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Abstract

Audio-visual saliency prediction can draw support from001
diverse modality complements, but further performance en-002
hancement is still challenged by customized architectures003
as well as task-specific loss functions. In recent studies,004
denoising diffusion models have shown more promising in005
unifying task frameworks owing to their inherent ability of006
generalization. Following this motivation, a novel Diffusion007
architecture for generalized audio-visual Saliency predic-008
tion (DiffSal) is proposed in this work, which formulates009
the prediction problem as a conditional generative task of010
the saliency map by utilizing input audio and video as the011
conditions. Based on the spatio-temporal audio-visual fea-012
tures, an extra network Saliency-UNet is designed to per-013
form multi-modal attention modulation for progressive re-014
finement of the ground-truth saliency map from the noisy015
map. Extensive experiments demonstrate that the proposed016
DiffSal can achieve excellent performance across six chal-017
lenging audio-visual benchmarks, with an average relative018
improvement of 6.3% over the previous state-of-the-art re-019
sults by six metrics.020

1. Introduction021

With the functionality of visual and auditory sensory sys-022
tems, human beings can quickly focus on the most interest-023
ing areas during their daily activities. Such a comprehensive024
capability of visual attention in multi-modal scenarios has025
been explored by numerous researchers and referred to as026
an audio-visual saliency prediction (AVSP) task. Based on027
the related techniques, many valuable practical applications028
have come into utility ranging from video summarization029
[29] and compression [65] to virtual reality [15] and aug-030
mented reality [46].031

Significant efforts have been dedicated to advancing032
studies by concentrating on elevating the quality of multi-033
modal interaction and refining the generalizability of model034
structures in this domain. Among the prevalent AVSP035
approaches, as depicted in Figure 1(a), localization-based036
methods [38, 39, 50] have gained a lot of attention. These037
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Figure 1. Comparison of conventional audio-visual saliency pre-
diction paradigms and our proposed diffusion-based approach.
Both the localization-based and 3D convolution-based methods
use tailored network structures and sophisticated loss functions to
predict saliency areas. Differently, our diffusion-based approach
is a generalized audio-visual saliency prediction framework using
simple MSE objective function.

methods typically consider the sounding objects as saliency 038
targets in the scene and transform the saliency prediction 039
task into a spatial sound source localization problem. Even 040
though the semantic interactions between audio and visual 041
modalities have been considered in these methods, their fo- 042
cus on a generalized network structure is still limited and 043
inevitably results in constrained performance. 044

In contrast, recent 3D convolution-based methods [10, 045
30, 58, 61] exhibit superior performance in predicting 046
audio-visual saliency maps, as illustrated in Figure 1(b). 047
However, these methods require customized architectures 048
with built-in inductive biases tailored for saliency predic- 049
tion tasks. For instance, Jain et al. [30] and Xiong et al. 050
[58] both embrace a 3D encoder-decoder structure akin to 051
UNet, but integrate their empirical designs into the decoder. 052
Moreover, both localization-based and 3D convolution- 053
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based methods employ sophisticated loss functions, con-054
tributing to a more intricate audio-visual saliency modeling055
paradigm.056

Effective audio-visual interaction and the generalized057
saliency network are two essential factors for the seamless058
application of AVSP technology in the real world. Unfor-059
tunately, an in-depth exploitation of both challenges in the060
existing works is far from sufficient. Inspired by the strong061
generalization capabilities, diffusion models [25, 26, 43]062
can be employed as a unified framework for generative tasks063
with class labels [17], text prompts [20], images [11], and064
even sounds [45] as the conditions for modeling. However,065
it remains an open question how to design a diffusion model066
that satisfies the effective audio-visual interaction and the067
generalized saliency network.068

In this work, we present a conditional Diffusion model069
for generalized audio-visual Saliency prediction (DiffSal),070
which aims to tackle these two challenges simultaneously,071
as illustrated in Figure 1(c). Our DiffSal utilizes the in-072
put video and audio as the conditions to reformulate the073
prediction problem as a conditional generative task of the074
saliency map. During the training phase, the model is fed075
the video and audio cues as well as a degraded saliency076
map, which has been obtained from the ground-truth with077
varying degrees of injected noise. By constructing a two-078
stream encoder to explore audio and video feature pairs079
with spatio-temporal coherence, the obtained similar pixel-080
wise multi-modal features can be utilized to guide the dif-081
fusion model generation process. In addition, a novel net-082
work Saliency-UNet is employed to recover the original083
saliency maps from noisy inputs, which utilizes information084
from spatio-temporal audio and video features as the condi-085
tions. To explore the latent semantic associations between086
audio and video features, an effective multi-modal interac-087
tion mechanism is proposed. The entire DiffSal framework088
employs a simple mean square error loss to predict ground-089
truth saliency maps from random noise. During the infer-090
ence phase, following the reversed diffusion process, Diff-091
Sal performs multi-step denoising to generate predictions092
based on randomly generated noisy saliency maps.093

