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Abstract
Adversarial attacks insert small, imperceptible
perturbations to input samples that cause large,
undesired changes to the output of deep learn-
ing models. Despite extensive research on gen-
erating adversarial attacks and building defense
systems, there has been limited research on un-
derstanding adversarial attacks from an input-data
perspective. This work introduces the notion of
sample attackability, where we aim to identify
samples that are most susceptible to adversarial
attacks (attackable samples) and conversely also
identify the least susceptible samples (robust sam-
ples). We propose a deep-learning-based detector
to identify the adversarially attackable and robust
samples in an unseen dataset for an unseen target
model. Experiments on standard image classifica-
tion datasets enables us to assess the portability
of the deep attackability detector across a range
of architectures. We find that the deep attacka-
bility detector performs better than simple model
uncertainty-based measures for identifying the at-
tackable/robust samples. This suggests that uncer-
tainty is an inadequate proxy for measuring sam-
ple distance to a decision boundary. In addition to
better understanding adversarial attack theory, it is
found that the ability to identify the adversarially
attackable and robust samples has implications
for improving the efficiency of sample-selection
tasks. Link to code: https://github.com/
rainavyas/img_attackability

1. Introduction
Deep learning models have achieved remarkable success
across a wide range of tasks and domains, including im-
age classification (He, 2020) and natural language process-
ing (Khurana et al., 2017). However, these models are
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also susceptible to adversarial attacks (Goodfellow et al.,
2014), where small, imperceptible perturbations to the in-
put can cause large, undesired changes to the output of the
model (Serban et al., 2020; Zhang et al., 2019; Huynh et al.,
2022). Extensive research has been conducted on generating
adversarial attacks and building defense systems (Biggio
& Roli, 2017; Chakraborty et al., 2018), such as detec-
tion (Shen et al., 2019; Raina & Gales, 2022; Shaham et al.,
2018; Hendrycks & Gimpel, 2016; Smith & Gal, 2018)
or adversarial training (Qian et al., 2022; Bai et al., 2021;
Muhammad & Bae, 2022). However, little or no work has
sought to understand adversarial attacks from an input-data
perspective. In particular, it is unclear why some samples are
more susceptible to attacks than others. Some samples may
require a much smaller perturbation for a successful attack
(attackable samples), while others may be less susceptible to
imperceptible attacks and require much larger perturbations
(robust samples). Determining the attackability of samples
can have important implications for various tasks, such as
active learning (Ren et al., 2020; Sun & Wang, 2010) and
adversarial training (Qian et al., 2022). In the field of active
learning, adversarial perturbation sizes can be used by the
acquisition function to select the most useful/uncertain sam-
ples for training (Ducoffe & Precioso, 2018; Ru et al., 2020).
Similarly, adversarial training can be made more efficient
by augmenting with adversarial examples for only the most
attackable samples to avoid unnecessarily scaling training
times, i.e. a variant of weighted adversarial training (Holtz
et al., 2022).

This work defines the notion of sample attackability: the
smallest perturbation size required to change a sample’s
output prediction. To determine if a particular sample is
attackable or robust, we use the imperceptibility threshold
in the definition of an adversarial attack. In automated ad-
versarial attack settings, a proxy function is often used to
measure human perception (Sen et al., 2020) and thus there
can be a range of acceptable thresholds for the impercep-
tibility boundary, as per the proxy measure. In this work,
If a sample’s minimum perturbation size is within a strict
threshold of imperceptibility, then the sample is considered
an adversarially attackable sample. In converse, a sample
with a perturbation size greater than a much more generous
threshold for imperceptibility is termed as robust. Further,
this work proposes a simple deep-learning based detector
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to identify the attackable and robust samples, agnostic to a
specific model’s realisation or architecture. The attackabil-
ity detector is evaluated on an unseen dataset, for an unseen
target model. Further, the attackability detector is evaluated
with unmatched adversarial attack methods; i.e. the detector
is trained using perturbation sizes defined by the simple
Finite Gradient Sign Method (FGSM) attack (Goodfellow
et al., 2014), but evaluated on sample perturbation sizes cal-
culated using for example a more powerful Project Gradient
Descent (PGD) attack method (Madry et al., 2017). The
deep-learning based attackability detector is also compared
to alternative uncertainty (Kim et al., 2021; Gawlikowski
et al., 2021) based detectors.

