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ABSTRACT

Real-world vision-language applications demand varying levels of perceptual
granularity. However, most existing visual large language models (VLLMs), such
as LLaVA, pre-assume a fixed resolution for downstream tasks, which leads to
subpar performance. To address this problem, we first conduct a comprehensive
and pioneering investigation into the resolution preferences of different vision-
language tasks, revealing a correlation between resolution preferences with ❶ im-
age complexity, and ❷ uncertainty variance of the VLLM at different image input
resolutions. Building on this insight, we propose an empirical formula to deter-
mine the optimal resolution for a given vision-language task, accounting for these
two factors as the zeroth-order and first-order terms in the Taylor expansion on a
given image input. Second, based on rigorous experiments, we propose a novel
parameter-efficient fine-tuning technique to extend the visual input resolution of
pre-trained VLLMs to the identified optimal resolution. Extensive experiments on
various vision-language tasks validate the effectiveness of our method.

1 INTRODUCTION

Visual Large Language Models (VLLMs) represent a powerful class of models capable of handling
vision-language tasks (Yin et al., 2023; Liu et al., 2023a; 2024; Alayrac et al., 2022). There is
a growing body of research focused on the application of VLLMs in real-world scenarios, where
different tasks necessitate varying levels of perceptual granularity. For instance, autonomous driving
systems require high resolution to capture multiple objects and intricate details (Zhou et al., 2023;
Ding et al., 2023), whereas image classification tasks involving singular, simple objects can be
effectively performed at lower resolutions (Li et al., 2024a; 2023d; Zhang et al., 2024). Despite this,
most existing VLLMs, e.g., LLaVA, pre-assume a fixed resolution for downstream tasks, which leads
to sub-optimal performance (Liu et al., 2023b;a; Li et al., 2023b). A direct “exhaustive training”
strategy to adapt current VLLMs for diverse vision-language applications by training the models at
different resolutions during the pre-training phase to create a series of checkpoints corresponding
to various image input resolutions, followed by the selection of the most effective checkpoint for
downstream tasks. While this method is viable, it incurs significant training costs. Consequently,
we pose the first research question (RQ1):

RQ1: For a given vision-language task, how to accurately determine the optimal resolution
without such exhaustive training for VLLMs?

224 336 448 560 672
Resolution

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

SQA
VisWiz

VQAv2
GQA

TextVQA
OKVQA

MMBench
MMBench-ch

Figure 1: Resolution preference across
eight tasks; ★ marks the optimal reso-
lutions.

To answer RQ1, we conduct a comprehensive and pi-
oneering investigation into the resolution preferences
across eight widely-studied vision-language tasks, utiliz-
ing VLLMs with five varying input image resolutions,
as shown in Figure 1. Our findings reveal that directly
choosing the lowest (2242) and highest (6722) resolution
leads to subpar performance across tasks. On the other
hand, we observe diverse preferences for the intermediate
resolutions, with optimal choices scattered among 3362,
4482, and 5602.

To determine the resolution preference for different tasks,
we propose two heuristic methods: ❶ image complexity,
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which measures the intrinsic complexity of a given image, as introduced in Secion 3.2.1. ❷ un-
certainty variance, which measures the variance of uncertainty in the model predictions at different
image input resolutions, as introduced in Secion 3.2.2. These two heuristic methods can be regarded
as the zeroth-order and the first-order terms in the Taylor expansion over image inputs, as discussed
in Section 3.2.3. Through empirical analysis across eight vision-language tasks, we find that both
the complexity scores and model uncertainty variance exhibit a generally positive correlation with
the preferred resolution for each task. Building on this insight, we propose an empirical formula
integrating both heuristics to determine the optimal resolution for each vision-language task. We
utilize three reference tasks to optimize a single hyperparameter of this empirical formula, and the
fitting results across five additional tasks affirm its generalizability.

Once the optimal resolution for a given vision-language task is identified, the next step is adapting
the current VLLM to the identified resolution. While the training-free method exists for resolution
extension, we empirically find it would lead to performance degradation, suggesting that training-
based approaches are essential. However, re-training a VLLM with another resolution from scratch
incurs significant costs. This prompts our second research question (RQ2):

RQ2: How to efficiently adapt a pre-trained VLLM to the designated resolution without
compromise on the performance?

To tackle this problem, we propose a post-training strategy that extends the image input resolution of
an existing VLLM checkpoint. We conduct a preliminary experiment to identify which parameters
within the VLLM are crucial for performance enhancement. Based on the findings, we propose a
parameter-efficient fine-tuning (PEFT) approach, which only requires updating a few parameters in
each VLLM component: the positional embedding parameters of the visual encoder, the projector
parameters, and the LoRA adapter parameters of the LLM backbone. Empirical studies show that
our method achieves the best efficiency-performance Pareto front.

In summary, this paper has the following contributions:

• Novel Discovery. Through a comprehensive and pioneering investigation, we discover that differ-
ent vision-language tasks prefer distinct resolutions.

• Empirical Formula. We find these preferences correlated with image complexity and model
uncertainty variance on samples at different input image resolutions, which can be interpreted
as two terms in a Taylor Expansion of image inputs. We then propose an empirical formula to
adaptively determine the optimal resolution for various downstream vision-language tasks without
exhaustively training VLLMs.

