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Abstract

Unified vision large language models (VLLMs)001
have recently achieved impressive advance-002
ments in both multimodal understanding and003
generation, powering applications such as vi-004
sual question answering and text-guided im-005
age synthesis. However, progress in unified006
VLLMs remains constrained by the lack of007
datasets that fully exploit the synergistic po-008
tential between these two core abilities. Ex-009
isting datasets typically address understanding010
and generation in isolation, thereby limiting011
the performance of unified VLLMs. To bridge012
this critical gap, we introduce a novel dataset013
construction framework, UnifiedVisual, and014
present UnifiedVisual-240K, a high-quality015
dataset meticulously designed to facilitate mu-016
tual enhancement between multimodal under-017
standing and generation. UnifiedVisual-240K018
seamlessly integrates diverse visual and tex-019
tual inputs and outputs, enabling comprehen-020
sive cross-modal reasoning and precise text-to-021
image alignment. Our dataset encompasses022
a wide spectrum of tasks and data sources,023
ensuring rich diversity and addressing key024
shortcomings of prior resources. Extensive025
experiments demonstrate that models trained026
on UnifiedVisual-240K consistently achieve027
strong performance across a wide range of028
tasks. Notably, these models exhibit significant029
mutual reinforcement between multimodal un-030
derstanding and generation, further validating031
the effectiveness of our framework and dataset.032
We believe UnifiedVisual represents a new033
growth point for advancing unified VLLMs and034
unlocking their full potential. 1035

1 Introduction036

Vision large language models (VLLMs) have made037

significant progress in visual understanding, evolv-038

ing from basic image captioning to complex vi-039

sual inferences (Liu et al., 2024b; Dai et al., 2023).040

1Our code and datasets will be available at https://
github.com/.

Figure 1: As illustrated in this figure, in contrast to
other unified VLLMs that fail to answer even simple
questions correctly due to conflicts between multimodal
understanding and generation, our model trained on
UnifiedVisual-240K is able to construct multimodal rea-
soning chains and provide accurate answers.

Currently, there is growing interest in unified mod- 041

els capable of both multimodal understanding and 042

generation. These models aim to integrate multi- 043

modal understanding and generation capabilities, 044

enabling them to handle a variety of tasks such as 045

image captioning, visual question answering, and 046

image generation (Team, 2024; Wu et al., 2024a; 047
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Tong et al., 2024a). Unified VLLMs have gained048

widespread attention due to their ability to com-049

bine multimodal understanding and generation in a050

single model. This unification not only simplifies051

the deployment and application process but also052

provides the potential for mutual enhancement be-053

tween generative and discriminative capabilities.054

As a result, this area of research is becoming an055

increasingly prominent development field.056

However, the development of powerful unified057

VLLMs hinges on access to high-quality training058

datasets. While several existing datasets have fa-059

cilitated progress, they fall short of fully unlock-060

ing the synergistic potential between multimodal061

understanding and generation. Ideally, a unified062

VLLM should achieve substantial improvements063

by leveraging the interaction between these two064

capabilities. Yet, in practice, models trained on065

current datasets often exhibit limited integration,066

failing to achieve effective mutual reinforcement067

between understanding and generation (Wang et al.,068

2024b,a). This highlights a critical limitation in the069

design and quality of existing datasets, which are070

unable to fully stimulate the desired synergy.071

To address these challenges, we propose a072

novel dataset construction framework, UnifiedVi-073

sual, and introduce UnifiedVisual-240K, a new074

dataset designed to enhance the interaction be-075

tween multimodal understanding and generation.076

UnifiedVisual-240K incorporates the following key077

features: First, the instructions may include both078

visual and textual information, encouraging holis-079

tic integration of multimodal context for accurate080

responses. Second, the responses may also con-081

sist of both visual and textual elements, requiring082

the model to excel in both textual reasoning and083

multimodal generation. This duality ensures that084

textual reasoning guides precise image generation,085

while the generated images, in turn, enhance tex-086

tual reasoning. This mutual reinforcement between087

the two modalities enables the model to achieve su-088

perior performance. Finally, UnifiedVisual-240K089

exhibits significant diversity in both task types and090

data sources, effectively promoting the interaction091

between understanding and generative capabilities.092

To validate the effectiveness of UnifiedVisual-093

240K, we trained unified VLLM models using this094

dataset. Experimental results show that models095

trained on UnifiedVisual-240K consistently outper-096

form those trained on existing datasets across a097

wide range of tasks. Notably, we observed sub-098

stantial mutual enhancement between the models’099

understanding and generative capabilities, fully 100

demonstrating the advantages of our dataset. 101

In summary, our contributions are as follows: 102

• We propose UnifiedVisual, a unified vision- 103

language dataset construction framework that 104

prioritizes the synergistic interaction between 105

understanding and generative capabilities while 106

ensuring task and data source diversity. 107

• We construct UnifiedVisual-240K, a high-quality 108

dataset tailored for unified VLLMs. 109

• Experimental results demonstrate that models 110

trained on UnifiedVisual-240K achieve superior 111

performance and exhibit mutual enhancement be- 112

tween multimodal understanding and generation. 113

2 Related Work 114

Unified Visual Understanding and Generation. 115

In recent years, research on unifying image under- 116

standing and generation within a single visual large 117

language model (VLLM) has garnered significant 118

attention. Early studies primarily achieved image 119

generation by integrating image generation models 120

(e.g., diffusion models) on top of large language 121

models (LLMs) (Sun et al., 2023; Wu et al., 2023; 122

Li et al., 2024c; Ge et al., 2024). More recently, 123

Tong et al. (2024a) demonstrated remarkable re- 124

sults by connecting LLMs and diffusion models 125

through a simple projection layer. Inspired by the 126

success of LLMs in next-step prediction tasks, re- 127

cent studies have explored representing and gen- 128

erating images in a fully autoregressive manner 129

using discrete visual tokens (Yu et al., 2023; Chen 130

et al., 2023; Wang et al., 2024b; Liu et al., 2024a; 131

Chern et al., 2024). To achieve high performance 132

in both image understanding and generation, some 133

research efforts have proposed decoupling these 134

two tasks. For instance, Transfusion (Zhou et al., 135

2024) and Show-o (Xie et al., 2024) employ autore- 136

gressive text modeling for image understanding 137

tasks while adopting visual diffusion modeling to 138

accomplish image generation. In contrast, Janus 139

(Wu et al., 2024a) introduces two distinct image 140

representations, specifically designed to address 141

the differing granularity requirements of image un- 142

derstanding and generation. Overall, exploration of 143

unified VLLM architectures continues to progress. 144

Training Datasets for Unified VLLM. Given 145

the unique characteristics of unified VLLMs, we 146

divided the training dataset into four major cate- 147

gories, as shown in Figure 2. Among them, datasets 148

for pure text generation are both abundant and of 149
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high quality (Shao et al., 2024b; Li et al., 2024a;150

