DFCIL benchmarks. Code will be made publicly available.

1 INTRODUCTION

Deep neural networks achieve state-of-the-art performance on many computer vision tasks. How-
ever, most of these tasks consider a static world in which tasks are well-defined, stationary, and
all training data is available in a single training session. The real world consists of dynamically
changing environments and data distributions, which – especially given the computational burden of
training large CNNs – has led to renewed interest learning new tasks incrementally while avoiding
catastrophic forgetting of old ones (McCloskey & Cohen, 1989; Goodfellow et al., 2013).

Class Incremental Learning (CIL) (Masana et al., 2020; Belouadah et al., 2021) is one such in-
cremental learning scenario that considers the possibility of adding new classes to already-trained
models. Most CIL methods rely on a memory buffer that stores data from past tasks (Rebuffi et al.,
2017; Castro et al., 2018; Douillard et al., 2020; Wu et al., 2019). In this paper, we consider Data-
Free Class Incremental Learning (DFCIL), which is a more challenging scenario in which no data
from previous tasks is retained. This is a realistic scenario and of great interest due to privacy con-
cerns or restrictions on long-term storage of data. The inability to retain examples from past tasks,
however, significantly exacerbates the problem of catastrophic forgetting.

There are several recent works that consider the DFCIL problem. DeepInversion (Yin et al., 2020)
inverts trained networks from random noise to generate images as exemplars mixed with current
samples for training. SDC (Yu et al., 2020) updates previous prototypes of each learned class by
hypothesizing that semantic drift of previous classes can be approximated and estimated using new
data. Other previous works propose representation learning methods for overcoming catastrophic
forgetting (Zhu et al., 2021a;b). As pointed out in IL2A (Zhu et al., 2021a), learning better represen-
tations can reduce representation bias when transferred to new tasks. Incorporating self-supervised
learning tasks, such as Barlow Twins (Pham et al., 2021) and rotation prediction (Zhu et al., 2021b),
has also been proposed to achieve more stable representations and alleviate forgetting.

CNNs naturally learn to attend to features that are discriminative for the tasks they are trained to
solve. Catastrophic forgetting also occurs when learning new tasks because the model’s attention
to salient features drifts to features specific to the new task. Standard regularization approaches
do little to prevent this saliency drift when learning new tasks. One direct method of regularizing
saliency is to apply distillation on saliency maps of old samples (Ebrahimi et al., 2021). However,
this is complicated by the inability to save old samples in the DFCIL setting. Another method

1



Under review as a conference paper at ICLR 2023

Figure 1: Illustration of saliency drift across 5 tasks on ImageNet-Subset. SSRE (Zhu et al., 2022) as
a representative method without saliency supervision, which results in random saliency drift toward
the background. RRR (Ebrahimi et al., 2021) is a method applying vanilla saliency supervision,
which fails to avoid saliency drift due to boundary regions. These phenomena lead to incorrect
predictions: Orange to Bowl, Dog to Shoe, Bird to Boat. In comparison, our method maintains
robust saliency while preventing saliency drift across boundaries.

Image Task 1 Task 5 Task 1 Task 5 Task 1 Task 5

SSRE RRR ROSS (Ours)

is to apply saliency distillation on current task samples with previous task attention (Dhar et al.,
2019). This method however suffers from the semantic gap between current and old classes when
enforcing saliency consistency. The lack robust saliency regularization may also lead to attention
drifting toward the background in future tasks. As demonstrated in Table 1, a conventional baseline
(e.g. SSRE (Zhu et al., 2021b)) results in random saliency drift toward the background, and vanilla
saliency supervision (e.g. RRR (Ebrahimi et al., 2021)) fails to avoid saliency drift across boundary
regions in future tasks. Our Robust Saliency Supervision (ROSS) approach, however, keeps saliency
focused on the foreground (for more details, see the Section 3).

Motivated by these observations, we propose the Robust Saliency Supervision (ROSS) approach
which incorporates three components to address this problem. ROSS first uses a teacher-student
architecture in which the teacher model provides low-level supervision of salient regions and salient
region boundary maps. This serves as a stationary supervision signal over the incremental model.
Additionally, we apply dilated boundary maps to avoid saliency drift across object boundaries at
intermediate layers in the CNNs. Since saliency drift usually happens across tasks, encouraging
the model to focus on important foreground regions with dilated boundary supervision reduces pos-
sibility of saliency shifting toward the background. Finally, inspired by SDC (Yu et al., 2020), we
propose a module to inject saliency noise into some feature channels and train the network to denoise
them. This helps the network further resist saliency drift across tasks.

