
Pre-trained Image Encoder for Data-Efficient
Reinforcement Learning and Sim-to-Real transfer on

Robotic-Manipulation tasks

Jesus Bujalance Tao Yu Fabien Moutarde
MINES ParisTech, PSL University, Center for robotics
jesus.bujalance martin@mines-paristech.fr

Abstract: Sample-efficiency is still a major challenge for reinforcement-learning
(RL) algorithms, particularly when learning directly from image inputs. We pro-
pose a simple two-step pipeline: First, learn a visual representation of the scene
by pre-training an encoder from multiple supervised computer-vision objectives,
then train an RL agent which can focus solely on solving the task. We evaluate our
method on 3 realistic manipulation tasks with a simulated 6-degrees-of-freedom
robot. We show that not only is our method much more sample-efficient than an
end-to-end baseline, but it also reaches a higher final success rate, even solving
one of the tasks where the baseline fails to make any progress. Additionally, by
adding domain randomization techniques into our pipeline, we are able to solve
a simpler reaching task consistently in the real world via zero-shot sim-to-real
transfer.

Keywords: Reinforcement Learning, Computer Vision, Sim-to-Real

1 Introduction

We present a simple pipeline to tackle vision-based robotic-manipulation tasks in a data-efficient
manner. The idea is to pre-train an encoder from multiple computer-vision objectives, such as image
segmentation or depth prediction. The pre-trained encoder is then frozen and used by the RL agent
to bypass the raw images. We focus on three tasks with sparse rewards: reaching a target, pushing a
button, and sliding a block to a target position. We instantiate our approach with Soft Actor-Critic
(SAC) [1] and compare it to an end-to-end baseline. Additionally, we present a modified version
of the pipeline for sim-to-real zero-shot transfer, and show that our agent is able to solve a simpler
reaching task in the real world consistently.

2 Related work

Learning representations for RL. Representation Learning is particularly challenging in RL, since
learning good representations requires diverse data, which relies on good exploration, which itself
relies on good representations. Multiple works attempt to learn good representations jointly with the
RL objectives [2, 3, 4].

Pre-training for RL. Learning a dynamics model is an useful way of learning good representations,
that can later be used to feed a model-free RL agent [5, 6]. Several works focus on extracting
keypoints from images as a preliminary step [7, 8]. Like in our work, pre-training can also come
from computer-vision objectives [9, 10].

Domain randomization for RL. The goal behind domain randomization is to make the agent learn
the domain’s invariances directly from data. If the data is rich enough, the agent should be able to
generalize to new environments. Many works focus on the visual appearance of the scenes [11, 12,

CoRL 2022 Workshop on Pre-training Robot Learning, Auckland, New Zealand.



(a) Image segmentation (reaching) (b) Depth prediction (pushing) (c) Auto-encoding (sliding)

Figure 1: Qualitative results of the pre-trained encoder on some test images. The first row for each
view shows the ground-truth, the second row shows the network outputs.

Figure 2: State regression: Qualitative results of
the pre-trained encoder for the reaching task on
some test images. The black square shows the
2D projection of the 3D output for the ball’s co-
ordinates.

Figure 3: Texture randomization: The texture
of the walls, table and target are randomized to
bring variety to the dataset.

13]. Other elements can also be altered, particularly regarding the dynamics of the environment. A
good framework for such works is that of Meta-Learning (e.g. [14]).

3 Method

Our method consists in two steps. First, we train an encoder on a collection of supervised computer-
vision objectives. Then, we freeze the weights of the encoder and use it as the backbone of all RL
networks to learn a task. Let s = (simage, sproprioception) the RL state. The goal of the first step is to
learn a more compact representation s̃image, and the goal of the second step is to train an RL agent
from the new states s̃ = (s̃image, sproprioception). We use SAC as our RL algorithm.

3.1 Training the Image Encoder

All three encoder networks (one per task) were trained with identical hyper-parameters and archi-
tecture (ResNet-50). We propose to learn a representation from multiple objectives simultaneously:
Image Segmentation, Depth Prediction, Auto-encoding, and State Regression. A simple ResNet
decoder is used for the first three objectives (one network per objective), and a simple MLP for
regressing the state of the environment (objects’ coordinates and robot proprioception).