2. Related Works
Sample Attackability: Zeng et al. (2020) introduce the
notion of sample attackability through the language of vul-
nerability of a sample to an adversarial attack. Kim et al.
(2021) further consider sample vulnerability by using model
entropy to estimate how sensitive a sample may be to adver-
sarial attacks. This uncertainty approach is considered as a
baseline in this work.

Understanding adversarial samples: For understanding
sample attackability, it is useful to consider adversarial
attack explanations from the data perspective. Initial
explanations (Szegedy et al., 2013; Gu & Rigazio, 2014)
argued that adversarial examples lie in large and continuous
pockets of the data manifold (low-probability space),
which can be easily accessed. Conversely, it is also
hypothesized (Tanay & Griffin, 2016) that adversarial
examples simply lie in low variance directions of the data,
but this explanation is often challenged (Izmailov et al.,
2018). Similarly, many pieces of work (Song et al., 2017;
Meng & Chen, 2017; Lee et al., 2017; Ghosh et al., 2018)
argue that adversarial examples lie orthogonal to the data
manifold and can so can easily be reached with small
perturbations. It can also be argued (Gilmer et al., 2018)
that adversarial examples are a simple consequence of
intricate and high-dimensional data manifolds.

Use of adversarial perturbations: In the field of active
learning (Ren et al., 2020; Sun & Wang, 2010), methods
have been proposed to exploit adversarial attacks to
determine the minimum perturbation size. The perturbation
size is a proxy for distance to a model’s decision boundary
and thus an acquisition function selects the samples with
the smallest perturbations for training the model. However,
in these works the perturbation sizes are specific to the
model being trained, as opposed to contributing to the
overall measure of the attackability of a sample, agnostic of
the model and adversarial attack method.

Weighted Adversarial Training Knowledge of sample at-
tackability can be applied to the field of adversarial training.
Adversarial training (Qian et al., 2022) is a popular method
to enhance the robustness of systems, where a system is
trained on adversarial examples. However, certain adver-
sarial examples can be more useful than others and hence
certain research attempts have explored reweighing of ad-
versarial examples during training. For example, the adver-
sarial training loss function can be adapted to give greater
importance to capture an adversarial example’s class mar-
gin (Holtz et al., 2022). Alternatively, adversarial examples
can be re-weighted using the model confidence associated
with each example (Zeng et al., 2020). However, as opposed
to considering the full set of generated adversarial examples,
it is more useful to determine which original/non-adversarial
samples it is worth using to generate an adversarial exam-
ple for the purpose of adversarial training. An effective
proposed approach (Kim et al., 2021) exploits model un-
certainty (such as entropy) associated with each original
sample and then adversarial examples need to be generated
only for the least certain samples. In the domain of natu-
ral language processing, it has been shown that an online
meta-learning algorithm can also be used to learn weights
for the original samples (Xu et al., 2022). In contrast to the
above methods, this work is the first to use a deep learning
approach to predict perturbation sizes for the original/non-
adversarial samples, independent of the attack and target
model and thus offer a demonstrably more effective method
for a variant of weighted adversarial training, labelled active
adversarial training (refer to Appendix C).

3. Adversarial Attacks
An untargeted adversarial attack is successful in fooling a
classification system, F(), when an input sample x can be
perturbed by a small amount δ to cause a change in the
output class,

F(x) ̸= F(x+ δ). (1)

It is necessary for adversarial attacks to be impercepti-
ble, such that adversarial perturbations are not easily de-
tectable/noticeable by humans. For images, an impercepti-
bility constraint is usually enforced using the lp norm, with
p = ∞ being the most popular choice, as a proxy to measure
human perception,

||δ||∞ ≤ ϵ, (2)

where ϵ is the maximum perturbation size permitted for a
change to be deemed appropriately imperceptible. The sim-
plest adversarial attack method for images is Finite Gradient
Sign Method (FGSM) (Goodfellow et al., 2014). Here, the
perturbation direction, δ, is in the direction of the largest
gradient of the output loss function, L(), for a model with
parameters θ,