• Efficient Adaptation. We introduce a PEFT approach to extend the input image resolution of
LLaVA through post-training, containing three components, including vision module PEFT, lan-
guage module PEFT, and the projector tuning.

2 RELATED WORKS

Vision Large Language Models. Vision Large Language Models (VLLM), as one the most capa-
ble and popular solutions to multimodal tasks, extends the reasoning and generating ability of Large
Language Model (LLM) beyond language modalities such as image, video, and audio (Alayrac et al.,
2022; Liu et al., 2023a; McKinzie et al., 2024a; Tong et al., 2024; Xue et al., 2024). VLLMs can
be divided into encoder-decoder and decoder-only VLLM according to their architecture (Liu et al.,
2023b; Driess et al., 2023; fuy; Team, 2024). The encoder-decoder VLLM introduces additional
multimodal encoders and a modality connector to project multimodal features into the spaces of lan-
guage models. The implementations of modality connector include: the projector that directly maps
features into language model (Liu et al., 2024; 2023a;b); the resampler that compresses the visual
feature and inserts cross-gated attention layers into the LLM decoder (Alayrac et al., 2022; Awadalla
et al., 2023; Li et al., 2023a). This study mainly focuses on the LLaVA-style VLLM, which adopts
encoder-decoder architecture with a projector connector.

High resolution VLLM The high-resolution problem of VLLM is attracting attention because of
its prevalence in downstream tasks, such as OCR and document analysis. However, it remains chal-
lenging because high-resolution images are underrepresented in the training data, making it difficult
to generalize for popular MLLMs. High-resolution VLLM solutions can be roughly divided into two
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Figure 2: Our method comprises two components: the first component identifies the optimal image
input resolution for a given vision-language task (depicted in green), while the second component
adapts the VLLM to the selected image input resolution (depicted in blue).

classes: (1) using high-resolution vision encoders that directly support high-resolution input (Hong
et al., 2023; Li et al., 2024b; Lv et al., 2023; Wei et al., 2023); (2) the patchification that cuts the
high-resolution image into smaller patches to be processed on standard vision encoders (wen Dong
et al., 2024; Hu et al., 2024; Feng et al., 2023; Li et al., 2023d; Xu et al., 2024). However, these
solutions lack the flexibility for different resolution inputs, which can be computationally expen-
sive. To solve this, FlexAttention uses dual tokenization that only processes a few highly-attended
high-resolution tokens in the deeper LLM layers, achieving near 40% reduction in computational
cost compared to standard LLaVA (Li et al., 2024a). NVLM (Dai et al., 2024) introduces 1-D
tile-tagging for tile-based dynamic high-resolution images, which can significantly improve the per-
formance of OCR-related tasks, but sometimes undermine the accuracy of reasoning-related tasks.
Unlike these methods, which presuppose a fixed resolution for downstream applications, our ap-
proach implements a task-wise resolution adaptation strategy, employing different resolutions for
tasks with different perceptual demands. Additionally, we enhance image input resolution through a
parameter-efficient post-training method, circumventing the need for training from scratch to mini-
mize costs.

3 METHODOLOGY

This section elaborates on our proposed methodology. Section 3.1 presents an overview, followed
by a detailed explanation of each component in Sections 3.2 and 3.3.

3.1 METHOD FRAMEWORK

Figure 2 illustrates our approach, which consists of two key components.

The first component focuses on task-specific resolution selection, where we introduce two heuristic
approaches to determine the optimal resolution for a given vision-language task, detailed in Se-
cion 3.2.1 and 3.2.2. We explore the theoretical connection between these heuristics and the Taylor
expansion on image input in Secion 3.2.3, leading to an empirical formula that facilitates task-wise
resolution selection in Section 3.2.4.

After identifying the optimal resolution, the second component adapts the VLLM to this specific
resolution using a PEFT approach. This involves post-training a existing VLLM checkpoint without
retraining the model from scratch. The PEFT adaptation process is discussed in detail in Section 3.3.

3.2 TASK-WISE OPTIMAL RESOLUTION SELECTION

As highlighted in Section 1, different vision-language tasks have varying requirements for the per-
ceptual capacity of VLLMs. Therefore, it is critical to do task-wise resolution selection. While
tuning VLLMs at different image input resolutions and obtaining the best-performing one is feasi-
ble, it imposes heavy training costs, which leads to RQ1. In this section, we propose a training-free
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method for determining the optimal resolution for a specific vision-language task, utilizing two
heuristic approaches.

The first heuristic estimates the complexity of the images for each task, while the second evaluates
the variance in model uncertainty at different input resolutions. We then derive an empirical formula
to guide the resolution selection process.

3.2.1 MEASURING IMAGE COMPLEXITY

The initial step in VLLM processing is the perception of visual input. Intuitively, images with vary-
ing complexity levels demand different degrees of perceptual capacity, with more complex images
requiring finer granularity in perception. Thus, for any given vision-language task, image complex-
ity can serve as an indicator of resolution preference.