As shown in Figure 4, our setup consists of two cameras, one mounted on the wrist of the robot
and one in front of it. The encoder takes a single image as input, and all three vision decoders take
the corresponding 32-dimensional encoded representation as input. However, the MLP decoder for
state regression takes in the concatenation of both encoded vectors (one for each camera). This
64-dimensional vector corresponds to s̃image.

We apply the following modifications to the standard computer-vision objectives in order to priori-
tize the objects over other visual information:

• Image Segmentation. We consider 5 different tasks for segmentation: Floor and Walls,
Table, Robot, Gripper, Objects. We give a larger weight to the object class in the cross-
entropy loss (10-to-1 ratio).

2



Figure 4: Real UR3 robot. The inputs
to the agent are the two camera im-
ages as shown in the left.

Figure 5: Sim-to-real pipeline. Two additional steps with
respect to the fully simulated pipeline: texture randomiza-
tion and data augmentation.

• Depth Prediction. We use the ground-truth segmentation image to compute a mask of the
objects, in order to increase the loss values of all pixels belonging to it (by a factor of
10). Without this modification, the network might choose to ignore the objects since they
represent a tiny portion of the image.

• Auto-encoding. Learning to reconstruct the full image would be redundant with the infor-
mation extracted by the other two decoders. Instead, we want this decoder to further help
the network focus on the objects. To do so, we use the same object-segmentation mask to
reconstruct only the objects in the scene, ignoring everything else.

3.2 Zero-Shot Sim-to-Real transfer

Other than learning how to solve the task, sim-to-real transfer presents an additional challenge:
learning how to generalize to a new domain. By having a two-step process, we can alleviate the
burden of the RL algorithm and rely instead on the more stable supervised-learning training.

As shown in Figure 5, the sim-to-real pipeline is very similar to the one discussed so far. Two
additional steps are required. First, we apply texture randomisation to generate the dataset to train
the encoder. In our case, as shown in Figure 3, we collected textures from the real target environment
(Figure 4) under different lighting and camera conditions. If the transfer domain is unknown, a much
more varied dataset would be required for the final agent to be able to generalize.

Additionally, we use standard computer-vision data-augmentation techniques during the training
of the encoder, including classic visual augmentations (hue, contrast, blur, saturation...) as well
as small image translations to account for any differences in position between the simulated and
real-world cameras.

4 Experimental Results

Tasks. We evaluate our method on three simulated tasks for a 6-degrees-of-freedom robot manip-
ulator: reaching a ball, pushing a button, and sliding a block to a target square. The target objects
(ball, button, block and square) appear randomly at the beginning of each episode within the reach
of the robot: the ball appears anywhere in the 3D space, the button, block and square are bound to
the tabletop. The initial position of the target object changes after each episode, but it does not move
during an episode. The initial state of the robot is always the same, close to an upright position. An
episode ends once the robot has completed the task, or after expiration (20 time-steps for the sliding
task, and 100 for the other two). The reward is fully sparse, and is equal to +100 if the robot solves
the task and 0 otherwise. All tasks belong to the benchmark and learning environment RLBench
[15], which is built on top of CoppeliaSim [16]. The backend physics engine is the Bullet physics
library [17].

Action space. For the reaching and pushing tasks, the robot receives 6-dimensional joint speed
commands. For the sliding task, the robot receives an XYZ end-effector position, while the gripper

3



Figure 6: Learning curves for the three tasks in simulation. All the results are smoothed with a
rolling window of 100 episodes, and the standard error is computed on three random seeds.

orientation remains fixed. For all tasks we use an additional dimension to control the gripper state
(open or closed).

Observation space and Policy architecture. The encoder receives 64x64x6 images (two cam-
eras) and outputs a 64-dimensional vector. This vector is concatenated to a 20-dimensional vector
containing the robot propioception (joint positions, joint speeds, gripper position and orientation,
gripper state). This 84-dimensional vector is then fed into an MLP that outputs the action.

4.1 Comparison to End-to-End RL

Figures 6 show that learning with a pre-trained encoder is not only much more sample-efficient, but
the final performance is also better.

