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Abstract—When a method throws an exception—its exception
precondition—is a crucial element of the method’s documentation
that clients should know to properly use it. Unfortunately,
exceptional behavior is often poorly documented, and sensitive to
changes in a project’s implementation details that can be onerous
to keep synchronized with the documentation.

We present WIT, an automated technique that extracts the
exception preconditions of Java methods. WIT uses static analysis
to analyze the paths in a method’s implementation that lead to
throwing an exception. WIT’s analysis is precise, in that it only
reports exception preconditions that are correct and correspond
to feasible exceptional behavior. It is also lightweight: it only
needs the source code of the class (or classes) to be analyzed—
without building or running the whole project. To this end, its
design uses heuristics that give up some completeness (WIT cannot
infer all exception preconditions) in exchange for precision and
ease of applicability.

We ran WIT on 46 Java projects, where it discovered 11 875
exception preconditions in 10 234 methods, taking just 1 second
per method on average. A manual analysis of a significant sample
of these exception preconditions confirmed that WIT is 100% pre-
cise, and demonstrated that it can accurately and automatically
document the exceptional behavior of Java methods.

I. INTRODUCTION

To correctly use a method, we must know its precondition,
which specifies the valid inputs: those that the method’s
implementation can handle correctly. In programming lan-
guages like Java, a method’s implementation may throw an
exception to signal that a call violates its precondition. If
it does so, knowing the method’s exceptional behavior is
equivalent to knowing (the complement of) its precondition.
Ideally, a method’s exceptional behavior should be described
in the method’s documentation (for example, in its Javadoc
comments) and thoroughly tested. In practice, it is known that
a method’s documentation can be incomplete or inconsistent
with its implementation [24], [46], and that only a fraction
of a project’s test suite exercises exceptional behavior [21].
This ultimately limits the usability, in a broad sense, of
insufficiently documented methods: without precisely knowing
its precondition, programmers may have a hard time calling
a method; test-case generation may generate invalid tests that
violate the method’s precondition; program analysis may have
to explicitly follow the implementation of every called method,
which does not scale since it is not modular.

To alleviate these problems, we present WIT (What Is
Thrown?): a technique to automatically infer the exception

preconditions—the input conditions under which an exception
is thrown—of Java methods. As we discuss in Sec. VII,
extracting preconditions and other kinds of specification from
implementations is a broadly studied problem in software
engineering (and, more generally, computer science). Our WIT

approach is novel because it offers a distinct combination
of features. First, WIT is precise: since it is based on static
analysis, it reports preconditions only when it can determine
with certainty that they are correct. It is also lightweight, as
it is applicable to the source code of individual classes of a
large project without requiring to build the project (or even to
have access to all project dependencies).

A key assumption underlying WIT’s design is that a signifi-
cant fraction of a method’s exceptional executions are usually
simpler, shorter, and easier to identify than the other, normal,
executions. Therefore, WIT’s analysis (which we describe in
detail in Sec. III) relies on several heuristics that drastically
limit the depth and complexity of the program paths it
explores—for example, it bounds the length of paths and
number of calls that it can follow. Whenever a heuristics fails,
WIT gives up analyzing a certain path for exceptional behavior.
In general, this limits the number of exception preconditions
that WIT can reliably discover. However, if our underlying
assumption holds, WIT can still be useful and effective, as well
as lightweight and scalable.

We implemented WIT in a tool with the same name, which
performs a lightweight static analysis of Java classes using
JavaParser for parsing and the Z3 SMT solver for checking
which program paths are feasible. Sec. IV describes an experi-
mental evaluation where we applied WIT to 46 Java projects—
including several widely used libraries—to discover the ex-
ception preconditions of their public methods. WIT inferred
11 875 exception preconditions of 10 234 methods—running
for 1 second on average on each of the analyzed methods. A
manual analysis of a significant random sample of the inferred
preconditions confirmed that WIT is precise: all manually
checked preconditions were correct. It also revealed that it
could retrieve 7–83% of all supported exception preconditions
in project Apache Commons IO—achieving even higher recall
on projects that use few currently unsupported Java features.
Our empirical evaluation also indicates that WIT can be useful
to programmers: 72% of the exception preconditions in the
sample are not already documented; and 5 pull requests—
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Listing 1: Excerpts of the implementation of two methods in Apache
Dubbo’s class Bytes.

1 public static String bytes2base64(byte[] b, char[] code)
2 { return bytes2base64(b, 0, b.length, code); }
3

4 public static String bytes2base64(final byte[] bs, final int
off, final int len, final char[] code) {

5 if (off < 0) throw new IndexOutOfBoundsException();
6 if (len < 0) throw new IndexOutOfBoundsException();
7 if (off + len > bs.length) throw new

IndexOutOfBoundsException();
8 if (code.length < 64) throw new IllegalArgumentException();
9 //...

10 }

extending the public documentation of open-source projects
with a selection of WIT-inferred preconditions—were accepted
by the projects’ maintainers.

In summary, the paper makes the following contributions:
• WIT: a technique to automatically infer the exception

preconditions of Java methods based on a novel com-
bination of static analysis and heuristics that trade-off
exhaustiveness for high precision.

• An implementation of WIT and an experimental evaluation
targeting 46 open-source Java projects (including popular
ones like Apache Commons Lang, and the h2database),
which demonstrates WIT’s effectiveness, practical appli-
cability to real-world projects, and usefulness.

• For reproducibility, WIT’s implementation and the detailed
experimental outputs are available.a

II. SHOWCASE EXAMPLES OF USING WIT

We briefly present examples of applying WIT to detect the
exception preconditions of library functions in two Apache
projects: Dubbo2 and Commons Lang.3 The examples showcase
WIT’s capabilities and practical usefulness: WIT could auto-
matically extract exception preconditions in many methods of
these two projects, including some that were not documented
(Sec. II-A) or incorrectly documented (Sec. II-B). Sec. V-E
reports further empirical evidence that WIT’s exception pre-
conditions can be useful as a source of documentation.

To better gauge WIT’s capabilities, let us stress that the two
Apache projects discussed in this section are widely used Java
libraries; for instance, Dubbo’s GitHub repository4 has over 24
thousand forks and 36 thousand stars. As a result, they are
exceptionally well documented and tested [44], [24]. The fact
that WIT could find some of their few missing or inconsistent
pieces of their documentation indicates that it has the potential
to be practically useful and widely applicable.

A. Missing Documentation

Lst. 1 shows an excerpt of two overloaded implementations
of method bytes2base64, which takes a byte array and
represents it as a string in base 64. As we can see from
the initial lines in bytes2base64’s second implementation, the
two methods have fairly detailed preconditions; furthermore,
since the first method calls the second with additional fixed

aA replication package is available.1

Listing 2: Excerpt of the Javadoc comment and implementation of a
method in Apache Commons Lang’s class NumberUtils.