Benefiting from such a diffusion-based framework, we094
demonstrate two distinct properties that appeal to the AVSP095
task. (i) In contrast to existing methods with spatio-096
temporal visual branching [30, 50, 58], DiffSal enables097
spatio-temporal modeling of audio and video, and can be098
generalized to audio-only, video-only, as well as audio-099
visual scenarios. (ii) Thanks to the iterative denoising prop-100
erty of the diffusion model, DiffSal can iteratively reuse101
Saliency-UNet to improve performance without retraining.102

To summarize, our main contributions are: (1) We for-103
mulate the saliency prediction task as a conditional gen-104
erative problem and propose a novel conditional diffusion105
saliency model, which is beneficial from the generalized106

network structure and effective audio-visual interaction. (2) 107
We demonstrate two properties of DiffSal that are effective 108
on saliency prediction: the ability to be applied to either 109
uni-modal or multi-modal scenarios, and to perform flex- 110
ible iterative refinement without retraining. (3) Extensive 111
experiments have been conducted on six challenging audio- 112
visual benchmarks and the results demonstrate that DiffSal 113
achieves excellent performance, exhibiting an average rela- 114
tive improvement of 6.3% over the previous state-of-the-art 115
results across four metrics. 116

2. Related Work 117

2.1. Audio-Visual Saliency Prediction 118

For audio-visual saliency prediction, different strategies 119
for multi-modal correlation modeling have been proposed 120
to estimate the saliency maps over consecutive frames. 121
Early solutions [38, 39] attempted to localize the moving- 122
sounding target by canonical correlation analysis(CCA) 123
to establish the cross-modal connections between the two 124
modalities. With the advent of deep learning, Tsiami et 125
al. [50] continued the localization-based approach by ex- 126
tracting audio representation using SoundNet [4], and fur- 127
ther performed spatial sound source localization through bi- 128
linear operations. Unfortunately, these methods exhibited 129
sub-optimal performance only and thus led to the emer- 130
gence of more effective 3D convolution-based approaches 131
[30, 48, 58] based on the encoder-decoder network frame- 132
works. Jain et al. [30] and Xiong et al. [58] both embrace 133
the UNet-style encoder-decoder structure by incorporating 134
their empirical designs into the decoder. Moreover, Chang 135
et al. [10] employs a complex hierarchical feature pyramid 136
network to aggregate deep semantic features. Considering 137
that both the localization-based and 3D convolution-based 138
methods use tailored network structures and sophisticated 139
loss functions to predict saliency areas. In this study, by 140
formulating the task as a conditional generation problem, a 141
novel conditional diffusion model is proposed for general- 142
ized audio-visual saliency prediction. 143

2.2. Diffusion Model 144

Recently, diffusion models have gained significant traction 145
in the field of deep learning. During diffusion modeling, 146
the Markov process is employed to introduce noise into the 147
training data followed by a training of deep neural networks 148
to reverse it. Thanks to the high-quality generative re- 149
sults and strong generalization capabilities, diffusion mod- 150
els have achieved an impressive performance in generative 151
tasks, such as image generation [3, 6, 7, 12, 16], image- 152
to-image translation [32, 44, 52, 56, 63], video generation 153
[23, 27, 60], text-to-image synthesis [20, 42, 62], and etc. 154
Beyond generative tasks, diffusion models have proven to 155
be highly effective in various computer vision tasks. For in- 156
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Figure 2. An overview of the proposed DiffSal framework. DiffSal first encodes spatio-temporal video features fv and audio features fa
by the Video and Audio Encoders, respectively. Then the Saliency-UNet takes audio features fa and video features fv as the conditions to
guide the network in generating the saliency map Ŝ0 from the noisy map St.

stance, DiffSeg [1] proposes a diffusion model conditioned157
on an input image for image segmentation. Chen et al. [11]158
propose a model named DiffusionDet, which formulates ob-159
ject detection as a generative denoising process from noisy160
boxes to object boxes. Subsequently, the pipeline of this161
model is extended by Gu et al. [21] by introducing noise fil-162
ters during diffusion, as well as incorporating a mask branch163
for global mask reconstruction, which makes making Diffu-164
sionDet more applicable to instance segmentation tasks. To165
the best of our knowledge, there have been no previous suc-166
cessful attempts to apply diffusion models to saliency pre-167
diction, which inspires the proposed DiffSal in this work to168
explore the potential of diffusion models in the domain of169
audio-visual saliency prediction.170