We use an existing tool (Mahon & Lukasiewicz, 2023) to measure image complexity, which applies
hierarchical clustering on image pixels and leverages the minimum description length principle to
determine the number of clusters. The average image complexity across samples of the specific task
serves as an indicator for determining the appropriate resolution.

3.2.2 MEASURING UNCERTAINTY VARIANCE ACROSS RESOLUTIONS

In addition to the image complexity, which addresses only the visual aspects of a task, it is crucial to
account for the model uncertainty of VLLMs, as it provides insights into the interaction between the
visual and linguistic components of vision-language tasks. Furthermore, the method in Section 3.2.1
only captures static complexity, neglecting the effects of varying image resolutions. To complement
this, we introduce the second heuristic approach based on model uncertainty.

Specifically, for a VLLM pre-trained at a fixed resolution (e.g., 3362 for LLaVA), we extend the
visual encoder’s resolution using position embedding interpolation, following methods employed
in previous studies (Bai et al., 2023; Li et al., 2023b). We denote the original model as M1 and
the extended-resolution model as M2. We first apply random augmentation to the images from
the task, following the existing RandAugment algorithm (Cubuk et al., 2020). After augmentation,
inference is conducted on the task samples using models M1 and M2, from which we extract the
softmax probabilities corresponding to each generated token. To quantify the uncertainty associated
with each token, we calculate the information entropy using H(p) = −

∑n
i=1 pi log pi. Here, H(x)

represents the entropy for token x, where p(xi) is the softmax probability of the ith token and n is
the number of possible tokens in the vocabulary. We denote the entropy values derived from M1 and
M2 as U1 and U2, respectively, which provide a measure of uncertainty in the model’s predictions.

The uncertainty variance is computed as the ratio of the difference between U1 and U2 to U1,
as shown in r = U2−U1

U1
. Here, V (T ) represents the uncertainty variance for task T . This ratio

quantifies how much the uncertainty changes between the two VLLMs, with higher values indicating
a greater impact of resolution on the model’s uncertainty. This ratio is averaged across all generated
tokens for a given sample, and the final uncertainty variance is computed by averaging this ratio
across all samples in the task.

This heuristic approach serves two functions: (1) it computes entropy based on the tokens generated
by VLLM, thus accounting for both visual and linguistic features during inference; and (2) it quan-
tifies the variance caused by resolution changes, thereby capturing the dynamic effects of resolution
shifts. Unlike the static image complexity heuristic, this method emphasizes the impact of resolution
modifications, making these two heuristics complementary.

Notably, we extend the image input resolution of VLLM without tuning the model parameters,
allowing us to avoid additional training costs.

3.2.3 DESIGNING HEURISTIC FROM THE TAYLOR EXPANSION PERSPECTIVE

We further interpret the two heuristics using a Taylor expansion perspective on image inputs. As
shown in Equation 1, the Taylor expansion is defined over image inputs, where I represents an
image, R denotes its resolution, and F (I,R) represents the overall model evaluation. C(I) denotes
the image complexity, which captures the intrinsic properties of the image, while V (I) represents
the uncertainty variance, indicating the model’s sensitivity to changes in resolution. ∆R refers to the
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difference between two resolutions, and H(I,R) represents higher-order terms related to resolution
changes.

F (I,R) = C(I) + V (I) ·∆R+
H(I,R)

2!
(∆R)2 + · · · (1)

In the simplified form shown in Equation 2, only the zeroth-order and the first-order terms are
considered:

F (I,R) ≈ C(I) + V (I) ·∆R (2)

This simplified expression highlights the inherent complexity of the image (C(I)) and the linear
change in model uncertainty due to resolution variations (V (I) · ∆R). This framework underlines
the importance of accounting for both the intrinsic properties of images and the model’s response to
resolution changes.

3.2.4 EMPIRICAL FORMULA

Intuitively, tasks characterized by high image complexity often necessitate higher input resolutions.
Similarly, tasks with high uncertainty variance indicate that increasing resolution heightens model
uncertainty, which suggests a need for greater perceptual capacity. Conversely, low uncertainty vari-
ance suggests that resolution changes exert minimal impact, making higher resolutions unnecessary.
Based on these observations, we hypothesize that image complexity and uncertainty variance are
positively correlated with the preferred resolution. Consequently, we propose Equation 3 to deter-
mine the optimal resolution for a specific vision-language task T :

Reso(T ) = Reso0(1 + k × C(T )× V (T )) (3)

In this empirical formula, C(T ) represents the averaged normalized image complexity for task T ,
V (T ) denotes the averaged uncertainty variance across different image input resolutions on task T ,
k is a user-specified hyperparameter, and Reso0 is the baseline image input resolution of the original
VLLM. The expression 1+k×C(T )×V (T ) quantifies the scaling factor between the baseline and
the preferred resolution. In practice, the value of k can be adjusted based on prior experience.

3.3 PARAMETER-EFFICIENT RESOLUTION ADAPTATION

After determining the optimal resolution for a given task, the next step is adapting the VLLM to the
selected resolution. To answer RQ2, We propose a parameter-efficient fine-tuning (PEFT) approach
that post-train an existing VLLM checkpoint, thus avoiding retraining from scratch.

