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Robust Visible-Infrared Person Re-Identification
Based on Polymorphic Mask and Wavelet Graph

Convolutional Network
Rui Sun , Member, IEEE, Long Chen , Lei Zhang, Ruirui Xie, and Jun Gao

Abstract— When deploying re-identification (ReID) models
in the field of public safety, understanding the robustness of
models to various types of corrupted images is crucial. Unfortu-
nately, in the real world, images are always contaminated (e.g.,
noise, blur, and weather changes), which is ignored by exist-
ing visible-infrared person re-identification (VI-ReID) models.
The performance of existing models tested in corrupted scenes
is severely degraded. Therefore, learning corruption-invariant
representations for corrupted images in VI-ReID is valuable
and deserves further investigation. We design a polymorphic
masked wavelet graph convolutional network for VI-ReID under
corrupted scenes. Firstly, a cross-modality data augmentation
algorithm is designed to construct a mixed image set that
merges multi-modality attributes to improve robustness against
interference. Secondly, a dual-branch network consisting of a
global branch and a graph structure branch is designed. The
global branch extracts overall information. While the graph
structure branch is a wavelet-based graph convolutional module
that utilizes the robustness of human structural information
to corruptions and modalities, it can filter noise and extract
discriminative features specifically targeted for cross-modality
scenes. Finally, the global branch and the graph structure branch
are integrated, and modality consistency loss is designed to match
the branches with hetero-center triplet loss. Experiments show
that our method can effectively alleviate degradation problems
under corrupted environments such as noise, blur, digitization,
and weather changes, and achieve state-of-the-art on corrupted
datasets. Besides, it still maintains good performance on clean
datasets, facilitating the reliable deployment of VI-ReID in real-
world scenarios.

Index Terms— Visible-infrared person re-identification, cor-
ruption robustness, cross-modality data augmentation, wavelet
graph convolutional network.
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I. INTRODUCTION

PERSION re-identification (ReID) is a cross-camera image
retrieval task that aims to search given personnel from

an image database collected by non-overlapping cameras [1],
but its nighttime surveillance capability is limited. Therefore,
visible-infrared person re-identification (VI-ReID) appeared,
which retrieves a given query person through cross-checking
between visible and infrared cameras. To alleviate the huge
modality gap and complex intra-class variation, many methods
have been proposed. These methods can be divided into feature
representation learning [2], [3], [4], metric learning [5], [6] and
modality translation learning [7], [8], [9], [10], [11].

Although VI-ReID has achieved promising performance, its
success largely depends on clean and complete image data.
Actually, the real world is full of various types of corrup-
tion, such as noise, blur, distortion, weather changes, etc.,
as shown in Fig. 1, so obtaining ideal and undamaged samples
is extremely difficult, even impossible. Existing models are
easily confused by corrupted images and difficult to extract
fine-grained instance information of individuals [19].

In the corrupted scenes, the generalization ability of the
model to the input is greatly challenged, and the fuzzy
identity information of corrupted images leads to worse
modality gap and intra-class discrepancy. Models trained on
traditional closed-world datasets fail to generalize to these
unseen corrupted inputs. How to maintain stable recognition
performance in clean and corrupted scenes is a meaningful
problem. Huang et al. [39] designed a degradation feature
decoupling framework based on generative adversarial net-
work from the perspective of image recovery, which achieved
good results in single-modality corrupted ReID, but the qual-
ity of generated images determined its final performance.
In VI-ReID task, Chen et al. [19] proposed a corruption
invariant learning (CIL) baseline, which utilized soft ran-
dom erasing and self-patch mixing to address the corruption
robustness of model. Josi et al. [52] improved CIL by introduc-
ing a multimodal data augmentetion (ML-MDA) to simulate
real-world data possibly, thereby enhancing the generalization
performance of VI-ReID model. Besides, they proposed a
new evaluation strategy [53] in corruption scenes, taking into
account the impact of different camera placement situations
on model performance. However, corruption robustness has
not been deeply studied in the VI-ReID task, these works only
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Fig. 1. Illustration of the multiple challenges caused by the problem of
corruption in the VI-ReID. Apart from the modality discrepancy caused by
different imaging mechanisms, there are also attacks from various corruptions
in the open world, which make modality features more difficult to identify.

operate on data augmentation, without considering the physical
mechanism behind noise generation. Moreover, the VI-ReID
task is special in that it can take advantage of the robustness of
human structural information to corruptions, whereas previous
methods have not considered this perspective. To improve the
corruption robustness in visible-infrared scenes, we propose
a corruption-robust VI-ReID framework called Polymorphic
Masked Wavelet Graph Convolutional Network (PMWGCN).

To enhance the generalization of the model to corrupted
input and mitigate modality discrepancy, we introduce a
Polymorphic Masked Data Augmentation algorithm (PMDA).
The PMDA consists of a new data processing pipeline that
uses a structurally complex fractal image set and a ran-
domly selected cross-modality set. The convoluted fractals
enable augmented images to have rich natural structural
complexity and simulate real-world scenes. By introducing
random perturbations with the additional image set, the PMDA
algorithm allows for the utilization of complementary corre-
lation knowledge between modalities, dynamically balancing
the importance of each modality in the final prediction. More-
over, a modality-consistency loss is designed to reduce the
perturbation sensitivity on cross-modality data.

Then we propose a Graph Branch module which is com-
posed of graph construction and Wavelet Graph Convolutional
Network (WGCN). We utilize human body components to
construct the graph structure from interpretable frequency
domain and remove the non-stationary high-frequency noise
in the features as much as possible, thereby alleviating the
performance degradation problem in corrupted scenes. Specifi-
cally, we take a semantic parsing model to extract patches from
different regions of the person’s body and generate the graph
structure using a normalized graph construction method. Then,
we employ WGCN to model, filter and aggregate high-level
semantic relationships among local patches of individuals in
cross-modality tasks. This reduces information redundancy
from the source, enhancing the robustness of cross-modality
recognition. Through these specially designed multimodal data
augmentation algorithm and network structures, the features

extracted by PMWGCN have strong modality reasoning ability
and are robust to various forms of corruption.

Our main contributions are summarized below:
1. We discuss a new problem for VI-ReID, called corruption

robustness. It is very challenging to overcome the huge modal-
ity discrepancy and ensure network has robust corruption
tolerance in cross-modality scenes, which is different from
only considering corruption problem in a single modality.
To address this issue, Polymorphic Masked Wavelet Graph
Convolutional Network (PMWGCN) method is proposed to
effectively disentangle content and degradation features in
cross-modality images.

2. A polymorphic masked data augmentation (PMDA)
algorithm is proposed to enhance the corruption robustness of
VI-ReID model. Fractal images and paired modality images
are embedded into the original images. A new data pipeline
is used to process cross-modality samples, and a modality
consistency loss is introduced.

3. To consider corruptions from the frequency domain,
we propose a new wavelet graph convolutional network
(WGCN). WGCN models the semantic relationships between
local patches of individuals and promotes filtered high-order
semantic correlation. It fundamentally weakens information
masking at the pixel level, providing the possibility for our
model to generalize to unseen corruptions and enhancing the
robustness of VI-ReID.

II. RELATED WORK

In this section, we briefly review existing approaches in
visible-infrared person re-identification, corruption robustness
and graph convolutional network.