The main contributions of this work are: (i) We provide new insight into robust saliency supervision
under DFCIL settings. We also show the negative effect of methods with no or trivial saliency
supervision, which illustrates the superiority of our method. (ii) We propose the Robust Saliency
Supervision (ROSS) framework with three components that combine to mitigate the saliency drift
problem. (iii) We show that ROSS can be easily integrated it into other state-of-the-art methods,
such as MUC (Liu et al., 2020), IL2A (Zhu et al., 2021a), PASS (Zhu et al., 2021b), SSRE (Zhu
et al., 2022), leading to significant performance gains. (iv) Our experiments demonstrate that ROSS
outperforms all existing DFCIL methods and even several exemplar-based methods on the CIFAR-
100, Tiny-ImageNet, and ImageNet-Subset DFCIL benchmarks.

2 ROBUST SALIENCY SUPERVISION

We firstly define the Data-free Class Incremental Learning (DFCIL) scenario and our teacher-student
framework for low-level saliency supervision. Then we describe our approach to dilated boundary
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Figure 2: Overall framework of our Robust Saliency Supervision (ROSS). We apply a teacher model
to generate saliency and boundary maps. The boundary map is dilated and downsampled to provide
supervision in different stages of encoder. A decoder is attached after the encoder for low-level
distillation, which serves as the teacher guidance over robust saliency to ensure its validity. To
prevent saliency drift in later training phases, we introduce saliency noise into each encoder stage.
The model is trained to denoise and reduce the saliency drift on testing current data in future phases.

supervision and saliency noise injection that further mitigate saliency drift in DFCIL. Our overall
framework is illustrated in Figure 2.

2.1 DATA-FREE CLASS-INCREMENTAL LEARNING (DFCIL)

Class-incremental learning aims to sequentially learn tasks consisting of disjoint classes of samples.
Let t ∈ {1, 2, ..T} denote the incremental learning tasks. The training data Dt for each task contains
classes Ct with Nt training samples {(xi

t, y
i
t)}

Nt
i=1, where xi

t are images and yit ∈ Ct are their labels.

Most deep networks applied to class-incremental learning can be split into two components: a fea-
ture extractor Fθ and a common classifier Gϕ which grows with each new task t+1 to include classes
Ct+1. The feature extractor Fθ first maps the input x to a deep feature vector z = Fθ(x) ∈ Rd, and
then the unified classifier Gϕ(z) ∈ R|Ct| is a probability distribution over classes Ct that is used to
make predictions on input x.

Class-incremental learning requires that the model be capable of correctly classifying all samples
from previous tasks at any training task – that is, when learning task t, the model must not forget how
to classify samples from classes from tasks t′ < t. Data-free class-incremental learning additionally
restricts models to learn each new task without access to samples from previous ones. This typically
leads to learning objectives that minimize a loss function L defined on current training data Dt:

LCIL
t (x, y) = Lce(Gϕt

(Fθt(x)), y) + Lmethod
t , (1)

where Lce is the standard cross-entropy classification loss and Lmethod
t is a method-specific loss that

mitigates forgetting of past tasks when learning current task t.

2.2 A TEACHER-STUDENT FRAMEWORK FOR LOW-LEVEL SUPERVISION

We propose to learn stable features from low-level stationary tasks shared across all incremental
tasks during class-incremental learning. Low-level vision tasks like salient object detection require
useful representations of input images. By learning these feature representations across tasks, the
model can focus on key area of input images and exploit learned, stable features with less represen-
tation drift since the low-level features change very little between tasks.
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Figure 3: We dilate the teacher boundary map and apply a binary cross entropy loss at three stages
in the CNN backbone prevent mid-level student attention from drifting into boundary regions.

Saliency map prediction is relevant to image classification since the foreground largely determines
the results of image classification, while the background is comparatively less important. When
learning new tasks with new classes, the background of images of new classes may contain new
visual concepts that introduce undesirable noise and lead to forgetting essential previous knowl-
edge. The effectiveness of saliency features for learning classification tasks was demonstrated by
Saliency Guided Training (Ismail et al., 2021). Additional supervision of salient region boundaries
can aid salient object detection tasks for both segmentation and localization (Zhao et al., 2019).
The positive interaction between these two tasks brings richer attention to features relevant to the
main classification task. It can provide positive guidance in the form of stationary knowledge across
class-incremental tasks. Some examples are illustrated in Figure 5.