As depicted in Figure 2, existing VLLMs (e.g., LLaVA) consist of three main components: a visual
encoder that processes visual inputs, a projector that maps visual features to the word embedding
space, and an LLM backbone that autoregressively generates language tokens based on the combined
visual and linguistic inputs.

Increasing the input resolution results in more image patches, which introduces incompatibility with
the original position embeddings. To address this, we interpolate the position embeddings from
the initial number of patches (e.g., 242) to the extended number (e.g., 322), following previous
research (Bai et al., 2023; Li et al., 2023b). Although this allows the VLLM to process extended res-
olutions, performance degrades without further adaptation (as discussed in Secion 3.2). To counter
this performance decline, we employ a PEFT method that fine-tunes three key components: (1) po-
sition embeddings within the visual encoder, crucial for resolution adaptation due to the change in
image patch count; (2) the lightweight projector parameters; and (3) the parameters of the LoRA
adapters integrated into the LLM backbone. By keeping all other parameters frozen, the PEFT ap-
proach offers an efficient method for adaptation. Figure 2 provides a visual representation of the
components that are fine-tuned versus those that remain frozen.

5
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Table 1: A comprehensive investigation conducted to explore resolution preferences across eight
vision-language tasks. For each task, the accuracy scores corresponding to five different resolutions
are presented.

Resolution SciQA-IMG VizWiz VQAv2 GQA TextVQA OKVQA MMBench MMBench-CN

224× 224 67.23 49.81 77.72 62.81 54.35 46.60 64.86 56.19
336× 336 69.56 50.39 78.53 61.98 58.25 47.95 64.60 58.76
448× 448 68.07 49.67 80.19 63.87 60.25 47.60 64.18 58.16
560× 560 68.72 47.61 78.71 61.77 58.86 50.86 67.70 61.08
672× 672 66.39 46.63 78.04 61.82 56.98 50.72 65.72 59.54

4 EXPERIMENTS

This section presents the empirical evaluation of our proposed method. We first introduce the im-
plementation details in Section 4.1, followed by an in-depth analysis of the results, including the
investigation into resolution preferences, task-wise resolution selection, and the findings from the
ablation study in Section 4.2, Secion 4.3, and Section 4.4, respectively.

4.1 IMPLEMENTATION DETAILS

VLLM Selection For our experiments, we select the LLaVA-1.5-7B checkpoint Liu et al. (2023b)
as the representative VLLM for evaluation.

Resolution Configurations We explore five image resolutions: 2242, 3362, 4482, 5602, and 6722.
These values cover the resolution spectrum commonly used in previous studies Liu et al. (2023b;a).

Vision-Language Tasks Our evaluation encompasses eight vision-language tasks, with details in-
troduced in Appendix A.1.

Baseline Methods In addition to the original LLaVA model, we compare our method with several
state-of-the-art approaches. Besides, we report the performance of position embedding interpolation
as a representative of the training-free methods to extend the image input resolution of VLLMs. The
details are introduced in Appendix A.2.

Post-training Details To initialize the position embedding parameters of the visual encoder (Vision
Transformer) in LLaVA during resolution adaptation, we employ extended position embeddings
derived through positional embedding interpolation, as described in Appendix A.2. Following the
post-training instructions provided by the LLaVA authors1, we concentrate on stage 2 fine-tuning,
incorporating the additional parameters for position embeddings in the visual encoder, alongside
the LoRA adapter and projector parameters. The fine-tuning process utilizes images from five
datasets: COCO Lin et al. (2014), GQA Hudson & Manning (2019), OCR-VQA Mishra et al.
(2019), TextVQA Singh et al. (2019), and Visual Genome Krishna et al. (2017). For more details on
the construction of the image-text pairs used in training, we refer readers to Liu et al. (2023a).

More details about method implementation and PEFT are introduced in Appendix A.3 and A.4.

4.2 ANALYZING RESOLUTION PREFERENCES ACROSS VISION-LANGUAGE TASKS

We conduct a comprehensive empirical study to analyze the resolution preferences across various
vision-language tasks systematically, summarized in Table 1. The findings reveal two key observa-
tions:

(1) When image resolution is either too low (2242) or too high (6722), the performance of VLLMs
is suboptimal across all tasks. Low-resolution inputs limit the model’s ability to capture essential
visual details, while very high resolutions create a significant gap between the original and extended
image input resolution. This discrepancy leads to less effective resolution adaptation and introduces
a greater number of irrelevant image tokens, which do not contribute meaningfully to the specific
task at hand.

1https://github.com/haotian-liu/LLaVA/tree/main?tab=readme-ov-file#train
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Table 2: Distributions of image complexity and uncertainty variance accross eight tasks.

vizwiz SciQA-IMG TextVQA GQA VQAv2 OKVQA MMBench MMBench-CN

Resolution Preference 336× 336 448× 448 560× 560

Complexity (C) 0.2191 0.1437 0.2919 0.3236 0.3017 0.3112 0.2323 0.2329
Average 0.1814 0.3058 0.2588

Uncertainty Variance (V) 1.83% 6.47% 4.88% 5.34% 5.26% 6.72% 10.79% 10.45%
Average 4.15% 5.16% 9.32%

C × V 0.0040 0.0093 0.0142 0.0173 0.0159 0.0209 0.0251 0.0243
Average 0.0067 0.0158 0.0234

(2) The optimal resolutions are distributed among the intermediate values of 3362, 4482, and 5602,
suggesting that the specific visual granularity required by each task varies. No fixed resolution
yields optimal performance across all tasks, underscoring the importance of a task-wise resolution
selection strategy.