A. Visible-Infrared Person Re-Identification

To alleviate cross-modality discrepancy, many VI-ReID
methods have been proposed in recent years. According to
the differences in mitigating discrepancy, existing methods
can be divided into three categories. In terms of feature
representation learning methods, Wu et al. [2] first con-
structed the VI-ReID benchmark SYSU-MM01 and proposed
a deep zero-padding method that can be used for cross-
modality training. Wu et al. [46] designed a joint modality
and pattern alignment network to mine the cross-modality
nuances from modality-independent feature maps. Ye et al. [4]
discovered the noise problem in VI-ReID and designed a
dynamic tri-level relation mining framework to learn partial
discriminative features. In terms of metric learning methods,
Ye et al. [5] introduced bi-directional dual-constrained top-
ranking loss to learn discriminative feature representations.
Liu et al. [6] explored the problem of parameter sharing and
designed the hetero-center triplet loss to constrain different cat-
egory centers from the same and cross modalities. Regarding
modality conversion learning methods, some work [7], [8], [9]
applied generative adversarial networks to learn modal-shared
representations to alleviate modality differences. Others [10]
introduced an auxiliary modality to bridge the cross-modality
gap through three-modality learning. Lu et al. [11] uti-
lized a channel-interactive generator to generate confused
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Fig. 2. The overall architecture of our proposed Polymorphic Masked Wavelet Graph Convolution Network (PMWGCN). It consists of four components:
the Polymorphic Masked Data Augmentation (PMDA) algorithm, the semantic extraction module, the graph branching module, and the loss module. Given
an image, we first preprocess it using PMDA and use the semantic extraction module to obtain the part features. Then, the graph branching module is used
to further aggregate higher-order relational features. Both hetero-center loss and Jensen-Shannon divergence based cross-modality consistency loss are used
for robust feature representation learning.

modalities for extracting modality-invariant representations.
Wan et al. [15] tried to tackle the task from a pre-training
perspective, and proposed a modality-aware multiple granu-
larity learning model.

B. Corruption Robustness

The study of corruption robustness has been developing in
computer vision for several years. Related research shows that
current deep neural networks are susceptible to a wide variety
of image corruptions, such as noise, blur, distortion, or a
combination of them. To improve the robustness of corruption,
various data augmentation [12], [13], [14] strategies have been
proposed. AugMix [13] mixed multiple augmented images
by designing algorithms and obtains significant improvements
on RGB data. Rusak et al. [20] successfully improved the
generalization ability and robustness of the neural network
by introducing data augmentation techniques such as random
distortion and color perturbation in the training process. Unlike
adversarial training, Hendrycks et al. [14] argued for Pareto
improvement of existing security measures and proposed the
PixMix data augmentation algorithm. Some other researchers
argued that pre-training [16], [17], [18] can improve robust-
ness. Both Hendrycks et al. [16] and Si et al. [21] discussed the
robustness of pre-training to out-of-distribution samples, and
they find that a suitable training strategy can improve security.
Focusing on ReID, Chen et al. [19] constructed corrupted
ReID datasets and proposed a data augmentation strategy
consisting of a mixture of self-patch mixing and soft random
erasing to improve the system performance under corrupted
data. However, these methods are extremely general and badly
adapted in VI-ReID.

C. Graph Convolutional Network

The graph convolutional network (GCN) [22] model usu-
ally refers to a spectral-based graph neural network, which

defines the neighborhood aggregation of nodes based on the
graph Laplace decomposition. Recently, many studies have
successfully applied GCN to ReID. AAGCN [23] exploited
the low-pass property of GCN to reduce intra-class variance.
Zhang et al. [24] proposed a local graph attention network
to learn intra and inter-local relations. CTL [25] extracted
multi-granularity semantic local features from human body
as graph nodes and designs cross-scale graph convolution to
capture hierarchical spatio-temporal dependence and structural
information. Because CTL captured complex spatio-temporal
information based on GCN, SOTA performance was achieved
in single-modality ReID. However, only a small number of
researchers have explored GCN applications to the visible-
infrared domain. GLGCN [26] proposed global-local graph
convolutional networks to model the underlying relationships
of each modality body part. This is the initial attempt to
apply GCN to VI-ReID. GCN facilitates learning higher-order
visual attributes and has better descriptive, explanatory, and
robustness. But, it has received little attention in VI-ReID.

III. METHOD

In this section, we introduce the proposed Polymorphic
Masked Wavelet Graph Convolutional Network (PMWGCN)
in detail, as illustrated in Fig 2. We first briefly introduce the
polymorphic masked data augmentation algorithm (PMDA)
in Section III-A. In Section III-B, we describe the semantic
extraction process in detail. Then, in Section III-C, we describe
the various components of the graph branching module and
the process of embedding the wavelet transform in the graph
convolutional network in detail. Finally, we introduce the
proposed multi-branch loss learning strategy in Section III-D.

A. Polymorphic Masked Data Augmentation

In this subsection, we will introduce how PMDA enhances
the robustness of the model to unseen corruptions and
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Fig. 3. Example images from the fractal image set. The fractal image set is
usually generated by iterative function systems, producing images of various
shapes.

mitigates modality gap in VI-ReID. The PMDA algorithm
consists of two components: the compensated image set and
the algorithm pipeline for expanding images of the clean
training set.

1) The Compensated Image Set: The compensated image
set includes fractals image set and cross-modality image set.
According to [27], the fractal image set is usually generated by
iterative function systems, producing images of various shapes.
As illustrated in Fig. 3, these images have “non-random”
attributes that humans may use, namely the structural attributes
of contours (direction, length, curvature) and contour connec-
tions (type and angle) drawn from natural scenes. Existing
study [14] has shown that combining these fractals images
with training samples can greatly expand the natural elements
contained in images, thereby improving the security of neural
networks. Therefore, to improve the corruption robustness of
model, we selected and downloaded 14,230 fractal images
from DeviantArt, and used them in the algorithm to mix
natural attributes.

However, it is insufficient to consider natural attributes
to improve the corruption robustness. Corruptions result in
worse modality gap in VI-ReID, the network also needs
to capture modality-shared attributes across different modal-
ities. We introduce a cross-modality image set during data
augmentation process. Unlike the fixed fractals image set,
it consists of images from another modality randomly selected
from the same training batch, with same identity as the
image being processed. By mixing cross-modality images,
model exchanges cross-modality information within the same
identity. Since the Fractals image set does not belong to any
specific pedestrian identity and the cross-modality image set
does not affect identity discrimination, the augmented images
are still classified into their original categories during network
training, just like standard data augmentation.

2) Algorithm Pipeline: The operation pipeline of the PMDA
algorithm is shown in Fig. 4. First, assuming that the original
image is Xorig , we perform a standard data augmentation
operation (including rotate, solarize, posterize, etc.) on it to
obtain Xhide, and randomly select one from Xorig and Xhide
as the standard image Xstad . Then, we perform a random
number of corruption augmentation operations on the image,
with a maximum value of k. Each operation is implemented by

Fig. 4. The operation pipeline of our proposed PMDA algorithm, which
aims to mix natural and modality attributes.

Algorithm 1 Polymorphic Masked Data Augmentation
Input: Xorig, Xfrac, Xmodal;
1 aug_op←random choice(rotate, solarize . . . );
2 Xhide ←augment(aug_op(Xorig));
3 Xstad ←random choice (Xhide, Xorig);
4 Xmult ←Xstad;
5 for k←{0. . . k} do
6 aug_op←random choice (rotate, solarize . . . );
7 Xhide ←augment(aug_op(Xstad));
8 Xmix ←random choice (Xhide, Xfrac);
9 mix_op←random choice(add, multiply);
10 Xmult ←mix(mix_op(Xstad, Xmix,ω));
11 end for
12 Xpmda ←add (Xmult, Xmodal,γ );
Output: Xpmda

mixing with the newly augmented image X temp or an image
in the fractals image set. The mixing mode is divided into
additive mixing and multiplicative mixing. Additive mixing
directly superimposes pixel values on the channel level, and
the execution of multiplicative mixing is similar to geometric
mean, where alpha is the hyperparameter ω that adjusts the
weight of multiplicative mixing. After random corruption
augmentation, we select a heterogeneous image from the
cross-modality image set for additive mixing, with a weight
of γ , to obtain the PMDA data augmentation result X pmda .
Cause images come from the same identity, cross-modality
mixing helps model discover shared features and choose
distinguishing features to rely on. Standard data augmentation
usually operates in the RGB domain, thus this algorithm only
processes RGB images in the dataset. In the preprocessing
operation, PMDA integrates natural and modality attributes
into the training set, increasing generalization ability to unseen
corruptions of VI-ReID model. The algorithm flowchart is
shown in Algorithm 1.