We incorporate low-level vision tasks into the network using a teacher-student model. A teacher
model T generates low-level representations of each input image x (saliency and boundary maps
in our experiments). We use CSNet (Cheng et al., 2021) to generate saliency and boundary maps,
as it is lightweight and efficient. The boundary map is computed with a Laplacian filter over the
estimated saliency map. We add a decoder Dφ (Li et al., 2020) after the backbone Fθ to predict low-
level saliency and boundary maps for input images. The average L2 distance between the student
and teacher maps is used as a low-level distillation loss:

Llm
t (x) =

||Dφ(Fθ(x))− T (x)||2√
N

, (2)

where T (x) denotes the output of the teacher network on input x, Dφ(x) are combined saliency and
boundary maps produced by the decoder, and N is the number of pixels in the student and teacher
saliency maps.

2.3 BOUNDARY-GUIDED MID-LEVEL SALIENCY DRIFT REGULARIZATION

The multi-task supervision of salient regions and boundaries described in the previous section en-
courages the network to learn representation sufficient to reconstruct the teacher outputs. However,
it does little to guide attention at intermediate layers in the CNN. To guard against saliency drift at
these intermediate layers in the backbone, we use the generated boundary maps as a type of adaptive
supervision as shown in Figure 3. When applying dilated boundary supervision, we add a penalty
term on object boundaries and avoid drift to the background. We firstly use 0.5 as the threshold to
binarize the teacher boundary map and then obtain dilated teacher boundary maps by:

Bd(x) = Dilate(Laplace(Tb(x)), d) (3)

where Tb(x) is the original teacher boundary map of image x, and d denotes the dilation radius
applied on the teacher boundary map for controlling the strictness of boundary-guided saliency.

Rather than use a decoder at each layer as described above, the student saliency map is generated
using Grad-CAM (Selvaraju et al., 2017) at three stages of the CNN backbone (see Figure 2). We
also experiment with several other methods for generating student saliency maps and report on these
experiments in Appendix A.1. The dilated teacher boundary map Bd(x) is downsampled to match
the feature map dimensions at these three stages in order to compare the Grad-CAM generated
saliency boundary maps with the teacher. We use the binary cross entropy loss for supervision on
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dilated boundary regions. The loss is defined as:

Ldbs
t (x) = −

∑N
j=1 Bd(x, j) log(1− St(x, j))∑N

j=1 Bd(x, j)
, (4)

where St(x, j) denotes the student saliency map of image x at pixel j, Bd(x, j) is the dilated teacher
boundary map at pixel j, and N is the number of pixels in x. We compute this loss only within
dilated boundary regions, that is where Bd(x, j) = 1. This loss helps the student saliency map have
no intersection with the dilated teacher boundary region.

2.4 SALIENCY NOISE INJECTION

Although we apply low-level teacher-student distillation and dilated boundary supervision to main-
tain robust saliency representations across tasks, there is still the possibility that the model forgets
saliency on samples from previous tasks. To address this, we force the model to recover the correct
saliency estimation from injected saliency noise.

At each task there is no available training data from previous or future tasks, and therefore we can
not directly know the accurate saliency drift on these samples. Instead of supervising the model with
ground-truth saliency drift signals, we introduce saliency noise on random feature channels. We use
a random ellipse to approximate the potential saliency drift in future tasks and the model is trained
to denoise within each stage. Therefore the model can effectively reduce real saliency drift.

We generate elliptical noise using a very simple approach. There are six parameter dimensions: the
center coordinate (x, y), the major and minor axis lengths (a, b), the rotation angle θ, and the mask
weight w. A detailed explanation of this process is given in Appendix A.2. With the help of dilated
boundary supervision, each stage learns to denoise the additional saliency noise and generalizes this
ability in test.

2.5 FINAL LEARNING OBJECTIVE

The overall learning objective combines the low-level multi-task learning, dilated boundary super-
vision, and random saliency noise injection modules:

Lall
t = LCIL

t + Llm
t + Ldbs

t . (5)

3 EXPERIMENTAL RESULTS

In this section we first describe the experimental setup first and then we compare ROSS to other
state-of-the-art methods on several DFCIL benchmarks. In Section 3.3 we give further analysis over
the different components of our proposed approach.

