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Figure 1: 3D visual grounding aims to localize a unique target object in a scene given a single
referring expression, but existing datasets often contain ambiguous or paradoxical samples that hinder
this goal. We propose Refer-Judge, an agentic, deliberation-based framework that detects and filters
toxic data through structured multi-perspective reasoning and corroborative refinement.

Abstract

3D Visual Grounding (3DVG) faces persistent challenges due to coarse scene-level
observations and logically inconsistent annotations, which introduce ambigui-
ties that compromise data quality and hinder effective model supervision. To
address these challenges, we introduce Refer-Judge, a novel framework that har-
nesses the reasoning capabilities of Multimodal Large Language Models (MLLMs)
to identify and mitigate toxic data. At the core of Refer-Judge is a Jury-and-
Judge Chain-of-Thought paradigm, inspired by the deliberative process of the
judicial system. This framework targets the root causes of annotation noise: ju-
rors collaboratively assess 3DVG samples from diverse perspectives, providing
structured, multi-faceted evaluations. Judges then consolidate these insights using
a Corroborative Refinement strategy, which adaptively reorganizes information
to correct ambiguities arising from biased or incomplete observations. Through
this two-stage deliberation, Refer-Judge significantly enhances the reliability of
data judgments. Extensive experiments demonstrate that our framework not only
achieves human-level discrimination at the scene level but also improves the
performance of baseline algorithms via data purification. Code is available at
https://github.com/Hermione-HKX/Refer_Judge.
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1 Introduction

3D Visual Grounding (3DVG) aims to localize a unique target object within a complex 3D scene
based on a natural language referring expression. As a critical bridge between human perception
and machine understanding of real-world environments, it has driven the development of large-scale
datasets such as the widely adopted ScanRefer [7], laying the groundwork for algorithmic advances.

To support generalizable learning, 3DVG datasets must capture diverse scenes and densely anno-
tate referable objects. However, meeting this demand places a heavy burden on annotators, who
must repeatedly write descriptions while navigating incomplete and often ambiguous scene repre-
sentations—namely, sparse 3D point clouds and disjointed 2D frames. This process has led to a
non-negligible number of toxic samples, whose descriptions degrade training quality and compromise
evaluation reliability. These toxic samples typically arise from two sources: 1) Logical paradoxes,
where the description is internally inconsistent and fails to isolate a single target (e.g., “... next
to another ...” creates symmetrical ambiguity); and 2) Referential ambiguities, where vague or
under-specified descriptions match multiple similar objects. Figure 1 illustrates these cases: the left
side shows a logically paradoxical reference, while the right highlights under-specification due to
insufficient scene observation.

Detecting such toxic data requires deep, multimodal reasoning across both 3D scene structure
and natural language. Yet large-scale human validation is costly, time-consuming, and difficult to
scale [26, 54]. Recent advances in Multimodal Large Language Models (MLLMs) [1, 31, 33, 13, 20]
have shown remarkable capabilities in perception and reasoning [14, 35], opening up new possibilities
for data evaluation. For example, SeeGround [19] enhances MLLM-based understanding using
adaptive 2D renderings and achieves competitive zero-shot performance on 3DVG tasks. However,
current research largely treats MLLMs as perceptual engines or grounding backbones [49, 15, 16, 9],
overlooking their potential to identify hidden toxic samples. This gap highlights a critical yet
underexplored direction: employing MLLMs for principled data quality assessment in 3DVG.

Meanwhile, MLLMs are increasingly recognized as capable evaluators. JudgeLM [55], for instance,
fine-tunes LLMs to assess output reliability, while others [50, 6, 45, 52] explore Chain-of-Thought
(CoT) prompting [37] to improve alignment with human judgment. Despite encouraging results, these
approaches are generally limited to pairwise comparisons or simple content scoring, and they falter
when faced with the structural complexity of scene-level reasoning. Successors like CoCoT [45] and
GoT [5] target fragmented, open-domain tasks (e.g., single questions or isolated image-text pairs) and
are ill-equipped to trace the nuanced origins of toxic data in 3DVG. The lack of a targeted, coherent
judgment mechanism capable of deep multimodal reasoning leaves toxic sample detection in 3DVG
an unsolved problem.

To address this challenge, we introduce Refer-Judge, a novel agentic deliberation-based system
for uncovering toxic annotations in 3DVG. Unlike prior MLLM evaluators, Refer-Judge adopts a
Jury-and-Judge Chain-of-Thought paradigm inspired by judicial deliberation. Given a scene and its
corresponding referring expression, multiple Jurors analyze the sample from four core perspectives:
Logic, Consistency, Distinguishability, and Ambiguity. This structured division of reasoning enables
jurors to identify logical contradictions and ambiguities from diverse angles, forming a comprehensive
diagnosis of sample quality.

Mirroring the real-world jury system, this division of reasoning promotes both coverage and spe-
cialization in evaluating heterogeneous scene-level inputs. The outcomes from the jurors are then
passed to a panel of Magistrate Judges, each responsible for consolidating feedback within a specific
dimension, ensuring internal coherence and resolving intra-aspect contradictions. To synthesize
a final verdict, one District Judge performs high-level arbitration through targeted re-evaluation.
Central to this stage is our proposed Corroborative Refinement strategy, which goes beyond majority
voting or self-consistency heuristics [34, 5]. Instead of relying on static consensus, Magistrate Judges
adaptively reorganize visual and textual evidence based on juror insights, retrieving auxiliary context
and correcting uncertain reasoning caused by blurred or incomplete observations. This process
yields judgments that are both context-aware and resilient to scene complexity. By integrating multi-
role, multi-perspective reasoning without reliance on task-specific fine-tuning or external perception
modules (e.g., object detectors or renderers), Refer-Judge delivers robust scene-level assessments.
Extensive experiments demonstrate that Refer-Judge achieves human-comparable performance in
identifying toxic samples, enhancing the quality of supervision, and advancing the reliability of
3DVG benchmarks.
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In summary, our main contributions are threefold:

• We identify and systematically analyze the prevalence of paradoxical and ambiguous samples in
existing 3DVG datasets, and present Refer-Judge, a novel evaluation method capable of uncovering
toxic annotations without reliance on task-specific fine-tuning or auxiliary perception modules.

• We propose a Jury-and-Judge Chain-of-Thought approach, wherein jurors perform targeted, multi-
perspective reasoning and a panel of judges, culminating in high-level refinement, delivers robust,
structured judgments through our Corroborative Refinement mechanism.