B. Semantic Extraction Module

The purpose of the semantic extraction module is to extract
modality independent human body part features from the pixel
level and exclude background interference through semantic
analysis. The background noise and body parts are effectively

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2024 at 11:26:14 UTC from IEEE Xplore.  Restrictions apply. 



2804 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 5. The processing of the semantic extraction module. It generates
semantic features of each region on the human body through semantic parsing
network.

disentangled. In addition, the part features can achieve local
alignment, further promote the correlation on the overall
structure, and reduce the impact of corruption on the human
subject. The semantic extraction module is shown in Fig. 5.

We use the self-correcting for human parsing (SCHP) [28]
model pre-trained on the look into person (LIP) dataset [29]
as our semantic extraction network. It predicts four body
semantic parts, namely head, arms, trunk and lower body,
and generates the corresponding semantic parse maps mk
(k=1,2,3,4). The semantic parse maps are pixel-level, and each
pixel point represents the confidence level of the corresponding
position in the original image.

In addition, the two-stream feature extraction network
is a commonly used global feature extraction method in
visible-infrared cross-modality person re-identification. Given
a pre-processed visible or infrared image X pmda , we obtain its
global feature graph fmap using a two-stream feature extrac-
tion network. Then, by computing a matrix multiplication
operation for each channel on fmap and mk , we can obtain
the semantic features corresponding to each body part of the
person, which is used to construct the graph, named as f k

sem .
For the global branch, the global feature fglobal is obtained by
simply subjecting fmap to a global average pooling operation.
the equation is formulated as:

f k
sem = g( fmap ⊗ mk) , k = 1, 2, 3, 4 (1)

fglobal = g( fmap) (2)

where g denotes the global average pooling, the token ⊗
denotes the matrix multiplication operation, and k denotes the
number of semantic component blocks. Thus, we can obtain a
semantic feature f k

sem and transmit it to the graph branching
module later.

C. The Graph Branching Module

Human body components are less affected by the modality
gap, and the hidden semantic information is more robust to
corruptions. Besides, most noises in nature are non-stationary
signals. Wavelet transform is a widely used denoising method
in the field of signal processing with rigorous physical back-
ground and interpretability, which can deal with non-stationary
processes. But it loses the deserved attention in corruption-
robust VI-ReID. To leverage these advantages, we design two

Fig. 6. Illustration of the normalized graph construction. Semantic feature
patches are generated by the semantic extraction module, where different
colors represent different pedestrians, and both visible and infrared features are
included here. Assuming a batch contains T images, each image is segmented
into K semantic feature blocks, and a total of T×K patches are obtained. The
pairwise relationships are represented by computing the affinity matrix and
normalizing the first n relationship values for each patch.

components in this module, graph construction and wavelet
graph convolution network (WGCN). The graph construction
aims to construct normalized graphs using semantic features
generated by the semantic extraction module. Subsequently,
we introduce a graph convolution network embedded with
wavelet transform, which leverages wavelet transform to disen-
tangle corruption noise and effective content in the frequency
domain. Then it filters out the degradation features and capture
higher-order feature patterns by wavelet graph convolution
operator.

1) Graph Construction: Semantic component blocks have
the advantage of feature detail and positional alignment,
which facilitate the interaction of information between dif-
ferent modalities in a cross-modal scene. Moreover, semantic
component blocks further narrow the influence of corruption
factors and are useful in mitigating problems caused by noise,
ambiguity, and distortion. Therefore, we construct the graph
using fk

sem . As shown in Fig. 6, we first simplify fk
sem to

fk = {f1, f2 . . . fK }. Let G(V, E) denote a graph structure with
K nodes, where V = {vi }

K
i=1 is the vertex set of nodes and the

edge set (vi , v j ) ∈ E is used to represent the correspondence
of feature blocks. The k semantic vectors fk are used as the
vertex set of each graph structure.

The edge set E is represented by the affine adjacency matrix
A. Each element of the matrix represents the relationship
between two component blocks. The two graph nodes vi and
v j are known to represent features fi and f j respectively. The
pairwise relationship between each two component blocks is
represented by their inner product:

ri, j = fT
i · f j (3)

The adjacency matrix is obtained by normalizing A and
formulating it as follows:

Ai, j =
ri, j∑K

j=1
∣∣ri, j

∣∣ (4)

We need to normalize A. For each element in A,
we keep only the first n relevant elements to obtain
the weighted canonical adjacency matrix Ã. The specific
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formula is as follows:

Ãi, j =

{
r̃i, j i ̸= j and r̃i, j ∈ CU T (Ãi,:,k),

0 otherwise,
(5)

r̃i, j denotes the normalized association score from node i
to node j. CU T (Ãi,:,k) means that for the i-th row of matrix
A, only the first n element values associated with node i are
retained. In this way, the number of edges on the graph is
reduced from K2 to nK. Finally, the pairwise relationship E
between nodes is represented by the adjacency matrix Ã, and
the graph is generated from V and E . In a batch, visible
and infrared images are always present in pairs, so the final
graph structure combines visible features and infrared features.
Through the above operations, we construct the body structure
graph that is modality independent and robust to corruptions.

2) Wavelet Graph Convolution Network: Wavelet trans-
form can be applied in graph convolutional network to filter
non-stationary degradation noise. Different from normal graph
Fourier transform, graph wavelet matrix can be obtained via
a fast algorithm without requiring Laplacian matrix eigende-
composition with high computational cost. Moreover, graph
wavelets are sparse and localized in vertex domain, offering
high efficiency and good interpretability for graph convolution.

In traditional GCN, the Laplacian matrix L of a graph is
defined as L = D− Ã, where D is the pairwise angle matrix
and Di, j =

∑
j Ãi, j . A normalized Laplace operator matrix is

defined as L = Ik − D−1/2ÃD−1/2, where Ik ∈ RK×K is the
identity matrix, and since L is a real symmetric matrix, it has a
set of standard orthogonal eigenvectors U = (u1,u1, . . . ,uK ),
called Laplace eigenvectors. The non-negative eigenvalues
{λl}

K
l=1 corresponding to these eigenvectors are called the

frequencies of the graph.
Similar to the graph Fourier transform, the graph wavelet

transform maps the graph signal from the vertex domain to
the frequency domain. The graph wavelet transform uses a set
of wavelets ψs = (ψs1, ψs2, . . . , ψsK ) as bases, where each
wavelet basis ψsi corresponds to the signal diffused from node
i on the graph, and s is a scale parameter that constrains the
extent of the domain. The formulation is as follows:

ψs = UGsUT (6)

where U is a Laplacian vector, Gs is a scale matrix, and Gs =

diag(g(sλ1), . . . , g(sλK )), g(sλi ) = eλi s .
The graph wavelet transform of the signal f on the graph

with the graph wavelet as the base is defined as f̂ = ψ−1
s f.

Where ψ−1
s can be obtained by replacing g(−sλi ) in ψs with

g(sλi ). Correspondingly, the graph wavelet inverse transform
is defined as f = ψŝf. By graph wavelet transform, we can
transform the constructed body structure graph to the spectral
domain. Since the valid content and degradation noise are
often distributed in different frequency bands, we can build
a filter operator to disentangle them.