δ = ϵsign(∇xL(θ,x, y)), (3)
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where the sign() functions returns +1 or −1, element-
wise and y is the target class (or the original predicted class
by the model). The Basic Iterative Method (BIM) (Ku-
rakin et al., 2016) improves upon the FGSM method, but
the most powerful first order image attack method is gener-
ally Project Gradient Descent (PGD) (Madry et al., 2017).
The PGD method adapts the iterative process of BIM to
include random initialization and projection. Specifically,
an adversarial example x′

0 is initialized randomly by select-
ing a point uniformly on the l∞ ball around x. Then this
adversarial example is updated iteratively,

x′
i+1 =

∏
x+S

[
x′
i + αsign(∇xL(θ,x, y))|x=x′

i

]
, (4)

where
∏

denotes the projection operator for mapping back
into the space of all acceptable perturbations S around x
(element-wise clipping to ensure the elements are within the
l∞ ball of size ϵ around x) and α is a tunable gradient step.
The PGD attack can be run for t iterations. The adversarial
perturbation, δ is then simply δ = x′

t − x.

4. Sample Attackability
Sample attackability aims to understand, how easy is it to
attack a specific sample. For a specific model, Fk, we can
state a sample, n’s attackability can be measured directly by
the smallest perturbation required to change the classifica-
tion of the model,

δ̂
(k)

n = min
δ

(Fk(xn) ̸= Fk(xn + δ)). (5)

A successful adversarial attack requires the perturbation
to be imperceptible, as measured by the proxy function in
Equation 2. However, as this is only a proxy measure and
there exists variation in what humans deem imperceptible,
it is difficult to decide on a single value for ϵ in the im-
perceptibility constraint. Hence, in this work, we define
sample n as attackable for model k if the magnitude of the
optimal adversarial perturbation is less than a strict thresh-

old, An,k = (|δ̂
(k)

n | < ϵa), where any sample that is not
attackable can be denoted as Ān,k. Conversely, a sample is
defined as robust, if its adversarial perturbation size is larger
than a separate, but more generous (larger) set threshold,

Rn,k = (|δ̂
(k)

n | > ϵr).

However, it is useful to identify samples that are universally
attackable/robust, i.e. the definition is agnostic to a specific
model architecture or model realisation, k, used. We can
thus extend the definition for universality as follows. A
sample, n, is universally attackable if,

A(M)
n =

⋂
k,Fk∈M

An,k, (6)

where M is the set of models in consideration. Similarly a
sample is universally robust if, R(M)

n =
⋂

k,Fk∈M Rn,k.
The definition of attackability does not explicitly consider
the adversarial attack method used to determine the adver-
sarial perturbations. Experiments in Section B demonstrate
that the rank correlation of sample perturbation sizes as
per different attack methods is extremely high, suggesting
that only the thresholds ϵa and ϵr have to be adjusted to
ensure the same samples are defined as attackable or robust,
independent of the attack method used.

5. Attackable and Robust Sample Detection
Section 4 defines attackable (An,k) and robust (Rn,k) sam-
ples. This section introduces a deep-learning based method
to identify the attackable and robust samples in an un-
seen dataset, for an unseen target model, Ft. Let the
deep-learning attackability detector have access to a seen
dataset, {xn, yn}Nn=1 and a set of seen models, M =
{F1, . . . ,F|M|}, such that Ft /∈ M. Each model can be
represented as an encoding stage, followed by a classifica-
tion stage,

Fk(xn) = F (cl)
k (hn,k), (7)

where hn,k is the output of the model’s encoding of xn.
A separate attackability detector can be trained for each
seen model in M. For a specific seen model, k, we can
measure the attackability of each sample using the mini-

mum perturbation size (Equation 5), {δ̂
(k)

n }Nn=1. It is useful
and efficient to exploit the encoding representation of input
images, hn,k, already learnt by each model. Hence, each
deep attackability detector, D(k)

θ , with parameters θ, can
be trained as a binary classification task to determine the
probability of a sample being attackable for model k, using
the encoding at the input,

p(An,k) = D(k)
θ (hn,k). (8)

This work uses a simple, single hidden-layer fully connected
network architecture for each detector, D, such that,

Dθ(h) = σ(W1σ(W0h)), (9)

where W0 and W1 are the trainable parameters and σ()
is a standard sigmoid function. Now, we have a collection
model-specific detectors that we want to use to determine
the probability of a sample being attackable for the unseen
target model, Ft. The best estimate is to use an average over
the model-specific detector attackability probabilities,

p(An,t) ≈
1

|M|
∑

k,Fk∈M

p(An,k). (10)