• We validate the effectiveness of Refer-Judge through extensive experiments, showing both its
alignment with human judgments and its ability to improve baseline 3DVG model performance
when trained on filtered data.

2 Related Work

3D Visual Grounding and Multimodal Large Language Models. 3DVG focuses on localizing a
unique target object in a 3D scene based on a natural language referring expression. Early approaches
primarily adopt a detection-then-match pipeline, emphasizing improved alignment between visual
and linguistic modalities [7, 22, 51, 46, 47, 36, 29]. With the rapid advancement of Large Language
Models (LLMs)[1, 18, 31, 13, 20], recent efforts have explored the potential of MLLMs for 3DVG
tasks[49, 19, 28, 15, 11]. For instance, 3D-LLM [15] integrates point cloud representations into
LLMs and shows strong performance across diverse 3D reasoning tasks. SeeGround [19] leverages
dynamically rendered 2D views to enhance open-vocabulary grounding, achieving competitive zero-
shot results. And CoT3DRef [4] further introduce the idea of CoT into 3DVG to form a more
interpretable Seq2Seq staged prediction. However, while these approaches expand the capability of
MLLMs, they largely overlook the quality of the underlying datasets. Paradoxical and ambiguous
annotations, often caused by human error or limited scene observability, remain unaddressed and
continue to degrade both model training and evaluation reliability.

LLMs as Evaluators. A growing body of work explores the use of LLMs as evaluators, often referred
to as LLM-as-a-Judge, to approximate human judgment in various domains [14, 43, 3, 55, 54]. For
example, MLLM-as-a-Judge [6] evaluates MLLMs’ decision-making capabilities across tasks and
highlights their limitations in handling fine-grained reasoning. FINCON [43] applies a multi-agent
LLM setup to assess financial risk, while LLM-Grounder [40] uses MLLMs to score candidate views
in 3DVG, enhancing zero-shot grounding performance. Although these studies demonstrate the
promise of LLMs as evaluators, most are restricted to shallow or fragmented inputs, such as isolated
prompts or image-text pairs. The use of MLLMs for structured, scene-level evaluation in complex
multimodal tasks like 3DVG remains relatively unexplored.

Chain-of-Thought Reasoning. Chain-of-Thought (CoT) prompting enhances LLM reasoning by
encouraging step-by-step inference [37]. Initial methods such as vanilla CoT introduce sequential
logic to improve answer reliability. More advanced techniques like Tree-of-Thought (ToT)[42, 21],
Graph-of-Thought (GoT)[5], and Hierarchy-of-Thought (HoT)[41] enable models to explore multiple
reasoning paths or build graph-based reasoning structures. In multimodal settings, extensions such
as G-CoT[23] and MC-CoT [38] combine visual and textual modalities for more comprehensive
analysis. Despite these advances, most CoT-based methods are tailored for narrow-scope tasks,
including arithmetic reasoning or short image-text question answering [53, 48, 45, 50, 52]. Their
refinement strategies generally involve simple path selection, answer re-ranking, or majority voting [5,
34, 30, 27, 24]. These mechanisms are insufficient for evaluating rich, scene-level content where
ambiguity stems from complex visual and linguistic interplay. In contrast, our proposed Refer-Judge
enables distributed reasoning across multiple perspectives and introduces corroborative refinement
for robust scene-level judgment in 3DVG.

3 Methods

To address the issue of toxic samples in 3D visual grounding (3DVG) datasets, we propose Refer-
Judge, a novel Jury-and-Judge Chain-of-Thought framework that enables structured, scene-level
reasoning over multimodal inputs. We begin by formulating the LLM-as-a-Judge task in the context
of 3DVG data exploration and present an overview of our framework in Section 3.1. Section 3.2
details our Jury-based distributed evaluation strategy, which decomposes the assessment into multiple
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Figure 2: Overview of Refer-Judge. Jurors evaluate the scene and referring expression across four
complementary dimensions. Their judgments are then refined and integrated to generate a final
scene-level judgment.

aspects. Section 3.3 describes how the Judge module refines and integrates the reasoning paths to
produce a final judgment.

3.1 Problem formulation and method overview

Consider an annotated 3D visual grounding (3DVG) dataset consisting of a 3D scene, where a set of
images I from multiple viewpoints represents different regions of the environment, and a natural
language description D refers to a specific target object or. Our ultimate goal is to construct an
agentic, deliberation-based judgment system fMLLM (I, D) that can robustly and effectively identify
toxic data caused by paradoxes and ambiguities. The system outputs discrete quality scores to
reflect the reliability of each data sample, enabling a clear and interpretable evaluation of 3DVG data
quality [3].

In contrast to prevailing LLM-based evaluators that focus solely on analyzing text-image pairs
with limited complexity, the proposed Refer-Judge approach towards multifaceted CoT analysis
for the scene-level multimodal information, thereby enabling a comprehensive data judgment. As
demonstrated in Figure 2, jurors {Jl, Jc, Jd, Ja} in Jury Jjury are employed in parallel to access
3DVG data from four key perspectives: logical, consistency, distinguishability, and ambiguity. To
further enhance judgment reliability, the Judge system Jjudge applies two Magistrate Judges, Jmag

d
and Jmag

a , tasked with aggregating and refining the outputs of the corresponding jurors across multiple
image-description pairs. These judges adaptively identify uncertain or conflicting sub-evaluations
and reorganize them by referencing more consistent information, thereby mitigating errors caused by
limited viewpoints or incomplete observations. Finally, a District Judge Jdis integrates all streams of
reasoning and adjudicates the final quality score. Notably, due to Refer-Judge involving multifaceted
assessment, we observed an interesting CoT phenomenon, where the same thought can be shared
across different inputs and serve distinct judgment processes. We term this phenomenon twin thought,
as marked in Figure 2.

3.2 Jury Reasoning

Aligned with the common causes of annotation errors in 3DVG datasets, the Refer-Judge initially
introduces four jurors to comprehensively evaluate the heterogeneous scene-level information, as
shown in Figure 3. Specifically, the textual modality focuses on identifying potential logical paradoxes
within the referring expression, while the visual modality then uncovers ambiguity arising from
incomplete or biased observations.