Zhang et al., 2024). In contrast, datasets for multi-151

modal generation are relatively narrow in scope and152

limited in scale. Currently, the most widely used153

multimodal generation datasets mainly cover image154

generation and image editing. However, these tasks155

themselves are relatively straightforward, as they156

typically involve direct mappings from instructions157

to images or simple image modifications (Deng158

et al., 2009; Brooks et al., 2023; Fu et al., 2023; Qu159

et al., 2024). Additionally, there exist interleaved160

image-text datasets crawled from the internet, but161

the association between images and text in such162

datasets is often weak (Zhu et al., 2024; Laurençon163

et al., 2024).164

The scarcity of multimodal generation datasets165

not only limits the application of models in related166

downstream tasks but also introduces potential con-167

flicts between multimodal understanding and gen-168

eration during training. These conflicts make it169

challenging to achieve mutual enhancement of the170

two capabilities, potentially impacting the model’s171

performance on complex tasks. To address these172

challenges, we propose a unified vision-language173

dataset construction framework to overcome the174

current limitations in training datasets.175

3 Methodology176

In this section, we first provide a detailed intro-177

duction to our vision-language dataset construction178

framework, UnifiedVisual. Following that, we in-179

troduce UnifiedVisual-240K, a dataset constructed180

following the UnifiedVisual framework.181

3.1 UnifiedVisual182

As discussed in Section 2, the training datasets for183

unified VLLM can be categorized into two types:184

understanding datasets that only contain pure text185

outputs, and generation datasets that involve mul-186

timodal generation. Given the abundance and high187

quality of existing understanding datasets, we can188

directly leverage these well-established resources.189

In contrast, generation datasets are typically nar-190

rower in scope and more limited in scale. To ad-191

dress this, UnifiedVisual introduces a novel and192

comprehensive framework for constructing gener-193

ation datasets. Specifically, we focus on three key194

aspects to construct a more diverse and comprehen-195

sive generation dataset: (1) Visual Generation, (2)196

Multimodal Reasoning, and (3) Multimodal Inter-197

net Dataset. In the sections that follow, we will198

Figure 2: The proportions of different sub-datasets in
UnifiedVisual-240K. The innermost layer of the chart
represents the "input type - output type", such as Text-
MM, which indicates that these datasets feature textual
input and multimodal output.

discuss each construction method in detail. For 199

better clarity, we also provide illustrations in Ap- 200

pendix E, and the complete prompt templates can 201

be found in Appendix F. 202

3.1.1 Visual Generation 203

Visual Generation encompasses Image Generation, 204

Image Editing, and Image Correction. Unlike ex- 205

isting datasets that primarily focus on generating 206

or editing images based on simple descriptions or 207

instructions, our goal is to integrate visual under- 208

standing and textual reasoning to tackle more com- 209

plex visual generation challenges. 210

Image Generation Image generation involves 211

generating images that correspond to textual de- 212

scriptions, serving as a foundational task in train- 213

ing unified VLLMs. However, existing image gen- 214

eration datasets often emphasize direct mappings 215

between textual elements and images, which lim- 216

its their ability to handle more intricate generation 217

requirements. To address this, we propose two 218

enhanced approaches: 219

Topic- and Scene-Based Generation: (1) We pro- 220

pose several topics and corresponding scenes, then 221

generate image captions that implicitly, rather than 222

explicitly, describe the desired image content. (2) 223

We use embedding models to filter similar captions, 224

ensuring data diversity. (3) We use GPT-4 to gener- 225

ate a reasoning process (rationale) explaining the 226

content and details to be generated, followed by 227

DALL-E-3 for image synthesis. 228

Category- and Image-Based Generation: (1) We 229

collect a diverse set of authentic images, removing 230
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duplicates. (2) Based on the images and their cate-231

gories, we use GPT-4 to generate instructions that232

describe image characteristics and related informa-233

tion, again focusing on implicit rather than explicit234

descriptions. (3) We then use GPT-4 to generate a235

detailed rationale based on the caption and category236

information, outlining the logic behind the desired237

image. The final data point consists of the caption,238

rationale, and the original image.239

Image Editing Existing image editing datasets240

typically consist of simple pairs of images and edit-241

ing instructions that require straightforward mod-242

ifications. However, these basic datasets may not243

effectively enhance a model’s capacity to compre-244

hend and execute sophisticated visual generation245

instructions. To address this limitation, we enhance246

existing image editing data through a two-step ap-247

proach: (1) We transform simple editing instruc-248

tions into more nuanced prompts that necessitate249

deeper understanding and planning. (2) We use250

GPT-4o to analyze these enhanced instructions and251

generate reasoning rationales outlining the editing252

objectives and intended outcomes.253

Image Correction To further enhance the254

model’s capability in capturing fine-grained image255

details, we introduced a more sophisticated task256

paradigm: image correction. This task requires257

the model to evaluate image-description consis-258

tency and, when discrepancies are identified, an-259

alyze the inconsistencies before regenerating an260

image that fully aligns with the given description.261

We implement this through a three-stage process:262

(1) We modify existing image captions to create263

descriptions that maintain the core theme while in-264

troducing controlled variations in specific visual el-265

ements. (2) We utilize StableDiffusion to generate266

images containing intentional discrepancies based267

on these modified descriptions. (3) We employ268

GPT-4o to systematically analyze the generated im-269

ages against the original descriptions, automatically270

identifying inconsistencies and providing detailed271

modification rationales. The final data point in-272

cludes the original caption, the generated image,273

the analysis rationale, and the original image.274

3.1.2 Multimodal Reasoning275

Multimodal Reasoning focuses on the synergistic276

interplay between multimodal understanding and277

generation. During the reasoning process, multi-278

modal reasoning drives the generation of necessary279

visual content, while the generated visual content,280

as part of the reasoning rationale, in turn facili- 281

tates better multimodal understanding. This design 282

emulates human reasoning processes, where indi- 283

viduals often combine textual thinking with visual 284

aids (such as mental sketches or imagined scenes) 285

to collaboratively solve complex problems. 286

MM Reasoning (O) In multimodal tasks, an- 287

swering questions often requires careful attention 288

to specific details within the original input im- 289

ages. Following Shao et al. (2024a), we construct 290

questions that demand reasoning rationale incorpo- 291

rating snapshots of critical details from the original 292

image. 293

MM Reasoning (MM) To enhance the model’s 294

multimodal reasoning capabilities, we construct 295

data points that require joint reasoning across both 296

image and text modalities. The dataset construc- 297

tion process is as follows: (1) We collect a diverse 298

set of images and use the CLIP model to remove 299

duplicates. (2) GPT-4o is employed to generate 300

reasoning questions based on the collected images. 301

These questions are designed to require reasoning 302

processes that integrate both visual and textual con- 303

tent. Questions that fail to meet this criterion are 304

discarded. (3) The input image and the generated 305

question are provided to GPT-4o, which produces 306

a rationale. When necessary, textual descriptions 307

are used in place of images. (4) The textual de- 308

scriptions from step 3 are rewritten into keywords 309

using GPT-4. These keywords are then used to re- 310

trieve images from tools like Bing Search, ensuring 311

stylistic consistency across the images used in the 312

questions and rationales. (5) CLIP similarity scores 313

are computed between the descriptions generated 314

in step 3 and the retrieved images. Only the im- 315

ages with the highest similarity scores are retained. 316

Because the input is multimodal, we refer to this 317

construction method as MM Reasoning (MM). 318

MM Reasoning (T) Beyond multimodal input 319

scenarios, we also design multimodal reasoning 320

task based on purely textual inputs. The pro- 321

cess is as follows: (1) GPT-4 is used to generate 322

text-only questions that require reasoning aided by 323

generated images. (2) The generated questions are 324

deduplicated using embedding model to ensure di- 325

versity and uniqueness. (3) GPT-4 is then tasked 326

with answering these questions, providing detailed 327

rationales while replacing image-related compo- 328

nents with textual descriptions when necessary. (4) 329

DALL-E-3 is used to generate images based on the 330
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image descriptions generated in step 3.331