According to the time-domain convolution theorem,
the convolution of the graph wavelet operator can be
expressed as the product of the corresponding spectral
domains, denoted as ∗g . Using y to represent the convolution

Fig. 7. The illustration of a wavelet graph convolution layer. The process is
as in Eq. 9, where the transformation and convolution can be obtained from
Eq. 6 and Eq. 7.

kernel, ∗g is defined as:

f ∗g y = ψs((ψ
−1
s y)⊙ (ψ−1

s f)) (7)

where ⊙ denotes the Hadamard product at the elemental level.
After defining the wavelet graph convolution operation,

we can construct an M-layer WGCN network to disentangle
and filter degradation features, thereby capturing higher-order
semantic content. Each layer of the WGCN network consists
of feature transformation and graph convolution operations,
as shown in Fig. 7. For the n-th layer (1≤n≤M), the feature
transformation is defined as:

F̂n
= FnW (8)

where Fn
∈ RK×c is the hidden feature of all feature blocks in

the nth layer and c refers to the feature dimension; F0
∈ RK×c

is the original feature output from the graph construction stage;
and W is the parameter matrix to be learned. For the (n+ 1)th
layer, we define graph convolution as follows:

Fn+1
= h(ψsXnψ−1

s F̂n) (9)

where ψs is the wavelet bases and ψ−1
s is the graph wavelet

transform matrix with scale s. The inverse transform projects
the signal from the vertex domain into the frequency domain.
The input is the nth layer feature Fn

∈ RK×c. Xn is the
diagonal filter matrix learned in the spectral domain. h is
a nonlinear activation function (LeakyReLU) with negative
input slope α = 0.1. Finally, residual connections are used
to facilitate network optimization, as shown in Fig. 7. A final
wavelet graph convolution layer is defined as follows:

Fn+1
:= Fn+1

+ Fn, 1 ≤ n ≤ M − 1 (10)

After M layers of wavelet graph convolution, the module
models semantic relationship among human local feature
parches and reduces the information redundancy from the
source (frequency domain). The output for each patch group
is FM

∈ RK×c. Finally, by applying average pooling to FM ,
we obtain the feature fgraph ∈ Rc for the graph branching
module. By concatenating the fglobal and fgraph channel
dimensions, we obtain the final feature fmix .

D. Multi-Branch Loss Learning Strategy

Our method combines representation learning and met-
ric learning, combining modality consistency loss Lmid and
hetero-central triplet loss Lct to train the model.

Given an image xi with label yi , a softmax function is used
to encode the probability of xi being recognized as class yi ,
denoted as pori(y||xori ). Since any input image is randomly
augmented twice in the PMDA operation, an image triple

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2024 at 11:26:14 UTC from IEEE Xplore.  Restrictions apply. 



2806 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

including xori , x pmda1 and x pmda2 is generated. The predicted
probability distributions are pori(y||xori ), ppmda1(y||x pmda1)

and ppmda2(y||x pmda2), respectively. The semantic content in
augmented images is retained and no other identity infor-
mation is introduced, so we hope the model to learn the
consistency between original and augmented images. We lever-
age the improved Jensen-Shannon divergence [13] to constrain
the similarity between the posterior distributions of original
and augmented samples to define Lmid :

Lmid = JS
(

pori ; ppmda1; ppmda2
)

=
1
3
(K L[pori ||M] + K L[ppmda1||M]

+ K L[ppmda2||M]) (11)

where the mean distribution M is calculated as: M = (pori +

ppmda1+ppmda2)/3. We can understand this loss by imagining
a sample from one of the above three distributions, where JS
divergence can be understood as a measure of the average
identity information that this sample reveals about the distri-
bution it was sampled from. This loss motivates the model to
be stable, consistent, and insensitive across a variety of input
ranges.

Hetero-center triplet loss Lct was first proposed in [6]. The
authors introduced the concept of feature centers for guiding
the network to push the feature centers of different modalities
of the same pedestrian together and to move the feature centers
of different people away from each other. The definition is as
follows:

Lct (C) =
N∑

i=1

ρ + ∥∥∥ci
v − ci

t

∥∥∥
2
− min

n∈{v,t}
j ̸=i

∥∥∥ci
v − c j

n

∥∥∥
2


+

+

N∑
i=1

ρ + ∥∥∥ci
t − ci

v

∥∥∥
2
− min

n∈{v,t}
j ̸=i

∥∥∥ci
t − c j

n

∥∥∥
2


+

(12)

where N denotes N pedestrian identities and C is the batch
of feature centers containing visible feature centers ci

v|i =
1, . . . , N and infrared feature centers ci

t |{i = 1, . . . , N }, and
|| · ||2 denotes the Euclidean distance.

For each branch, we combine Lmid and Lct to denote the
total branch loss function. Introducing the weight parameter λ ,
the loss functions Lglobal and Lgraph of the graph branch mod-
ule and the global branch module are calculated as follows:

Lglobal = Lgraph = Lmid + λ Lct (13)

Specially, by concatenating fglobal and fgraph in channel
dimensions and then calculating the hetero-center triplet loss,
we can get the loss Lmix of the mixed features.

Lmix = Lct (14)

Finally, the total loss L total is represented by the sum of
the three branch loss functions, as shown in Eq. (15).

L total = Lglobal + Lgraph + Lmix (15)

IV. EXPERIMENTS

In this section, we use the standard dataset RegDB, SYSU-
MM01 [2] and the dataset RegDB, SYSU-MM01 after being
randomly corrupted to evaluate the effectiveness of our pro-
posed method. In addition, extensive ablation experiments
were performed to verify the role of each component of the
network and the effect of various parameters.

A. Dataset and Evaluation Protocol

1) SYSU-MM01: It is the definitive dataset for cross-modal
person re-identification. The SYSU-MM01 dataset is a
large-scale dataset collected by four visible and two infrared
cameras, which contains a total of 287628 visible and
15792 infrared images of 491 different pedestrians. Its training
set contains 22258 visible and 11909 infrared images of
395 pedestrians, and the test set contains images of other
96 pedestrians. The dataset provides two different search
settings named All-Search mode and Indoor-Search mode.
The All-Search mode tests using both indoor and outdoor
images and the Indoor-Search mode tests using only indoor
images. Following the validation protocol in [2], 10 random
experiments were performed under the single-shot setting and
the average value was taken as the final result.

2) RegDB: It is a small dataset captured by a visible-
thermal dual-mode camera, using both visible and thermal
cameras. A total of 412 different person identities are cap-
tured in the dataset and each identity has 10 pose aligned
visible and thermal images. According to the evaluation
protocol [5], 206 pedestrian identities (2060 images) were
generally selected randomly for training and the remaining
206 pedestrian identities (2060 images) were used for testing.
In the testing phase, there are two retrieval modes. The visible
image is used as the retrieved image, while the image of
the infrared modality is used as the retrieved image, called
the visible retrieval mode (V to T). The infrared image is
used as the retrieved image called the infrared retrieval mode
(T to V). The final result is taken as the average result of
10 experiments.

3) SYSU-MM01-C and RegDB-C: We use the SYSU-
MM01-C and RegDB-C datasets to test the corruption
performance of the model, which stands for the SYSU-MM01,
RegDB datasets in the corruption scenes. However, it should
be noted that SYSU-MM01-C and RegDB-C are not constant
datasets, but are obtained by applying random corruption
to the SYSU-MM01, RegDB clean datasets. There are four
categories of corruption, namely noise, blur, weather, and
digitization. The noise category corruptions are: Gaussian
noise, shot noise, impulse noise and speckle noise; the blur
category corruptions are: defocus blur, gross glass blur, motion
blur, zoom blur, and Gaussian blur. The weather category
corruptions are: rain, snow, frost, fog, brightness, and spatter;
and the digitization category corruptions are: contrast, elastic,
pixel, JPEG compression, and saturate. Each type of corrup-
tion has 5 different levels of corruption. In total, more than
100 different types of corruption were generated. For a fair
comparison, all experiments followed a standard evaluation
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Fig. 8. The experimental results of different corruption types on SYSU-MM01-C.

protocol [19], and the average value was selected as the test
result by testing 10 times on the datasets.