Logical Juror. The natural language referring expression is central to identifying the target object
within the scene. To prevent self-contradictory or logically invalid descriptions, we introduce a logical
Juror Jl to assess the logical soundness of the input description. Given that logical reasoning is a
fundamental ability of large language models, and 3DVG descriptions are typically short and simple,
we adopt a direct strategy based on in-context learning to generate both a judgment score Al and
rationale Rl, formulated as:

(Al, Rl) = Jl(Pl, D) (1)
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Figure 3: The detailed architecture of Refer-Judge. Submodules, distinguished by color, illustrate the
hierarchical reasoning structure and information flow from parallel analysis to final decision-making
within the Jury-and-Judge Chain-of-Thought.

where Pl is the task-specific prompt provided to the juror Jl.

Consistency Juror. Beyond assessing the target description D in isolation, we further introduce a
consistency evaluation that leverages alternative descriptions of the same object across the dataset [7],
denoted as the Description Group G =

{
D1

g , ..., D
x
g

}
. These descriptions serve as circumstantial

evidence to evaluate the consistency of D, helping to prevent potential paradoxes across data entries.

The Consistency Juror Jc is designed as a two-step chain-of-thought process. Since expressions within
G may themselves be logically flawed, the first filtering step Jf

c evaluates the internal consistency
of this group. Removing descriptions with low confidence scores Ai

f through a threshold thrd,
resulting in a refined subset Gf . Next, Jv

c performs cross-validation between the description D and
Gf , producing the consistency score Ac and rationale Rc. The process is formulated as:

(Af ,Rf ) = Jf
c (P

f
c ,G), Gf =

{
Di

g | i ∈ [1, x] , Ai
f ∈ Af , A

i
f > thrd

}
(Ac, Rc) = Jv

c (P
v
c ,Gf , D)

(2)

where P f
c and P v

c denote the prompts used by Jf
c and Jv

c , respectively. Af and Rf are the confidence
score and rationale sets for each candidate sentence in the description group.

Distinguishability Juror. Among all scene-level images I, the subset of views that contain the
referred object or, denoted as Ipos =

{
I1p , ..., I

x
p

}
⊆ I, serves as the positive set essential for

assessing distinguishability. Specifically, we align the RGB frames with 3D annotations to identify
images where or is visible, ensuring that all views in Ipos depict the intended referent. The verification
process by human experts further involves: 1) checking whether the object described appears in the
image, and 2) confirming that the expression refers to a unique object.
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Mimicking human observation, the Distinguishability Juror Jd also applies a two-stage CoT, jointly
evaluating existence and uniqueness to derive a comprehensive distinguishability assessment. Initially,
Je
d traverses each image-description pair, resulting in a set of existence scores Ae and rationales

Re. Based on thre, Jd filter out a subset If
pos that meets the conditions. Subsequently, Ju

d further
evaluates whether each remaining image contains a unique object satisfying the description, producing
uniqueness scores Au and rationales Ru. In summary, the reasoning chain is expressed as follows:

(Ae,Re) =
{
Je
d(P

e
d , I

i
p, D) | Iip ∈ Ipos

}
, If

pos =
{
Iip | i ∈ [1, x] , Ai

e ∈ Ae, A
i
e > thre

}
(Au,Ru) =

{
Ju
d (P

u
d , I

i
p, D) | Iip ∈ If

pos

} (3)

where P e
d and Pu

d denote the used prompts.

Ambiguity Juror. While Jd focuses on confirming object identification within positive views, the
Ambiguity Juror Ja provides a complementary perspective by evaluating whether other similar
objects in the scene also satisfy the description, revealing potential ambiguity.

Notably, we introduce the concept of twin thought: under identical prompting conditions used in
existence analysis, altering the input to achieve a distinct evaluation purpose. Specifically, Ja applies
the same existence assessment as Je

d , but on a misleading view set Imis =
{
I1m, ..., Iym

}
⊆ I, the

misleading set is formed by selecting images from the same scene that do not contain the ground-truth
object but include other instances of the same object category of or. If high confidence is assigned to
Imis, it contradicts the exclusivity requirement of the 3DVG task, as follows:

(Aa,Ra) =
{
Ja(P

e
d , I

i
m, D) | Iim ∈ Imis

}
(4)

where Aa and Ra represent the sets of resulting scores and rationales, which serve as strong indicators
of potential ambiguity.

3.3 Judge Refinement and Aggregation

As shown in Figure 3, to consolidate the distributed reasoning paths, Refer-Judge then introduces the
Judge system Jjudge introduces Magistrate Judges for refinement, followed by a District Judge that
aggregates all juror outputs from multi-dimensional and heterogeneous assessment to produce a final,
holistic quality scene-level judgment.

Magistrate Judge of Distinguishability. Due to incomplete or occluded views of the target object,
both steps of the Distinguishability Juror Jd may produce unreliable assessments. Therefore, identi-
fying and refining flawed evaluations becomes a natural necessity. Unlike existing CoT refinement
approaches based on majority voting or self-ranking [34, 5], the proposed Magistrate Judge of
Distinguishability Jmag

d moves beyond the simple selection and optimization of static consensus.
Instead, it introduces a Corroborative Refinement mechanism, which focuses on retrieving auxiliary
information and reorganizing inputs to enable more reliable re-evaluation.

Take the refinement of existence assessment as an example. The magistrate first examines the
previous outputs (Ae,Re) and constructs a Corroborative Pair Set Ce by analyzing the associations
and conflicts within the evaluation set. Each element (suspicion, assistance) corresponds to a pair of
image indices (i, j) from Ipos, where the suspicion sample Iip is considered potentially unreliable,
and the corresponding assistance sample Ijp provides visual evidence to support re-evaluation (e.g.,
combining a complete view with an occluded one). Through stitching operation sti(·) and re-
assessment via Je

d , the refined existence outputs
(
Aref

e ,Rref
e

)
replace the originals, mitigating the

effects of unreliable observations. Concretely, sti(·) horizontally concatenates the aligned edges of
suspicion and assistance views to form a richer, context-aware visual prompt for final assessment.