1 /** Returns the minimum value in an array.
2 * @param array an array, must not be null or empty
3 * @return the minimum value in the array
4 * @throws IllegalArgumentException if array is null
5 * @throws IllegalArgumentException if array is empty */
6 public static int min(final int... array) {
7 { validateArray(array); /* ... */ }

argument values, the first’s precondition is a special case of the
second’s. Unfortunately, the documentation of these methods
does not mention these preconditions: for example, the second
method’s Javadoc comment vaguely describes off and len

as simply “offset” and “length”, without clarifying that they
should be non-negative values. This lack of documentation
about valid inputs decreases the usability of the methods for
users of the library.

Running WIT on class Bytes automatically finds the precon-
ditions of these (as well as many other) methods, thus provid-
ing a useful form of rigorous documentation. For instance,
one of the exception preconditions found by WIT for Lst. 1’s
second method:

throws: IndexOutOfBoundException
when: off >= 0 && len >= 0 && bs.length < len + off

example: [off=0, len=1, bs.length=0]

corresponds to the path that reaches line 7 in Lst. 1. WIT also
understands that the first method never throws this exception,
but it can still throw others such as:

throws: IllegalArgumentException
when: b.length >= 0 && code.length < 64

example: [b.length=0, code.length=0]

In fact, WIT only reports exception preconditions that cor-
respond to feasible paths. Each precondition comes with an
example of argument values that make the precondition true.
These are not directly usable as test inputs, since they describe
the input’s properties without constructing them; but they are
useful complements to the precondition expressions, and help
users get a concrete idea of the exceptional behavior.

B. Inconsistent Documentation

Lst. 2 shows the complete Javadoc documentation and
a brief excerpt of method min in the latest version of
Apache Commons Lang’s class NumberUtils, which computes
the minimum of an array of integers. Unlike the previous
example, min’s documentation is detailed and clearly ex-
presses the conditions under which an exception is thrown.
Unfortunately, the documentation is partially incorrect: when
array is null, min throws a NullPointerException, not an
IllegalArgumentException, as precisely reported by WIT:

throws: NullPointerException when: array == null

This inconsistency is due to a change in the implementation
of validateArray, which is called by min to validate its
input and uses methods of class Validate to perform the
validation. In version 3.12.0 of the library, validateArray

switched5 from calling Validate.isTrue(a != null) (which
throws an IllegalArgumentException when the check
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Listing 3: Excerpt of method ArrayUtils.insert in Apache
Commons, and some of the methods it calls.

1 public static boolean[] insert(final int k, final boolean[] a
, final boolean... v) {

2 if (a == null) { return null; }
3 if (isEmpty(v)) { return clone(a); }
4 if (k < 0 || k > a.length)
5 { throw new IndexOutOfBoundsException(); }
6 // ...
7 }
8

9 public static boolean isEmpty(boolean[] x)
10 { return getLength(x) == 0; }
11

12 public static int getLength(boolean[] y)
13 { if (y == null) { return 0; } return y.length; }

fails) to calling Validate.notNull(a) (which throws a
NullPointerException instead) to check that a is not null.

To help locate the source of any exceptional behavior, WIT

also outputs the line where the exception is thrown, and
often the triggering method call. In this example, it would
clearly indicate that the exceptional behavior comes from a
call to Validate.notNull. This information can help detect
and debug such inconsistencies, which can be quite valuable
to project developers and users (see Sec. V-E).

III. HOW WIT WORKS

Fig. 1 overviews how WIT’s analysis works. WIT inputs the
source code of some Java classes; it analyzes the methods of
those classes to determine their exception preconditions, that is
the conditions on the methods’ input that lead to the methods
throwing an exception. It then outputs the exception precon-
ditions it could find, together with their matching exception
class, as well as examples of inputs that satisfy the exception
preconditions. WIT’s analysis only needs the source code of the
immediate classes to be analyzed: it does not need a complete
project’s source code, nor to compile or build the project.

A. Parsing and CFG

WIT parses the source code given as input using JavaParser,6

and constructs a control-flow graph (CFG) of the methods in
the input classes using library JGraphT.7 More precisely, we
build a CFG for each method m individually; and annotate
branches with each branch’s Boolean condition.

Lst. 3 shows excerpts of 3 methods of class ArrayUtils8

in Apache Commons Lang. Method insert puts some values
v into an array a of Booleans at a given index k. The initial
part of its implementation calls another method isEmpty of the
same class to determine if v is empty; in turn, isEmpty calls
method getLength. WIT builds CFGs for insert, isEmpty, and
getLength, since they are all part of the input source code.

B. Local Exception Paths

When analyzing a method m, WIT collects its local exception
paths (“expaths” for short). These are all simple directed
pathsb on m’s CFG that end with a node that may throw an

bA simple path is one where any one node appears at most once. We
compute them using JGraphT’s AllDirectedPaths method.9

Listing 4: Excerpt of the SMT encoding corresponding to global
expath p1 of method insert in Lst. 2.

1 # logic variables
2 k = Int(’k’)
3 a_null = Bool(’a==null’); a_length = Int(’a.length’)
4 c = [a_length >= 0, v_length >= 0] # implicit
5 c += [Not (a_null)] # a != null
6 x_null, x_length = v_null, v_length # call isEmpty
7 y_null, y_length = x_null, x_length # call getLength
8 c += [y_null] # y == null
9 getLength = 0 # return 0

10 isEmpty = (getLength == 0) # return getLength(x)==0
11 c += [Not(isEmpty)] # !isEmpty(v)
12 c += [Or(k < 0, k > a_length)] # k < 0 || k > a.length

exception—either explicitly with a throw or indirectly with a
a call (which may return exceptionally).

In Lst. 3’s example, one of insert’s local expaths p goes
through the else branch on lines 2–3 and through the then
branch on line 4, ending with the throw on line 5:

p : if2
a!=null−−−−−−→ if3

!isEmpty(v)
−−−−−−−−−→ if4

k<0 || k>a.length
−−−−−−−−−−−−−−→ throw5

C. Global Exception Paths

After collecting expaths local to each method, WIT converts
them into global expaths by inlining calls to other methods.

Given a local expath `, for each node nx in ` that calls some
other method x, WIT checks whether x’s CFG is available (that
is, whether x’s implementation was part of the input). If it is,
WIT enumerates all simple paths that go through the CFG of
x, and splices each of them into ` at nx. In other words,
it transforms the local path ` so that it follows inter-method
calls. Since a method usually has multiple paths, one local
expath may determine several global expaths after inlining.
WIT inlines calls recursively (with some limits that we discuss
in Sec. III-F). If a called method’s CFG is not available, WIT

doesn’t inline calls to it and marks them as “opaque”.
WIT inlines the call to isEmpty in local expath p (Lst. 3’s

example) since isEmpty is part of the same analyzed class

ArrayUtils. Inlining replaces p’s edge if3
!isEmpty(v)−−−−−−−−−−→ if4

with getLength’s only path: if3
!(getLength(v)==0)−−−−−−−−−−−−−−−−→ if4.