3. Preliminaries171

Diffusion models [26] are likelihood-based models for172
points sampling from a given distribution by gradually de-173
noising random Gaussian noise in T steps. In the forward174
diffusion process, the increased noises are added to a sam-175
ple point x0 iteratively as x0 → · · · → xT−1 → xT , to176
obtain a completely noisy image xT . Formally, the forward177
diffusion process is a Markovian noising process defined by178
a list of noise scales {āt}Tt=1 as:179

q(xt|x0) := N (xt|
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∈ N (0, I),

(1)180

where ᾱt :=
∏t
s=1 αt =

∏t
s=1(1 − βs) and βs denote 181

the noise variance schedule [26], ε is the noise, N denotes 182
normal distribution, x0 is the original image, and xt is noisy 183
image after t steps of the diffusion process. 184

The reverse diffusion process aims to learn the posterior 185
distribution p(xt−1|x0, xt) for xt−1 estimation given xt. 186
Typically, this can be done using a step-dependent neural 187
network in multiple parameterized ways. Instead of directly 188
predicting the noise ε, we choose to parameterize the neural 189
network fθ(xt, t) to predict x0 as [11]. For model opti- 190
mization, a mean squared error loss is employed to match 191
fθ(xt, t) and x0: 192

L = ‖fθ(xt, t)− x0‖2, t ∈R {1, 2, . . . , T}, (2) 193

where the step t is randomly selected at each training itera- 194
tion. From starting with a pure noise xt ∈ N (0, I) during 195
inference stage, the model can gradually reduce the noise 196
according to the update rule [47] using the trained fθ as be- 197
low: 198

xt−1 =
√
ᾱt−1fθ(xt, t)+√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtfθ(xt, t)√
1− ᾱt

+ σtε.
(3) 199

Iteratively applying Eq. 3, a new sample x0 can be gen- 200
erated from fθ via a trajectory xT → xT−1 → · · · → x0. 201
Specially, some improved sampling strategies skip such an 202
operation in the trajectory to achieve better efficiency [47]. 203
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To control the generation process, the conditional infor-204
mation can be modeled and incorporated in the diffusion205
model as an extra input fθ(xt, t,C). The class labels [17],206
text prompts [20], and audio guidance [2] are the prevalent207
forms of conditional information documented in the litera-208
ture.209

4. Method210

To tackle the challenges of effective audio-visual interaction211
and saliency network generalization, we formulate audio-212
visual saliency prediction as a conditional generation mod-213
eling of the saliency map, which treats the input video and214
audio as the conditions. Figure 2 illustrates the overview215
of the proposed DiffSal, which contains parts of Video and216
Audio Encoders as well as Saliency-UNet. The former is217
used to extract multi-scale spatio-temporal video features218
and audio features from image sequences and correspond-219
ing audio signals. By conditioning on these semantic video220
and audio features, the latter performs multi-modal atten-221
tion modulation to progressively refine the ground-truth222
saliency map from the noisy map. Each part of DiffSal is223
elaborated on below.224

4.1. Video and Audio Encoders225

Video Encoder. Let I = [I1, · · · , Ij , · · · , ITv ], Ij ∈226
RHv×Wv×3 denotes an RGB video clip of length Tv . This227
serves as the input to a video backbone network, which pro-228
duces spatio-temporal feature maps. The backbone consists229
of 4 encoder stages and outputs 4 hierarchical video fea-230
ture maps, illustrated in Figure 2. The generated feature231

maps are denoted as {fiv}Ni=1 ∈ RT i
v×h

i
v×w

i
v×C

i
v , where232

(hiv, w
i
v) = (Hv,Wv)/2

i+1, N = 4. In practical imple-233
mentation, we employ the off-the-shelf MViTv2 [33] as234
a video encoder to encode the spatial and temporal infor-235
mation of image sequences. More generally, MViTv2 can236
also be replaced with other general-purpose encoders, e.g.,237
S3D[57], Video Swin Transformer[34].238
Audio Encoder. To temporally synchronize the audio fea-239
tures with the video features in a better way, initially, we240
transform the raw audio into a log-mel spectrogram through241
Short-Time Fourier Transform (STFT). Then, the spec-242
trogram is partitioned into Ta slices of dimension Ha ×243
Wa × 1 with a hop-window size of 11 ms. To extract244
per-frame audio feature f̄a,i where i ∈ {1, · · · , Ta}, a pre-245
trained 2D fully convolutional VGGish network [24] is per-246
formed on AudioSet [19], resulting in a feature map of size247
Rha×wa×Ca . To improve the inter-frame consistency, we248
further introduce a temporal enhancement module consist-249
ing of a patch embedding layer as well as a transformer250
layer. Then, the audio features are rearranged in the spatio-251
temporal dimension and fed into the patch embedding layer252
to obtain f̄a ∈ RTa×ha×wa×Ca . For the retaining of tempo-253
ral position information, a learnable positional embedding254