4) Evaluation Metrics: Following the standard evaluation
protocol of VI-ReID [1], [19], we used cumulative match-
ing characteristics (CMC), mean average precision (mAP),
and mean of inverse negative penalty (mINP) for perfor-
mance evaluation. CMC evaluates the probability of a correct
cross-modality personal image appearing in the retrieval
results. The most significant and intuitive metric is Rank-1,
which reflects the probability that the top image in the search
results is correct. mAP measures the retrieval performance
of all correct samples when there are multiple images in the
gallery. mINP which considers the hardest correct match is a
supplement metric to CMC and mAP, indicating the workload
of the observer.

B. Implementation Details

Our experiments were implemented on an NVIDIA
RTX 3090 GPU with Pytorch version 3.10.1. For the dual-
stream network, we used a modified ResNet50 [6] and set
the step size of the last convolutional layer of ResNet50 to
1. In the image preprocessing stage, we first resized the input
image to 256 × 128, and then used the random horizontal
flipping and PMDA algorithm. Where ω is set to 4 and γ is
set to 2. In the training phase, a constrained random sampling
strategy is used to randomly select eight personnel categories
from the training set, with eight images from each category.
The parameters are updated using the Adam optimizer [30]
with an initial learning rate of 3 × 10−4 and a weight decay
of 5 × 10−4. In total, the network is trained for 120 epochs
and the learning rate decays to one tenth of the original
rate every 40 epochs. For the semantic extraction module,
we set the number of semantic feature blocks k to 4. For the
graph branching module, in the normalized graph construction,
we set the number of neighboring edges n for each node to 3.
In the WGCN, we set the number of layers M to 2 and the
scale parameter s to 1. λ is set to 0.8. Finally, the features of
the global branch and graph branch are concatenated to match

the final person features using cosine similarity as a distance
metric.

C. Comparison With the State-of-the Arts

In this section, the proposed PMWGCN is compared with
some existing methods on four datasets, RegDB-C, SYSU-
MM01-C, RegDB and SYSU-MM01, to show the superiority
of our method. As illustrated in Table I and Table II, Ist
and 2nd best results are indicated by red and blue color,
respectively.

1) RegDB-C and SYSU-MM01-C: The focus of this work.
We conduct comprehensive experiments on two corrupted
datasets and reproduce many methods that perform well on
clean datasets.

a) Robustness to corruptions: Firstly, we evaluate the
robustness of our PMWGCN in corruption scenes. We test
the proposed model under 20 single corruption types, and
the experiments are conducted in the indoor-search mode of
SYSU-MM01-C, and the experimental results are shown in
Fig. 8. The bar chart displays the specific experimental values
for each type of corruptions. Among them, the yellow dashed
line indicates the clean data set results and the red dashed line
indicates the ten times random damage average results. As a
whole, the PMWGCN shows a low degradation of mAP on the
four categories of noise, blur, weather, and digital corruption,
which range from 0.60% to 12.82%. Keeping the parameters
constant and conducting ten random corruption tests, the mean
value of mAP is stable at around 72%, which is only 4.19%
lower than the clean dataset. These results fully demonstrate
the relatively stable performance of our model under different
corruption scenes. For the noise class, PMWGCN can play a
good anti-noise role. It performs better in the face of variations
such as impulse noise and speckle noise, and the mAP only
degrades within 2%. The difference is that for weather and
digital type corruptions, there is a huge difference between
the different types. When dealing with brightness, spatter, and
pixel corruptions, the mAP values all remain above the mean
value, which indicates that the network is not sensitive to
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART MRTHODS ON SYSU-MM01-C AND REGDB-C

color information. However, the performance of the network
degrades by 10.62% to 12.10% when encountering frost, fog,
and elastic transform. For blur corruption, the performance is
basically below the mean value, with motion blur reaching the
lowest value of 64.5%. It indicates that the cross-modal model
relies on information about the body structure of the person.
When the personnel body elements are distorted or obscured,
it is difficult for the network to determine the identity of the
personnel.

b) Comparison on SYSU-MM01-C and RegDB-C:
Table I shows the performance on RegDB-C and SYSU-
MM01-C. We test the overall robustness of the model in
corruption scenes and compare it with advanced models. There
are not many researchers in the field of VI-ReID in corruption
scenes. At present, CIL [19] and ML-MDA [52] are designed
for corrupted VI-ReID. In view of the excellent performance
of LightMBN [40] and TransReID [41] reported in [19],
we reproduced BoT’s [50] ResNet-18 version, LightMBN and
TransReID. Some code was modified to enable them to work
under VI-ReID, and CIL data augmentation was added to them
for comparison (+CIL). In addition, we also reproduced some
advanced VI-ReID methods such as AGW, CAJ [37], DGTL,
DART [47], DEEN [48], DSCNet [51] and PMT [49], among
which PMT adopts a different Transformer structure, and then
test their performance in corruption scenes for comparison.
Note that all methods are trained under clean datasets and

Fig. 9. Performance degradation of each model on SYSU-MM01-C.

only introduce corruptions in testing. For a fair comparison,
all test parameters are kept consistent. the V to T mode is
used uniformly on the RegDB-C dataset and the Indoor-search
mode is used uniformly on the SYSU-MM01-C dataset.

We can see by Table I that the PMWGCN model provides
significant performance improvements over the mentioned [1],
[37], [38], [40], [41], [47], [48], [49], [50], [51], [52], [54],
models when corruption occurs on the SYSU-MM01 and
RegDB datasets, i.e., when RGB modal corruption (-C) is
present. In fact, our model achieves 65.72% Rank1, 72.55%
mAP, 66.05% mINP for SYSU-MM01-C and 73.35% Rank1,
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART MRTHODS ON SYSU-MM01 AND REGDB

Fig. 10. Performance comparison of each model in corruption scenes.

65.13% mAP, 50.41% mINP for RegDB-C. Both CAJ and
MUN [54] use channel augmentation for data augmentation,
but MUN with special network design for clean scenes per-
forms worse than original CAJ. This indicates that the current
SOTA model in clean scenes is not suitable for corrupted
scenes, and overfitting to clean scenes reduces the generaliza-
tion performance of the model. Compared with the suboptimal
method, Rank-1 scores improve by 4.26% and 8.97%, mAP

scores improve by 10.34% and 5.19%, and mINP scores
improve by 13.23% and 3.61%, respectively. This outperforms
the current SOTAs by a remarkable margin, proving that both
the polymorphic masked data augmentation algorithm and the
wavelet graph convolution network can increase the model’s
robustness to corruption.

c) Degradation comparison: We compare the perfor-
mance degradation of the SOTA methods in Fig. 9. We directly
refer to the performance of clean scene reported in their
papers. We see that methods perform well on clean datasets
exhibit a sharp performance degradation (more than 20%
Rank-1 and mAP) when encountering corruptions. On the
more challenging SYSU-MM01-C, our PMWGCN only
degrades 6.92% Rank-1 and 3.64% mAP compared with the
clean scene. This proves the meaning of our work. The PMT
adopts the Transformer structure and achieves good results
compared with other methods without considering corrup-
tions, which shows that the Transformer structure can extract
robust pedestrian features in corrupted scenes. But our method
still [3], [10], [31], [32], [33], [34], [35], [36], [37], [38], [42],
[43], [44], [45], [46], [54] achieves more excellent results.
When a modality is corrupted (visible modality), the model
can still acquire valid cross-modality pedestrian features. This
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Fig. 11. The experimental results for different values of ω and γ on the SYSU-MM01-C dataset.

indicates that the model has the ability to adapt to real-world
interference information.

d) Comparison of corrupted VI-ReID methods: In par-
ticular, we compare our method with the CIL and ML-MDA
that aimed at enhancing corruption robustness of VI-ReID,
as shown in Fig. 10. It can be found that adding data
augmentation can effectively improve the corruption robust-
ness of models. Especially after considering multimodal data
augmentation (ML-MDA, Ours), the performance increases
significantly, indicating that cross-modality information inter-
action is more important when image corrupt occurs. However,
our PMDA introduces a fractal image set to consider nat-
ural elements and WGCN constructs a robust human body
structure from a frequency domain perspective to filter out
corruptions. So we achieve the best performance. All of these
results demonstrate that our method can extract robust human
semantic information in clean and corrupted scenes, promoting
the real-world deployment of VI-ReID.