Since the implementation of getLength is available too, WIT

recursively inlines its two paths, which finally gives two global
expaths p1, p2 that inline insert’s local expath p’s calls:

p1 : if2 → if3 → if13
v==null, 0 != 0−−−−−−−−−−−−→ if4 → throw5

p2 : if2 → if3 → if13
v!=null,v.length != 0−−−−−−−−−−−−−−−−−−→ if4 → throw5

D. Path Feasibility

WIT builds global expaths only based on syntactic informa-
tion in the CFGs; therefore, some paths may be infeasible (not
executable). To determine whether a global expath is feasible,
WIT encodes it as an SMT (Satisfiability Modulo Theory)
formula [2], and uses the Z3 SMT solver [12] to determine
whether the expath’s induced constraints are feasible.

To this end, it first transforms the path into SSA (static
single assignment) form, where complex statements are bro-
ken down into simpler steps, and fresh variables store the

3



Java source CFG Local Expaths Global Expaths Feasible Paths Exception
Preconditions

6
a1 → a2 → · · · → aA
b1 → b2 → · · · → bB

· · ·

a1 → γ2 → γ3 → · · · → aA
a1 → δ2 → δ3 → · · · → aA
b1 → b2 → θ3 → · · · → δB

b1 → κ2 → b3 → λ4 → · · · → δB
· · ·

a1 → δ2 → δ3 → · · · → aA

throws: Error
when: x > 0

example: [x=1]

parsing

JavaParser

simple
paths

JGraphT

inlining SMT encoding

Z3

backward
substitution

SymPy

Fig. 1: An overview of how WIT works. WIT parses the source code of the Java classes to be analyzed, and builds a control-flow graph (CFG) of every method.
It enumerates the simple paths in every method’s CFG that may end with an exception (expaths). It then transforms these expaths local to a specific method
into global expaths by inlining method calls; this may transform a single local expath into multiple global expaths. To determine which expaths are feasible,
WIT encodes their constraints as an SMT problem and uses the Z3 SMT solver to check if they are satisfiable. It finally transforms all feasible paths into
exception preconditions.

intermediate values of every expression. We designed a logic
encoding of Java’s fundamental types (int, boolean, byte,
arrays, strings) with their most common operations (including
arithmetic, equality, length, contains, isEmpty), as well
as of a few widely used JDK library methods (such as
Array.getLength). WIT uses this encoding to build an SMT
formula φ corresponding to each global expath p: if φ is
satisfiable, then the global expath p is feasible, and hence it
corresponds to a possible exceptional behavior of method m.

WIT encode φ as a Python program using the Z3 SMT
solver’s Z3Py Python API.c Lst. 4 shows a simplified excerpt
of the SMT program encoding the feasibility of insert’s
global expath p1. First, it declares logic variables of the
appropriate types to encode program variables (e.g., k), their
basic properties (e.g., a_length, which corresponds to the Java
expression a.length), and the values passed via method calls
(e.g., getLength is an integer variable storing getLength()’s
output). Then, it builds a list c of constraints that capture the
path constraints and the semantics of the statements along the
path. For example, a_length must be nonnegative, since it
corresponds to array a’s length (line 4); the properties of array
v are copied to those of x, since insert’s argument v is the
actual argument for isEmpty’s formal argument x (line 6); and
path constraint !isEmpty(v) corresponds to the complement
of Boolean variable isEmpty (line 11). In this case, Z3
easily finds that the constraints in c are unsatisfiable, since
Not(0 == 0) is identically false. In contrast, the constraints
corresponding to path p2 are satisfiable, and thus Z3 outputs
a satisfying assignment of all variables in that case.

Sometimes WIT does not have sufficient information to
determine with certainty whether a path is feasible. When
a path includes a call to an opaque method (whose imple-
mentation is not available) that is not one of the basic JDK
library methods that we provided a logic encoding for, WIT’s
feasibility check is underconstrained. In these cases, WIT still
performs a feasibility check but reports any results as maybe,
to warn that the output may not be correct.

In Lst. 3’s example, suppose that getLength’s implemen-
tation wasn’t available. Then, WIT would only know that
getLength returns an integer; therefore it would classify path
p as feasible but mark it as maybe since it is just an educated
guess without correctness guarantees.

cWIT’s Z3 ad hoc encoding also handles aliasing by explicitly keeping track
of possible aliases along each checked path. Thanks to the other heuristics
that limit path length (Sec. III-F), this approach is feasible in practice.

E. Exception Preconditions

A feasible path p identifies a range of inputs of the analyzed
method m that trigger an exception. In order to characterize
those input as an exception precondition, WIT encodes p’s
constraints as a formula that only refers to m’s arguments, as
well as to any members that are accessible at m’s entry (such
as the target object this, if m is an instance method). To this
end, it works backward from the last node of exception path
p; it collects all path constraints along p, while replacing any
reference to local variables with their definition. For example,
method void f(int x){int y=x+1; if(y > 0)throw;} has
a single feasible expath with path condition y > 0, which
becomes x+1 > 0 after backward substitution through the as-
signment to variable y. Since x+1 > 0 only mentions argument
x, it is a suitable exception precondition for method m.

Sometimes WIT cannot build an exception precondition
expression that only mentions arguments and other visible
members. A common case is when a path includes opaque
calls: since the semantics or implementation of these calls is
not available, any expressions including them may not make
sense in a precondition. In all these cases, WIT still reports
the exception expression obtained by backward substitution,
but marks it as a maybe to indicate that it may not be
correct. Another, more subtle case occurs when the exception
precondition includes calls to methods (as opposed to just
variable lookups). If these methods are not pure (that is, they
do not change the program state), the precondition may be
not well-formed. For instance, a precondition x.inc() == 0,
where calling inc increments the value of x. Here too, WIT is
conservative and marks as maybe any exception precondition
that involves calls to methods that are not known to be pure.

Before outputting any exception preconditions to the user,
WIT simplifies them to remove any redundancies and display
them in a form that is easier to read. To this end, it uses
SymPy [22],10 a Python library for symbolic mathematics.
Java’s syntax is sufficiently similar to C’s that we can also
enable SymPy’s pretty printing of expressions using C syn-
tax, and then additionally tweak it to amend the remaining
differences with Java. While conceptually simple, the sim-
plification step is crucial to have readable exception precon-
ditions. For example, SymPy simplifies the ugly expression
(!(x==null))&&(!(x==null))&&(0+1==1)&&(y<0||y>x.length) into the
much more readable (y>x.length || y<0) && null!=x,
which doesn’t repeat x!=null and omits the tautology 0+1==1.