epos is incorporated along the temporal dimension: 255

f̄a = [̄fa,0 + epos0 , · · · , f̄a,Ta + eposTa
], (4) 256

where [·; ·] represents concatenation operation. The pro- 257
cessed feature is finally fed into the Multi-head Self At- 258
tention (MSA), the layer normalization (LN) [5] and the 259
MLP layer to produce the spatio-temporal audio features 260
fa ∈ RTa×ha×wa×Ca : 261

f̄a = MSA(LN(̄fa)) + f̄a,
fa = MLP(LN(̄fa)) + f̄a.

(5) 262

4.2. Saliency-UNet 263

To learn the underlying distribution of saliency maps, we 264
design a novel conditional denoising network gψ with 265
multi-modal attention modulation, named Saliency-UNet. 266
This network is designed to leverage both audio features fa 267
and video features {fiv}Ni=1 as the conditions, guiding the 268

network in generating the saliency map Ŝ0 from the noisy 269
map St: 270

Ŝ0 = gψ(St, t, fa, fv), (6) 271

where St =
√
ᾱtS0 +

√
1− ᾱtε, noise ε is from a Gaussian 272

distribution, and t ∈R {1, 2, . . . , T} is a random diffusion 273
step. 274

Our Saliency-UNet can be functionally divided into two 275
parts: feature encoding and feature decoding, as shown in 276
Figure 2. The first part encodes multi-scale noise feature 277

maps {fis}Ni=1 ∈ Rhi
v×w

i
v×C

i
v from the noisy map St us- 278

ing multiple ResNet stages. The second part utilizes our 279
designed multi-modal attention modulation (MAM) across 280
multiple scales for the interaction of noise features, audio 281
features, and video features. The MAM stage comprises 282
an upsampling layer, a multi-modal attention block, and a 283
3D temporal convolution. This stage not only computes 284
the global spatio-temporal correlation between multi-modal 285
features but also progressively enhances the spatial resolu- 286
tion of the feature maps. At last, a prediction head is em- 287
ployed to produce the predicted saliency map Ŝ0. The entire 288
network incorporates 4 layers of the ResNet stage for fea- 289
ture encoding and 4 layers of the MAM stage for feature 290
decoding. 291

For more robust multi-modal feature generation, two 292
techniques in MAM are introduced: efficient spatio- 293
temporal cross-attention and multi-modal interaction mod- 294
ule. 295
Efficient Spatio-Temporal Cross-Attention. Given video 296

features fiv ∈ RT i
v×h

i
v×w

i
v×C

i
v , audio features fa ∈ 297

RTa×ha×wa×Ca and noise features fis ∈ Rhi
v×w

i
v×C

i
v , 298

the video features and noise features are concate- 299
nated as a spatio-temporal noise feature map [fiv; fis] ∈ 300

R(T i
v+1)×hi

v×w
i
v×C

i
v . The processed feature map is then 301

fed into the multi-modal interaction module along with the 302
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audio features to obtain favs ∈ R(T i
v+1)×hi

v×w
i
v×C

i
v . To303

introduce audio information in the saliency prediction, we304
design an efficient spatio-temporal cross-attention (ECA),305
which not only effectively reduces the computational over-306
head of the standard cross-attention [51], but also possesses307
spatio-temporal interactions between features.308

For all processed features, they are first converted to309
2D feature sequences in the spatio-temporal domain and310

obtained Q = V = [fiv; fis] ∈ R(T i
v+1)hi

vw
i
v×C

i
v ;K =311

fiavs ∈ R(T i
v+1)hi

vw
i
v×C

i
v . We find that directly following312

the standard cross-attention would take a prohibitively large313
amount of memory due to the high spatio-temporal resolu-314
tion of the feature map. Therefore, a spatio-temporal com-315
pression technique is employed that can effectively reduce316
the computational overhead without compromising perfor-317
mance, as:318