However, it is unlikely that this estimate can capture the sam-
ples that are attackable specifically for the target model, Ft’s
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particular architecture and its specific realisation. Hence,
instead it is more interesting to estimate the probability of a
universally attackable sample (defined in Equation 6),

p(A(M+t)
n ) ≈

 1

|M|
∑

k,Fk∈M

p(An,k)

α(M)

, (11)

where the parameter α(M) models the idea that the proba-
bility of sample being universally attackable should decrease
with the number of models, i.e. by definition, the number of
samples defined as universally attackable can only decrease
as number of models in M increases, as is observed in Fig-
ure 1 with the uni curve lying below all the model-specific
curves. Hence, α(M) ≥ 1 and increases with |M| 1.

Similarly, detectors can be trained to determine the prob-
ability of a sample being universally robust, p(R(M+t)

n ).
As a simpler alternative to a deep attackability detector,
uncertainty-based detectors can also be used to identify at-
tackable/robust samples. Inspired by (Kim et al., 2021), the
simplest form of uncertainty is negative confidence (proba-
bility of the predicted class), where it is intuitively expected
that the most confident predictions will be for the robust
samples, confk(x) > ρr and the least confidence samples
can be classed as attackable, confk(x) < ρa.

We can evaluate the performance of the attackability de-
tectors on the unseen target model, Ft /∈ M, using four
variations on defining a sample, n as attackable:

1. all - the sample is attackable for the unseen target model.

An,t = (|δ̂
(t)

n | < ϵa). (12)

2. uni - the sample is universally attackable for the unseen
models and the target model.

A(M+t)
n = An,t ∩A(M)

n . (13)

3. spec - the sample is attackable for the target model but
not universally attackable for the seen models.

Aspec
n,t = An,t ∩ Ā(M)

n . (14)

4. vspec - a sample is specifically attackable for the unseen
target model only.

Avspec
n,t = An,t ∩

 ⋂
k,Fk∈M

Ān,k

 . (15)

1An alternative product-based model for universal attackabil-

ity was considered: p(A(M+t)
n ) ≈

[∏
k,Fk∈M p(An,k)

]α(M)

,

but empirical results with this method were slightly worse for
attackable and robust sample detection.

As discussed for Equation 11, it is expected that the deep
learning-based detectors will perform best in the uni evalua-
tion setting.

For an unseen dataset, we can evaluate the performance
of attackability detectors using precision and recall. We
select a specific threshold, β, used to class the output of
detectors, e.g. p(A

(M+t)
n ) > β classes sample n as at-

tackable. The precision is prec = TP/TP+FP and re-
call is rec = TP/TP+FN, where FP, TP and FN are
standard counts for False-Positive, True-Positive and False-
Negative. A single value summary is given using the F1-
score, F1 = 2 ∗ (prec ∗ rec)/(prec + rec). We can
generate a full precision-recall curve by sweeping over all
thresholds, β and then select the best F1 score.

6. Experiments
6.1. Experimental Setup

Attackability detection experiments are carried out on two
standard classification benchmark datasets: Cifar10 and Ci-
far100 (Krizhevsky, 2009). Cifar10 consists of 50,000 train-
ing images and 10,000 test images, uniformly distributed
over 10 image classes. Cifar100 is a more challenging
dataset, with the same number of train/test images, but dis-
tributed over 100 different classes. For both datasets, the
training images were randomly separated into a train and
validation set, using a 80-20% split ratio. For training the
attackability detectors, direct access was provided to only
the validation data and the test data is used to assess the
performance.

Four state of the art different model architectures are con-
sidered. Model performances are given in Table 1 2. Three
models (vgg, resnext and densenet) are treated as seen mod-
els, M, that the attackability detector has access to during
training. The wide-resnet (wrn) model is maintained as an
unseen model, Ft /∈ M used only to assess the performance
of the attackability detector, as described in Section 5.