WIT’s final output consists of: (a) the exception precondition,
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(b) whether it is a maybe, (c) the thrown exception type,
(d) and an example of inputs that satisfy the precondition
(given by Z3’s successful satisfiability check). For debugging,
WIT can also optionally report the complete throw statement
(including any exception message or other arguments used to
instantiate the exception object), and the line in the analyzed
method m where the exception is thrown or propagated.

F. Heuristics and Limitations

Let us now zoom in into a few details of how WIT’s
implementation works. To put these details into the right
perspective, let us recall WIT’s design goals: it should be
precise and lightweight; it’s acceptable if achieving these
qualities loses some generality—as long as a sizable fraction
of exception preconditions can be precisely determined.

Implicit exceptions. WIT only tracks exceptions that are
explicitly raised by a throw statement; it does not consider
low-level errors—such as division by zero, out-of-bound array
access, and buffer overflow—that are signaled by exceptions
raised by the JVM. This restriction is customary, in tech-
niques that infer exceptional behavior, since implicitly thrown
exceptions are “generally indicative of programming errors
rather than design choices [41]” [4], and usually do not
belong in API-level documentation [14]. Extending WIT to also
track implicit exceptions would not be technically difficult,
but would produce a vast number of boilerplate exception
preconditions that are not specific to a method’s behavior.

Java features. WIT’s CFG construction currently does not
fully support some Java features: for-each loops, switch

statements, and try/catch blocks; and does not analyze the
exceptional behavior of constructors. When these features are
used, the CFG may omit some paths that exist in the actual
program. (Supporting these features is possible in principle,
but would substantially complicate the CFG construction.)d

The SMT encoding used for path feasibility (Sec. III-D) is
limited to a core subset of Java features and standard library
methods. WIT won’t report exception preconditions that involve
unsupported features (or will report them as maybe, that is
without correctness guarantee).

Path length. In large methods, even some local expaths can
be too complex, which bogs down the whole analysis process.
Therefore, WIT only enumerates paths of up to N = 50 nodes,
which have a much higher likelihood of being manageable.

Inlining limits. Inlining can easily lead to a combinatorial
explosion in the expaths; therefore, a number of heuristics
limit inlining. First, a path can be inlined only if it is up to
N = 50 nodes—the same limit as for local expaths. Second,
WIT stops inlining a call in a path after it has reached a limit
of I = 100 inlined paths—that is, it has branched out the
call into I different ways. It can still inline other calls in the
same path, but this limit avoids recursive inlinings that blow
up. Third, WIT enumerates the inlinings of a call in random
order; in cases where the limit I is reached, this increases the

dEven mature static analysis frameworks such as Spoon have only partial/-
experimental support for features such as try/catch.11

chance of collecting a more varied set of inlined paths instead
of getting stuck in some particularly complex ones (if the limit
I is not reached, the enumeration order is immaterial).

Timeouts. Z3’s satisfiability checks (to determine if a path
is feasible) may occasionally run for a long time. WIT limits
each call to Z3 to a 15-second timeout; when the timeout
expires, Z3 is terminated and the path is assumed to be
infeasible. There is also an overall timeout of 10 minutes per
analyzed class. If WIT’s analysis still runs after the timeout, to
remain lightweight, WIT skips to the next class.

Extensions. The parameters regulating these heuristics can
be easily changed if one needs to analyze code with peculiar
characteristics, when a large running time is not a problem.

IV. EXPERIMENTAL EVALUATION

This section describes the empirical evaluation of WIT,
which targets the following research questions.
RQ1 (precision): How many of the exception preconditions

detected by WIT are correct?
RQ2 (recall): How many exception preconditions can WIT

detect?
RQ3 (features): What are the most common features of the

exception preconditions detected by WIT?
RQ4 (efficiency): Is WIT scalable and lightweight?
RQ5 (usefulness): Are WIT’s exception preconditions useful

to complement programmer-written documentation?

A. Experimental Subjects

In our evaluation, we ran WIT on 46 open-source Java
projects surveyed by recent papers investigating the (mis)use
of Java library APIs [42], [44], [16] and the automatic gen-
eration of tests for some of these libraries [24] (see Tab. I).
Several of these projects are large, widely-used, mature Java
projects in various domains (base libraries, GUI program-
ming, security, databases)—especially the 26 projects from the
Apache Software Foundation, which recent empirical research
has shown to be extensively documented and thoroughly
tested [44], [24]. On the other hand, a few projects taken
from [16] are smaller, less used, or both. For instance, projects
gae-java-mini-profiler, visualee, and AutomatedCar are
no longer maintained. This minority of projects makes the
selection more diverse, so that we will be able to evaluate
WIT’s capabilities in different scenarios.

B. Experimental Setup

We ran WIT on the source code of all projects, after exclud-
ing directories that usually contain tests (e.g., src/test/) or
other auxiliary code. All experiments ran on a Windows 10
Intel i9 laptop with 32GB of RAM. By default, WIT only infers
the exception preconditions of public methods; if a public
method calls a non-public one, WIT will also analyze the latter
but report only public exception preconditions.

To answer RQ1 (precision), we performed a manual analy-
sis of a sample of all exception preconditions reported by WIT

to determine if they correctly reflect the exceptional behavior
of the implementation. One author tried to map each inferred
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exception precondition to the source code of the analyzed
method. In nearly all cases, the check was quick and its
outcome clear. The few exception preconditions whose cor-
rectness was not obvious were analyzed by the other authors
as well, and the final decision was reached by consensus. We
were conservative in checking correctness: we only classified
an exception precondition as correct if the evidence was clear
and easy to assess.

To answer RQ2 (recall), we used Nassif et al. [24]’s
dataset—henceforth, DSC—as ground truth. DSC includes
842 manually-collected exception preconditionse (expressed
in structured natural language, e.g. “if offset is negative”)
for all public methods in Apache Commons IO’s base pack-
age collected from all origins (package code, libraries, tests,
documentation, . . . ). We counted the exception preconditions
inferred by WIT that are semantically equivalent to some in
DSC. Matching DSC’s natural-language preconditions to WIT’s
was generally straightforward, as we didn’t have to deal with
subtle semantic ambiguities: since WIT is very precise, it only
reports correct exception preconditions.