3.1.3 Multimodal Internet Dataset332

To further enhance the diversity and naturalness of333

the dataset, we process and transform interleaved334

text-image data sourced from the internet.335

MM Internet We construct this dataset based336

on a large collection of diverse multimodal data337

crawled from the internet. To improve data quality,338

we draw inspiration from Chen et al. (2024b) and339

design a multi-perspective filtering strategy. This340

strategy leverages pre-trained VLLMs to ensure341

coherence and semantic consistency between sen-342

tences and their associated images. Furthermore,343

we generate questions for these multimodal data,344

ensuring that the answers align precisely with the345

corresponding text-image data.346

3.1.4 Compared to Existing Practice347

UnifiedVisual introduces several key innovations348

over existing datasets. First, its synergistic de-349

sign uniquely integrates multimodal understand-350

ing and generation, embedding complex reasoning351

into generation tasks and incorporating multimodal352

generation within reasoning chains for mutual re-353

inforcement. Second, UnifiedVisual significantly354

broadens task diversity, covering visual generation,355

multimodal reasoning, and large-scale internet-356

sourced data, thus overcoming the limited scope357

of prior datasets. Third, by using indirect prompts358

and constructing reasoning chains that interleave359

text and images, UnifiedVisual enables models to360

learn more advanced reasoning processes, rather361

than simply mapping inputs to direct responses362

as in traditional datasets. Finally, the framework363

is highly extensible, enabling efficient and large-364

scale dataset construction to support future unified365

VLLM development.366

3.2 UnifiedVisual-240K367

Using the above methods, we ultimately con-368

structed 120k generation samples. The sources369

and final quantities of each type of data are shown370

in Table 3. Additionally, we sampled 60K data371

points from LLaVA-CoT (Xu et al., 2024) and CoT-372

Collection (Kim et al., 2023), respectively, to cre-373

ate our understanding samples. Together with the374

generation samples, these form our UnifiedVisual-375

240K. Its composition and distribution are illus-376

trated in Figure 2. More details about the dataset377

construction can be found in Appendix C. Addi-378

tionally, we provide examples for each subset of 379

UnifiedVisual-240K in Appendix G. 380

4 Experimental Setup 381

4.1 Unified VLLM 382

In this section, we select Anole (Chern et al., 383

2024) as the base model for training and evalu- 384

ation. Among all open-source unified VLLMs, 385

Anole stands out as a representative model built 386

on the transformer architecture. It adopts a uni- 387

fied processing approach for various modalities and 388

supports multimodal outputs that can include any 389

number of images. These capabilities make Anole 390

particularly suitable as the base model for our ex- 391

periments. Specifically, Anole represents images 392

as discrete tokens. After generating these image to- 393

kens, the image decoder converts the discrete visual 394

tokens back into images. For more details regard- 395

ing the training procedure and inference, please 396

refer to Appendix A. 397

4.2 Evaluation and Metrics 398

Multimodal Understanding To evaluate mul- 399

timodal understanding capabilities, we conduct 400

evaluations on six widely-used benchmarks: Real- 401

worldQA (XAI, 2024), MMVP (Tong et al., 2024b), 402

ScienceQA (Lu et al., 2022), VStar (Wu and Xie, 403

2023), MME (Fu et al., 2024), and POPE (Li 404

et al., 2023b). For RealworldQA, MMVP, Sci- 405

enceQA, and VStar, accuracy is used as the eval- 406

uation metric. GPT-4 is employed to determine 407

whether the model’s output match the ground truth, 408

and accuracy is then calculated. Notably, for 409

MMVP, a response is only considered correct if 410

both paired questions are answered correctly. For 411

MME and POPE, we first use GPT-4 to summa- 412

rize the model’s output as either "yes" or "no" and 413

then use the official repository’s code to compute 414

the final metrics. Specifically, for MME, we re- 415

port the total score for MME Perception and MME 416

Cognition. For POPE, we report its F1 score. 417

Multimodal Generation To evaluate visual gen- 418

eration capabilities, we use MS-COCO (Lin et al., 419

2014) and GenEval (Ghosh et al., 2024). For MS- 420

COCO, we report the CLIP score as our evaluation 421

metric. For GenEval, we use the official evaluation 422

code2 for assessment and report the overall score. 423

Textual Reasoning To assess the model’s pure 424

text reasoning ability, we use AlpacaEval (Li et al., 425

2https://github.com/djghosh13/geneval
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Model RWQA MMVP SQA VStar MME POPE Avg.

Anole 32.0 10.0 46.7 15.7 841.4 65.8 33.4
Anole-NormalData 37.9 7.3 53.4 30.9 952.9 75.9 39.9
Anole-UnifiedVisualT 37.9 20.0 55.2 29.8 1316.5 72.1 43.7
Anole-UnifiedVisualMM 36.1 14.7 55.3 28.3 1125.3 70.6 40.9
Anole-UnifiedVisual 39.7 24.0 56.2 33.0 1371.2 76.1 46.3

Table 1: This table presents the results of the multimodal understanding evaluation. The best results are highlighted
in bold, while the second-best results are marked with an underline for clarity.

2023a). Following the official AlpacaEval3, we use426

GPT-4 for evaluation. A higher win rate indicates427

greater helpfulness of the response.428

4.3 Experimental Details429

During training, we utilized 64 NVIDIA H100 80G430

GPUs, set the batch size to 512, and the maximum431

sequence length to 4096. We used the AdamW op-432

timizer with a 5% warm-up step and the cosine de-433

cay learning rate scheduler. The model was trained434

for 2 epochs with a maximum learning rate of 2e-5.435

For inference, we used greedy decoding to generate436

textural responses for reproducibility. After decod-437

ing, we used Anole’s vision decoder to transform438

the generated vision tokens into images.439

5 Experiments440

5.1 Baselines441

Anole-NormalData Following prior works (Ma442

et al., 2024; Li et al., 2024b), we trained Anole443

using a combination of textual understanding data,444

multimodal understanding data, and multimodal445

generation data. Specifically, the understanding446

data is identical to that of UnifiedVisual-240K,447

while the multimodal generation data was derived448

from an equivalent amount of Laion4 (Schuhmann449

et al., 2022). Laion is a high-quality dataset care-450

fully filtered by high aesthetic scores, making it a451

popular choice for training advanced image genera-452

tion models (Xie et al., 2024). This data was subse-453

quently transformed into the instruction-following454

format as outlined by Tong et al. (2024a).455

Anole-UnifiedVisualT To investigate the interac-456

tion between multimodal understanding and gen-457

eration within UnifiedVisual-240K, we introduced458

an additional baseline model trained exclusively on459

the understanding subset of UnifiedVisual-240K.460

3https://github.com/tatsu-lab/alpaca_eval
4https://huggingface.co/datasets/dclure/

laion-aesthetics-12m-umap

Figure 3: Generation evaluation for different models.

Anole-UnifiedVisualMM Similarly, we added 461

another baseline model trained solely on the gener- 462

ation subset of UnifiedVisual-240K. 463

5.2 Main Results 464

5.2.1 Multimodal Understanding 465

The experimental results are presented in Table 466

1. As shown, compared to Anole-UnifiedVisualT , 467

which is trained solely on multimodal understand- 468

ing data, Anole-NormalData incorporates addi- 469

tional multimodal generation data during training. 470

However, its performance is notably worse than 471

Anole-UnifiedVisualT . This observation aligns 472

with findings from prior research (Wang et al., 473

2024b), which indicate that directly including mul- 474

timodal generation data can conflict with the train- 475

ing objectives of multimodal understanding tasks, 476

leading to a decline in performance compared to 477

training exclusively on understanding data. 478

In contrast, our generation data is designed 479

not only to enhance the model’s generative ca- 480

pabilities but also to integrate complex rationales 481

into generation tasks. Consequently, even Anole- 482

UnifiedVisualMM , which is trained exclusively on 483

our generation data, achieves slightly better perfor- 484

mance than Anole-NormalData. More importantly, 485

trained on the combined understanding and genera- 486

tion data we constructed, Anole-UnifiedVisual’s 487

understanding capability surpasses both Anole- 488

UnifiedVisualT , which is trained on our understand- 489
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(a) Anole (b) Liquid (c) Emu3

Figure 4: Results of the multimodal understanding and generation evaluation for Anole, Liquid, and Emu3 models.
Each model is trained on UnifiedVisual-240K and NormalData. The training datasets and evaluation sets are
consistent with the settings described in Section 5.2.