2) RegDB and SYSU-MM01: We also evaluate our
PMWGCN on traditional clean datasets RegDB and SYSU-
MM01, and compare with existing methods to show the
stability of performance.

a) Comparison on SYSU-MM01: From Table II, we can
conclude that our proposed PMWGCN outperforms most of
existing methods on SYSU-MM01 and RegDB and is little
worse than some methods (e.g., MUN, MPANet, CAJ), but
its performance on both scenes (corrupted and clean) is
the most balanced. For the SYSU-MM01, our PMWGCN
achieves 66.82% Rank1 and 64.88% mAP on the all-search
mode. Compared to those models based on modality com-
pensation (e.g., X-Modal, FMCNet) and models based on
modality-sharing feature learning (e.g., HAT, FMI, DML,
SFANet), our PMWGCN outperforms them on two search
mode. In particular, our model even achieves better results
than transformer-based models (e.g., SPOT, CMTR) on both
of two datasets. The reason can be attributed that the proposed
polymorphic masked wavelet graph convolutional network can
capture robust human semantic features and learn complemen-
tary cross-modality knowledges.

b) Comparison on RegDB: For the RegDB dataset, our
proposed model achieves 90.61% Rank1 and 84.53% mAP
on the visible to infrared mode (V to T), which is better
than all mentioned SOTA models except MUN. Close results

are also obtained in the infrared to visible mode (T to V),
proving that our method is also competitive in clean scenes.
This improvement can be attributed to the fact that our
PMDA facilitates inter-modality information exchange within
the same identity. These results validate the effectiveness of
the VI-ReID model proposed in this paper on clean datasets.

D. Ablation Experiments

In this subsection, we have done comprehensive ablation
experiments to evaluate the effectiveness of each component
of the network structure, which mainly includes the PMDA
algorithm, the graph branching module and the loss module.
All experiments in this section are carried out in indoor-search
mode of SYSU-MM01-C and visible to thermal query setting
of RegDB-C. The baseline model is based on the Resnet-50
dual-stream backbone network [1] with CIL data augmen-
tation. The first two stages are set as the modality-specific
modules with independent parameters to learn the modality-
specific feature. The remaining three stages are set as the
modality-shared module with shared parameters to learn the
modality-sharable feature. In other words, the baseline model
only represents the global branching module. The ablation
experiments of different modules are shown in Table III
and the ablation experiments of loss functions are shown in
Table IV.

1) The Effectiveness of the PMDA Algorithm: In this
subsection, we first discuss the effectiveness of the PMDA
algorithm, which introduces fractal image sets and cross-modal
image sets to generate expanded images by means of appropri
ate fusion. At the algorithmic pipeline level, we improve the
popular data augmentation approach in the image processing
field, aiming to accommodate cross-modal scenes. Is such a
change effective? According to Table III, we can conclude
that our PMDA data augmentation algorithm produces a
10.59% and 11.37% Rank-1 gain in performance. Compared
to the baseline CIL data augmentation, it also increases mAP
and mINP accuracy significantly on RegDB-C and SYSU-
MM01-C. This indicates that the PMDA data augmentation
algorithm is more suitable for visible-infrared cross-modal
scenes. A possible explanation is that the PMDA algorithm
introduces biased data augmentation. It makes the network
more inclined to focus on the most discriminative cues in the
infrared modality during RGB data corruption.
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TABLE III
THE RESULTS OF ABLATION EXPERIMENTS FOR EACH MODULE ON REGDB-C AND SYSU-MM01-C

2) The Effectiveness of the Graph Branching Module:
In this subsection, we demonstrate the effectiveness of the
graph branching module. The research of the graph branch-
ing module focuses on wavelet graph convolution network
(WGCN). To verify the effectiveness of the wavelet graph
convolution network, we first replace the wavelet graph con-
volution layer with the feature transform layer, and then train
and test it under the same experimental setup. The equation
of the feature transform network (FTN) can be written as
Y =h(XW), where X is the input and W is the parameter
matrix of the FTN layer. In contrast to WGCN, FTN can be
considered as an ordinary graph convolution layer with the
graph wavelet transform removed. In particular, considering
single-layer WGCN and two-layer WGCN, the computational
procedure can be obtained from Eq. (8) and Eq. (9). It can
be found by Table III the “+FTN” model is limited in
improving the Rank-1 and mINP accuracies. The reason is
that the relationship between different block features cannot be
modeled separately using the feature transformation layer, and
FTN cannot further explore the modal common information
in the visible-infrared. Compared with “+FTN”, “+WGCN”
increases the Rank-1 by 14.54% and mAP by 16.29% on
the harder SYSU-MM01-C. The accuracy improvement proves
the effectiveness of wavelet graph convolution network. The
reason is that the wavelet graph convolution layer exploits
human semantic information across modalities, and filters
out the degradation features to extract more discriminative
and corruption-invariant individual features. In addition, our
proposed “+WGCN (2 layers)” achieves better results in terms
of Rank-1 and mAP accuracy. Finally, the overall network
obtained 73.35% Rank-1, 65.13% mAP, 50.41% mINP on
RegDB-C and 65.72% Rank-1, 72.55% mAP, 66.05% mINP
on SYSU-MM01-C, respectively.

3) The Effectiveness of the Loss Module: As shown in
Equation (15), the loss module consists of Lglobal acting on
the global features, Lgraph acting on the graph branch features,
and Lmix acting on the fused features.

Table IV shows the accuracy values of Rank-1, mAP, and
mINP under the action of different loss functions, where w/o
indicates that they are not used. We can observe the following
phenomena: when the modal consistency loss Lmid is not used

TABLE IV
THE RESULTS OF THE EFFECTIVENESS OF

LOSS MODULE ON SYSU-MM01-C

in the training phase the performance is severely degraded and
the network fails to converge if both global branch and graph
branch do not use Lmid loss. This is because the real identity
labels of the persons are not used, so person matching is not
possible. This shows that Lmid loss is essential in corrupted
scenes. At the same time, Lct is also very important. If Lct
is not used for fused features, the features used for similarity
metrics cannot be captured, making the feature representation
less powerful. If both Lmid and Lct are removed from the
graph branch, the graph branch fails and the image cannot
pass features through the wavelet graph convolution network
freely correctly, resulting in a 9.22% decrease in Rank-1, a
7.75% decrease in mAP, and a 7.93% decrease in mINP. The
results of the ablation experiments in this subsection verify that
the proposed each loss function in this paper is effective for
the visible-infrared person re-identification task in corrupted
scenes.