3.1 EXPERIMENTAL SETUP

We follow standard experimental protocols for DFCIL on three benchmark datasets.

Datasets. We perform experiments on CIFAR-100 (Krizhevsky et al., 2009), Tiny-ImageNet (Le &
Yang, 2015), and ImageNet-Subset (Deng et al., 2009). For most experiments, we train the model
on half of the classes for the first task, and then equally distribute the remaining classes across each
of the subsequent tasks. The convention we use is: F + C × T means that the first task contains F
classes, and the next T tasks each contain C classes. We consider three configurations for CIFAR-
100 and ImageNet-Subset: 50 + 5 × 10, 50 + 10 × 5, 40 + 20 × 3. For Tiny-ImageNet we generate
three settings: 100 + 5 × 20, 100 + 10 × 10, and 100 + 20 × 5.

State-of-the-art methods. Since we focus on DFCIL, we mainly compare with data-free state-
of-the-art approaches: SSRE (Zhu et al., 2022), PASS (Zhu et al., 2021b), IL2A (Zhu et al.,
2021a), EWC (Kirkpatrick et al., 2017), LwF-MC (Rebuffi et al., 2017), and MUC (Liu et al.,
2020). To demonstrate the effectiveness of our method, we also compare its performance with
several exemplar-based methods like iCaRL (both nearest-mean and CNN) (Rebuffi et al., 2017),
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Table 1: Average top-1 accuracy and forgetting on CIFAR-100 for different numbers of tasks.
Replay-based methods storing 20 exemplars from each previous class are denoted by †. The best
overall results are in bold. We run all experiments three times and report average accuracy and
standard deviations.

Metric: Accuracy ↑ Average Forgetting ↓
Method 5 tasks 10 tasks 20 tasks 5 tasks 10 tasks 20 tasks

Exemplar-based

iCaRL-CNN† 40.12±1.0 39.65±0.8 35.47±0.8 42.13±0.8 45.69±0.8 43.54±0.7
iCaRL-NCM† 49.74±0.8 45.13±0.7 40.68±0.6 24.90±0.9 28.32±0.7 35.53±0.7

LUCIR† 55.06±1.0 50.14±0.9 48.78±0.9 21.00±1.5 25.12±1.3 28.65±1.3
EEIL† 52.35±0.6 47.67±0.5 41.59±0.5 23.36±0.8 26.65±0.9 32.40±0.7
RRR† 57.22±0.8 55.74±0.8 51.35±0.7 18.05±0.8 18.59±0.8 18.40±0.7

Data-free

LwF MC 36.17±0.9 17.04±0.9 15.88±0.8 44.23±1.2 50.47±1.0 55.46±1.0
EWC 9.32±0.7 8.47±0.5 8.23±0.5 60.17±0.8 62.53±0.7 63.89±0.5
MUC 38.45±0.9 19.57±0.8 15.65±0.8 40.28±1.3 47.56±1.1 52.65±1.0
IL2A 55.13±0.7 45.32±0.7 45.24±0.6 23.78±1.1 30.41±1.0 30.84±0.7
PASS 55.67±1.2 49.03±0.9 48.48±0.7 25.20±0.8 30.25±0.7 30.61±0.7
SSRE 56.33±0.9 55.01±0.7 50.47±0.6 18.37±1.1 19.48±1.0 19.00±1.0

ROSS (Ours) 59.26±0.5 57.93±0.4 53.78±0.4 16.42±0.7 17.66±0.8 17.78±0.6
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Figure 4: Results on Tiny-ImageNet and ImageNet-Subset for different numbers of tasks. Our
method outperforms others, especially on longer task sequences (i.e. more, but smaller, tasks).

EEIL (Castro et al., 2018), LUCIR (Hou et al., 2019). We also compare with RRR (Ebrahimi et al.,
2021) integrated with SSRE, which focuses on preserving saliency using exemplar replay.

Implementation details. We use ResNet-18 (He et al., 2016) as a feature extraction backbone.
This is the same base network used in SSRE Zhu et al. (2022) and PASS (Zhu et al., 2021b), two
state-of-the-art DFCIL approaches. We use the decoder in (Li et al., 2020) to estimation student
low-level maps. All experiments are trained from scratch using Adam for 100 epochs with an initial
learning rate 0.001. The learning rate is reduced by a factor 10 at epochs 45 and 90. For exemplar-
based approaches, we use herding (Rebuffi et al., 2017) to select and store 20 samples per class
following common settings (Rebuffi et al., 2017; Hou et al., 2019). We implement RRR Ebrahimi
et al. (2021) with SSRE to fairly compare it with our ROSS. We report two common metrics for
class incremental learning: top-1 accuracy and average forgetting for all classes learned up to task
t. We perform three runs of all experiments and report mean performance and variance. For dilated
boundary supervision, we set d of three stages to be 5%, 10% and 15% of the image size.
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Table 2: We report the performance gain of top-1 accuracy by applying ROSS to other DFCIL
methods in a plug-and-play way. Absolute gains are marked in (red).