ing data, and Anole-UnifiedVisualMM , which is490

trained on our generation data.491

These results clearly demonstrate that the gener-492

ation data and understanding data in UnifiedVisual-493

240K are mutually beneficial, jointly enhancing494

the multimodal understanding capability of Anole-495

UnifiedVisual.496

5.2.2 Multimodal Generation497

As shown in figure 3, when trained solely on un-498

derstanding data, Anole-UnifiedVisualT exhibits499

significantly worse generation capabilities com-500

pared to Anole-NormalData. The performance of501

Anole-UnifiedVisualMM , trained on our generation502

data, is also slightly worse than Anole-NormalData,503

which may be due to the lower image quality in our504

UnifiedVisual dataset compared to Laion. However,505

when training on both the understanding and gen-506

eration data in UnifiedVisual-240K, the generation507

capability of Anole-UnifiedVisual surpasses that508

of Anole-NormalData. This demonstrates that in509

UnifiedVisual, multimodal understanding data and510

multimodal generation data indeed promote each511

other, jointly enhancing the model’s multimodal512

generation capability.513

We further analyzed the detailed metrics of514

GenEval, as shown in figure 6. Compared to Anole-515

UnifiedVisualMM , which was trained solely on516

generation data, Anole-UnifiedVisual achieves sig-517

nificant improvements in single/double-object gen-518

eration, color, and quantity. This indicates that519

incorporating multimodal understanding data en-520

hances the model’s comprehension of object de-521

tails, including attributes such as color and quantity,522

thereby improving its generation capability.523

To further demonstrate the advantages of the gen-524

eration data in UnifiedVisual over that in Normal- 525

Data, we mixed half of the NormalData genera- 526

tion data with half of the UnifiedVisual generation 527

data, while keeping the understanding data con- 528

sistent, and trained a new model. The resulting 529

model achieved further improvements in generation 530

capabilities. Compared to Anole-UnifiedVisual, 531

this mixed-data model benefited from the intro- 532

duction of higher-quality image generation data 533

(from Laion), leading to enhanced generation per- 534

formance. This finding highlights that improving 535

image quality can further boost model performance. 536

Additionally, compared to Anole-NormalData, the 537

introduction of more complex reasoning-based gen- 538

eration tasks and multimodal reasoning tasks sig- 539

nificantly enhanced the model’s generation capabil- 540

ities. This further demonstrates the effectiveness of 541

our UnifiedVisual Framework. 542

5.2.3 Text Understanding 543

We used AlpacaEval to evaluate the models’ text 544

understanding and problem-solving capabilities. 545

As shown in figure 7, we calculated the win rate of 546

all models compared to Anole-NormalData. Simi- 547

lar to the evaluation results for multimodal under- 548

standing, Anole-NormalData performs the worst, 549

while Anole-UnifiedVisual achieves the best results. 550

This once again demonstrates that in UnifiedVisual- 551

240K, generation data and reasoning data mutually 552

promote each other, thereby enhancing the model’s 553

(textual) understanding capability. 554

6 Analysis 555

6.1 Results on Various Unified VLLMs 556

In this section, we further evaluate the generaliz- 557

ability of our UnifiedVisual by conducting experi- 558
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ments on additional Unified VLLMs beyond Anole,559

including Emu3 (Wang et al., 2024b) and Liquid560

(Wu et al., 2024b). The Hugging Face repository561

links for these models are provided in Appendix D.562

As illustrated in Figure 4, models trained on563

UnifiedVisual-240K consistently outperform those564

trained on NormalData in both multimodal under-565

standing and multimodal generation tasks. These566

results align perfectly with our observations in567

Section 5.2, further validating the effectiveness of568

UnifiedVisual. Our experiments comprehensively569

demonstrate that UnifiedVisual substantially en-570

hances the mutual reinforcement between multi-571

modal understanding and generation abilities in572

Unified VLLMs.573

6.2 Ablation study574

(a) Generation (b) Understanding

Figure 5: Left: Generation performance with generation
data controlled at 120k. Right: Understanding perfor-
mance with understanding data controlled at 120k.

In this section, we further demonstrate that train-575

ing the model on UnifiedVisual-240K reveals a576

mutually beneficial relationship between visual un-577

derstanding and generation.578

More understanding data leads to better gen-579

eration. Building upon the findings in Section580

5.1, we conducted a controlled experiment to in-581

vestigate whether more understanding data leads to582

better generation performance. In this experiment,583

we fixed the generation data to 120K samples and584

varied the amount of understanding data from 0K585

to 120K samples, thereby creating models with dif-586

ferent levels of understanding. Figure 5a illustrates587

the overall scores on GenEval, clearly demonstrat-588

ing that an increase in understanding data correlates589

with improved generation performance.590

More generation data leads to better un-591

derstanding. To explore the reverse relation-592

ship—whether more generation data enhances vi-593

sual understanding—we conducted another con-594

trolled experiment. Here, we fixed the understand-595

ing data at 120K samples and vary the amount of596

generation data across five levels (0K, 30K, 60K, 597

90K, and 120K). Joint training was performed with 598

the fixed 120K understanding samples. Figure 5b 599

illustrates the models’ F1 scores on POPE, demon- 600

strating that increasing the amount of generation 601

data consistently improves understanding perfor- 602

mance. This suggests that our generation data pos- 603

itively impacts the model’s ability to perform un- 604

derstanding tasks. 605

Summary. our experiments confirm that, in 606

UnifiedVisual-240K, generation and understand- 607

ing data are mutually beneficial. Generation data 608

enhances the model’s multimodal understanding, 609

while understanding data improves its generation 610

capabilities. Additionally, we observe that the per- 611

formance curves in both experiments have not yet 612

converged. This indicates that, by following our 613

data construction process, further scaling of the 614

dataset could lead to even greater performance 615

gains. Moving forward, we plan to expand the 616

dataset to train a more powerful Unified VLLM. 617

6.3 Reasoning in Multimodal Generation 618

After training on UnifiedVisual-240K, Anole- 619

UnifiedVisual demonstrates its ability to effectively 620

leverage reasoning capabilities in visual generation 621

tasks. As illustrated in Figure 17, the model is 622

prompted to generate “an animal associated with 623

having nine lives.” While Janus-Pro-7B and Emu3- 624

Gen were trained on larger and higher-quality 625

datasets and can produce more realistic images, 626

they fail to infer that the target animal was a cat. 627

In contrast, Anole-UnifiedVisual successfully de- 628

duces that the correct animal is a cat and generates 629

an accurate image. Additional examples are pro- 630

vided in Appendix H. These results indicate that 631

UnifiedVisual-240K can be used to train models to 632

learn reasoning in multimodal generation. 633

7 Conclusion 634

In this paper, we propose a novel dataset con- 635

struction framework, UnifiedVisual, and intro- 636

duce UnifiedVisual-240K, a high-quality dataset 637

designed to enhance the synergy between multi- 638

modal understanding and generation. Experimen- 639

tal results show that Anole-UnifiedVisual, trained 640

on UnifiedVisual-240K, consistently outperforms 641

models trained on existing datasets and demon- 642

strates significant mutual enhancement between 643

understanding and generation, fully validating the 644

effectiveness of the UnifiedVisual framework. 645
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Limitations646

In this paper, we propose a novel dataset construc-647

tion framework, UnifiedVisual, and introduce a648

high-quality dataset, UnifiedVisual-240K. Through649

comprehensive experiments, we demonstrate the ef-650

fectiveness of the dataset. While the current dataset651

is sufficient to support the experiments and conclu-652

sions presented in this paper, it remains relatively653

small compared to the training datasets used by654

other open-source models. As demonstrated in Sec-655

tion 6.2, increasing the amount of training data can656

further enhance model performance. In the future,657

we plan to leverage the UnifiedVisual framework658

to construct larger-scale datasets, aiming to further659

unlock the potential of Unified VLLM.660
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A Additional Experimental Setup897