E. Parameter Discussion

The proposed PMWGCN involves two compromise param-
eters ω, γ in Algorithm 1. ω controls the additive or
multiplicative mixing ratio and γ controls the mixing ratio
of the cross-modal image set. We analyze the two hyperpa-
rameters on the SYSU-MM01-C dataset in all-search mode.
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And when one hyperparameter changes, we keep the other
hyperparameters at their optimal values. The Rank-1 and the
mAP results of PMWGCN with different ω and γ are shown
in Fig. 11. We can see that our method is robust to the
hyperparameters. From Fig. 11(a), we can observe that Rank1
and mAP rise and then fall as the weights increase. The
optimal solution is obtained at ω = 4. A similar phenomenon
can be observed for the hyperparameter γ . The most suitable
parameter setting is γ = 2.

V. CONCLUSION

In this paper, we propose a polymorphic masked wavelet
graph convolutional network for processing VI-ReID tasks
in corrupted scenes. Firstly, a cross-modal data augmentation
algorithm PMDA is designed. Robustness to corruption is
improved by constructing a mixed image set fusing multi-
modal attributes. Secondly, a two-branch network consisting of
global branches and graph branches is designed. Among them,
the global branch is used to extract the overall information;
the graph branch successfully extracts discriminative features
while filtering noise through two steps of graph construc-
tion and wavelet graph convolution, which can respond to
cross-modal scenes in a targeted manner. Finally, the corrup-
tion problems such as noise, blur, weather and digitization
are alleviated by designing the corresponding loss functions
according to different branches. Extensive experiments on
four public datasets, RegDB, SYSU-MM01, RegDB-C and
SYSU-MM01-C, demonstrate the effectiveness and superior
robustness to corruptions of our PMWGCN as well as each
proposed component.

REFERENCES

[1] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, “Deep
learning for person re-identification: A survey and outlook,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 2872–2893, Jun. 2022.

[2] A. Wu, W.-S. Zheng, H.-X. Yu, S. Gong, and J. Lai, “RGB-infrared
cross-modality person re-identification,” in Proc. IEEE Int. Conf. Com-
put. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 5390–5399.

[3] Y. Lu et al., “Cross-modality person re-identification with shared-
specific feature transfer,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Seattle, WA, USA, Jun. 2020, pp. 13376–13386.

[4] M. Ye, C. Chen, J. Shen, and L. Shao, “Dynamic tri-level relation mining
with attentive graph for visible infrared re-identification,” IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 386–398, 2022.

[5] M. Ye, Z. Wang, X. Lan, and P. C. Yuen, “Visible thermal person re-
identification via dual-constrained top-ranking,” in Proc. 27th Int. Joint
Conf. Artif. Intell., Jul. 2018, vol. 1, no. 2, pp. 1092–1099.

[6] H. Liu, X. Tan, and X. Zhou, “Parameter sharing exploration and hetero-
center triplet loss for visible-thermal person re-identification,” IEEE
Trans. Multimedia, vol. 23, pp. 4414–4425, 2021.

[7] P. Dai, R. Ji, H. Wang, Q. Wu, and Y. Huang, “Cross-modality person
re-identification with generative adversarial training,” in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 677–683.

[8] G. Wang, T. Zhang, J. Cheng, S. Liu, Y. Yang, and Z. Hou, “RGB-
infrared cross-modality person re-identification via joint pixel and
feature alignment,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Seoul, Oct. 2019, pp. 3622–3631.

[9] G.-A. Wang et al., “Cross-modality paired-images generation for RGB-
infrared person re-identification,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 12144–12151.

[10] D. Li, X. Wei, X. Hong, and Y. Gong, “Infrared-visible cross-modal
person re-identification with an X modality,” in Proc. AAAI Conf. Artif.
Intell., Apr. 2020, vol. 34, no. 4, pp. 4610–4617.

[11] Z. Lu, R. Lin, and H. Hu, “Modality and camera factors
bi-disentanglement for NIR-VIS object re-identification,” IEEE Trans.
Inf. Forensics Security, vol. 18, pp. 1989–2004, 2023.

[12] J. Wu, S. Zhang, Y. Zhang, Q. Huang, and J. Tian, “Improving robustness
without sacrificing accuracy with patch Gaussian augmentation,” IEEE
Trans. Image Process., vol. 30, pp. 2674–2685, 2021.

[13] D. Hendrycks et al., “AugMix: A simple data processing method
to improve robustness and uncertainty,” in Proc. Int. Conf. Learning
Represent., Apr. 2020, pp. 1–15.

[14] D. Hendrycks et al., “PixMix: Dreamlike pictures comprehensively
improve safety measures,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), New Orleans, LA, USA, Jun. 2022,
pp. 16762–16771.

[15] L. Wan, Q. Jing, Z. Sun, C. Zhang, Z. Li, and Y. Chen, “Self-supervised
modality-aware multiple granularity pre-training for RGB-infrared per-
son re-identification,” IEEE Trans. Inf. Forensics Security, vol. 18,
pp. 3044–3057, 2023.

[16] D. Hendrycks, X. Liu, E. Wallace, A. Dziedzic, R. Krishnan, and
D. Song, “Pretrained transformers improve out-of-distribution robust-
ness,” 2020, arXiv:2004.06100.

[17] R. Shao, Z. Shi, J. Yi, P.-Y. Chen, and C.-J. Hsieh, “On the adversarial
robustness of vision transformers,” 2021, arXiv:2103.15670.

[18] G. K. Nayak, R. Rawal, and A. Chakraborty, “DE-CROP: Data-efficient
certified robustness for pretrained classifiers,” in Proc. IEEE/CVF Winter
Conf. Appl. Comput. Vis. (WACV), Jan. 2023, pp. 4622–4631.

[19] M. Chen, Z. Wang, and F. Zheng, “Benchmarks for corruption invariant
person re-identification,” 2021, arXiv:2111.00880.

[20] E. Rusak et al., “A simple way to make neural networks robust against
diverse image corruptions,” in Proc. 16th Eur. Conf. Comput. Vis.,
vol. 12348, Glasgow, U.K., 2020, pp. 53–69.

[21] C. Si et al., “Better robustness by more coverage: Adversarial and
mixup data augmentation for robust finetuning,” in Proc. Findings Assoc.
Comput. Linguistics (ACL-IJCNLP), 2021, pp. 1569–1576.

[22] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–14.

[23] H. Pan, Y. Bai, Z. He, and C. Zhang, “AAGCN: Adjacency-aware graph
convolutional network for person re-identification,” Knowl.-Based Syst.,
vol. 236, Jan. 2022, Art. no. 107300.

[24] Z. Zhang, H. Zhang, and S. Liu, “Person re-identification using het-
erogeneous local graph attention networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 12131–12140.

[25] J. Liu, Z.-J. Zha, W. Wu, K. Zheng, and Q. Sun, “Spatial-temporal
correlation and topology learning for person re-identification in videos,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Nashville, TN, USA, Jun. 2021, pp. 4368–4377.

[26] J. Zhang, X. Li, C. Chen, M. Qi, J. Wu, and J. Jiang, “Global-local
graph convolutional network for cross-modality person re-identification,”
Neurocomputing, vol. 452, pp. 137–146, Sep. 2021.

[27] D. B. Walther and D. Shen, “Nonaccidental properties underlie human
categorization of complex natural scenes,” Psychol. Sci., vol. 25, no. 4,
pp. 851–860, Apr. 2014.

[28] P. Li, Y. Xu, Y. Wei, and Y. Yang, “Self-correction for human parsing,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 3260–3271,
Jun. 2022.

[29] X. Liang, K. Gong, X. Shen, and L. Lin, “Look into person: Joint body
parsing & pose estimation network and a new benchmark,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 4, pp. 871–885, Apr. 2019.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[31] T. Liang, Y. Jin, W. Liu, and Y. Li, “Cross-modality transformer
with modality mining for visible-infrared person re-identification,”
IEEE Trans. Multimedia, vol. 25, pp. 8432–8444, 2023, doi:
10.1109/TMM.2023.3237155.