Dataset CIFAR-100 Tiny-ImageNet
Method 5 tasks 10 tasks 20 tasks 5 tasks 10 tasks 20 tasks

MUC 38.45 19.57 15.65 18.95 15.47 9.14
+ROSS 49.17 (+10.72) 40.34 (+20.77) 37.86 (+22.21) 32.47 (+13.46) 30.13 (+14.66) 27.70 +18.56
IL2A 55.13 45.32 45.24 36.77 34.53 28.68

+ROSS 58.74 (+3.61) 53.24 (+7.92) 53.07 (+7.83) 42.49 (+5.72) 41.34 (+6.81) 40.59 (+11.91)
PASS 55.67 49.03 48.48 41.58 39.28 32.78

+ROSS 59.10 (+3.43) 54.45 (+5.42) 52.37 (+3.89) 44.05 (+2.47) 43.06 (+3.78) 42.57 (+9.79)
SSRE 56.33 55.01 50.47 41.45 40.07 39.25

+ROSS 59.26 (+2.93) 57.93 (+2.92) 53.78 (+3.31) 44.13 (+2.68) 43.86 (+3.79) 43.55 (+4.30)

Table 3: Ablative experiments on each component of our proposed method. Experiments are on
CIFAR-100 in the 10 task setting and we report the top-1 accuracy in %. We use DBS, LM, SNI to
denote the three components of ROSS: dilated boundary supervision, low-level multi-task supervi-
sion, and saliency noise injection.

Method & Tasks DBS LM SNI 1 2 3 4 5 6 7 8 9 10 11
Baseline 78.7 73.6 71.8 68.4 64.1 62.7 59.7 57.6 56.8 55.6 55.0
Variants ✓ 78.9 75.3 72.9 68.7 65.4 63.9 61.9 59.9 58.8 56.7 55.8

✓ 78.7 75.3 72.9 69.1 65.8 64.3 62.3 60.5 58.6 57.1 56.2
✓ 78.7 75.1 72.8 69.3 65.9 64.4 62.5 60.5 58.8 57.6 56.7

✓ ✓ 79.0 76.0 72.8 67.3 65.1 63.7 61.6 60.9 59.8 58.9 57.3
✓ ✓ 79.1 75.9 73.0 69.8 66.3 64.7 62.9 61.3 59.7 57.8 57.0

✓ ✓ 79.1 76.3 72.9 69.7 65.1 64.3 61.4 60.1 59.2 58.9 57.6
✓ ✓ ✓ 79.1 76.1 72.9 69.7 65.0 63.6 62.5 60.7 59.5 59.0 57.9

3.2 COMPARISON WITH THE STATE-OF-THE-ART

We report the comparative performance on CIFAR-100 in Table 1 and on Tiny-ImageNet and
ImageNet-Subset in Figure 4. ROSS outperforms all data-free approaches. For exemplar-based
methods like iCaRL (Rebuffi et al., 2017), EEIL (Castro et al., 2018), and LUCIR (Hou et al.,
2019), our method still has significantly better performance. On longer sequences (i.e. 10 and 20
tasks), our methods significantly reduce forgetting when learning new classes compared with other
DFCIL methods. Although our method has the similar top-1 accuracy on the first task, it has bet-
ter performance in most intermediate tasks and the final task. For longer sequences in Figure 4,
the gap between our method and the best baseline is kept large consistently, showing the effective-
ness of our method on relieving forgetting. The performance gain is larger on Tiny-ImageNet and
ImageNet-Subset compared to CIFAR100, and this demonstrates the generality of our method to
dataset with larger spatial size and scale. It is worth mentioning that our ROSS also produces results
with smaller variance. We conclude this as the contribution of reducing saliency drift to background
regions, which may incorporate some random noise.

3.3 ADDITIONAL ANALYSIS

In this section we take a deeper look at three approaches we propose. If not specified, the results are
produced under settings of ROSS integrated SSRE.