Training Procedure Since both the input and898

output may simultaneously contain text and image899

content, markers [BOI] and [EOI] are added be-900

fore and after the visual tokens generated from the901

discretization of each image. With visual signals902

fully converted into discrete tokens, we use the stan-903

dard cross-entropy loss to train the model on the904

next-token prediction task. Particularly, to mitigate905

conflicts between visual and text generation during906

training, we compute the loss only for text tokens907

when predicting text, ignoring the logits of multi-908

modal tokens. Similarly, during visual generation,909

we compute the loss only for visual tokens.910

Inference During inference, our model employs911

the next-token prediction approach. When gener-912

ating text tokens, the model considers only text913

tokens. Once [BOI] is predicted, it signals the914

generation of an image. At this stage, the model fo-915

cuses exclusively on predicting visual tokens until916

the image generation is complete.917

B More Experimental Results918

B.1 Detailed GenEval Score919

We further analyzed the detailed metrics of920

GenEval, as shown in figure 6. Compared to Anole-921

UnifiedVisualMM , which was trained solely on922

generation data, Anole-UnifiedVisual achieves sig-923

nificant improvements in single/double-object gen-924

eration, color, and quantity. This indicates that925

incorporating multimodal understanding data en-926

hances the model’s comprehension of object de-927

tails, including attributes such as color and quantity,928

thereby improving its generation capability.929

B.2 Evaluation on AlpacaEval930

We used AlpacaEval to evaluate the models’ text931

understanding and problem-solving capabilities.932

As shown in figure 7, we calculated the win rate of933

all models compared to Anole-NormalData.934

B.3 Latency Experiments935

We evaluated the inference latency of several936

models on the RealWorldQA and POPE bench-937

marks. All experiments were conducted on a single938

NVIDIA H100 80G GPU. In our setup, models939

were required to first generate their reasoning pro-940

cess before producing the final answer. Table 2941

presents the average time (in seconds) required per942

sample for each model.943

Figure 6: GenEval scores across distinct dimensions.

Figure 7: Evaluation on AlpacaEval.

Janus-Pro LLaVA Anole Anole-UV
RWQA 2.12 1.06 1.51 2.07
POPE 1.08 0.59 1.50 2.03

Table 2: Latency Experiments. The Hugging Face repos-
itory links for these models are provided in Appendix
D. Anole-UV refers to Anole-UnifiedVisual.

Our results show that, compared to the base- 944

line, our approach only incurs a marginal increase 945

in inference latency, while achieving substantial 946

improvements in performance. Furthermore, the 947

inference latency of our model remains within an 948

acceptable range relative to other models. We an- 949

ticipate that with the adoption of inference acceler- 950

ation frameworks such as vLLM, the latency can 951

be further reduced. 952

B.4 Multimodal Reasoning 953

In UnifiedVisual, we introduce multimodal reason- 954

ing chains in MM Reasoning tasks with the funda- 955

mental goal of addressing the conflict between mul- 956

timodal understanding and multimodal generation, 957

thereby enabling these two capabilities to mutually 958

enhance each other. During the reasoning process, 959
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multimodal reasoning drives the generation of nec-960

essary visual content, while the generated visual961

content, as part of the reasoning rationale, in turn962

facilitates better multimodal understanding. This963

design emulates human reasoning processes, where964

individuals often combine textual thinking with vi-965

sual aids (such as mental sketches or imagined966

scenes) to collaboratively solve complex problems.967

Through training on the UnifiedVisual-240K968

dataset, we observe that our models not only969

achieves synergistic improvements in both mul-970

timodal understanding and generation, but also971

exhibits strong multimodal reasoning abilities. For972

example, in Figure 1, when asked, “Which plant973

has seeds on the outer surface of its fruit”. Models974

like Anole, Janus-Pro-7B, and Emu3-Gen rely on975

internal knowledge but give incorrect answers. In976

contrast, the Anole-UnifiedVisual model is capa-977

ble of effectively "recalling" the appearances of978

different fruits and combining them to provide the979

correct answer. This demonstrates that training980

on the UnifiedVisual-240K dataset can also acti-981

vate multimodal reasoning capabilities in models,982

allowing them to reason more like humans.983
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C Dataset Construction984

C.1 Data Sources and Quantities985

Quantity Source

MM Internet 29,399 CoMM (Chen et al., 2024b)
Image Editing 9,024 MagicBrush (Zhang et al., 2023)
Image Generation 22,755 OpenImages (Krasin et al., 2017)
Image Correction 20,000 ShareGPT4V (Chen et al., 2024a)
MM Reasoning (O) 21,000 Visual-CoT (Shao et al., 2024a)
MM Reasoning (T) 7,276 -
MM Reasoning (MM) 17,761 COCO (Lin et al., 2014)

Table 3: The quantities and sources of each type of generation data in UnifiedVisual-240K are presented. Here,
"sources" refer to the raw data sources used to construct UnifiedVisual-240K.

C.2 Tools986

Tool Link

GPT-4 https://openai.com/index/gpt-4
GPT-4o https://openai.com/index/gpt-4o-system-card
DALL-E-3 https://openai.com/index/dall-e-3
text-embedding-ada-002 https://openai.com/index/new-and-improved-embedding-model
clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14
stable-diffusion-3.5-large https://huggingface.co/stabilityai/stable-diffusion-3.5-large
Bing Image Search https://github.com/hellock/icrawler
Google Custom Search https://console.cloud.google.com

Table 4: Links to the tools used for constructing UnifiedVisual-240K.

D Links to Models987

Table 5 provides links to the Hugging Face repositories for all models we use in this study.988

Model Hugging Face Page

Anole-7B https://huggingface.co/leloy/Anole-7b-v0.1-hf
Emu3-Stage1 https://huggingface.co/BAAI/Emu3-Stage1
Liquid https://huggingface.co/Junfeng5/Liquid_V1_7B
LLaVA-7B https://huggingface.co/liuhaotian/llava-v1.5-7b
Janus-Pro-7B https://huggingface.co/deepseek-ai/Janus-Pro-7B

Table 5: Links to Hugging Face pages of all models.
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E Illustrations of Dataset Construction Methods 989

Figure 8: Illustration for Topic- and Scene-Based Image Generation. (1) We propose several topics and corresponding
scenes, then generate image captions that implicitly, rather than explicitly, describe the desired image content.
(2) We use embedding models to filter similar captions, ensuring data diversity. (3) We use GPT-4 to generate a
reasoning process (rationale) explaining the content and details to be generated, (4) followed by DALL-E-3 for
image synthesis.

Figure 9: Illustration for Category- and Image-Based. (1) We collect a diverse set of authentic images, (2) removing
duplicates. (3) Based on the images and their categories, we use GPT-4 to generate instructions that describe image
characteristics and related information, again focusing on implicit rather than explicit descriptions. (4) We then use
GPT-4 to generate a detailed rationale based on the caption and category information, outlining the logic behind the
desired image. The final data point consists of the caption, rationale, and the original image.

Figure 10: Illustration for Image Editing. (1) We transform simple editing instructions into more nuanced prompts
that necessitate deeper understanding and planning. (2) We use GPT-4o to analyze these enhanced instructions and
generate reasoning rationales outlining the editing objectives and intended outcomes.
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Figure 11: Illustration for Image Correction. (1) We modify existing image captions to create descriptions
that maintain the core theme while introducing controlled variations in specific visual elements. (2) We utilize
StableDiffusion to generate images containing intentional discrepancies based on these modified descriptions. (3)
We employ GPT-4o to systematically analyze the generated images against the original descriptions, automatically
identifying inconsistencies and providing detailed modification rationales. The final data point includes the original
caption, the generated image, the analysis rationale, and the original image.