Using DSC as ground truth assesses WIT’s recall in a
somewhat restricted context: (i) DSC targets exclusively the
Commons IO project, whose extensive usage of I/O operations
complicates (any) static analysis; (ii) DSC describes all sorts
of exceptional behavior, including the “not typically docu-
mented” runtime exceptions [24]. To assess WIT’s recall on a
more varied collection of projects, we also considered Zhong
et al. [44]’s dataset—henceforth, DPA—which includes 503
so-called “parameter rules” of public methods in 9 projects (a
subset of our 46 projects described in Sec. IV-A). A parameter
rule is a pair 〈m, p〉, where m is a fully-qualified method
name and p is one of m’s arguments; it denotes that calling
m with some values of p may throw an exception. Importantly,
parameter rules do not express the values of p that determine
an exception, and hence they are much less expressive than
preconditions; however, they are still useful to determine “how
much” exceptional behavior WIT captures. We counted the
exception preconditions inferred by WIT that match DPA: a
precondition c matches a parameter rule 〈m, p〉 if c is an
exception precondition of method m that depends on the value
of p. This is a much weaker correspondence than for DSC, but
it’s all the information we can extract from DPA.

To better characterize the exception preconditions that WIT

could not infer, we performed an additional manual analysis
of: (a) 679 of DSC’s exception preconditions among those that
WIT did not infer, (b) 118 throw statements among those that
WIT could not capture in each of the other projects, and (c) 185
exception preconditions reported by WIT as “maybe” (that is,
which may be incorrect). These 982 cases help assess what it
would take to improve WIT’s recall.

To answer RQ3 (features), during the manual analysis of
precision we also classified the basic features of each excep-
tion precondition r of a method m. We determine whether
r corresponds to an exception that is thrown directly by m

eWe exclude 6 innacurate cases.

or propagated by m (and thrown by a called method). We
count the number of Boolean connectives || and && in e,
which gives an idea of r’s complexity. Then, we determine if
each subexpression e of r constraints m’s arguments, or m’s
object state; and we classify r’s check according to whether
it is: (a) a null check (whether a value is null), (b) a value
check (whether a value is in a certain set of values), (c) a
query check (whether a function call returns certain values).
For example, here are expressions of each kind for a method
m with arguments int x and String y, whose class includes
fields int[] a, int count, and method boolean active():

void m(int x, int[] y) argument state

null y == null this.a != null
value x == 1 this.count > 0
query y.isEmpty() !this.active()

To answer RQ5 (usefulness), we first inspected the source-
code documentation (Javadoc and comments) of all meth-
ods with exception preconditions analyzed to answer RQ1,
looking for mentions of the thrown exception types and
of the conditions under which they are thrown. We also
selected 90 inferred exception preconditions among those
that were not already documented, and submitted them as 8
pull requests in 5 projects: Accumulo,12 Commons Lang,13,14,15

Commons Math,16,17 Commons Text,18 and Commons IO.19 We
selected these 5 projects as they are very active and routinely
spend effort in maintaining a good-quality documentation.
Each pull request combines the exception preconditions of
methods in the same class or package, and expresses WIT’s
exception preconditions using Javadoc @throws tags.

V. EXPERIMENTAL RESULTS

As described in Sec. III-E, WIT produces two kinds of
exception preconditions. The main output are those whose
feasibility was fully checked (Sec. III-D); others are marked
as maybe and can still be correct but have no guarantee. In
this section, we call “expres” the former and “maybes” the
latter. The experimental evaluation focuses on the former kind:
“exception precondition” (without qualifiers) means “expre”.

A. RQ1: Precision
Overall, WIT reported 11 875 expres and 20 989 maybes

in 17,688 methods (10,234 and 8,391 respectively)—out of
a total of 388 000 analyzed public methods from 57 000
classes in 46 projects. As shown in Tab. I, WIT detected some
preconditions in 44 of these projects.

We manually analyzed a sample of 390 expres to determine
if they are indeed correct. This sample size is sufficient to
estimate precision with up to 5% error and 95% probability
with the most conservative (i.e., 50%) a priori assumption [11];
thus, it gives our estimate good confidence without requiring
an exhaustive manual analysis [46], [24]. We applied stratified
sampling to pick the 390 expres: we randomly sampled 10
instances in each of the 44 projects where WIT detected some
expres.f This manual analysis found that all expres were
indeed correct, that is 100% precision.

fWe pick all expres for 7 projects with less than 10 in total.

6



EXPREs MAYBEs
PROJECT KLOC TIME # M P ?# ?P

accumulo 33 124 325 309 1.0 941 0.5
Activiti 103 152 374 338 1.0 154 0.4
asm 28 136 110 81 1.0 409 0.8
asterisk-java 30 5 16 14 1.0 9 0.4
AutomatedCar 4 0 0 0 – 2 –
Baragon 15 1 1 1 1.0 12 0.6
bigtop 6.5 0 1 1 1.0 4 1.0
byte-buddy 57 12 170 164 1.0 214 0.8
camel 972 1962 663 600 1.0 778 0
closure-compiler 287 66 46 45 1.0 62 0.6
commons-bcel 35 12 32 31 1.0 284 1.0
commons-configuration 20 10 73 60 1.0 55 0.8
commons-io 9.5 16 106 78 1.0 183 0.9
commons-lang 29 14 435 354 1.0 245 0.8
commons-math 61 96 627 357 1.0 627 0.8
commons-text 10 9 116 82 1.0 212 0.6
confucius 0.5 0 0 0 – 0 –
curator 26 5 18 13 1.0 40 0.6
dubbo 99 102 202 167 1.0 141 0.6
flink 568 888 1996 1634 1.0 3992 0.8
gae-java-mini-profiler 0.5 0 0 0 – 0 –
h2database 150 178 355 350 1.0 1104 0.6
httpcomponents-client 32 4 9 8 1.0 9 0.8
itext7 145 313 356 2325 1.0 1239 0.8
jackrabbit 260 66 465 446 1.0 481 0.8
jackrabbit-oak 26 111 175 175 1.0 460 0.8
jackson-databind 63 26 82 81 1.0 138 1.0
jfreechart 84 50 846 780 1.0 470 1.0
jmonkeyengine 19 279 388 354 1.0 832 0.2
joda-time 29 33 140 130 1.0 255 0.8
logging-log4j2 99 52 166 93 1.0 106 0.6
lucene-solr 685 721 1627 1406 1.0 2692 0.6
pdfbox 106 139 202 189 1.0 218 0.6
poi 260 448 387 352 1.0 2003 0.2
santuario-xml-security-java 35 8 78 73 1.0 59 0.8
shiro 27 10 70 63 1.0 101 0.4
spoon 75 38 213 207 1.0 187 0.2
spring-cloud-gcp 20 5 7 7 1.0 4 0.7
spring-data-commons 28 5 5 4 1.0 105 0.5
swingx 72 47 86 85 1.0 99 0.8
traccar 54 6 1 1 1.0 10 0.6
visualee 1.8 1 0 0 – 6 0
weiboclient4j 7.8 1 5 5 1.0 0 –
wicket 109 129 453 386 1.0 463 0.8
wildfly-elytron 80 33 190 175 1.0 227 0.6
xmlgraphics-fop 165 99 258 210 1.0 1357 0.4

overall 5,720 6,412 11,875 10,234 1.0 20,989 0.7

TABLE I: Exception preconditions inferred by WIT. For each analyzed
PROJECTS: the size of the analyzed source code in thousands of
lines (KLOC); WIT’s total running TIME in minutes; the number # of
inferred exception preconditions (EXPREs), the number M of methods
with some inferred exception preconditions, the resulting precision P,
the number ?# of MAYBE exception preconditions, and the percentage
?P of these that are correct.