Model Cifar10 Cifar100

vgg-19 93.3 71.8
resnext-29-8-64 96.2 82.5
densenet-121/190-40 87.5 82.7

wrn-28-10 96.2 81.6

Table 1. Model Accuracy (%)

Two primary adversarial attack types are considered in these
experiments: FGSM (Equation 3) and the PGD (Equation

2Saved model parameters, hyper-parameter training details and
code for all models is provided as a public repository: https:
//github.com/bearpaw/pytorch-classification
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4) 3. The FGSM attack is treated as a known attack type,
which the attackability detector has knowledge of during
training, whilst the more powerful PGD attack is an un-
known attack type, reserved for evaluation of the detector.
In summary, these experiments use three seen models, the
validation set and FGSM-based attacks to train an attack-
ability detector. This detector is then required to identify
robust/attackable samples for an unseen test set and an un-
seen target model, perturbation sizes defined as per the
known FGSM (matched evaluation) or PGD (unmatched
evaluation).

6.2. Results

Initial experiments consider the matched evaluation setting.
For each seen model (vgg, resnext and densenet), the FGSM
method is used to determine the minimum perturbation size,

δ̂
(k)

n , required to successfully attack each sample, n in the
validation dataset for model k (Equation 5). Figure 1 shows
(for Cifar100 as an example) the fraction, f of samples that
are successfully attacked for each model, as the adversarial
attack constraint, ϵa is varied: f = 1

N

∑N
n 1An,k

. Based on
this distribution, any samples with a perturbation size below
ϵa = 0.05 are termed attackable and any samples with a
perturbation size above ϵr = 0.39 are termed robust. Note
that the uni curve in Figure 1 shows the fraction of univer-
sally attackable samples, i.e. these samples are attackable
as per all three models (Equation 6).

Figure 1. Fraction of attackable samples.

Section 5 describes a simple method to train a deep learn-
ing classifier to detect robust/attackable samples. Hence, a
single layer fully connected network (Equation 9) is trained
with seen (vgg, resnext, densenet) models’ encodings 4,

3Other adversarial attacks are considered in Appendix B.
4Encoding stage for each model defined in: https:

//github.com/rainavyas/img_attackability/

using the validation samples in two binary classification set-
tings: 1) detect attackable samples and 2) detect robust sam-
ples. The number of hidden layer nodes for each model’s
FCN is set to the encoder output size. Training of the FCNs
used a batch-size of 64, 200 epochs, a learning rate of 1e-3
(with a factor 10 drop at epochs 100 and 150), momentum
of 0.9 and weight decay of 1e-4 with stochastic gradient
descent. As described in Section 5 and inspired by Kim et al.
(2021), an ensemble of the confidence of the three seen ar-
chitectures, with no access to the target unseen architecture
(conf-u) and the confidence of the target architecture, wrn,
i.e. having seen the target architecture (conf-s) are also used
as uncertainty based detectors for comparison to the deep-
learning based (deep) attackability/robust sample detector.
To better understand the operation of the detectors, Section
5 defines four evaluation settings: all (Equation 12), uni
(Equation 13), spec (Equation 14) and vspec (Equation 15).
Table 2 shows the F1 scores for detecting attackable sam-
ples on the unseen test data for the unseen wrn model, in the
matched setting (FGSM attack used to define perturbation
sizes for each sample in the test dataset). Note that the scale
of F1 scores can vary significantly between evaluation set-
tings as the prevalence of samples defined as attackable in a
dataset are different for each setting. Table 3 presents the
equivalent results for detecting robust samples, where the
definitions for each evaluation setting update to identifying
robust samples (Rn,k). For Cifar10 data, the deep unseen
detection method performs the best only in the uni evalua-
tion setting for both attackable and robust sample detection.
This is perhaps expected due to the deep detection method
having been designed for this purpose (Equation 11), whilst
for example the conf seen detection method has direct ac-
cess to the target unseen model (wrn) and is able to perform
better in the spec and vspec settings. When evaluation is on
all attackable/robust samples for wrn, the superior vspec and
spec performances of the uncertainty detectors, allows them
to do better overall. However, for Cifar100 data, the deep
detection method is able to perform significantly better in
every setting other than the vspec evaluation setting, which
is expected as this detector has no access to the target model
and cannot identify samples specifically attackable/robust
for the target model (wrn).