Figure 12: Illustration for MM Reasoning (MM). (1) We collect a diverse set of images and use the CLIP model to
remove duplicates. (2) GPT-4o is employed to generate reasoning questions based on the collected images. These
questions are designed to require reasoning processes that integrate both visual and textual content. Questions
that fail to meet this criterion are discarded. (3) The input image and the generated question are provided to GPT-4o,
which produces a rationale. When necessary, textual descriptions are used in place of images. (4) The textual
descriptions from step 3 are rewritten into keywords using GPT-4. These keywords are then used to retrieve images
from tools like Bing Search, ensuring stylistic consistency across the images used in the questions and rationales.
(5) CLIP similarity scores are computed between the descriptions generated in step 3 and the retrieved images. Only
the images with the highest similarity scores are retained.

Figure 13: Illustration for MM Reasoning (T). (1) GPT-4 is used to generate text-only questions that require
reasoning aided by generated images. (2) The generated questions are deduplicated using embedding model
to ensure diversity and uniqueness. (3) GPT-4 is then tasked with answering these questions, providing detailed
rationales while replacing image-related components with textual descriptions when necessary. (4) DALL-E-3 is
used to generate images based on the image descriptions generated in step 3.

Figure 14: Illustration for MM Internet. (1) We construct this dataset based on a large collection of diverse
multimodal data crawled from the internet. (2) To improve data quality, we draw inspiration from Chen et al. (2024b)
and design a multi-perspective filtering strategy. This strategy leverages pre-trained VLLMs to ensure coherence
and semantic consistency between sentences and their associated images. (3) Furthermore, we generate questions
for these multimodal data, (4) ensuring that the answers align precisely with the corresponding text-image data.
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F Prompt Template 990

F.1 Prompt Template for Image Generation 991

You should generate {number} pairs of instruction and thought about {topic}. Each pair consists of:

Instruction: This instruction requires generating an image. The instruction must only de-
scribe the target indirectly, without stating it explicitly (e.g., instead of "Generate an image of a
panda," say, "Generate an image of the animal known for its black-and-white fur and its love for
bamboo.").

Thought: A detailed reasoning process that interprets the description in the instruction
and deduces what should be generated. The thought should make the reasoning explicit and
connect the clues to the final answer.

Examples:
{selected examples about this topic}
Do not include the examples in your output.

992

Table 6: Prompt template used to generate questions and rationales in Topic- and Scene-Based Generation.

Based on the given text, first summarize what image needs to be generated and then convert it
into a format suitable for input into DALL·E 3. Just return the input for DALL·E 3, don’t return
anything else.

Text:
{thought}

Input for DALL·E 3:
993

Table 7: Prompt template used to generate the DALL-E-3 input in Topic- and Scene-Based Generation.
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You will be given an object name. Your task is to:

1. Create an image generation question that:
- Does not directly mention the object name
- Uses related facts, locations, or cultural references to describe it
- Requests the generation of an image
2. Provide a rationale that:
- Explains the logical connection between the facts and the object
- Ends by stating what image should be produced

Output format:
{"question": "[image generation question]","rationale": "[reasoning process and conclusion about
the image to generate]"}

Examples:
object name: "the flag of the United States"
{"question": "Show me the national flag of the country where Yellowstone National Park is
located.","rationale": "Yellowstone National Park is located in the United States, so the national
flag is the American flag. This means we need to create an image of the flag of the United States."
}
object name: "the Eiffel Tower"
{"question": "I’d like to see an illustration of the most famous landmark in France, built as the
entrance arch for the 1889 World’s Fair.","rationale": "The description points to the Eiffel Tower,
which was constructed for the 1889 World’s Fair and stands as France’s most iconic monument.
The requested image should be of the Eiffel Tower." }
object name: "a panda"
{"question": "Generates an image of a black and white bear species native to the bamboo
forests of central China.","rationale": "The description refers to the giant panda, which is native
to China and known for eating bamboo as its main food source. The image we want is of a panda."}

Input:
object name: {Input object name}
Output:

994

Table 8: Prompt template used to generate questions and rationales in Category- and Image-Based Generation.
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F.2 Prompt Template for Image Editing 995

I will provide you with:
An original image
An instruction for editing the image
An edited image

Your task is:
Based on the given before-edit image, after-edit image, and the editing instructions, analyze the
differences between the two images, summarize the most notable features of the after-edit image
compared to the original, and describe them in one clear and precise sentence.
It is worth noting that the Main changes include additions, deletions, and modifications, which
cannot be expressed explicitly in the Output, but should be expressed implicitly.

Example:
# Input:
## Original image: A person sitting on a couch in a living room, looking at their phone
## Editing instruction: Darken the scene, only keeping the light emitted from the phone screen
## Edited image: A person sitting on a couch in a dark room, looking at their phone screen with
bright light
# Output:
It highlights the light source from the phone screen, creating a dim and focused atmosphere
throughout the scene.

# Input:
## Original image: {The image before editing}
## Editing instruction: {The original editing instruction}
## Edited image: {The image after editing}
# Output:

996

Table 9: Prompt template used to generate a new editing instruction in Image Editing.
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You are a specialized assistant for designing Image editing tasks. I will provide you with:

An original image
Main changes in the image after editing
An edited image
Your task is:
Convert Main changes to a question with answer about the original image that:
1. Can be a request to modify the image or a desired image
2. Must be answered with help from the edited image
3. Must be very relevant to the image and cannot be a general question that has nothing to do with
the image
4. It is worth noting that the Main changes include additions, deletions, and modifications, which
cannot be expressed explicitly in the question, but should be expressed implicitly.

The answer should use <image_placeholder> to replace the edited image position in the response

# Example:
## Original image: A person sitting on a couch in a living room, looking at their phone
## Edited image: A person sitting on a couch in a dark room, looking at their phone screen with
bright light
## Main changes: It highlights the light source from the phone screen, creating a dim and focused
atmosphere throughout the scene.

## Question: How to highlight the light source effect of the mobile phone screen?

## Answer:
To highlight the light source effect of the mobile phone screen, we can darken the entire scene
while preserving only the light from the phone screen. This will help create contrast and emphasize
the phone’s light.<image_placeholder>

# Input:
## Original image: {The image before editing}
## Edited image: {The image after editing}
## Main changes: {Main changes in the image after editing}
# Output:

997

Table 10: Prompt template used to generate a rationale in Image Editing.
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F.3 Prompt Template for Image Correction 998

I will give you a prompt for image generation. Please help me modify this prompt by changing or
removing some key descriptive elements. The modified prompt should create an image that differs
from the original in certain visual elements while maintaining the overall theme.
Prompt:{generation prompt}
Modified prompt:

999

Table 11: Prompt template used to generate a modified description in Image Correction.

You are a professional image analysis expert.
I will provide an image generation requirement and an image generated based on that requirement.
This image has some inconsistencies with the original requirements. Please analyze according to
these steps:
First, carefully analyze the differences and inconsistencies between the image and the requirements.
Then, explain in detail how to make adjustments to obtain an image that fully meets the original
requirements.
End with a phrase similar to "Now, let’s generate a new image that fully complies with the
requirements based on the above suggestions."

Image generation requirement:{generation prompt}
Your response:

1000

Table 12: Prompt template used to generate a rationale in Image Correction.

21



F.4 Prompt Template for MM Reasoning (MM)1001

[image]
Based on this image, generate a challenging analytical question that has a definitive answer. The
question should:

1. Require both careful observation of the image AND application of basic world knowl-
edge
2. Require careful observation and logical reasoning to solve
3. Have a single correct answer rather than subjective interpretations
4. Be specific and precise, not vague or open-ended
5. Use world knowledge that is:
- Commonly understood and easily visualizable
- Not specialized or technical
Just provide the question without any explanation or additional information.
Question:

1002

Table 13: Prompt template used to generate a question based on an image in MM Reasoning (MM).