On the other hand, the refinement of uniqueness judgment serves as the twin thought of existence
refinement, performing a similar analysis of the corroborative pair Cu, reorganization of visual
information, and re-evaluation. The overall procedure is summarized as:

C{e,u} = Jmag
d (Pmag

d ,A{e,u},R{e,u}), Iref
{e,u} =

{
sti(Iip, I

j
p) | (i, j) ∈ C{e,u}

}(
Aref

{e,u},R
ref
{e,u}

)
=

{
J
{e,u}
d (P

{e,u}
d , I,D) | I ∈ Iref

{e,u}

}
(
Â{e,u}, R̂{e,u}

)
= replace((A{e,u},R{e,u}), (Aref

{e,u},R
ref
{e,u}))

(Ad,Rd) = (Âe ⊕ Âu, R̂e ⊕ R̂u)

(5)
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where Pmag
d denotes the prompt used for identifying suspicious-assistant pairs, Ad and Rd denote

the final distinguishability score set and rationale set, with ⊕ representing the message combination.
Meanwhile, replace(·) substitutes the original (possibly erroneous or low-confidence) score and
rationale produced by individual jurors with the refined outputs, ensuring more accurate and globally
consistent results.

Magistrate Judge of Ambiguity. Unlike the Distinguishability judgment, which operates over
Ipos focused on the target object, the ambiguity assessment involves scattered distractor views with
limited inter-image correlation. Therefore, the Magistrate Judge of Ambiguity Jmag

a simplifies
the refinement process by discarding corroborative pair analysis and directly identifying a set of
suspicious assessments Sa. As a simplified version to Jmag

d , the procedure is defined as:

Sa = Jmag
a (Pmag

a ,Aa,Ra), Iref
a =

{
Iim | i ∈ Sa

}(
Aref

a ,Rref
a

)
=

{
Ja(P

e
d , I,D) | I ∈ Iref

a

}(
Âa, R̂a

)
= replace

(
(Aa,Ra), (Aref

a ,Rref
a )

) (6)

District Judge. After distributed evaluations and localized refinements, the final decision is rendered
by the District Judge Jdis, which integrates the reasoning paths provided by all preceding components.
As an aggregation thought module, Jdis focuses solely on analyzing the outputs of the Jurors and
Magistrate Judges, without directly revisiting the original scene-level inputs (I, D). This design
mirrors the real-world Jury-and-Judge system, preserving interpretability while avoiding interference
from redundant original messages. The process is as follows:

(Aj , Rj) = Jdis
(
P dis, (Al, Rl) , (Ac, Rc) , (Ad,Rd) ,

(
Âa, R̂a

))
(7)

where P dis is the prompt guiding the final judgment, and (Aj , Rj) denote the final judgment score
with rationale. Altogether, the proposed Refer-Judge represent a comprehensive and trustworthy
assessment of the 3DVG data, effectively uncovering latent paradoxes and ambiguities.

4 Experiments

We evaluate the performance of the proposed Refer-Judge as follows: Section 4.1 describes the
experimental setup and implementation details; Section 4.2 presents the main results of Refer-Judge
as well as the performance of baseline models after toxic data removal via Refer-Judge; Section 4.3
provides a detailed analysis of ablation studies on the proposed methods.

4.1 Setups and Implementation Details

Datasets. We conduct experiments on the proposed ScanRefer-Justice dataset to verify the effec-
tiveness of Refer-Judge. Built upon the widely-used ScanRefer benchmark [7], ScanRefer-Justice
introduces reliable 3DVG judgments annotated and verified by human experts, while emphasizing
complex scenes with numerous similar objects, providing an accurate method assessment. Detailed
statistics and construction procedures are provided in Appendix A. Additionally, we evaluate baseline
models on the ScanRefer dataset to demonstrate how identifying and removing toxic annotations
improves model performance.

Baselines. To validate the generality and effectiveness of Refer-Judge, we apply it across various
representative Multimodal Large Language Models (MLLMs), including GPT-4o [18], GPT-4.1-
mini [25], Grok-3 [39], Gemini-2.5 Pro [12], and LLaMA-3.2 11B [13]. To assess the impact of data
purification on 3DVG, we consider multiple baseline models: ScanRefer [7], the pioneer method in
3DVG that established the detect-then-match paradigm; 3DVLP [47] and ConcreteNet [32], which
reflects superior performance in 3DVG and multiple downstream tasks.

Evaluation Metrics. Following JudgeLM [55], we apply agreement rate, precision, recall, and
F1-score to verify the effect of toxic data identification. The RMSE and MAE are also reported
to better quantify the alignment with human judgment on fine-grained scoring. To evaluate 3DVG
performance, following the experiment setting in [7], we choose Acc@0.25 and Acc@0.5 as the
evaluation metrics. A more precise definition of the evaluation metric is provided in Appendix B.
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Table 1: Quantitative results on ScanRefer-Justice dataset. The Bold denotes the best performance.
The Human Performance is statistically obtained during the verification process of the annotation.

Model Agreement ↑ Precision ↑ Recall ↑ F1 ↑ RMSE ↓ MAE ↓
GPT-4o [18] 82.77 82.95 85.77 84.33 2.69 1.71
GPT-4.1-mini [25] 81.81 82.64 83.66 83.14 2.82 1.94
Grok-3 [39] 81.14 81.03 84.66 82.81 3.07 1.84
Gemini-2.5 Pro [12] 77.01 78.53 78.39 78.53 3.15 2.20
LLAMA-3.2-11B [13] 67.88 67.67 76.83 71.96 3.71 2.73

Human Performance 84.87 90.43 82.92 86.51 - -

Table 2: Quantitative results on ScanRefer dataset. (a) shows results under the original dataset
splitting sets. (b) shows results under separated toxic and purified samples.

(a) Quantitative results on ScanRefer dataset. The models are verified on the original validation set.

Method Unique ↑ Multiple ↑ Overall ↑
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

TGNN [17] 68.61 56.80 29.84 23.18 37.37 29.70
InstanceRefer [44] 75.72 64.66 29.41 22.99 38.40 31.08
3DVG-Transformer [51] 81.93 60.64 39.30 28.42 47.57 34.67
SeeGround [19] 75.7 68.9 34.0 30.0 44.1 39.4
3D-VisTA [56] 81.6 75.1 43.7 39.1 50.6 45.8

ScanRefer [7] 76.33 53.51 32.73 21.11 41.19 27.40
+ Refer-Judge 79.57(+3.24) 54.31(+0.8) 34.15(+1.42) 22.69(+1.58) 42.96(+1.77) 28.83(+1.43)

3DVLP [47] 85.18 70.04 43.65 33.40 51.70 40.51
+ Refer-Judge 86.29(+1.11) 72.19(+2.15) 44.24(+0.59) 34.88(+1.48) 52.39(+0.69) 42.11(+1.60)

ConcreteNet [32] 82.39 75.62 41.24 36.56 48.91 43.84
+ Refer-Judge 84.14(+1.75) 79.57(+3.95) 41.97(+0.73) 36.16(-0.40) 49.94(+1.03) 44.55(+0.71)

(b) Quantitative results on toxic and purified data of ScanRefer val set.