Figure 2(a-b) presents the full precision-recall curves (as de-
scribed in Section 5) for detecting robust samples in the uni
evaluation setting, which the deep-learning based detector
has been designed for. It is evident that for a large range of
operating points, the deep detection method dominates and
is thus truly a useful method for identifying robust samples.
Figure 2(c-d) presents the equivalent precision-recall curves
for detecting attackable samples. Here, although the deep-
learning method still dominates over the uncertainty-based
detectors, the differences are less significant. Hence, it can
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(a) Cifar10-robust (b) Cifar100-robust (c) Cifar10-att (d) Cifar100-att

Figure 2. P-R curves for detecting universal robust/attackable samples.

Setting conf-s conf-u deep

all cifar10 0.693 0.681 0.683
cifar100 0.845 0.851 0.874

uni cifar10 0.660 0.643 0.682
cifar100 0.792 0.827 0.831

spec cifar10 0.239 0.209 0.206
cifar100 0.263 0.261 0.271

vspec cifar10 0.010 0.006 0.006
cifar100 0.018 0.018 0.018

Table 2. Attackable Sample Detection (F1) in matched setting.

Setting conf-s conf-u deep

all cifar10 0.501 0.502 0.435
cifar100 0.134 0.161 0.385

uni cifar10 0.030 0.090 0.251
cifar100 0.026 0.074 0.565

spec cifar10 0.486 0.485 0.422
cifar100 0.119 0.141 0.286

vspec cifar10 0.300 0.288 0.254
cifar100 0.042 0.061 0.055

Table 3. Robust Sample Detection (F1) in matched setting.

be argued that this deep learning-based attackability detector
is capable of identifying both attackable and robust samples,
but is particularly powerful in detecting robust samples.

In the unmatched evaluation setting the aim is to identify the
attackable/robust samples in the test data, where the pertur-
bation sizes for each sample are calculated using the more
powerful unknown PGD attack method (Equation 4). PGD
attacks used 8 iterations of the attack loop. For each model
and dataset, the known FGSM attack and the unknown PGD
attacks were used to rank samples in the validation set by
the perturbation size, |δn|. In all cases the Spearman Rank
correlation is greater than 0.84 for Cifar10 and 0.90 for
Cifar100 (Table 4). This implies that the results from the
matched setting should transfer easily to the unmatched set-
ting. Table 5 gives the F1 scores for detecting universal
attackable/robust samples in the unmatched setting. As the

vgg resnext densenet

cifar10 0.840 0.849 0.951
cifar100 0.947 0.900 0.911

Table 4. Spearman rank correlation (PGD, FGSM) perturbations.

PGD attack is more powerful than the FGSM attack, the def-
inition of the attackable threshold and robustness threshold
are adjusted to ϵa = 0.03 and ϵr = 0.10. The deep unseen
detectors dominate once again (specifically for robust sam-
ple detection) and thus, the trends identified for the matched
evaluation setting are maintained in the more challenging
unmatched setting.

Uni setting conf-s conf-u deep

Attackable cifar10 0.636 0.754 0.777
cifar100 0.846 0.871 0.893

Robust cifar10 0.008 0.008 0.048
cifar100 0.005 0.006 0.233

Table 5. Attackable/Robust sample detection (unmatched setting).

7. Conclusion
This work proposes a novel perspective on adversarial at-
tacks by formalizing the concept of sample attackability
and robustness. A sample can be defined as attackable if
its minimum perturbation size (for a successful adversarial
attack) is less than a set threshold and conversely a sam-
ple can be defined as robust if its minimum perturbation
size is greater than another set threshold. A deep-learning
based attackability detector is trained to identify universally
attackable/robust samples for unseen data and an unseen
target model. In comparison to uncertainty-based attack-
ability detectors, the deep-learning method performs best,
with significant gains for robust sample detection. The un-
derstanding of sample attackability and robustness can have
important implications for various tasks such as active ad-
versarial training. Future work can explore the significance
of attackability on the design of more robust systems.
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A. Unmatched Setting Detailed Results
Here more detailed results are presented for detecting attackable (Table 6) and robust samples (Table 7) in an unmatched
setting, where the adversarial attack method used to measure the sample adversarial perturbation size (PGD) is different
from the attack method (FGSM) available during training of the attackability detector. Recall that attackability is defined as
the minimum perturbation size in Equation 5.

Setting conf-s conf-u deep

all cifar10 0.694 0.776 0.797
cifar100 0.886 0.882 0.907

uni cifar10 0.636 0.754 0.777
cifar100 0.846 0.871 0.893

spec cifar10 0.245 0.245 0.261
cifar100 0.167 0.167 0.167

vspec cifar10 0.012 0.012 0.012
cifar100 0.006 0.006 0.006

Table 6. Attackable Sample Detection (F1) in unmatched setting.