VisWiz SciQA-IMG TextVQA VQAv2 GQA OKVQA MMBench-CN MMBench
Tasks
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Figure 3: The product of two heuristic scores exhibits a con-
sistent and robust correlation with resolution preferences.

After identifying task-specific resolu-
tion preferences, we explore the cor-
relation between optimal resolutions
and our proposed heuristics of image
complexity and uncertainty variance,
as shown in Table 2. Several conclu-
sions can be drawn:

(1) While there is no increasing trend
between 4482 and 5602 in terms of
image complexity, a noticeable gap
exists between 3362 and 4482, indi-
cating that image complexity effec-
tively distinguishes tasks preferring
3362 from those favoring higher resolutions.

(2) There is a general positive correlation between the preferred resolution and the uncertainty vari-
ance of VLLMs across tasks. Averaging the uncertainty variance for each resolution reveals a clear
upward trend, indicating that uncertainty variance serves as a reliable indicator for resolution pref-
erence.

(3) Although these heuristics generally perform well, some exceptions exist. For instance, GQA
prefers a lower resolution than MMbench but has higher image complexity. Similarly, SciQA-IMG
exhibits higher uncertainty variance but favors a lower resolution than TextVQA. By combining both
heuristics (multiplying their scores), a more consistent and robust correlation is observed, as shown
in Figure 3.

4.3 EVALUATING HEURISTIC-BASED TASK-SPECIFIC RESOLUTION SELECTION

The investigation highlights a positive correlation between task-specific resolution preferences and
the two heuristic approaches, particularly when their scores are combined. This section introduces

(a) Single and simple object:
Ethane is (). A. an elementary
substance B. a compound

(b) Middle-level complexity: Are
all the animals the same?

(c) Multiple objects: What is the
brand being advertised?

Figure 4: We pick three tasks with images in different levels of complexity.
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Table 3: Comparison between our method and baseline approaches, highlighting the best scores
in bold. ∗indicates that the training images or annotations of the datasets were observed during
training.

Method LLM Resolution Post-training VQAv2 GQA TextVQA OKVQA MMBench MMBench-CN

BLIP-2 Vicuna-13B 224× 224 - 65.00 41.00 42.50 - - -
InstructBLIP Vicuna-7B 224× 224 - - 49.20 50.10 - 36.00 23.70
InstructBLIP Vicuna-13B 224× 224 - - 49.50 50.70 - - -
Shikra Vicuna-13B 224× 224 - 77.40∗ - - - 58.80 -
IDEFICS-9B LLaMA-7B 224× 224 - 50.90 38.40 25.90 - 48.20 25.20
IDEFICS-80B LLaMA-65B 224× 224 - 60.00 45.20 30.90 - 54.50 38.10
Qwen-VL Qwen-7B 448× 448 - 78.80∗ 59.30∗ 63.80∗ - 38.20 7.40
Qwen-VL-Chat Qwen-7B 448× 448 - 78.20∗ 57.50∗ 61.50∗ - 60.60 56.70

LLaVA-1.5 Vicuna-7B 336× 336 - 78.53∗ 61.98∗ 58.25 47.95 64.60 58.76
LLaVA-1.5 Vicuna-7B 448× 448 ✗ 77.82∗ 61.29∗ 56.61 47.38 63.32 57.73
LLaVA-1.5 Vicuna-7B 448× 448 ✓ 80.19∗ 63.87∗ 60.25 47.60 64.18 58.16
LLaVA-1.5 Vicuna-7B 560× 560 ✓ 78.71∗ 61.77∗ 58.86 50.86 67.70 61.08
LLaVA-1.5 Vicuna-7B Adaptive ✓ 80.19∗ 63.87∗ 60.25 50.86 67.70 61.08

LLaVA-1.5 Vicuna-13B 336× 336 - 80.00∗ 63.30∗ 61.30 - 67.70 63.60

the process of determining hyperparameter values in the empirical formula, followed by the overall
performance results achieved by models using this selection strategy.

4.3.1 APPLYING EMPIRICAL FORMULA TO DETERMINE THE OPTIMAL RESOLUTION
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(a) Optimization of the hyperparameters in the empir-
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(b) The empirical formula demonstrates effective
generalization across five vision-language tasks.

Figure 5: Applying the empirical formula hyperparameter to determine the optimal resolution for
vision-language tasks.

To optimize the hyperparameter in Equation 3, we select three reference tasks that represent varying
levels of visual perception requirements for VLLMs. The selection is informed by human experi-
ence: tasks associated with simpler images containing a single object (e.g., Figure 4a) are considered
as having low demands for image resolution, whereas tasks involving more complex images with
multiple objects (e.g., Figure 4c) are associated with higher resolution needs. Intermediate cases
(e.g., Figure 4b) are positioned between these extremes. Accordingly, SciQA-IMG, VQAv2, and
OKVQA are chosen as representative tasks, reflecting low, medium, and high resolution require-
ments, respectively.