As we explained in Sec. III, WIT’s maybes still have a chance
of being correct exception preconditions, but they remain
educated guesses in general. We randomly picked 206 maybes
uniformly in each of the 43 projects that report someand
manually checked them as we did for the expres. We found that
71% (128) of them are indeed correct; thus, WIT’s precision
remains high (87% = (128 + 390)/(206 + 390)) even if we
consider all maybes. As we further discuss in Sec. V-B, in most
cases, WIT could not confirm the maybes as correct because
they involve methods whose implementation is not available
or unsupported Java features.

Listing 5: Excerpt from class FileUtils in project Commons IO.
1 static void copyToDir(File src, File destDir) {
2 if (src == null) { throw new NullPointerException(); }
3 if (src.isDirectory()) { copyDirToDir(src, destDir); }
4 else if (src.isFile()) { copyFileToDir(src, destDir); }
5 else { throw new IOException("Source does not exist"); }
6 }
7

8 static void copyDirToDir(File srcDir, File destDir) {
9 if (srcDir == null) { throw new NullPointerException(); }

10 if (srcDir.exists() && !srcDir.isDirectory())
11 { throw new IllegalArgumentException(); }
12 if (destDir == null) { throw new NullPointerException();}
13 if (destDir.exists() && !destDir.isDirectory())
14 { throw new IllegalArgumentException(); }
15 // ...
16 }

Manually analyzing a significant sample of exception
preconditions confirmed that WIT is 100% precise.

B. RQ2: Recall

Out of DSC [24]’s 842 manually identified exception
preconditions, WIT detected 61 expres in 6 classes of
Commons IO (1 in FileNameUtils, 1 in LineIterator, 8 in
FileCleaningTracker, 17 in IOUtils, 31 in FileUtils, and 3
in HexDump), that is a recall of 7% (61/842). However, 678 out
of DSC’s 842 exception preconditions are of kinds unsupported
by WIT (see Sec. III-F). After excluding unsupported kinds,g

WIT’s recall is 37% (61/(842− 678)).
Analysis of missed expres. To better understand WIT’s

recall, we manually analyzed 781 (842 − 61) Commons IO

exception preconditions from DSC that WIT didn’t report as
expres. We can classify these missed preconditions in 3 groups.

1) Unsupported features: As mentioned, the largest group
of missed preconditions (449 or 66% of the analyzed sample)
involve Java language features that WIT does not support.

2) Implicit exceptions: Another group of missed precon-
ditions (138 or 20% of the analyzed sample) correspond to
implicit exceptions that are thrown by the Java runtime (e.g.,
when a null pointer is dereferenced), which we deliberately
ignore (as discussed in Sec. III-F).

3) Maybes: exception preconditions in the third group (91
or 14% of the analyzed sample) refer to opaque methods
(Sec. III-C) whose implementation is not available to WIT.

When opaque methods are involved, WIT simply doesn’t
have the information needed to conclude that these features
determine a feasible precondition. Nevertheless, it doesn’t
completely give up; it often still reports as “maybe” a “plau-
sible” exception precondition that may be correct. Indeed, 75
of the 91 manually analyzed exception preconditions that WIT

detected as maybes were correct. WIT’s recall on Commons IO

becomes 83% ((75 + 61)/(842 − 678)) if we also count all
(correct) maybes (with 87% precision, see Sec. V-A).

As a concrete example, Lst. 5 shows an excerpt of two
methods in Commons IO’s class FileUtils. WIT reports most
of their exception preconditions as maybes. For example,

gExcluding unsupported annotation kinds is a common practice in the
empirical evaluation of tools that infer annotations [46].
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the precondition leading to the throw on line 5 requires
!src.isDirectory() and !src.isFile()—two calls to meth-
ods of Java system class File. WIT doesn’t know whether these
two methods have any side effects, whether their return values
are somehow related, and whether calling them may throw an
exception.h However, it still reports the correct condition as
maybe: the user can take it as a suggestion that still requires
manual validation but is grounded in the analysis of the meth-
ods’ control flow. Even in cases where Z3’s feasibility check
cannot be done, WIT’s simplification step can still prune out
logically inconsistent conditions and avoid reporting them even
as maybes. In Lst. 5, the exception thrown by copyDirToDir

at line 11 is infeasible from copyToDir, since it requires
both src.isDirectory() (line 3) and !src.isDirectory()

(line 10); thus WIT doesn’t report anything.
Dataset DPA. Using [44]’s DPA dataset of 503 parameter

rules as reference suggests that WIT’s recall varies considerably
depending on the characteristics of the analyzed project.
Overall, WIT inferred 104 matching expres and 61 matching
maybes, corresponding to a recall of 21% (expres only) and
33% (expres+maybes). If we exclude the parameter rules
involving features unsupported by WIT, the recall becomes
49% (expres only) and 77% (expres+maybes). WIT struggles
the most on projects like asm, which extensively uses features
and coding patterns21 that WIT currently doesn’t adequately
support: as a result, WIT’s recall is fairly low (considering
all parameter rules, 4% with expres only and 15% with
expres+maybes; considering only supported ones, 17%/67%).
In contrast, more “traditional” Java projects like JFreeChart22

extensively follow programming practices such as validating
a method’s input, which are a better match to WIT’s current
capabilities: as a result, WIT’s recall is quite high (considering
all parameter rules, 50% with expres only and 61% with
expres+maybes; considering only supported ones, 92%/96%).

WIT inferred 7–83% of the exception preconditions in
Commons IO. Its recall varies considerably depending on

the analyzed project’s characteristics.

C. RQ3: Features
Sec. V-B’s comparison of WIT’s preconditions with those in

DSC [24]’s extensive collection confirmed what also reported
by other empirical studies [3], [46]: exception preconditions
are often concise and structurally simple. This was also
reflected in our manual sample of 390 expres inferred by WIT.
In terms of size, 69% of them are simple expressions without
Boolean connectives &&/||; and only 10% include more than
one connective. In terms of control-flow complexity, 68% of
WIT’s expres involve exceptions that are thrown directly by
the analyzed method (as opposed to propagated from a call).
These measures of complexity are very similar for maybes,
which indicates again that it’s not their intrinsic complexity
but the lack of information (for example: purity) that prevents
WIT from confirming them as correct.

hIndeed, both methods may throw a SecurityException,20 which makes
them unsuitable, strictly speaking, to express a precondition in the most
general case.