[32] M. Ye, J. Shen, and L. Shao, “Visible-infrared person re-identification
via homogeneous augmented tri-modal learning,” IEEE Trans. Inf.
Forensics Security, vol. 16, pp. 728–739, 2021.

[33] X. Tian, Z. Zhang, S. Lin, Y. Qu, Y. Xie, and L. Ma, “Farewell to
mutual information: Variational distillation for cross-modal person re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 1522–1531.

[34] H. Liu, S. Ma, D. Xia, and S. Li, “SFANet: A spectrum-aware fea-
ture augmentation network for visible-infrared person reidentification,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 1958–1971,
Apr. 2023.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2024 at 11:26:14 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TMM.2023.3237155


SUN et al.: ROBUST VISIBLE-INFRARED PERSON RE-IDENTIFICATION BASED ON POLYMORPHIC MASK AND WGCN 2813

[35] Y. Chen, L. Wan, Z. Li, Q. Jing, and Z. Sun, “Neural feature search
for RGB-infrared person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Nashville, TN, USA, Jun. 2021,
pp. 587–597.

[36] Z. Sun, Y. Zhu, S. Song, J. Hou, S. Du, and Y. Song, “The multi-layer
constrained loss for cross-modality person re-identification,” in Proc. Int.
Conf. Artif. Intell. Signal Process. (AISP), Amaravati, India, Jan. 2020,
pp. 1–6.

[37] M. Ye, W. Ruan, B. Du, and M. Z. Shou, “Channel augmented
joint learning for visible-infrared recognition,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Montreal, QC, Canada, Oct. 2021,
pp. 13547–13556.

[38] H. Liu, Y. Chai, X. Tan, D. Li, and X. Zhou, “Strong but simple
baseline with dual-granularity triplet loss for visible-thermal person re-
identification,” IEEE Signal Process. Lett., vol. 28, pp. 653–657, 2021.

[39] Y. Huang, X. Fu, L. Li, and Z.-J. Zha, “Learning degradation-
invariant representation for robust real-world person re-identification,”
Int. J. Comput. Vis., vol. 130, no. 11, pp. 2770–2796, Nov. 2022.

[40] F. Herzog, X. Ji, T. Teepe, S. Hörmann, J. Gilg, and G. Rigoll,
“Lightweight multi-branch network for person re-identification,” in
Proc. IEEE Int. Conf. Image Process. (ICIP), Anchorage, AK, USA,
Sep. 2021, pp. 1129–1133.

[41] S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Tran-
sReID: Transformer-based object re-identification,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Montreal, QC, Canada, Oct. 2021,
pp. 14993–15002.

[42] D. Zhang, Z. Zhang, Y. Ju, C. Wang, Y. Xie, and Y. Qu, “Dual
mutual learning for cross-modality person re-identification,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 8, pp. 5361–5373, Aug. 2022.

[43] J. Liu, Y. Sun, F. Zhu, H. Pei, Y. Yang, and W. Li, “Learning
memory-augmented unidirectional metrics for cross-modality person re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), New Orleans, LA, USA, Jun. 2022, pp. 19344–19353.

[44] C. Chen, M. Ye, M. Qi, J. Wu, J. Jiang, and C.-W. Lin, “Structure-aware
positional transformer for visible-infrared person re-identification,” IEEE
Trans. Image Process., vol. 31, pp. 2352–2364, 2022.

[45] Q. Zhang, C. Lai, J. Liu, N. Huang, and J. Han, “FMCNet: Feature-level
modality compensation for visible-infrared person re-identification,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
New Orleans, LA, USA, Jun. 2022, pp. 7339–7348.

[46] Q. Wu et al., “Discover cross-modality nuances for visible-infrared
person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Nashville, TN, USA, Jun. 2021, pp. 4328–4337.

[47] M. Yang, Z. Huang, P. Hu, T. Li, J. Lv, and X. Peng, “Learning with
twin noisy labels for visible-infrared person re-identification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans,
LA, USA, Jun. 2022, pp. 14288–14297.

[48] Y. Zhang and H. Wang, “Diverse embedding expansion network and
low-light cross-modality benchmark for visible-infrared person re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Vancouver, BC, Canada, Jun. 2023, pp. 2153–2162.

[49] H. Lu, X. Zou, and P. Zhang, “Learning progressive modality-shared
transformers for effective visible-infrared person re-identification,”
in Proc. AAAI Conf. Artif. Intell., Washington, DC, USA, 2023,
pp. 1835–1843.

[50] H. Luo, Y. Gu, X. Liao, S. Lai, and W. Jiang, “Bag of tricks and a strong
baseline for deep person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Long Beach, CA,
USA, Jun. 2019, pp. 1487–1495.

[51] Y. Zhang, Y. Kang, S. Zhao, and J. Shen, “Dual-semantic consistency
learning for visible-infrared person re-identification,” IEEE Trans. Inf.
Forensics Security, vol. 18, pp. 1554–1565, 2023.

[52] A. Josi, M. Alehdaghi, R. M. O. Cruz, and E. Granger, “Multimodal data
augmentation for visual-infrared person ReID with corrupted data,” in
Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. Workshops (WACVW),
Waikoloa, HI, USA, Jan. 2023, pp. 1–10.

[53] A. Josi, M. Alehdaghi, R. M. O. Cruz, and E. Granger, “Fusion for
visual-infrared person ReID in real-world surveillance using corrupted
multimodal data,” 2023, arXiv:2305.00320.

[54] H. Yu, X. Cheng, W. Peng, W. Liu, and G. Zhao, “Modality uni-
fying network for visible-infrared person re-identification,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Paris, France, Oct. 2023,
pp. 11185–11195.

Rui Sun (Member, IEEE) received the B.S. degree
from Central South University, China, in 1998, the
M.S. degree from Harbin Engineering University,
China, in 2000, and the Ph.D. degree from the
Huazhong University of Science and Technology,
China, in 2003. He was a Visiting Scholar with
the Computer Science Department, University of
Missouri, Columbia, USA, from 2010 to 2011. He is
currently a Professor with the School of Computer
and Information, Hefei University of Technology,
China. His research interests include object recog-

nition and tracking, computer vision, and machine learning.

Long Chen received the B.S. degree from the
Hefei University of Technology, China, in 2022,
where he is currently pursuing the M.S. degree.
His research interests include machine learning and
computer vision, especially cross modal person
re-identification and corruption robustness.

Lei Zhang received the B.S. degree from Huainan
Normal University, China, in 2020. He is currently
pursuing the M.S. degree with the Hefei Univer-
sity of Technology. His research interests include
machine learning and computer vision, cross modal
person re-identification, and graph learning.

Ruirui Xie received the B.S. degree from Anhui
Jianzhu University, China, in 2021. He is currently
pursuing the M.S. degree with the Hefei Univer-
sity of Technology. His research interests include
machine learning, computer vision, and vision
pretraining.

Jun Gao received the bachelor’s degree in elec-
tronic engineering and the master’s degree in signal
and information processing from the Hefei Uni-
versity of Technology (HFUT), Hefei, China, in
1985 and 1991, respectively, and the Ph.D. degree
in information and communication engineering from
the University of Science and Technology, Hefei,
in 1999. From March 1995 to October 1996, he was
invited to work with the University of Stuttgart,
Stuttgart, Germany. He is currently a Professor with
the Laboratory of Image Information Processing,

HFUT. His current research interests include image processing and intelligent
information processing.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2024 at 11:26:14 UTC from IEEE Xplore.  Restrictions apply. 