Setting conf-s conf-u deep

all cifar10 0.195 0.291 0.146
cifar100 0.088 0.114 0.307

uni cifar10 0.008 0.008 0.048
cifar100 0.005 0.006 0.233

spec cifar10 0.192 0.288 0.144
cifar100 0.084 0.113 0.277

vspec cifar10 0.149 0.221 0.110
cifar100 0.041 0.055 0.095

Table 7. Robust Sample Detection (F1) in unmatched setting.

B. Extra Unseen Attack Method Experiments
Experiments in the main paper consider the unmatched setting where an attackability detector is trained using FGSM
attacked sample perturbation sizes, but evaluated on samples with perturbation sizes defined using the unseen PGD attack
method. This section considers further popular adversarial attack methods as unseen attack methods used to measure
sample perturbation sizes. Specifically, we consider the Basic Iterative Method (BIM) (Kurakin et al., 2016), as an attack
method with a similar algorithm to the PGD attack method. It is more interesting to understand how sample attackability
(minimum perturbation size as per Equation 5) changes when the perturbation sizes are measured using attack methods
very different attack algorithms. This may be of interest to a user when trying to understand which samples are susceptible
to adversarial attacks in realistic settings, where an adversary may try a range of different attack approaches. Hence, we
consider three common whitebox adversarial attack methods to define sample attackability: L-BFGS (Tabacof & Valle,
2015), C&W (Carlini & Wagner, 2016) and JSMA (Papernot et al., 2015).

Table 8 gives the Spearman Rank correlation for minimum perturbation sizes between samples for the FGSM (seen) and the
selected (unseen) adversarial attack methods. It is clear that, as was the case with the PGD attack, for Cifar10 and Cifar100,
FGSM and BIM attack approaches have a very strong perturbation size correlation. This is perhaps expected as both attack
methods are not too dis-similar gradient-based approaches, so will give similar measures of sample attackability. However,
the more different attack methods (JSMA, C&W and L-BFGS) have only a slightly lower rank correlation, suggesting that
an attackability detector trained using a simple FGSM attack method can also transfer well in identifying the adversarially
attackable and robust samples, where their attackability is defined using very different unseen attack methods.
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Attack Data vgg resnext densenet

BIM cifar10 0.871 0.866 0.950
cifar100 0.946 0.914 0.921

C&W cifar10 0.869 0.820 0. 945
cifar100 0.928 0.919 0.910

L-BFGS cifar10 0.845 0.825 0.938
cifar100 0.936 0.907 0.928

JSMA cifar10 0.838 0.852 0.901
cifar100 0.922 0.899 0.912

Table 8. Spearman Rank Correlation between FGSM-based and other attack method based sample perturbation sizes (attackability).

C. Active Adversarial Training
Adversarial training (Qian et al., 2022) is performed by further training trained models on adversarial examples, generated
by adversarially attacking original data samples. However, it is computationally expensive to adversarially attack every
original data sample. Hence, it is useful to actively select a subset of the most useful samples for adversarial training. Active
adversarial training can be viewed as a strict form of weighted adversarial training (Holtz et al., 2022), where adversarial
examples are re-weighed in importance during training. Figure 3 shows the robustness (measured by fooling rate) 5 of the
target wide-resnet model when adversarially trained using adversarial examples from a subset of the Cifar10 validation
data, where the subset is created by different ranking methods: 1) random; 2) a popular entropy-aware approach (Kim et al.,
2021), where ranking is as per the uncertainty (entropy) of the trained wide-resent model (uncertainty); and 3) the final
ranking method uses the attackability of original validation samples as per the deep attackability detector (unaware of the
target wide-resnet model) from this work. The adversarially trained model’s robustness is evaluated using the fooling rate on
the test Cifar10 data. It is evident that the deep attackability detector gives the most robust model for any fraction of data
used for adversarial training. Specifically, with this detector, only 40% of the samples have to be adversarially attacked for
adversarial training to give competitive robustness gains.

Figure 3. Active Adversarial Training

5Robustness evaluated on test data attacked using PGD, with ϵ = 0.03.