[fiv; fis] = ECA(QWQ, STC(K)WK , STC(V )WV ), (7)319

where WQ,WK ,WV ∈ RCi×Ci are parameters of lin-320
ear projections, STC(·) is the spatio-temporal compression,321
which is defined as:322

STC(x) = LN(Conv3d(x)), (8)323

Here, the dimension of features is reduced by controlling324
the kernel size as well as the stride size of 3D convolution.325
Multi-modal Interaction Module. To take full advantage326
of different modal features, we model the interaction be-327
tween audio features fa, video features fiv and noise fea-328
tures fis at each scale i to obtain a robust multi-modal fea-329
ture representation. A straightforward approach would be to330
directly concatenate and aggregate fa, fiv and fis, but this fu-331
sion method does not acquire global correlations between332
various modalities. Therefore, an effective multi-modal333
interaction strategy is proposed to capture crucial audio-334
visual activity changes in the spatio-temporal domain. In335
specific, this process starts with convolution and upsam-336
pling on the audio features, which is to construct spatially337
size-matched feature triples (̃fa, fiv, f

i
s). Subsequently, the338

video features and noise features are concatenated to obtain339
spatio-temporal noise features [fiv; fis]. This processed fea-340
ture undergoes an element-wise product operation with the341

audio features, resulting in f̄iavs. Following this, we perform342

average activation along the temporal dimension over f̄iavs343
to pool global temporal information into a temporal descrip-344
tor. For the indication of critical motion regions, a softmax345
function is applied to obtain a mask by highlighting the seg-346
ments of the corresponding spatio-temporal audio features,347
which exhibit key audio-visual activity changes:348

f̃a = Conv(UpSample(fa)),

fiavs = softmax(Pool([fiv; fis] ∗ f̃a)) ∗ f̃a.
(9)349

where Conv(·), ∗, softmax and Pool denote the operations 350
of convolution, element-wise product, softmax and average 351
pooling, respectively. 352

4.3. Overall Training and Inference Algorithms 353

Training. A diffusion process is initiated to create noisy 354
maps by introducing corruption to ground-truth saliency 355
maps. To reverse this process, the Saliency-UNet is trained 356
for saliency map denoising. The overall training procedure 357
of DiffSal is outlined in Algorithm 1 in the Appendix. In 358
detail, Gaussian noises are sampled following αt in Eq. 1 359
and added to the ground-truth saliency maps, resulting in 360
noisy samples. At each sampling step t, the parameter αt is 361
pre-defined by a monotonically decreasing cosine scheme, 362
as employed in [26]. The standard mean square error serves 363
as the optimization function to supervise the model training: 364

365
L = ‖S0 − gψ(St, t, fa, fv)‖2. (10) 366

where S0 and gψ(St, t, fa, fv) denote the ground-truth and 367
predicted saliency maps, respectively. 368
Inference. The proposed DiffSal engages in denoising 369
noisy saliency maps sampled from a Gaussian distribu- 370
tion, and progressively refines the corresponding predic- 371
tions across multiple sampling steps. In each sampling step, 372
the Saliency-UNet processes random noisy saliency maps 373
or the predicted saliency maps from the previous sampling 374
step as input and generates the estimated saliency maps for 375
the current step. For the next step, DDIM [47] is applied to 376
update the saliency maps. The detailed inference procedure 377
is outlined in Algorithm 2. 378

5. Experiments 379

Experiments are conducted on six audio-visual datasets. 380
The following subsections introduce the implementation 381
details and evaluation metrics. The experimental results are 382
represented with analysis through ablation studies and com- 383
parison with state-of-the-art works. 384

5.1. Setup 385

Audio-Visual Datasets: Six audio-visual datasets in 386
saliency prediction have been employed for the evaluation, 387
which are: AVAD [38], Coutrot1 [13], Coutrot2 [14], DIEM 388
[40], ETMD [31], and SumMe [22]. The significant char- 389
acteristics of these datasets are elaborated below. (i) The 390
AVAD dataset comprises 45 video clips with durations rang- 391
ing from 5 to 10 seconds. These clips cover various audio- 392
visual activities, such as playing the piano, playing bas- 393
ketball, conducting interviews, etc. This dataset contains 394
eye-tracking data from 16 participants. (ii) The Coutrot1 395
and Coutrot2 datasets are derived from the Coutrot dataset. 396
Coutrot1 consists of 60 video clips covering four visual cat- 397
egories: one moving object, several moving objects, land- 398
scapes, and faces. The corresponding eye-tracking data are 399
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Table 1. Ablation of different components in DiffSal.