When tuning the hyperparameter k, we focus on the intermediate resolutions 3362, 4482, and 5602.
The constant Reso0 in Equation 3 is set to 336 (the default resolution of LLaVA), and the higher
resolutions serve as thresholds dividing the empirical formula into three sub-ranges. The task’s res-
olution is determined based on which sub-range its empirical formula value falls into. For example,
a value of 500, situated between 448 and 560, results in the selection of resolution 4482.

Figure 5a visualizes the relationship between hyperparameter values and selected resolutions. For
simplicity, we select k = 34, which results in optimal resolution selection for the reference tasks.
Additionally, as shown in Figure 5b, this value generalizes well to other tasks, achieving the best
resolution for each.
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Table 4: Ablation Analysis of PEFT Components, ✗ and ✓ indicate whether the corresponding
parameters are post-trained.

Resolution ViT PE Projector LoRA Adapter VQAv2 GQA TextVQA

336× 336 - - - 78.53 61.98 58.25
448× 448 ✗ ✗ ✗ 77.82 61.29 56.61
448× 448 ✓ ✗ ✗ 75.32 59.98 53.44
448× 448 ✗ ✓ ✗ 72.94 55.31 51.41
448× 448 ✗ ✓ ✓ 79.47 63.41 58.06
448× 448 ✓ ✓ ✓ 80.19 63.87 60.25

4.3.2 OVERALL RESULTS OF TASK-WISE ADAPTIVE MODEL AND BASELINES

Table 3 presents the performance of baseline methods and LLaVA variants across six tasks that
demand high visual perception capacity from VLLMs.

Among the LLaVA variants, the training-free method to extend the input resolution through PE
interpolation shows performance degradation at varying levels. This confirms that the position em-
beddings in the visual encoder and LLM backbone in LLaVA cannot fully adapt to the increased
number of image tokens without post-training. On the other hand, the task-wise adaptive LLaVA
variant, which optimally selects the input resolution for each task, achieves the best overall perfor-
mance compared to fixed-resolution LLaVA variants, regardless of whether the resolution is 3362,
4482, or 5602. Notably, the task-wise adaptive LLaVA variant with a 7B backbone performs com-
parably to the 13B variant, underscoring the importance of adaptive perception capacity in VLLMs.

When comparing the task-wise adaptive LLaVA variant with other state-of-the-art baselines, it out-
performs all but the TextVQA task. In the case of TextVQA, the Qwen-VL and Qwen-VL-Chat
methods have observed training images or annotations of the dataset during their training. Impor-
tantly, as previous studies (McKinzie et al., 2024b) have highlighted, resolution plays a crucial role
during pretraining. The Qwen-VL series are pretrained at an image resolution of 4482, while the
LLaVA variants were fine-tuned at extended image resolutions in a post-training phase with far fewer
data (665K) compared to Qwen’s 1.4B pretraining and 50M fine-tuning samples. Nevertheless, the
task-wise adaptive LLaVA variant achieves better overall results than the Qwen-VL series.

The superior performance of the task-wise adaptive LLaVA variant across multiple vision-language
tasks demonstrates that, compared to fixed-resolution approaches, adaptive resolution selection is
more suitable for real-world applications. So far, we have verified the effectiveness of our proposed
task-wise resolution selection strategy through the generalization of the empirical formula and the
overall experimental results, answering RQ1.

4.4 ABLATION ANALYSIS OF PEFT COMPONENTS FOR PERFORMANCE

To evaluate the contribution of each component in our proposed PEFT method, we perform an
ablation study, as shown in Table 4. Specifically, we examine the impact of tuning three components
of parameters: the position embeddings within the visual encoder, the LoRA adapters in the LLM
backbone, and the projector parameters.

The results indicate that tuning each component is crucial for achieving optimal performance. When
tuning only the position embeddings or projector parameters, we observe a substantial degradation
in performance, even compared to the training-free approach utilizing positional embedding inter-

(a) (b) (c)
Figure 6: Three case study images
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polation. While the combined tuning of projector parameters and LoRA adapters yields noticeable
improvements, the performance remains suboptimal without concurrent tuning of the position em-
beddings. These findings highlight the essential role of each component in the PEFT method. So
far, through the overall experimental results and the ablation experimental analysis of each com-
ponent in our proposed PEFT method, we verified the effectiveness of our proposed PEFT method,
answering RQ2.
5 CASE STUDY

Image Figure 6a Figure 6b
Question Who is standing?

Prediction(336× 336) woman umpire
Correct Answer woman batter
Image Complexity 11.35 20.62

Table 5: Same question with images in different complexity levels.

Image Figure 6c
Question What is the sheet

made of?
Are there stoves near
the freezer to the
right of the tap?

Prediction(336× 336) plastic NO
Prediction(448× 448) plastic YES
Correct Answer plastic YES
Uncertainty Variance 0.42% 16.51%

Table 6: Same image with questions in different difficulty levels.