Method Toxic data ↓ Unique (purified) ↑ Multiple (purified) ↑ Overall (purified) ↑
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer 21.69 14.58 76.89 50.57 34.96 21.80 43.91 27.94
+ Refer-Judge 18.76(-2.93) 13.67(-0.91) 79.50(+2.61) 55.41(+4.84) 36.07(+1.11) 24.44(+2.64) 45.33(+1.42) 31.04(+3.10)

3DVLP 22.91 17.75 85.97 70.02 46.44 36.02 54.86 43.01
+ Refer-Judge 22.11(-0.80) 15.46(-2.29) 86.41(+0.44) 72.27(+2.25) 47.14(+0.70) 37.43(+1.41) 55.50(+0.64) 44.85(+1.84)

ConcreteNet 26.33 22.37 82.73 75.68 42.32 37.42 50.92 45.24
+ Refer-Judge 24.18(-2.15) 21.92(-1.08) 84.03(+1.30) 79.23(+3.55) 43.03(+0.71) 37.97(+0.55) 51.44(+0.52) 46.45(+1.21)

Implementation Details. To ensure generality, all MLLMs are used with default configurations.
Proprietary models, such as GPT-4o, are accessed through APIs. LLAMA-3.2 is deployed with the
released checkpoints. Our experiments are conducted on a computational platform equipped with
Intel(R) Xeon(R) CPU E5- 2680v3 @2.50 GHz CPU x2, 128G memory, and RTX 4090 GPU x8.
The inference of LLAMA is conducted using a dual-GPU setup.

4.2 Main Results

Comparison on ScanRefer-Justice Benchmark. We first evaluate the proposed Refer-Judge
approach on the ScanRefer-Justice datasets. As shown in Table 1, the quantitative results cover
the performance instantiated with various MLLMs to comprehensively assess its effectiveness
and adaptability. Notably, all models are evaluated in a zero-shot manner without fine-tuning on
ScanRefer-Justice. Specifically, the results reveal a strong correlation between the identification of
toxic data and the underlying reasoning and perception capabilities of backbones. Among them,
Refer-Judge (GPT-4o) achieves human-level judgment capability, slightly lagging with human experts
by -2.1% in agreement score, while achieving a recall of over 85%. The subsequent experiments are
all based on the GPT-4o-driven Refer-Judge. Additional case studies are presented in Appendix D.

Comparison on ScanRefer Benchmark. We further investigate the impact of applying Refer-Judge
to identify and filter toxic data from the ScanRefer training set. As shown in Table 2a, all baseline
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Table 3: Ablation of the Jury System. Bold
denotes best performance.

Method Agmt. ↑ Prec. ↑ Rec. ↑ F1 ↑
Jury system (Ours) 82.77 82.95 85.77 84.33
Mix logical 80.52 80.34 84.70 82.46
Mix observation 76.60 77.15 80.21 78.65
Mix four branches 75.67 76.03 79.91 77.91

Table 4: Ablation of the Judge System. Bold denotes
best performance.

Method Agmt. ↑ Prec. ↑ Rec. ↑ F1 ↑ RMSE ↓ MAE ↓
CR (Ours) 82.77 82.95 85.77 84.33 2.69 1.71
CoT-SC [34] 82.54 83.17 84.61 83.28 2.81 1.91
GoT [5] 81.55 82.73 83.25 82.99 2.66 1.78
Average 74.24 74.63 78.85 76.68 3.27 2.21
w/o refinement 81.72 83.15 83.00 83.08 2.80 1.83

Table 5: Ablation study of module design. The Cost shows the token required to complete the
ScanRefer-Justice dataset (Million). Bold denotes best performance.

ID Refer-Judge Agreement ↑ Precision ↑ Recall ↑ F1 ↑ RMSE ↓ MAE ↓ Cost ↓Log. Obs. Ref.

1 ✓ ✓ 81.55 83.44 82.18 82.80 2.91 1.93 108.78
2 ✓ ✓ 81.72 83.15 83.00 83.08 2.80 1.83 82.41
3 ✓ 54.20 58.93 50.50 54.39 5.10 3.72 9.41
4 ✓ ✓ ✓ 82.77 82.95 85.77 84.33 2.69 1.71 112.79

methods benefit significantly from the purified training data, achieving consistent improvements. For
example, 3DVLP+Refer-Judge outperforms the baseline by +1.6% in Overall Acc@0.5, achieving
competitive 3DVG performance.

To better understand the effects of toxic data, we further separate the validation set into purified
and toxic subsets using Refer-Judge. As reported in Table 2b, the performance gain becomes even
more evident, with +3.10%, +1.84% and +1.21% improvements in Overall Acc@0.5, respectively.
On the other hand, the baseline model achieves better performance on toxic samples, which are
inherently unable to accurately predict. This discrepancy may arise because the original training
set provides implicit priors aligned with the validation distribution, particularly benefiting the toxic
samples, exhibiting inflated scores, which highlight the critical role of toxic data exposing in making
reliable evaluations for 3DVG. More results and analysis are left in Appendix C.

4.3 Ablation study

Ablation of the Jury System. We first examine the effectiveness of the Jury system in Refer-Judge.
As shown in Table 3, the best performance is achieved when all four jurors jointly assess the sample
from multiple perspectives, including linguistic logic and visual observation. This confirms that
structured decomposition and distributed evaluation significantly enhance targeted reasoning over
complex scene-level 3DVG data.

Ablation of the Judge System. Next, we analyze the contribution of our proposed Corroborative
Refinement strategy (CR) within the Judge module. As shown in Table 4, our method outperforms
alternative strategies such as Self-consistency with Chain-of-Thought (CoT-SC) [34], ranking and
re-evaluation of problematic results (GoT [5]), and naive score averaging. While CoT-SC yields a
comparable agreement score, its reliance on majority voting often leads to polarized decisions, which
fails on fine-grained scoring metrics like RMSE and MAE. These findings highlight the importance
of adaptive refinement through auxiliary information in understanding the complex 3D scene.