Plug-and-play with other DFCIL methods. Some existing DFCIL methods, for example PASS,
IL2A and SSRE, focus on reducing forgetting via embedding regularization. Considering the impor-
tance of saliency to image classification, it is natural consider whether ROSS can be integrated into
these methods. The results in Table 2 show the performance gain brought by applying our method.
Adding ROSS doubles the performance for MUC in many cases and significantly improves IL2A
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Figure 5: The effect of the high-level coarse classification task. (a) Distribution of coarse classes
during training. (b) The stable accuracy of coarse classification during incremental training. (c)
The clustering effect of coarse label learning (top) compared to the baseline (bottom) on the angles
between prototypes from different classes sharing the same superclass (every five consecutive classes).
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Figure 6: Visualization of the saliency (a) and edge (b) maps from our DFCIL framework with
original images from different tasks at different stages of incremental learning. (c) The MAE loss of
low-level tasks between the student and teacher network across tasks.

learn stable features for continual learning. by looking at the correlations between prototypes of260

different classes in Figure 5 (c), our method obtains more compact feature representations for classes261

sharing the same superclass (every five consecutive classes).262

Low-level tasks. To analyze the effect of our proposed low-level stationary we first plot the loss263

across tasks in Figure 6 (c). After learning to predict edge and saliency maps along with the first264

task, the network maintains good performance for the rest of the task sequence. This shows that265

the low-level tasks we are stable during continual learning. Furthermore, we visualize the results of266

saliency and edge map prediction during the incremental learning in Figure 6 (a) and (b). In the figure267

we show example images from four tasks along with predicted edge and saliency maps. Although CIL268

involves samples of different classes, we can see that the low-level features are relatively stable and269

class-agnostic. If the model is able to extract these low-level features continuously, it can preserve270

useful prior knowledge for learning samples of new classes.271

5 Conclusions272

This paper proposes a new method for preserving general and stationary knowledge in DFCIL.273

We show that stationary high-level categories and dense, low-level prediction tasks can be used to274

encourage learning of stable features for class-incremental learning. Our experiments show that our275

approach outperforms previous methods by a large margin. Future work will consider additional276

stable tasks and better combination of low- and high-level stationary tasks mitigating catastrophic277

forgetting.278
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Figure 5: Visualization of the saliency (a) and boundary (b) maps from our student encoder-decoder
network with original images from different tasks at different stages of incremental learning. Our
method also produces stable low-level results while reducing forgetting in classification. (c) The
MAE loss of low-level tasks between the student and teacher network across tasks.
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Figure 6: Visualization of the saliency across tasks within different stages, as shown in (a). Some
saliency drifts at later task are recovered through stages. Dilated boundary supervision also shrink
the saliency map in deeper stages, increasing their robustness. (b): Visualization of the refined
embedding with our method. Compared with the baseline, our method can preserve more discrimi-
native representations between classes from one task and between different tasks.

and PASS. When we incorporate it into the best baseline SSRE, it yields a consistent gain of by
about 3%.

Ablation Study. To assess each component ROSS, we performed a set of ablations using the 10-
task setting on CIFAR-100 (see Table 3). We consider has eight configurations with different subsets
of the three modules. For settings with a single component, we see that saliency denoising works
well to relieve saliency drift on later phases and performs better. For settings with two modules,
we see that the low-level multi-task saliency supervision provides the most saliency signals for
supervision and further enhances the performance. The dilated boundary supervision also helps
saliency regularization by further guarding against saliency drift across boundaries.

Low-level multi-task. To analyze the effect of our proposed low-level multi-task, we make detailed
experiments on ImageNet-Subset of 5 and 10 tasks setting. We first plot the loss across tasks in
Figure 5 (c). After learning to predict boundary and saliency maps along with the first task, the
network maintains good performance for the rest of the 5 tasks sequence. This shows that the low-
level tasks we are stable during continual learning. Furthermore, we visualize the results of saliency
and boundary map prediction during the incremental learning in Figure 5 (a) and (b). We show
some samples of predicted boundary and saliency maps after learning different tasks. Although CIL
involves samples of different classes, we can see that the low-level outputs are relatively stable and
class-agnostic. If the model is able to extract these low-level features continuously, it can preserve
useful prior knowledge for learning samples of new classes.
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Saliency denoising across stages. To show the effect of saliency denoise, we select the 5-task
setting on ImageNet-Subset. We visualize a sample and its saliency at different training phases and
encoder stages in Figure 6a. With the help the denoising process, the encoder is able to recover
intermediate saliency drift and maintain accurate attention in the output. When testing samples of
old classes, the network reduces the saliency drift and focuses on important regions.