Over 97% of all expres constrain a method’s arguments
(72% constraint only the arguments), whereas about 32%
predicate over object state. Value checks are most frequent
(60% of expres), followed by null checks (50% of expres);
and 97% of expres have either or both. Query checks are
considerably less frequent (18% of expres include one). If
we look at maybes, they tend to include query checks more
frequently (35%), which is to be expected since a method call
can be soundly used in a precondition only when it is provably
pure (Sec. III-E).

Up to 12% of the expres in the sample are the sim-
plest possible Boolean expression: true. All of the 6 ex-
pres of spring-cloud-gcp are of this kind. These usu-
ally correspond to methods that unconditionally throw an
UnsupportedOperation exception to signal that they are
effectively not available; see project lucene-solr’s class
ResultSetImpl for an example.23 In Java, this is a common
idiom to provide “placeholders,” which will be replaced by ac-
tual implementations through overriding in subclasses. While
this is a common programming pattern that leverages poly-
morphism, it nominally breaks behavioral substitutability [19],
[25]: a method’s precondition should only be weakened [23],
but no Boolean expression is weaker than true.

Some of the exception preconditions that we manually
inspected revealed interesting and non-trivial features. WIT

could infer expres embedded in complex expressions, such
as in the case24 of an empty string that triggers an exception
in the “else” part of a ternary expression. It also followed
method calls collecting complex conditions and presenting
them in a readable, simplified form. For example, for a
ConcurrentModification exception,25 or after collecting con-
stant values from other classes.26 In all, WIT’s output is often
concise and to the point—and thus readable and useful.

The exception preconditions inferred by WIT are usually
succinct and mainly involve checks of method arguments.

D. RQ4: Efficiency

Thanks to the heuristics it employs (Sec. III-F) and to the
nature of exception preconditions (which tend to be simpler
compared to general program behavior), WIT’s analysis is quite
lightweight and scalable. As shown in Tab. I, its running times
are generally short: it processed the entire Apache Commons

Lang in just 14 minutes—4.2 seconds on average for each
of the project’s 200 top-level classes. It also scales well to
very large projects: it analyzed the 9 780 classes of Apache

Camel (the largest project in our collection) in 33 hours—just
12 seconds per class on average. Key to this performance is
WIT’s capability of analyzing each class in isolation, without
requiring any compilation or build of the whole project.

WIT’s analysis is lightweight: on average, it takes 7
seconds per class; 32 seconds per exception precondition.

E. RQ5: Usefulness

Out of all 518 expres and maybes that WIT correctly inferred,
72% (372) are not documented; precisely, 283 of them belong
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to methods without any Javadoc, and 153 to methods with
some Javadoc that does not describe that exceptional behavior.
In contrast, 21% (110) of WIT’s exception preconditions are
properly documented; and 6% (31) of them are only partially
documented (usually with a @throws Exception tag that does
not specify the conditions under which an Exception is
thrown). The remaining 1% corresponds to 6 exception pre-
conditions whose documentation is incorrect. We also found
that 38% (196) of the 518 preconditions occur in nested calls
(when an exception is propagated from a method call); only
23% (45) of them are documented.

In a manually analyzed sample, 72% of WIT’s
exception preconditions were not documented.

While there may be situations where documenting every
source-code method is not needed or recommended, properly
documenting public methods of APIs (remember that all of
WIT’s exception preconditions refer to public methods) is
an accepted best practice [46], [24]. To determine whether
WIT’s inferred preconditions can be a valuable source of
API documentation, we collected 90 exception preconditions
extracted by WIT in 5 Apache projects and submitted them
as 8 pull requests (as described in Sec. IV-B). At the time
of writing, maintainers accepted (without modifications) 5
pull requests containing 71 preconditions—54 (76%) of them
occurring in nested calls. Two pull requests to project Commons
Math have not been reviewed yet; one to project Commons

Lang is on hold because the project maintainers realized
that the 10 methods whose exceptional behavior we docu-
ment are inconsistent in using IllegalArgumentException vs.
NullPointerException, and they prefer to fix this inconsis-
tency before updating the documentation.

It is significant that the projects that accepted these pull
requests are known for their extensive and thorough documen-
tation practices [44], [24]. The fact that WIT could automati-
cally detect several exception preconditions that were missing
from their documentation, and promptly added following our
pull requests,i indicates that WIT’s output can be quite useful.
We expect that WIT’s precise output can have an even bigger
impact on scarcely documented projects.

WIT’s precise exception preconditions can be useful to
improve also large and mature projects: maintainers from 4

Apache projects accepted 79% of a sample of WIT

preconditions submitted as pull requests.

VI. THREATS TO VALIDITY

The main threat to the internal validity of our assessment of
WIT’s precision (Sec. V-A) comes from the fact that it is based
on manual inspection of Java code and documentation. Like
all manual analyses, we cannot guarantee that no mistakes
were made. Nevertheless, various evidence corroborates the
claim that WIT’s precision is high. First, WIT’s precision
follows from its design; therefore, the manual analysis was

iOne maintainer from Accumulo remarked that ours “are nice fixes to the
javadoc, thanks for finding them.”

primarily a validation of WIT’s implementation, checking that
no unexpected source of incorrectness occurred in practice.
Second, we inspected not only the source code but also any
official documentation, tests, as well as the datasets of related
studies of Java exceptions [21], [24]. Third, the authors exten-
sively discussed together the few non-obvious cases, and were
as conservative as possible in the assessment. We followed
similar precautions to mitigate threats to our assessment of
WIT’s recall (Sec. V-B), where we relied on [24]’s manual
analysis as ground truth.

Our selection of 46 Java projects includes several very
popular Java open source libraries, which were used in recent
related work; this helps reduce threats to external validity.
It remains that the exceptional behavior of libraries may be
different than that of other kinds of projects. Since library
APIs tend to perform more input validity checks [31], it is
possible that WIT would report fewer exception preconditions
simply because fewer are present in other kinds of software.

WIT’s implementation has a number of limitations; some
reflect deliberate trade-offs, while others could simply be
removed by extending its implementation. In its current state,
WIT has demonstrated to produce useful output and to be
precise and scalable.