Ablation of Model Design. Finally, we summarize the impact of each component on performance
and cost. As presented in Table 5, visual observation (e.g., Distinguishability and Ambiguity jurors)
contributes the most to performance but also dominates token cost due to scene-level image analysis.
In contrast, logic-related assessments have a relatively lower impact, as visual jurors may implicitly
assess textual logic. Meanwhile, the refinement in the Judge system provides consistent improvements,
helping the Refer-Judge achieve human-comparable performance in uncovering paradoxical and
ambiguous 3DVG data. More detailed results are left in Appendix C.

5 Conclusion

In this paper, we introduce Refer-Judge, a novel framework for uncovering paradoxes and ambiguities
in 3DVG datasets, along with a high-quality benchmark for evaluating data-centric methods. By
leveraging a Jury-and-Judge Chain-of-Thought paradigm, Refer-Judge effectively harnesses the
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reasoning and perceptual capabilities of MLLMs, achieving human-comparable performance in
identifying toxic samples. Moreover, baseline models trained on the purified data consistently exhibit
improved performance, underscoring the practical value of exposing and filtering flawed annotations.
We hope this work offers a new lens on dataset reliability in 3D scene understanding and serves as a
foundation for more trustworthy training and evaluation practices.

Limitations. While Refer-Judge demonstrates strong effectiveness, its computational cost remains
a barrier to large-scale deployment. Future work could focus on optimizing the judgment process
and leveraging more efficient MLLM architectures to enhance scalability and extend applicability to
larger and more diverse 3D datasets.

Acknowledgment. This work is supported by the “Pioneer” and “Leading Goose” R&D Program of
Zhejiang (2024C01020, 2025C01091), Key Technology Breakthrough Plan Project of “Science and
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A ScanRefer-Justice Dataset

Figure 4: Complexity distribution of ScanRefer and
ScanRefer-Justice datasets.

Figure 5: Assessment Criteria for anno-
tating ScanRefer-Justice.

To evaluate the effectiveness of our proposed method in identifying toxic samples, we introduce a new
benchmark dataset: ScanRefer-Justice. This dataset is constructed upon the widely used ScanRefer
dataset [7], which contains 51,583 referring expressions for objects from ScanNet [10] scenes.

A.1 Data Selection

Due to the cost and complexity of conducting rigorous human evaluation across the entire ScanRefer
dataset, it is impractical to manually verify all samples while ensuring annotation quality. Moreover,
we observe that the occurrence of toxic data is highly correlated with scene complexity. Over-
representation of simple samples (i.e., only a few objects of the same class) can lead to skewed data
distribution and biased algorithm evaluation.

To better reflect this complexity, we categorize the ScanRefer samples into three levels based on the
number of same-class objects with the target one: Normal (1–3 instances), Hard (4–15), and Complex
(16 or more). As shown in Figure 4, we choose 3,001 data from the ScanRefer training and validation
sets to form ScanRefer-Justice, covering 162 scenes. The sampling focuses on increasing coverage
of more complex scenes to better assess the performance of 3DVG data judgment algorithms.

Specifically, ScanRefer-Justice significantly rebalances the data composition compared to ScanRefer.
While complex samples constitute only 6.3% in ScanRefer, they account for over 20% in ScanRefer-
Justice. Combined with hard samples, more than 50% of the dataset consists of challenging examples,
capturing a wider range of possible sources of annotation errors.

A.2 Data Collection

To ensure consistency and rigor in data labeling, we employ trained internal annotators (graduate
students), rather than outsourcing, as was done in the original ScanRefer annotation process. The
annotation pipeline consists of two stages: (i) Annotation and (ii) Verification.

Annotation. Annotators first observe the complete 3D point cloud scene using Open3D visualization
tools. This step excludes both the referring expression and ScanNet’s object labels to reduce prior bias.
Observers are required to spend at least 20 seconds examining the scene to ensure a comprehensive
understanding.

Next, expanding the annotation process of ScanRefer [7], we provide up to six 2D reference views
per sample to compensate for incomplete details in the 3D point cloud reconstructions, where three
images containing the target object and three with distractor objects of the same category. Category
definitions are aligned with the original setting of ScanRefer. Meanwhile, the corresponding referring
expression is presented as on-screen subtitles.

Based on this information, annotators assess each sample’s quality from two perspectives: the Logical
Completeness of the description and the Uniqueness of the visual context. Throughout the process,
the annotator can revisit the 3D scene and consult additional ScanNet frames for cross-referencing.
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Figure 6: Distribution of reliability scores in the ScanRefer-Justice dataset.

Figure 7: Relationship between reliability score and sentence length in ScanRefer-Justice dataset.

To ensure consistency in scoring, we require annotators to follow a 9-point Likert scale based on
predefined Assessment Criteria (higher scores mean higher data quality), as shown in Figure 5.

Verification. After the initial round, the annotators carry out cross-checks to validate the consistency
of the annotations and estimate human error rates in toxic data identification (as reported in Table 1).
During this stage, the previous annotation score is displayed together with the referring expression.

A.3 Data Statistics

Figure 6 illustrates the score distribution in ScanRefer-Justice. Benefits to our targeted sampling,
the dataset achieves a balanced distribution of reliable and toxic samples. Specifically, 45.9% of
samples are rated as clearly erroneous, 7.7% as moderately flawed, and 46.4% as clearly reliable.
Most scores cluster around 1 or 9, indicating strong confidence among annotators. Samples rated in
the ambiguous 4–6 range are notably sparse. Additionally, it is clear that toxic data appears more
frequently in scenes with higher complexity.

In addition, we examine the relationship between referring expression length and the quality of
3DVG data, as shown in Figure 7. Interestingly, short expressions (<15 tokens) and medium-length
ones (16–30 tokens) exhibit similar error rates, likely due to compensating effects between scene
simplicity and annotation carelessness. Logically, descriptions with longer than 30 tokens show a
marked improvement in reliability, suggesting that detailed language helps disambiguate targets in
3DVG. Nevertheless, longer descriptions may impose a cognitive burden on annotators. Leveraging
LLMs to provide adaptive, guided assistance during annotation may be a promising direction for
future 3DVG dataset construction.
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Table 6: Quantitative results on ScanRefer test set.