Method
Components AVAD ETMD

ECA MIM CC ↑ SIM ↑ CC ↑ SIM ↑

baseline 0.701 0.547 0.632 0.498
X 0.716 0.556 0.644 0.503

X 0.714 0.551 0.638 0.502
X X 0.738 0.571 0.652 0.506

obtained from 72 participants. Coutrot2 includes 15 video400
clips recording four individuals having a meeting, with eye-401
tracking data from 40 participants. (iii) The DIEM dataset402
contains 84 video clips, including game trailers, music403
videos, advertisements, etc., captured from 42 participants.404
Notably, the audio and visual tracks in these videos do not405
naturally correspond. (iv) The ETMD dataset comprises 12406
video clips extracted from various Hollywood movies, with407
eye-tracking data annotated by 10 different persons. (v) The408
SumMe dataset consists of 25 video clips covering diverse409
topics, such as playing ball, cooking, travelling, etc.410
Implementation Details: To facilitate implementation, a411
pre-trained MViTv2 [33] model on Kinetics [9] and a pre-412
trained VGGish [24] on AudioSet [19] are adopted. The in-413
put samples of the network consist of 16-frame video clips414
of size 224× 384× 3 with the corresponding audio, which415
is transformed into 9 slices of 112 × 192 log-Mel spec-416
trograms. For the spatio-temporal compression in efficient417
spatio-temporal cross-attention, the kernel size and stride418
size of the 3D convolution in the ith MAM stage are set419
to 2i and 2i, respectively. For a fair comparison, the video420
branch of DiffSal is pre-trained using the DHF1k dataset421
[53] following [58], and the entire model is fine-tuned on422
these audio-visual datasets using this pre-trained weight.423

The training process chooses Adam as the optimizer with424
the started learning rate of 1e−4. The computation platform425
is configured by four NVIDIA GeForce RTX 4090 GPUs426
in a distributed fashion, using Pytorch. The total sampling427
step T is defined as 1000 and the entire training is termi-428
nated within 5 epochs. The batch size is set to 20 across all429
experiments. During inference, the iterative denoising step430
is set to 4.431
Evaluation Metrics: Following previous works, four432
widely-used evaluation metrics are adopted [8]: CC, NSS,433
AUC-Judd (AUC-J), and SIM. The same evaluation codes434
are used as in previous works [50, 58].435

5.2. Ablation Studies436

Extensive ablation studies are performed to validate the de-437
sign choices in the method. The AVAD and ETMD datasets438
are selected for ablation studies, following the approach in439
[58].440
Effect of Components of DiffSal. To validate the effec-441
tiveness of each module in the proposed framework, a base-442
line model is initially defined as the video-only version443

Table 2. Ablation of video and audio modalities.

Model
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

Audio-Only 0.343 0.283 0.365 0.295
Video-Only 0.716 0.556 0.644 0.503
Ours 0.738 0.571 0.652 0.506

GT

Audio-Only

Video

Audio

Video-Only

Ours

Figure 3. Visualizing the saliency results when different modal-
ities are used. The audio-only approach can localize the sound
source coming from the performer’s guitar, while the video-only
approach focuses on both the performer’s face as well as the gui-
tar.

of DiffSal and replaces the multi-modal attention modula- 444
tion in Saliency-UNet with a pure convolution operation. 445
As shown in Table 1, the baseline model demonstrates a 446
good performance that indicates a potential capability of the 447
diffusion-based framework in the AVSP task. With the in- 448
corporation of the designed efficient spatio-temporal cross- 449
attention (ECA), and the multi-modal interaction module 450
(MIM) components, the overall performance of the model 451
has been enhanced continually. As the core module, ECA 452
presents a significant improvement in the CC metric by 453
0.015 on the AVAD dataset, and 0.012 on the ETMD dataset 454
for the whole DiffSal framework. With the addition of the 455
audio features and the MIM, the model also has another im- 456
provement of 0.022 in the CC metric on the AVAD dataset. 457
All of these have demonstrated the effectiveness of ECA 458
and MIM in the proposed DiffSal. 459

Effect of Video and Audio Modalities. Table 2 shows 460
the contribution of spatio-temporal information from each 461
modality in the Video and Audio Encoders to the over- 462
all performance. The experimental observations reveal that 463
the video-only model exhibits significantly greater strength 464
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Table 3. Ablation of different multi-modal interaction methods.

Method
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

DiffSal(w/ MIM) 0.738 0.571 0.652 0.506

w/ Bilinear 0.716 0.556 0.644 0.503
w/ Addition 0.706 0.543 0.606 0.464
w/ Concatenation 0.716 0.556 0.644 0.503

Table 4. Ablation of different cross-attention strategies. The
computational cost is evaluated based on input audio of size
1 × 9 × 112 × 192 and video of size 3 × 16 × 224 × 384. #
Params and #Mem denote the number of parameters and memory
footprint of the model, respectively.