In this section, we provide two case studies to illustrate the impact of image complexity and uncer-
tainty variance on the performance of VLLMs, as summarized in Table 5 and Table 6, respectively.
The two selected examples are drawn from the GQA dataset (Hudson & Manning, 2019).

Table 5 compares the performance of a VLLM when presented with two images of differing com-
plexity levels, as measured by the method described in Section 3.2.1, both of which are associated
with the same question. The question asks the model to identify ”who is standing.” For the image
with lower complexity (Figure 6a), the VLLM at a resolution of 3362 correctly identifies the woman
standing. Conversely, for the image characterized by a more intricate background (Figure 6b), the
model fails to provide the correct identification. This outcome indicates that an increased image
input resolution is essential for effectively processing more visually complex images.

Table 6 examines a scenario where the same image is used to answer two questions of differing dif-
ficulty. The image shows a room’s interior. For the easier question about the material of a sheet, the
VLLM at 3362 resolution provides a correct answer. However, for the more complex question about
the location of a smaller object (a tap), the model fails at 3362 but succeeds at 4482, highlighting
improved performance with higher resolution. Uncertainty variance is low for the simpler question
but significantly higher for the complex one, supporting the hypothesis in Section 3.2.4.

6 CONCLUSION

In this paper, we take a step towards adapting VLLMs to real-world applications by providing an
in-depth investigation of resolution preferences in different vision-language tasks. Based on the
findings, we introduce an empirical formula that combines image complexity and uncertainty vari-
ance to enable task-specific resolution selection without the need for retraining. Additionally, we
propose a parameter-efficient fine-tuning approach, enabling extension of the image input resolution
for existing VLLM checkpoints. We expect that our research will offer valuable insights for the
VLLM research community.

Future Work While this study focuses on LLaVA as a representative VLLM architecture, future
work will explore other VLLM architectures. Moreover, our current work centers on task-wise
resolution selection; future research will investigate more granular resolution selection strategies,
such as sample-level resolution adaptation.
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A MORE IMPLEMENTATION DETAILS

A.1 VISION-LANGUAGE TASKS

Science-QA Lu et al. (2022), a multimodal science question answering benchmark featuring over
21k multiple-choice questions on diverse topics. The visual component includes natural images and
diagrams, testing the model’s ability to integrate both textual and visual information for coherent rea-
soning and explanation generation. Vizwiz Gurari et al. (2018), a dataset derived from real-world im-
ages paired with spoken questions from visually impaired individuals. This task assesses a model’s
ability to process low-quality, unstructured images and generate accurate responses to conversational
queries. VQAv2 Goyal et al. (2017), an expanded version of the original Visual Question Answer-
ing (VQA) dataset, designed to reduce language biases. It challenges models to deeply understand
visual content in order to answer questions about pairs of semantically similar yet visually distinct
images. TextVQA Singh et al. (2019), a dataset focusing on a model’s capacity to read and reason
about textual elements in images, evaluating its ability to integrate Optical Character Recognition
(OCR) with visual reasoning to answer questions. OKVQA Marino et al. (2019), a benchmark that
requires models to leverage external knowledge beyond image and question analysis, necessitating
access to and reasoning with unstructured knowledge sources for accurate answers. GQA Hudson
& Manning (2019), a dataset designed for real-world visual reasoning and compositional question
answering, requiring models to demonstrate strong multi-modal understanding, logical reasoning,
and the ability to answer questions that necessitate connecting information across both visual and
linguistic domains. MMBench Liu et al. (2023c), a comprehensive multimodal evaluation set with
over 2,974 multiple-choice questions across 20 ability dimensions, providing a robust assessment
of various vision-language skills, such as reasoning, comprehension, and explanation generation.
MMBench-CN, a variant of MMBench focusing on tasks involving Chinese text and images, evalu-
ating the model’s proficiency in processing and understanding multilingual data.

A.2 BASELINE METHODS

In addition to the original LLaVA model, we compare our method with several state-of-the-art ap-
proaches, including BLIP-2 Li et al. (2023c), InstructBLIP (Dai et al., 2024) (with LLM backbones
at two scales), Shikra (Chen et al., 2023), and IDEFICS (IDEFICS, 2023) (also with LLM back-
bones at two scales), as well as Qwen-VL and Qwen-VL-Chat Bai et al. (2023). The results for
these baseline methods, along with LLaVA with the Vicuna-13B backbone, are cited from previous
work (Liu et al., 2023a). For LLaVA with a Vicuna-7B backbone, we report our reproduced results
across different vision-language tasks.