Discriminative embeddings over different classes. Since our method helps model focus on the
foreground, more class-specific pixels are used to computing embeddings. This makes them more
discriminative with less distracting background information. We use T-SNE to visualize embeddings
of 5 initial classes right after learning the base task and the last task with the 10-task setting on
ImageNet-Subset in Figure 6b. At the base task, both baseline and Ours perform well. When we
evaluate it after the last task, it is obvious that Ours can still keep discriminative between tasks but
the baseline has overlapping embeddings.

4 RELATED WORK

We discuss previous work on incremental learning from the recent literature, and then describe the
state-of-the-art in DFCIL.

Incremental Learning. Various methods have been proposed for incremental learning in the past
few years (Delange et al., 2021; Belouadah et al., 2021). Recent works can be coarsely grouped
into three categories: replay-based, regularization-based, and parameter-isolation methods. Replay-
based methods mitigate the task-recency bias by retaining training samples from previous tasks.
In addition to replaying samples BiC (Wu et al., 2019), PODNet (Douillard et al., 2020), and
iCaRL (Rebuffi et al., 2017) apply a distillation loss to prevent forgetting and enhance model sta-
bility. GEM (Lopez-Paz & Ranzato, 2017), AGEM (Chaudhry et al., 2019), and MER (Riemer
et al., 2019) exploit past-task exemplars by modifying gradients on current training samples to
match old samples. Rehearsal-based methods may cause models to overfit to stored samples.
Regularization-based approaches such as LwF (Li & Hoiem, 2016), EWC (Kirkpatrick et al., 2017),
and DMC (Zhang et al., 2020) offer ways to learn better representations while leaving enough plas-
ticity for adaptation to new tasks. Parameter-isolation methods (Mallya & Lazebnik, 2018; Xu &
Zhu, 2018) use models with different computational graphs for each task. With the help of growing
models, new model branches mitigates catastrophic forgetting at the cost of more parameters and
computational costs.

Data-free Class Incremental Learning. Compared to conventional class incremental learning,
data-free class incremental learning is more practical for applications where training data is sensi-
tive and may not be stored in perpetuity. DAFL (Chen et al., 2019) uses synthesized samples place
of stored exemplars introduces an extra GAN architecture for generating synthesized images. Deep-
Inversion, which inverts trained networks using random noise to generate images, is another popular
DFCIL method (Yin et al., 2020). Always Be Dreaming further improves on DeepInversion for DF-
CIL (Smith et al., 2021). SDC attempts to overcome the problems caused by semantic drift when
training new tasks on old class samples (Yu et al., 2020). It directly estimates prototypes of each
learned class for the nearest class mean classifier. PASS (Zhu et al., 2021b) and IL2A (Zhu et al.,
2021a) are prototype-based replay methods for efficient and effective DFCIL. Both introduce an
efficient way of generating prototypes of old classes. Since these prototypes are features computed
from past training samples, original images are not retained. SSRE (Zhu et al., 2022) introduces
another re-parameterization methods for trade-off between old and new knowledge. Our method
proposes three new components to reduce saliency drift in DFCIL setting, which is complementary
to some approaches mentioned above.

5 CONCLUSIONS

This paper rethinks saliency drift and its effect on DFCIL. The insight behind our ROSS is to con-
sider guiding the model to focus on salient regions and to simply apply distillation during training.
We show that some precaution and robust supervision is necessary to mitigate forgetting of saliency
across tasks. Experiments on several datasets and settings demonstrate that ROSS is effective and
surpasses the state-of-the-art. ROSS can be easily combined with other methods, leading to large
performance gains over baselines.
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6 ETHICS STATEMENT

In this work, we study class-incremental learning under data-free setting, which can improve the
efficiency of learning, reduce the computation cost and protect the data privacy. It is an essential
ingredient toward general artificial intelligence, which can be useful in many applications.

7 REPRODUCIBILITY STATEMENT

The code for this paper is written in PyTorch 1.9.0. All datasets used for the training and fine-tuning
are publicly available. The Grad-CAM maps is generated using pytorch grad cam 0.1.0. We will
make our code publicly available for reproducibility.
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Table 4: Ablation on method for generating student saliency maps on Tiny-Imagenet.