Attention #Params #Mem
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

SCA 76.43M 5.32G 0.713 0.531 0.628 0.476
ECA 76.57M 1.20G 0.737 0.571 0.652 0.509

than the spatio-temporal audio-only version, which verifies465
the essential role of the video modality. Figure 3 also vi-466
sualizes the model predictions utilizing the two modal en-467
coders separately. It is clear that either the audio-only or468
video-only approach can predict saliency areas in the scene,469
and the combination of the two modalities leads to more ac-470
curate predictions. This demonstrates the generalization of471
the DiffSal framework to audio-only, video-only, and audio-472
visual scenarios as well.473

Effect of Different Cross-Attention Strategies. The de-474
sign of efficient spatio-temporal cross-attention mechanism475
is further evaluated. As shown in Table 4, using efficient476
spatio-temporal cross-attention (ECA) not only leads to bet-477
ter performance but also greatly reduces the memory foot-478
print of the model compared to using the standard cross-479
attention (SCA) strategy. This shows that the designed ECA480
can compress the effective spatio-temporal cues in the fea-481
tures and reduce the interference of irrelevant noises.482

Effect of Different Multi-modal Interaction Methods.483
The effects of using different multi-modal interaction meth-484
ods, such as Bilinear [49], Addition, and Concatenation, are485
compared in Table 3. These multi-modal interaction meth-486
ods can be found in recent state-of-the-art works [30, 50],487
and the video features and noise features are firstly con-488
catenated before their interaction with audio features. Ex-489
perimental results show that the proposed MIM can out-490
perform all the other three interaction methods, and obtain491
more robust multi-modal features. In contrast, the perfor-492
mance degradation of the other three methods suffers from493
the noise information embedded in the features.494

Effect of Different Training Losses. Table 5 compares495
the impact on DiffSal using different loss functions from496

Table 5. Ablation of different training losses.

Model
Losses AVAD ETMD

LCE LKL LMSE CC ↑ SIM ↑ CC ↑ SIM ↑

Ours
X 0.690 0.490 0.617 0.422

X 0.720 0.552 0.644 0.496
X 0.738 0.571 0.652 0.506
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Figure 4. Performance analysis of denoising steps on AVAD and
DIEM datasets.

previous state-of-the-art approaches [50, 58], such as the 497
cross entropy (CE) loss LCE and the Kullback-Leibler di- 498
vergence (KL) loss LKL. During the training process, it is 499
observed that the model with theLCE converges slowly and 500
yields sub-optimal performance. Compared to the LMSE , 501
employing the LKL can achieve acceptable results, but 502
there is still a gap in the performance of training with the 503
LMSE . This suggests that simple MSE loss can be used in 504
the AVSP task as an alternative to these task-tailored loss 505
functions. 506

Effect of Denoising Steps. The impact of the number of 507
iterative denoising steps on the final performance is studied 508
in Figure 4, which shows that more iteration steps result in 509
better performance. With diminishing marginal benefits as 510
the step number increases, a steady increase in performance 511
is observed. For a linearly increasing of the computational 512
cost with the step number,N = 4 is used to maintain a good 513
balance between performance and computational cost. 514

5.3. Method Comparison 515

Comparisons with State-of-the-art Methods. As shown 516
in Table 6, the experimental results of our DiffSal are com- 517
pared with recent state-of-the-art works on six audio-visual 518
saliency datasets. The table highlights the superiority of 519
DiffSal, as it outperforms the other comparable works on all 520
datasets by defined metrics. Notably, DiffSal significantly 521
surpasses the previous top-performing methods, such as 522
CASP-Net [58] and ViNet [30], and becomes the new state- 523
of-the-art on these six benchmarks. The performance boost 524
is very encouraging: DiffSal can achieve an average rela- 525
tive performance improvement of up to 6.3% compared to 526
the second-place performer. Such substantial improvements 527
validate the effectiveness of the diffusion-based approach as 528
an effective audio-visual saliency prediction framework. 529

Qualitative Results. The ability of the model to handle 530
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Table 6. Comparison with state-of-the-art methods on six audio-visual saliency datasets. Bold text in the table indicates the best result, and
underlined text indicates the second best result. Our DiffSal significantly outperforms the previous state-of-the-arts by a large margin.