As a training-free baseline to extend the image input resolution, we apply positional embedding
interpolation to extend the position embeddings of the vision encoder in LLaVA. This technique,
widely used for Vision Transformers in VLLMs Bai et al. (2023); Li et al. (2023b), allows models
to handle higher image input resolutions than their original training resolution. We evaluate the per-
formance of this extension without any additional training of the projector and the LLM backbone.
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Table 7: Hyperparameters at two training stages

Hyperparameter batch size lr lr schedule weight decay epoch optimizer max tokens

Stage 1 256 1e-3 cosinie decay 0 1 AdamW 2048Stage 2 128 2e-4

Table 8: Training time cost

Resolution 224× 224 336× 336 448× 448 560× 560 672× 672

Training Time Cost 11h 50m 16h 17m 24h 7m 32h 29min 124h 44m

A.3 METHOD DETAILS

Image Complexity Heuristic Approach Image complexity for vision-language tasks is calculated
using an open-source tool2. We utilize the author-recommended hyperparameters: the number of
clusters is set to 8, and the subsample rate is 0.8. To reduce computational overhead, the input
image resolution is set to 112 × 112, and two cluster levels are used, with their combined scores
yielding the final complexity value. The complexity scores are normalized via min-max scaling,
where the minimum and maximum values are computed from 100 sampled images from the Ima-
geNet dataset Deng et al. (2009).

RandAugment Perturbation on Image Input When assessing model variance across different
resolutions, we apply random perturbations to each input image using the RandAugment algorithm,
implemented via an existing tool3. For each image, we perform three random augmentations. To
mitigate the effects of randomness and enhance result stability, we repeat the variance measurement
process three times, each using a different random seed. The final uncertainty variance is obtained
by averaging the results from these three iterations.

A.4 MORE PARAMETER-EFFICIENT FINE-TUNING DETAILS

The standard training hyperparameters are largely preserved, as outlined in Table 7, with two notable
adjustments for image resolutions of 5602 and 6722: (1) The learning rate is reduced from 2e− 5 to
1e− 5 to prevent training loss explosion observed with the original rate. (2) The maximum number
of tokens is increased from 2048 to 3072 and 4096, respectively, to accommodate the increased
number of image tokens.

Post-training experiments are conducted on eight NVIDIA GeForce RTX 4090 GPUs, with training
time costs detailed in Table 8. Due to GPU memory limitations, DeepSpeed ZeRO-3 was employed
for training at the resolution of 6722, while ZeRO-2 was used for other resolutions. This accounts
for the significant increase in training time between 6722 and 5602.

In the ablation study (Section 4.4), we separately fine-tune only the projector and only the position
embeddings, using the stage 1 setting for consistency with the goals of the different training stages.
The corresponding hyperparameters are also detailed in Table 7.

A.5 IMPACT OF STATISTICAL DISTRIBUTIONS ON EMPIRICAL FORMULA PERFORMANCE

To evaluate the extent to which the statistical distributions of complexity C(T ) and uncertainty vari-
ance V (T ) influence the performance of the empirical formula, we present the standard deviations
of C(T ) and V (T ) for each vision-language task, along with their respective ratios to the mean
values. These statistics are detailed in Table 9.

The results indicate that C(T ) exhibits relatively low variance across tasks, whereas V (T ) shows
substantially higher variability. This observation justifies our decision to adopt task-wise selection

2https://github.com/Lou1sM/meaningful image complexity
3https://github.com/TorchSSL/TorchSSL/blob/main/datasets/augmentation/randaugment.py
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Table 9: Statistical characteristics of C(T ) and V (T ) in each task. SD represents Standard Devia-
tion, and Ratio indicates the ratio of the standard deviation to the mean.

Task C(T ) SD C(T ) Ratio V (T ) SD V (T ) Ratio

ScienceQA-IMG 3.3633 0.2384 0.4398 2.5466

Vizwiz 2.4405 0.1541 0.3383 6.0196

VQAv2 2.2005 0.1242 0.7925 4.2562

GQA 1.6582 0.0910 1.2595 4.9103

TextVQA 2.3057 0.1318 0.5258 3.3405

OKVQA 2.1958 0.1224 0.5487 3.7711

MMBench 3.5426 0.2196 1.2040 2.8915

MMBench-CN 3.5482 0.2197 1.0840 2.8310

Figure 7: Relationship between sampling ratio and the success rate of the empirical formula.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

instead of sample-wise selection, as the higher variability in V (T ) at the sample level complicates
consistent prediction.

To further assess the influence of C(T ) and V (T ) variance on the effectiveness of the empirical
formula, we conducted an additional experiment. Specifically, we randomly sampled subsets of
varying proportions from the original dataset and computed the average C(T ) and V (T ) values for
these subsets to estimate task-level statistics. We then evaluated the empirical formula, previously
tuned using a hyperparameter k on three reference tasks, to predict the optimal resolution across all
tasks under these conditions.

The sampling proportions vary from 10% to 50%, with each experiment repeated 10 times using
different random seeds. The success rate was defined as the percentage of instances where the
empirical formula accurately predicted the optimal resolution for all tasks. The results, presented in
Figure 7, reveal the following key findings: (1) At a sampling ratio of 40%, the success rate reaches
100%, demonstrating the empirical formula’s robustness in predicting the optimal resolution. (2)
At a sampling ratio of 10%, the success rate drops to 50%, indicating that a smaller subset size
introduces variability that adversely affects prediction accuracy.

These findings highlight that while reducing the dataset size can lower computational costs, exces-
sively small subsets may lead to suboptimal predictions. Moreover, the current approach relies on
random sampling; future exploration of more advanced sampling strategies that select representative
samples could potentially achieve high success rates with smaller subsets.
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