For the reaching and pushing tasks, the agent with a pre-trained encoder is the only one to reach a
final performance of close to a 100%, while also being faster than the end-to-end agent. Suprisingly,
for the pushing task, an agent learning from the full state of the environment (i.e. object coordinates)
rather than image inputs, is only able to reach a final performance of around 95% accuracy. One
possible explanation is that knowing the position of the button doesn’t really help with the actual
pushing down (the gripper would sometimes get stuck in the sides of the button and the agent is
unable to recover). In the case of the more complicated sliding task, the end-to-end baseline is
unable to make any significant progress, while the agent with the pre-trained encoder solves the task
consistently, reaching around 75% accuracy after 200.000 steps. One possible explanation for the
struggles of the end-to-end baseline on this task, is that the wrist camera is not as useful here as
in the other two tasks, as the target is almost never in frame, and the block is only in frame when
already making contact with it.

4.2 Sim-to-Real qualitative results

As shown in Figure 4, the task we try to tackle in the real world is a simpler version of the reaching
task, with a 2D target on the table. We only provide qualitative results for this experiment. As shown
in this video, a zero-shot transfer results in a policy that is able to consistently solve the task in the
real-world setup, and is even able to adapt mid-episode if the target is displaced.

5 Future work

Future work will include evaluation on more tasks, namely pick-and-place or similar tasks that
involve grasping, as well as a quantitative evaluation of the sim-to-real transfer. Ideally, all of the
tasks will also be tested in the real robot. Finally, we would also like to compare our method to
stronger end-to-end baselines, such as SAC-AE [18] or CURL [2]. Since the training process of the
encoder is generic and task-agnostic, one possible direction for future research would be to test it in
a multi-task setting, with a single pre-trained encoder for a single multi-task agent.

4

https://drive.google.com/drive/folders/1edMksHT0NWVqi-4DSFckYLH8CDdItfec?usp=sharing


References
[1] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor, 2018. URL https://openreview.net/

forum?id=HJjvxl-Cb.

[2] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for re-
inforcement learning. Proceedings of the 37th International Conference on Machine Learning,
Vienna, Austria, PMLR 119, 2020. arXiv:2004.04136.

[3] N. Hansen, R. Jangir, Y. Sun, G. Alenyà, P. Abbeel, A. A. Efros, L. Pinto, and X. Wang.
Self-supervised policy adaptation during deployment. arXiv preprint arXiv:2007.04309, 2020.

[4] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Charlin, R. D. Hjelm, P. Bach-
man, and A. C. Courville. Pretraining representations for data-efficient reinforcement learning.
Advances in Neural Information Processing Systems, 34:12686–12699, 2021.

[5] M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson. Deep variational reinforcement
learning for pomdps. In International Conference on Machine Learning, pages 2117–2126.
PMLR, 2018.

[6] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33:741–752, 2020.

[7] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders
for visuomotor learning. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 512–519. IEEE, 2016.

[8] P. Florence, L. Manuelli, and R. Tedrake. Self-supervised correspondence in visuomotor policy
learning. IEEE Robotics and Automation Letters, 5(2):492–499, 2019.

[9] B. Chen*, A. Sax*, F. Lewis, S. Savarese, A. Zamir, J. Malik, and L. Pinto. Robust policies
via mid-level visual representations: An experimental study in manipulation and navigation.
In 4th Annual Conference on Robot Learning, CoRL 2020, Proceedings of Machine Learning
Research. PMLR, 2020. URL https://arxiv.org/abs/2011.06698.

[10] M. Khan, P. Srivatsa, A. Rane, S. Chenniappa, R. Anand, S. Ozair, and P. Maes. Pretrained
encoders are all you need. arXiv preprint arXiv:2106.05139, 2021.

[11] F. Sadeghi and S. Levine. rl: Real single-image flight without a single real image. 2016. 2.

[12] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[13] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,
R. Hadsell, and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12627–12637, 2019.

[14] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[15] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[16] E. Rohmer, S. P. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1321–1326. IEEE, 2013.

5

https://openreview.net/forum?id=HJjvxl-Cb
https://openreview.net/forum?id=HJjvxl-Cb
https://arxiv.org/abs/2011.06698


[17] E. Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, page 1. 2015.

[18] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample
efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 10674–10681, 2021.

6


	Introduction
	Related work
	Method
	Training the Image Encoder
	Zero-Shot Sim-to-Real transfer

	Experimental Results
	Comparison to End-to-End RL
	Sim-to-Real qualitative results

	Future work