Method Unique ↑ Multiple ↑ Overall ↑
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

InstanceRefer [44] 77.82 66.69 34.57 26.88 44.27 35.80
3DVG-Transformer [51] 75.76 55.15 42.24 29.33 49.76 35.12
D3Net [8] 79.23 68.43 39.05 30.74 48.06 39.19
D-LISA [46] 81.95 69.00 49.75 39.67 56.97 46.25

ScanRefer [7] 68.59 43.53 34.88 20.97 42.44 26.03
+ Refer-Judge 73.45(+4.86) 47.16(+3.63) 35.36(+0.48) 21.25(+0.28) 43.90(+1.46) 27.06(+1.03)

3DVLP [47] 78.24 62.98 45.32 34.05 52.70 40.54
+ Refer-Judge 79.39(+1.15) 65.46(+2.48) 46.51(+1.19) 34.91(+0.86) 53.88(+1.18) 41.76(+1.22)

B Details of Metric Calculations

To evaluate the ability of the proposed method to identify toxic samples in 3DVG datasets, we first
formulate the task as a binary classification problem. Notably, since we are more concerned with the
identification of toxic samples, toxic samples are considered as the positive class, and valid samples
as the negative class. We use TP, FP, TN, and FN to represent the true positive, false positive, true
negative, and false negative, respectively.

We define toxic samples as those with human-annotated scores between 1-6, including both obviously
untrustworthy (score between 1-3) and partially flawed samples (score between 4-6). Valid samples
are those with scores in the range of 7–9. The calculation of agreement, precision, recall, and F1-score
are as follows:

Agreement = (TP + TN) / (TP + FP + TN + FN)

Precision = TP/ (TP + FP )

Recall = TP/ (TP + FN)

F1-score = (2 · TP ) / (2 · TP + FP + FN)

(8)

To further evaluate the alignment between our method and human assessments on a finer scale, we
additionally treat this task as a regression problem and report the following metrics:

RMSE =

√√√√ 1

N

N∑
i=1

(si − ŝi)2, MAE =
1

N

N∑
i=1

|si − ŝi| (9)

where si is the human-annotated score and ŝi is the predicted score for the i-th sample.

C Additional Experiments

Comparison on the ScanRefer Test Benchmark. To further validate the effectiveness of filtering
toxic data, we report method performance on the ScanRefer test set. As shown in Table 6, after training
on purified data organized via Refer-Judge, both baseline models exhibit consistent performance
gains, with +1.03% and +1.22% in Overall Acc@0.5, confirming the stability of our method. Notably,
combined with the validation results in Table 2, the performance improvements are more pronounced
in scenes where only one object of the target category exists Unique, compared to Multiple samples
(with multiple similar objects). This is likely because the original training data contains distributional
biases that help models overfit toxic samples. Correspondingly, as shown in Figure 6, toxic samples
are more concentrated in complex scenes, allowing baseline models to gain an extra advantage in
Multiple-type evaluations.

Comparison on the Purified Validation Set. To better analyze the impact of toxic data on algorithm
evaluation, we extend the analysis in Table 2 by progressively decreasing the threshold in toxicity
judgment, thereby including a broader range of potentially toxic samples. As presented in Table 7, the
proportion of identified toxic data rises from 7.6% to 40.6% when the Refer-Judge threshold increases
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Table 7: Quantitative results on toxic and purified data under different thresholds. The ‘Thr.’ indicates
the score threshold and the resulting proportion of toxic data under that threshold.

Method Thr. Toxic data ↓ Unique (purified) ↑ Multiple (purified) ↑ Overall (purified) ↑
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer 20.44 13.12 76.91 50.57 34.77 21.78 43.60 27.81
+ Refer-Judge 1 17.96(-2.48) 12.84(-0.28) 79.52(+2.61) 55.40(+4.83) 35.73(+0.96) 24.27(+2.49) 44.91(+1.31) 30.79(+2.98)

3DVLP ~7.6% 22.69 17.36 84.65 68.27 44.58 34.38 52.97 42.17
+ Refer-Judge 22.41(-0.28) 14.43(-2.93) 86.70(+2.05) 70.42(+2.15) 46.49(+1.91) 36.01(+1.63) 54.91(+1.94) 43.22(+1.05)

ScanRefer 21.69 14.58 76.89 50.57 34.96 21.8 43.91 27.94
+ Refer-Judge ≤ 2 18.76(-2.93) 13.67(-0.91) 79.50(+2.61) 55.41(+4.84) 36.07(+1.11) 24.44(+2.64) 45.33(+1.42) 31.04(+3.10)

3DVLP ~9.3% 22.91 17.75 85.97 70.02 46.44 36.02 54.86 43.01
+ Refer-Judge 22.11(-0.80) 15.46(-2.29) 86.41(+0.44) 72.27(+2.25) 47.14(+0.70) 37.43(+1.41) 55.50(+0.64) 44.85(+1.84)

ScanRefer 22.58 16.03 77.02 50.66 37.34 22.88 46.99 29.63
+ Refer-Judge ≤ 3 21.53(-1.05) 15.60(-0.43) 79.61(+2.59) 55.59(+4.93) 38.59(+1.25) 25.91(+3.03) 48.56(+1.57) 33.12(+3.49)

3DVLP ~21.1% 27.57 21.00 86.18 70.53 49.68 38.48 58.55 46.27
+ Refer-Judge 25.85(-1.72) 18.83(-2.17) 86.52(+0.34) 72.42(+1.89) 50.84(+1.16) 40.63(+2.15) 59.51(+0.96) 48.36(+2.09)

ScanRefer 24.23 17.00 77.12 50.71 38.97 23.39 49.41 30.87
+ Refer-Judge ≤ 4 23.46(-0.77) 17.28(+0.28) 79.65(+2.53) 55.72(+5.01) 40.51(+1.54) 26.73(+3.34) 51.22(+1.81) 34.66(+3.79)

3DVLP ~40.6% 29.32 22.91 86.3 70.71 52.34 40.42 61.63 48.70
+ Refer-Judge 28.36(-0.96) 21.85(-1.06) 86.64(+0.34) 72.55(+1.84) 53.77(+1.43) 42.69(+2.27) 62.76(+1.13) 50.86(+2.16)

Table 8: Comprehensive ablation study of module design. The Cost shows the token required to
complete the ScanRefer-Justice dataset (Million). Bold denotes best performance.