Method #Params #FLOPs DIEM Coutrot1 Coutrot2
CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑

ACLNetTPAMI′2019 [54] - - 0.522 2.02 0.869 0.427 0.425 1.92 0.850 0.361 0.448 3.16 0.926 0.322
TASED-NetICCV′2019 [37] 21.26M 91.80G 0.557 2.16 0.881 0.461 0.479 2.18 0.867 0.388 0.437 3.17 0.921 0.314

STAViSCVPR′2020 [50] 20.76M 15.31G 0.579 2.26 0.883 0.482 0.472 2.11 0.868 0.393 0.734 5.28 0.958 0.511
ViNetIROS′2021 [30] 33.97M 115.31G 0.632 2.53 0.899 0.498 0.56 2.73 0.889 0.425 0.754 5.95 0.951 0.493

TSFP-NetarXiv′2021 [10] - - 0.651 2.62 0.906 0.527 0.571 2.73 0.895 0.447 0.743 5.31 0.959 0.528
CASP-NetCVPR′2023 [58] 51.62M 283.35G 0.655 2.61 0.906 0.543 0.561 2.65 0.889 0.456 0.788 6.34 0.963 0.585

Ours(DiffSal) 76.57M 187.31G 0.660 2.65 0.907 0.543 0.638 3.20 0.901 0.515 0.835 6.61 0.964 0.625

Method #Params #FLOPs AVAD ETMD SumMe
CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑

ACLNetTPAMI′2019 [54] - - 0.580 3.17 0.905 0.446 0.477 2.36 0.915 0.329 0.379 1.79 0.868 0.296
TASED-NetICCV′2019 [37] 21.26M 91.80G 0.601 3.16 0.914 0.439 0.509 2.63 0.916 0.366 0.428 2.1 0.884 0.333

STAViSCVPR′2020 [50] 20.76M 15.31G 0.608 3.18 0.919 0.457 0.569 2.94 0.931 0.425 0.422 2.04 0.888 0.337
ViNetIROS′2020 [30] 33.97M 115.31G 0.674 3.77 0.927 0.491 0.571 3.08 0.928 0.406 0.463 2.41 0.897 0.343

TSFP-NetarXiv′2021 [10] - - 0.704 3.77 0.932 0.521 0.576 3.07 0.932 0.428 0.464 2.30 0.894 0.360
CASP-NetCVPR′2023 [58] 51.62M 283.35G 0.691 3.81 0.933 0.528 0.620 3.34 0.940 0.478 0.499 2.60 0.907 0.387

Ours(DiffSal) 76.57M 187.31G 0.737 4.22 0.935 0.571 0.652 3.66 0.943 0.506 0.572 3.14 0.921 0.447

GT

Ours

CASP-Net

ViNet

STAViS

Figure 5. Qualitative results of our method compared with other state-of-the-art works. Challenging scenarios involving fast movement on
the tennis court and multiple speakers indoors.

challenging scenarios, such as fast movement on the ten-531
nis court and multiple speakers indoors, is further exam-532
ined. Figure 5 compares the DiffSal against other state-of-533
the-art approaches, such as CASP-Net [58], ViNet [30] and534
STAViS [50]. It is observed that DiffSal produces saliency535
maps much closer to the ground-truth for various challeng-536
ing scenes. In contrast, CASP-Net focuses mainly on audio-537
visual consistency and lacks adopting an advanced network538
structure, leading to sub-optimal results. STAViS is only539
able to generate unsurprisingly saliency maps by employ-540
ing sound source localization. More visualization results541
can be found in the supplementary.542

Efficiency Analysis. Table 6 compares the number of pa-543
rameters and computational costs of the DiffSal with pre-544
vious state-of-the-art works. Compared to CASP-Net, the545
computational complexity of DiffSal is at a moderate level,546
even though incorporating Saliency-UNet in DiffSal leads547
to an increase in the number of model parameters. From548

a performance perspective, the DiffSal model achieves the 549
best performance with the second-highest computational 550
complexity. 551

6. Conclusion 552

In this work, we introduce a novel Diffusion architecture for 553
generalized audio-visual Saliency prediction (DiffSal), for- 554
mulating the prediction problem as a conditional generative 555
task of the saliency map by utilizing input video and audio 556
as conditions. The framework involves extracting spatio- 557
temporal video and audio features from image sequences 558
and corresponding audio signals. A Saliency-UNet is de- 559
signed to perform multi-modal attention modulation, pro- 560
gressively refining the ground-truth saliency map from the 561
noisy map. Extensive experiments have proven that DiffSal 562
achieves superior performance compared to previous state- 563
of-the-art methods in six challenging audio-visual bench- 564
marks. 565
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