[image]
You will be given an image and a question. You should analyze the image and answer the question
step by step.
The rationale must be in the form of interleaved image descriptions and text. The maximum
number of image descriptions in the rationale is 2.
The image descriptions and text in the rationale must complement each other to form a coherent
and rigorous chain of reasoning that leads to the correct answer to the question.
The image descriptions in the response are of the form [image: description].
The image descriptions should be simple and concise enough.
The generated image descriptions cannot be close to the original image.
Just return the rationale, don’t return anything else.
Question:{question}
Rationale:

1003

Table 14: Prompt template used to generate a rationale in MM Reasoning (MM).
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F.5 Prompt Template for MM Reasoning (T) 1004

Please provide me with a list of {number} questions, options and answers about {topic} for
Multiple Choice tasks. These questions must meet the following requirements:
Note that: The questions should have a definite answer. The answer does not change over time.
Only one of the options is the correct answer. The questions and answers should not be too related
to numbers.
Note that: The questions should be challenging, requiring multiple steps to answer. And the
questions should be related to visual information.
Note that: The questions require a chain of thought to deduce the correct answer. The reasoning
chain must be in a mixed format of text and descriptions of the images, where the descriptions of
the images and text work together to form a coherent and logical chain of reasoning.
{"question": A question generated by you, "options": 4 options in list format generated by you,
"answer": The answer generated by you}

Examples:
{selected examples about this topic}

Do not include the examples in your output.
Just provide the questions, options and answers in a jsonline format, without any explanation or
additional information.

1005

Table 15: Prompt template used to generate a question in MM Reasoning (T).

You will be given a multiple choice question and its correct answer. You should analyze and
answer the question step by step. You need to give the rationale first and finally give the correct
answer.
The rationale must be in the form of interleaved image descriptions and text.
The image descriptions and text in the rationale must complement each other to form a coherent
and rigorous chain of reasoning that leads to the correct answer to the question.
The image descriptions in the response are of the form [image: description].
Note that: The number of image descriptions in the rationale must be no more than 3.
Note that: The image descriptions of an image should contain the content of only one option.
Note that: The image descriptions should be concise and clear.
Note that: The image descriptions should be easily conveyed visually.
Just return the rationale, don’t return anything else.

Question: {question}
Options: {options}
Correct answer: {answer}
Rationale:

1006

Table 16: Prompt template used to generate a rationale based on a question in MM Reasoning (T).
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F.6 Prompt Template for Internet Multimodal Data1007

Given the following interleaved text-image content, please generate a question for which the
provided content can serve as the answer.
The images in the provided content are in the form of <image_placeholder>. The question you
generated should closely align with the logic of the provided content.
Content: {interleaved content}
Question:

1008

Table 17: Prompt template used to generate a question based on interleaved content in Internet Multimodal Data.

F.7 Prompt Template for Evaluation1009

You will be provided with a question, its correct answer, and an answer to evaluate. Your task is to
determine whether the given answer is correct or not.

# Question:
{question}

# Correct Answer:
{golden answer}

# Answer to Evaluate:
{model output}

Now, determine if the answer to evaluate is correct or wrong and respond only with "Correct" or
"Wrong".

1010

Table 18: Prompt template used to determine whether the model’s output matches the ground truth.

Here is an answer to a question. This answer may be lengthy, but its final meaning is either "yes"
or "no." Please carefully read and summarize the core meaning of this answer, and then determine
whether its final answer is "yes" or "no." If the answer does not clearly express "yes" or "no,"
return "other." You must return only one word: "yes," "no," or "other.
# Question:
{question}

# Answer:
{model output}

1011

Table 19: Prompt template used to summarize the model’s output as ’yes’ or ’no’.
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G Examples of Generation Data in UnifiedVisual-240K 1012

G.1 Example for Image Generation 1013

Example:

USER Create an image that illustrates a sport game played in white uniforms, which lasts
up to 5 days and uses a red leather ball.

ASSISTANT The description relates to Test cricket, a form of cricket that is played in matches
that last up to 5 days, where players wear white uniforms, and a red leather ball is
used. Hence, the image to be produced should be of a Test cricket match.

Table 20: An example from the Image Generation subset of the UnifiedVisual-240K.
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G.2 Example for Image Editing1014

Example:

USER
How to achieve a serene and unoccupied patio setting focusing on just the furniture
and garden scenery?

ASSISTANT To create a serene and unoccupied patio setting, we can remove any distracting
elements, such as people, so the focus remains solely on the furniture and the
surrounding garden scenery.

Table 21: An example from the Image Editing subset of the UnifiedVisual-240K.
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G.3 Example for Image Correction 1015

Example:

USER Two zebras in a grassy field: one on a dirt path facing away, with black and white
stripes; the other on grass facing the camera, with brown and white stripes. Scattered
rocks in the background. No other animals or text.
Generate an image corresponding to the text mentioned above.

ASSISTANT

USER The current image fails to meet the requirements. Analyze the discrepancies and
generate an accurate version.

ASSISTANT Upon analyzing the provided image against the specified requirements, the following
inconsistencies are observed:
1. Zebra Colors and Positioning:
- The image shows only one zebra, not two. ... The image only shows one zebra on a
dirt path, not fulfilling the positioning requirements.
2.Background Elements:
- The background contains additional animals, ...
- There are no visible rocks scattered in the background, ...

Adjustments to Achieve the Requirements:
- Add a Second Zebra:
- Introduce a second zebra with brown and white stripes into the scene, ...
- Correct Positioning:
- Retain ... on the dirt path but ensure it is facing away, as originally specified.
- Remove Extraneous Animals:
- Remove any additional animals currently visible in the background...
- Include Background Elements:
- Introduce scattered rocks into the background ...
Now, let’s generate a new image that fully complies with the requirements based on
the above suggestions.

Table 22: An example from the Image Correction subset of the UnifiedVisual-240K.
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G.4 Example for MM Reasoning (MM)1016

Example:

USER
What environment are the people in the image in?

ASSISTANT The individuals are clearly part of a naval force, likely the U.S. Navy, based on their
uniforms.

We can deduce this from their white service dress uniforms, complete with
black neckerchiefs, and the distinct "dixie cup" hat worn by the man in the center.
The man on the right also has rank insignia (a Boatswain’s Mate rate) on his sleeve
and service ribbons on his chest, further confirming their military naval affiliation.
The environment itself, with its array of control consoles, screens, charts laid out,
communication headsets, and windows looking out over what appears to be water,
is characteristic of the command and control center of a ship.

Specifically, this setup is typical of the bridge of a warship, where naviga-
tion, maneuvering, and operational command take place. The man on the right is
actively using a radio handset, a common activity on a ship’s bridge. The status
board visible in the background right also suggests an operational environment.

Table 23: An example from the MM Reasoning (MM) subset of the UnifiedVisual-240K.
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G.5 Example for MM Reasoning (T) 1017

Example:

USER Which leaf features a prominent, singular central vein running from its base to its
tip, with smaller secondary veins branching off from this central vein along its path?
A. Maple leaf
B. Oak leaf
C. Grass blade
D. Ginkgo leaf

ASSISTANT The question describes a leaf with a prominent, singular central vein running from
its base to its tip, with smaller secondary veins branching off from this central vein
along its path. This pattern is known as pinnate venation. Let’s look at an oak leaf:

In this image of an oak leaf, you can clearly see the prominent, singular
central vein (also called the midrib). It starts at the base of the leaf (where it would
attach to the stem) and extends all the way to the very tip.
Along the length of this central vein, you can observe smaller secondary veins
branching off to the left and right. These secondary veins then extend towards the
edges and lobes of the oak leaf. This structure provides support and transports water
and nutrients throughout the leaf blade.
Now let’s consider why the other options are less suitable:
A. Maple leaf: Maple leaves typically have palmate venation, where several
prominent veins radiate from the base, like fingers from the palm of a hand, rather
than a single central one.
C. Grass blade: Grass blades exhibit parallel venation, where multiple veins run
parallel to each other along the length of the blade, without a single dominant
central vein from which others branch off in the described manner.
D. Ginkgo leaf: Ginkgo leaves have dichotomous venation, where veins fork
repeatedly from the base, creating a fan-like pattern, again, not matching the
description of a single central vein with branching secondaries.
Therefore, the correct answer is B. Oak leaf.