ID Refer-Judge Agreement ↑ Precision ↑ Recall ↑ F1 ↑ RMSE ↓ MAE ↓ Cost ↓
Jl Jc Jd Ja Jmag

d Jmag
a

1 82.77 82.95 85.77 84.33 2.69 1.71 112.79
2 ✗ 82.53 83.87 83.81 83.84 2.73 1.77 111.36
3 ✗ 81.75 82.92 83.44 83.18 2.88 1.87 110.21
4 ✗ ✗ 80.86 85.28 78.09 81.53 2.97 1.89 50.83
5 ✗ ✗ 62.41 64.00 69.65 66.71 3.74 2.68 78.78
6 ✗ 81.61 83.33 82.49 82.91 2.82 1.81 85.13
7 ✗ 82.67 83.44 84.76 84.01 2.73 1.74 110.07
8 ✗ ✗ 81.55 83.44 82.18 82.80 2.91 1.93 108.78
9 ✗ ✗ 81.72 83.15 83.00 83.08 2.80 1.83 82.41
9 ✗ ✗ ✗ ✗ 54.20 58.93 50.50 54.39 5.10 3.72 9.41

from 1 to 4. While a lenient threshold inevitably misjudges more valid samples, we ensure all methods
are evaluated on the same purified validation set to keep fairness. The results demonstrate that across
all toxicity thresholds, models trained with Refer-Judge consistently outperform the corresponding
baselines, confirming the robustness of our method. Interestingly, we observe non-uniform margins
between purified and baseline results. For instance, at threshold 1 (strict), 3DVLP+Refer-Judge
outperforms the baseline by +1.05% in Overall Acc@50, whereas the gain increases to +2.16% at
threshold ≤ 4 (lenient). This highlights that beyond the identification of toxic data, establishing
a standardized evaluation framework is essential for enabling robust and comprehensive method
assessment.

Comprehensive Ablation of Module Design. We then expand the model design shown in Table 5 to
investigate the impact of each module in the Refer-Judge framework. Experiments 2–5 in Table 8
examine the removal of each individual juror within the Jury system. The results show a consistent
performance drop, confirming all four perspectives contribute indispensably to toxic data identifi-
cation. Among them, the Ambiguity Juror proves most impactful, highlighting a prevalent issue
in 3DVG annotation: the failure to verify the presence of similar misleading objects in the scene.
Meanwhile, comparing experiments 1 and 6, the introduction of Corroborative Refinement in Jmag

d
improves the Agreement score by +1.16%, demonstrating the benefit of using auxiliary information
to guide and correct flawed judgments arising from incomplete observation.

D Case Study

Finally, we present some representative cases to intuitively illustrate the decision-making process of
Refer-Judge on 3DVG samples. On the one hand, we show some cases from the ScanRefer dataset [7],
which respectively correspond to Normal, Hard, and Complex scenarios.
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Figure 8: A normal case where only one TV is involved in the scene.

Detailed Analysis. Although this is a relatively simple case, several interesting details emerge.
For instance, when analyzing the second view, Jd fails to detect a matching object because the TV
is only partially visible at the edge of the frame. This viewpoint-induced failure is subsequently
corrected during the refinement process provided by Jmag

d . Moreover, we also observe errors caused
by hallucination. For example, in its second step, Jmag

d incorrectly rejects the TV in the image for
not satisfying the specified “square” shape.
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Figure 9: A hard case where Refer-Judge provides correct assessment in both paradox and ambiguity
identification.

Detailed Analysis. As a case exhibiting both paradox and ambiguity, multiple components contribute
to the final judgment. For instance, Jl provides a direct evaluation of the textual paradox, while
Jd assesses the object’s uniqueness. This demonstrates the advantage of Refer-Judge in analyzing
problematic samples from multiple complementary perspectives.
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Figure 10: A complex case where over 20 similar objects introduce significant visual ambiguity.

Detailed Analysis. In this more complex scene, Ja processes a larger batch of images and thus
plays a more significant role in the overall decision-making process. However, the analyses from
Ja and Jmag

a also reveal that even for two highly similar images (I3m and I4m), their corresponding
evaluations may differ substantially. This further highlights the importance of maintaining evaluation
consistency within such an agentic system.
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Figure 11: A case passes the inspection of Nr3D but is actually ambiguous.

On the other hand, we further extend Refer-Judge to the Nr3D dataset [2], which additionally
provides examiner (listener) annotations assessing the quality of the original labels. Despite this
stricter verification setting, Refer-Judge still uncovers toxic data within Nr3D, including cases where
samples consistently judged as correct by annotators are actually problematic, and instances flagged
as erroneous by examiners are in fact solid. These extended case studies further demonstrate the
effectiveness and generalizability of our proposed framework.

Detailed Analysis. Although this is a relatively simple scene, the evident ambiguity was not detected
by annotators, revealing the widespread presence of toxic data in manually labeled 3DVG datasets.
Notably, during the ambiguity analysis, I1m captures only a partial view of the painting, leading to
a low score from Ja, which Jmag

a also fails to correct. This observation underscores the current
limitations of our system.
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Figure 12: A case marked as failed in Nr3D (due to speaker-listener mismatch) but turned out to be
valid on re-check.

Detailed Analysis. This is an interesting case where the examiner assigned a low-confidence mark,
even though the referring expression was already quite detailed. Through our Refer-Judge framework,
we observe that the high score given by Jd to I2p leads to a final positive evaluation for this sample.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of the paper clearly outline the main contributions
and the scope of the research.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper adequately discusses the limitations of the work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper focuses on the practical application of large language models in
assessing the quality of 3D visual grounding, and does not introduce new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a clear and comprehensive explanation of the proposed
method. Key setups critical for reproducing the results are meticulously detailed in Sec-
tion 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and the proposed dataset are provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment setting and details are presented in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We keep the same basic method settings across all the experiments reported
in Section 4 and Appendix C to produce a meaningful ablation study. However, we do not
report error bars due to the significant cost of continuously invoking the MLLMs. In fact,
we have spent nearly $10,000 on API calls to obtain the current experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources can be found in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impact is described in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method is based on original proprietary or open-sourced MLLMs, the
procedure does not introduce additional risks. Users are encouraged to adhere to the
safeguards provided by the corresponding MLLM.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the used datasets and models in our paper are properly cited.
The proposed dataset is constructed based on ScanRefer and adheres to its license agreement
(CC BY-NC-SA 3.0).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code/dataset provided in the supplementary material is documented with
detailed instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We thank the contributors involved in data annotation and provided compensa-
tion well above the local minimum wage.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: As a core component of this work, we provide a detailed description of how
the proposed method leverages large models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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