VII. RELATED WORK

Assertion Inference. Automatically inferring preconditions
and other specification elements from implementations is a
long-standing problem in computer science, which has been
tackled with a variety of different approaches. Historically, the
first approaches used static analysis and thus were typically
sound (the inferred specification is guaranteed to be correct,
that is 100% precision) but incomplete (not all specifications
can be inferred, that is low recall), and may be not applicable
to all features of a realistic programming language [6], [8],
[20], [7], [33]. Daikon [13] was the first, widely successful
approach that used dynamic analysis, which offers a different
trade-off: it is unsound (the “inferred” specifications are only
“likely” to be correct) but it is applicable to any program that
can be executed. Daikon approach’s practicality also yielded
a lot of follow-up work [9], [17], [40], [10], [37], [26]. WIT

is fundamentally based on static analysis, which can be very
precise but incomplete [18]; its heuristics further make it
lightweight, and hence applicable to real-world Java projects.

More recently, approaches based on natural language pro-
cessing (NLP) have gained traction [3], [35], [27], [45],
[38], [38]. A clear advantage of NLP is that it can analyze
artifacts other than program code (e.g., comments and other
documentation); on the other hand, machine learning is usually
based on statistical models, and hence it cannot guarantee
correctness and may be subject to overfitting [28], [15].

Like the “classic” work on static assertion inference, WIT

extracts preconditions by directly analyzing the behavior of
a method’s implementation. An alternative, complementary
approach is extracting assertions indirectly by analyzing the
clients of a method [25], [29], [39], [30], [36], [43], [34]: the
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patterns used by many clients of the same API are likely to
indicate suitable ways of using that API’s methods [31].

Exception Preconditions. Buse and Weimer’s work [4]—
which is a refinement of Jex [32]—shares several high-level
similarities with WIT: it specifically targets the documentation
of exceptional behavior, uses static analysis, and can often
improve or complement human-written documentation. Nev-
ertheless, ours and their approach differ in several important
characteristics: (a) their approach works on instrumented byte-
code, which requires a full compilation of a project to be
analyzed (WIT only needs the source code of the class to be
analyzed); (b) they do not exhaustively check path satisfiability
or that only pure method expressions are used in expressions,
and hence they may report exception preconditions that are
not valid; (c) their evaluation is solely based on a qualitative
comparison with human-written documentation, whereas WIT’s
evaluation quantitatively estimates precision and recall.

SnuggleBug [5] is a technique to infer weakest precondi-
tions that characterize the reachability of a goal state from an
entry location. Like WIT, SnuggleBug is sound and scales to
real-world Java projects (even though it works on bytecode
and hence requires full project compilation). SnuggleBug’s
analysis is more general than WIT’s, as it is not limited to
exception preconditions, and handles calls (including recur-
sion) by synthesizing over-approximated procedure summaries
instead of inlining. This approach achieves a different trade-off
than WIT, which more aggressively gives up on long paths or
complex, unsupported language features. SnuggleBug’s evalu-
ation demonstrates one of its main usage scenarios: validating
implicit exception warnings.

PreInfer [1] infers preconditions of C# programs using
symbolic execution (through the Pex white-box test-case gen-
erator) by summarizing a set of failing tests’ paths. Compared
to WIT, PreInfer explores a different part of the assertion
inference design space: where WIT aims to infer simple pre-
conditions with high precision and scalability, PreInfer focuses
on complex preconditions that involve disjunctive and quan-
tified formulas over arrays. These differences in aim are also
reflected by the different experimental evaluations: we applied
WIT to 388 000 methods in 57 000 classes over 46 projects of
diverse characteristics, where it inferred 11 875 preconditions;
PreInfer’s evaluation targets 1 143 methods in 147 classes over
4 projects mainly consisting of algorithm and data structure
implementations, where it inferred 178 preconditions. Since it
relies on Pex, PreInfer’s inferred predicates are only “likely
perfect because Pex may not explore all execution paths” [1].

A direct, quantitative comparison with these approaches [4],
[5], [1] is not possible, since their implementations or exper-
imental artifacts are not publicly available.

Exceptional Behavior Documentation. Other recent work
uses static analysis to extract API specification with a focus on
extending and completing programmer-written documentation.
PaRu [44] is an automated technique that analyzes source
code and Javadoc documentation to link method parameters
to exceptional behavior. PaRu’s goal is to “identify as many
parameter rules as possible [...] it does not comprehend or

interpret any rule” [44]; hence, unlike WIT, PaRu does not infer
preconditions but just a mapping between parameters and the
throw statements that depend on them.

Drone [46] compares the exceptional behavior of source
code to that described in Javadoc in order to find inconsis-
tencies. Similarly to WIT, Drone analyzes a program’s control
flow statically and uses constraint solving (i.e., Z3)—but to
find inconsistencies rather than to analyze feasibility. WIT

and Drone also differ in some of the Java features they
support; for example, Drone keeps track of try/catch blocks
(WIT misses some paths) but does not follow calls inside
conditionals (WIT fully supports them). The several differences
between WIT’s and Drone’s capabilities reflect their different
goals (and, correspondingly, the different research questions of
their respective evaluations): Drone aims at finding inconsis-
tencies in whole projects, whereas WIT infers preconditions
with high precision and nimbly on individual classes. As
a result, Drone is run on projects with some existing doc-
umentation to improve and extend it: the tool “takes API
code and document directives as inputs, and outputs repair
recommendations for directive defects” [46, §3]; WIT can run
on projects without documentation and reliably find exception
preconditions (Sec. V-E showed that 72% of the manually
analyzed exception preconditions found by WIT are completely
undocumented).

DScribe [24] generates unit tests and documentation from
manually written templates, which helps keep them consis-
tent. An extensive manual analysis of the exceptional behav-
ior of Apache Commons IO—which we used as ground truth
in Sec. V-B’s experiments—found that 85% of exception-
throwing methods are not documented, not tested, or both,
which motivated their template-based approach. WIT’s output
could be used to write the templates, thus improving the
automation in DScribe’s approach.

VIII. DISCUSSION AND CONCLUSIONS

We presented WIT: a technique to extract exception pre-
conditions of Java methods that focuses on precision and is
lightweight.

The output of WIT’s analysis can be useful to extend,
complement, and revise the documentation of public methods’
exceptional behavior. Accurately documenting exceptions is
crucial for developers [46], but writing documentation is oner-
ous [24], [25]; as a result, APIs often lack documentation [31],
especially for exceptions [4]. WIT’s high precision ensures that
its output can generally be trusted without requiring manual
validation, and hence it can directly help the job of developers
writing documentation (or tests).

WIT’s other key feature (that it’s lightweight) would be
beneficial in different scenarios. For research in mining soft-
ware repositories, not requiring complete project builds en-
ables scaling analyses to a very large number (e.g., several
thousands) of projects—whereas building all of them would
be infeasible. Using WIT as a component of a recommender
system that runs in real-time is another scenario where speed/s-
calability would be of the essence.
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