Table 24: An example from the MM Reasoning (T) subset of the UnifiedVisual-240K.
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G.6 Example for MM Internet1018

Example:

USER How can you determine the sex of your chicks as they grow, and what are the key
differences in appearance and behavior between male and female chicks?

ASSISTANT (1) Give it time. If you aren’t in a rush to sex your chicks, you can wait until
they grow enough to develop adult sex traits. You should be able to notice adult
traits within three to four weeks. Since many of the other sexing methods require
you to act quickly, this is also a good option if you get the chicks well after the
initial sexing window has passed. This is also the easiest way to determine sex for
beginners.

(2) Look at the appearance of the developing chick. The first trait you’ll
likely notice will be the comb. Male chicks develop combs within three to six
weeks. Additionally, male chicks tend to develop feathers in patchy clusters, while
female chicks develop feathers more evenly. Male chicks also tend to produce
more pointed tail feathers. Female chicks, on the other hand, generally have broad,
rounded feathers. Most male chicks also develop larger feet and thicker legs than
the average female chick has. This trait can be difficult to spot in young chicks but
becomes increasingly more obvious as the chicks continue to age.

(3) Watch the chick’s behavior. Male chicks demonstrate bolder, more ag-
gressive behavior than most female chicks. Male chicks can begin crowing within
six weeks, but female chicks will only make soft clucking noises. When startled,
male chicks tend to stand their ground and give a sharp warning chirp. Females are
more likely to scatter or crouch down. Also remember that only females lay eggs.
The timeline for egg laying will vary, but females can begin laying eggs within 16
to 24 weeks.

Table 25: An example from the MM Internet subset of the UnifiedVisual-240K.

30



G.7 Example for MM Reasoning (O) 1019

Example:

USER
What is the person to the right of the boat wearing?

ASSISTANT 1. Identify the object referred to as b̈oat.2̈. From the identified boat, locate the
person who is positioned to the right of the boat. 3. Determine what the person
located to the right of the boat is wearing. 4. State the name of the clothing item
that the person is wearing.
The following shows the segment of the original image that is directly related to the
question.

Based on the analysis and the extracted part of the original image, the final
answer is determined.
The man is wearing shorts.

Table 26: An example from the MM Reasoning (O) subset of the UnifiedVisual-240K.
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H Additional Qualitative Results1020

 How to make a cup of coffee?

(1) Boil enough water in a tea kettle for 1 cup of coffee or 

more, depending on how much coffee you want to drink. 

(2) Add the water to the coffee grounds. Stir with a spoon. If 

you are using whole coffee beans, grind them in a coffee 

grinder just before using the grounds. If you have whole 

beans and want to reuse them in a later brew, grind them 

after use. The long-grain coffee bean grounds can be 

reused twice. You can add any milk, sugar or sweetener. 

Experiment with amounts to find your preferences. The more 

sugar, the stronger the taste.

(3) Pour the brewed coffee into a mug.

Which of these fruits is typically yellow when ripe?

A. Cherry

B. Banana

C. Grape

D. Watermelon

To determine which fruit is typically yellow when ripe, we 

need to consider the characteristics and appearance of 

each fruit option provided.

Bananas are well-known for their creamy yellow color 

when they are fully ripe. This characteristic makes them 

easily recognizable and distinguishes them from other 

fruits like cherries, grapes, or watermelons.

Grapes typically ripen to a purple or green color, not yellow.

Watermelons, finally, are characteristically solid green 

when unripe and then change to bright red when ripe.

By evaluating the typical coloration of each fruit, it is clear 

that bananas are the only fruit among the options that are 

yellow when ripe.

Cherries are red when ripe, and their color is one of the 

most distinguishing features for buyers.

The bare trees indicate that it is not summer, as trees are 

typically full of leaves during this time. The combination of 

layered clothing and bare trees suggests that it is most 

likely fall.

What season is it most likely to be in this image, given the 

state of the trees and the clothing of the pedestrians, and 

why?

The presence of people wearing jackets suggests that the 

temperature is not warm, which is typical for fall or early 

spring. 

Figure 15: Examples of multimodal reasoning using Anole-UnifiedVisual.
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To emphasize the tennis player's emotions, we can add a 
subtle, yet distinct smile to capture their feelings during the 
match.

How can we emphasize the tennis player's emotions during 
the game?

Image Editing

The largest animal in the land, by species, is the African 
elephant. Therefore, the image to be generated should be 
of an African elephant.

Image Generating

Generate an image of the largest animal in the land.

Image Correction
Create an image of the Hong Kong skyline seen from a water-level perspective. Highlight the towering skyscrapers, featuring the 
International Finance Centre prominently in the center. Capture the diverse colors and architectural styles of the cityscape. In the 
foreground, include a small boat gently floating on the dark blue-green water, which reflects the city‘s lights, adding depth to the 
scene. The sky should be a light blue with a few clouds, providing a peaceful backdrop to the dynamic urban environment, full of 
energy and vibrancy despite the absence of people.

The generated image lacks some required details. Identify what is missing and recreate the image.

Upon analyzing the provided image in relation to the original requirements, several inconsistencies are noted:

1. **Perspective**: The image does not present a Hong Kong skyline seen from a water-level perspective. Instead, it appears to depict a 
cityscape taken from a high vantage point or elevated position, rather than the water level.
2. **International Finance Centre**: The International Finance Centre (IFC) is not prominently featured in the center of the Hong Kong 
skyline. While there are tall buildings, none of them match the distinctive look or height of the IFC, which is a signature skyscraper.
3. **Color and Architectural Styles**: The colors and architectural diversity expected in Hong Kong’s skyline are not evident. The buildings 
are uniformly modern and lack significant variation in colors or design styles that are characteristic of Hong Kong's skyline.
4. **Foreground Element - Boat**: The specified small boat on dark blue-green water is absent. Instead, there is a plank-like structure that 
doesn’t reflect the water's colors or the presence of lighted city lights which would add depth and dynamic energy to the scene.
5. **Sky Composition**: The sky lacks a light blue hue with a few clouds, which were specified to provide a peaceful backdrop. Instead, the 
sky is predominantly pink, possibly during sunset or sunrise, creating an atmosphere that diverges from the requirement for daytime 
vibrancy.

To address these discrepancies and create an image that aligns with the original requirements:
1. **Change the Perspective**: Recompose the image from a water-level perspective to give prominence to the riverfront view that 
encapsulates the essence of Hong Kong’s skyline as viewed from the water.
2. **Feature the International Finance Centre**: Ensure the IFC is centrally positioned within the skyline. This iconic tower can be 
highlighted in more detail, ensuring its design and scale are recognizable.
3. **Highlight Architectural Diversity**: Add elements representing Hong Kong’s diverse skyline by incorporating various building designs 
and colors typical of the area. Use reflections in the water to showcase this aspect.
4. **Include a Boating Element**: Introduce a small, subtly floating boat in the foreground. Use lighting to emphasize reflections on the 
water, capturing the vibrancy and activity typically associated with nighttime views.
5. **Modify the Sky**: Replace the current pinkish-hued sky with a more realistic representation of a late afternoon or early evening with a 
light blue sky and a few clouds. This change will help set the intended tranquil yet lively backdrop.
Now, let's generate a new image that fully complies with the requirements based on the above suggestions.

Figure 16: Examples of visual generation using Anole-UnifiedVisual.

Figure 17: Examples of visual generation using Anole-UnifiedVisual.
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