5 Tasks 10 Tasks 20 Tasks
baseline (SSRE) 40.2 40.0 39.3

CAM 41.2 40.7 40.4
SmoothGrad 42.1 41.0 40.4
Grad-CAM 44.1 43.9 43.5

Table 5: Parameters and FLOPs of the teacher model. FLOPs are computed with 3×32×32 images.

Model Parameter(M) FLOPS(G)
Ours 17.9 0.78

Teacher model 0.0941 0.012

A APPENDICES

A.1 ABLATION ON STUDENT SALIENCY METHODS

To show the generalization of ROSS, we use several methods to compute student saliency maps and
report the results in Table 4. Grad-CAM performs best, although other methods yield performance
gains, demonstrating the effectiveness of ROSS.

A.2 GENERATION OF SALIENCY NOISE

For each ellipse there are 6 dimensions: the center coordinate (x, y), the rotation angle θ, the mask
weight w, and the major and minor axes (a, b). x, y, θ and w are sampled from a uniform distribution
over ranges: x ∈ [0, H), y ∈ [0,W ), θ ∈ [0, 2π), w ∈ [0, 1]. H W denote the height and width
of input images. To generate ellipses of appropriate size, we draw the major and minor axes from
a Gaussian distribution with µa = max(H,W )/2, σa = max(H,W )/6, µb = min(H,W )/2,
σb = min(H,W )/6. The sampled a, b is clipped to[0,max(H,W )/2] and [0,min(H,W )/2],
respectively. For each ellipse, we create a saliency map Si. We repeat this random generation
process 5-10 times and an element-wise max operation on these Si to get a single saliency map
S. For each encoder feature map, 10% of randomly selected channels are directly masked with S,
where each selected channel will have an independent S.

A.3 TEACHER MODEL

We use CSNet (Cheng et al., 2021) to compute all the teacher saliency and boundary maps because it
is very lightweight. Compared to our main model, the teacher model has fewer than 1% parameters
and requires 1.5% of the FLOPs (as shown in Table 5). Note that we compute all low-level maps
offline before new tasks, and so the extra FLOPs should be amortized over the number of epochs.
Therefore, the additional FLOPs required by the teacher model is only about 0.015% of the main
model, which is negligible in practice.

A.4 ABLATION ON LOW-LEVEL TEACHER MAPS

To show the effectiveness of our ROSS, we perform an ablation on the low-level teacher maps. We
replace them with the Grad-CAM generated from a ResNet-152 network. To avoid information
leakage, ResNet-152 is trained from scratch. Before each new task, we first train it only on task data
data and use the Grad-CAM output to supervision saliency in our incremental model. From Table 6
we see that ROSS still outperforms previous methods.

A.5 ABLATION ON STUDENT ARCHITECTURE TEACHER PRETRAINING

We select PASS (Zhu et al., 2021b) as our baseline method to apply ROSS to (as shown in Table 7).
Experiments are on ImageNet-Subset with 5 tasks. We ablate the teacher pretraining and student
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Table 6: Ablation on low-level teacher saliency maps on Tiny-ImageNet with 10 tasks.

Low-level source(Method) Accuracy(%)
PASS 39.3
SSRE 40.0

ResNet152(Ours) 42.1
CSNet(Ours) 43.9

Table 7: Ablations on student architecture and teacher pretraining.

(a) We compare different student network archi-
tectures Method-Res18 denotes applying Method
with ResNet18 as its backbone.

Method Parameter(M) Accuracy(%)
PASS-Res18 14.5 50.4
PASS-Res32 21.7 51.2
SSRE-Res18 19.4 58.7
Ours-Res18 17.9 61.5

(b) Ablation on teacher network pretaining.

Method Accuracy(%)
No pretraining 61.5

Pretrained teacher model 62.0

decoder. Since some methods use ImageNet pretrained weights for better saliency map estimation,
we train CSNet (Cheng et al., 2021) from scratch on the dataset (with and without pretaining) for
salient object detection (Yan et al., 2013; Li et al., 2014; Yang et al., 2013). This allows us to verify
that no information leakage happens due to pretraining the saliency network on ImageNet. From the
results in Table 7 we see that even with a very small backbone (ResNet-18) ROSS yields significant
gains other other approaches. Similarly, the teacher network without pretraining works almost as
well as pretraining the saliency network on ImageNet.
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