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ABSTRACT

In recent years, diffusion models (DMs) have achieved remarkable success in rec-
ommender systems (RSs), owing to their strong capacity to model the complex
distributions of item content and user behaviors. Despite their effectiveness, ex-
isting methods pose the danger of generating uncredible content recommendations
(e.g., fake news, misinformation) that may significantly harm social well-being,
as they primarily emphasize recommendation accuracy while neglecting the cred-
ibility of the recommended content. To address this issue, in this paper, we pro-
pose Disco, a novel method to steer diffusion models towards credible content
recommendation. Specifically, we design a novel disentangled diffusion model
to mitigate the harmful influence of uncredible content on the generation process
while preserving high recommendation accuracy. This is achieved by reformu-
lating the diffusion objective to encourage generation conditioned on preference-
related signals while discouraging generation conditioned on uncredible content-
related signals. In addition, to further improve the recommendation credibility,
we design a progressively enhanced credible subspace projection that suppresses
uncredible content by projecting diffusion targets into the null space of uncredible
content. Extensive experiments on real-world datasets demonstrate the effective-
ness of Disco in terms of both accurate and credible content recommendations.

1 INTRODUCTION

Figure 1: A general paradigm of DM-based
sequential recommendation methods. The
condition and diffusion target (i.e., target
item’s embedding) are two core components
in DM-based methods.

Diffusion models (DMs) have achieved remarkable
advances across multiple domains, such as image
synthesis (Ho et al., 2020; Dhariwal & Nichol,
2021) and language/text generation (Li et al., 2022;
Lovelace et al., 2023). Owing to their strong capa-
bility in modeling complex data distributions of user
behaviors and diverse item content types (e.g., text,
images, and videos), DMs have attracted growing at-
tention in recommender systems (RSs), thereby fur-
ther driving the innovations in this field (Wang et al.,
2023b; Yang et al., 2023b; Liu et al., 2025a).

DM-based recommendation methods generally
adopt a diffusion-then-denoising paradigm to model
the distributions of users’ behaviors and then gener-
ate items they are likely to engage with (Yang et al.,
2023b; Liu et al., 2025a; Li et al., 2023). Figure 1
illustrates the overall process of existing DM-based
methods. A sequence encoder (e.g., Transformer
(Vaswani et al., 2017), GRU (Chung et al., 2014)) is first employed to encode the embeddings of
the first (n− 1) context items interacted by a user into a unified representation of the user’s overall
preference, which serve as the condition in the reverse stage. The n-th item (i.e., the last item
interacted with by the user) is then treated as the diffusion target. In the forward process, noise
is gradually added to the diffusion target according to a predefined noise schedule. In the reverse
process, the sequence encoder’s output serves as the condition to guide the generation of the item
embeddings that reflect users’ genuine preferences (Li et al., 2025b; Cai et al., 2025).
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Although DM-based recommendation methods have achieved remarkable success, they often over-
look a critical real-world concern: the risk of generating uncredible content recommendations
that can harm social well-being. For example, news RSs powered by DMs may produce uncred-
ible recommendations containing fake news (Wang et al., 2022; 2024a), as these methods typically
overlook the credibility of recommended content. Recommending such uncredible content to users
not only diminishes users’ experience but also poses substantial societal risks. For instance, during
the COVID-19 pandemic, news RSs (e.g., online news portals) were shown to amplify the spread
of health-related fake news (e.g., false cures and vaccine conspiracy theories), which fueled public
confusion and resistance to medical treatments (Loomba et al., 2021). Hence, from a societal con-
sideration perspective, it is crucial to develop DM tailored for credible content recommendations.

To achieve this goal, we first conduct both empirical and theoretical analysis to investigate why
existing DM-based recommendation methods risk generating uncredible content recommendations.
The detailed analysis can be found in Appendix C. Our analysis reveals two key factors: (1) un-
credible condition, which arises when a user has previously interacted with uncredible items (i.e.,
there are uncrdible items in context items); and (2) uncredible diffusion target, which occurs when
the target item itself is uncredible. In this paper, an uncredible item refers to an item containing
uncredible content, such as fake news and misinformation. These two factors jointly lead existing
DM-based methods to generate recommendations that may contain uncredible content.

Hence, to develop a diffusion model tailed for credible content recommendation, it is necessary to
carefully address these two factors. A straightforward solution is to remove uncredible items from
both context items and diffusion targets, or to apply recommendation unlearning methods (Chen
et al., 2022; Zhang et al., 2024) to erase their impacts. This can ensure the credibility of both the
condition and the diffusion target. However, such an approach raises a critical issue: uncredible
items may still reflect users’ genuine preferences. For instance, if a user reads a sports-related
fake news article, it may signal this user’s underlying interest in sports topics. In this case, remov-
ing the uncredible items entirely would severely harm recommendation accuracy. Thus, the first
challenge lies in how to mitigate the negative impact of uncredible content without sacrificing
recommendation accuracy. An alternative solution is to retain users’ preference-related informa-
tion while removing only the uncredible aspects of content items. However, this approach requires
rich supervision (i.e., credibility labels) to ensure accurate and comprehensive removal. In practice,
only a small portion of items are verified and labeled. For example, on news portals, some articles
may be flagged as fake, while many others remain unverified. Hence, the second challenge is how
to develop a diffusion model that can effectively handle both known and unknown uncredible
content under limited label availability. Existing methods for credible content recommendation
(Wang et al., 2022; 2024a; Ma et al., 2025) typically assume that all uncredible items are fully
labeled, which rarely holds in real-world scenarios, leading to suboptimal performance.

To overcome these two challenges and steer diffusion models towards credible content
recommendation, we propose a novel framework called Disco. Specifically, to address the un-
credible condition and the challenge of preserving recommendation accuracy, we design a dis-
entangled diffusion model that separates uncredible content from users’ preference-related informa-
tion in items’ embeddings. With this disentanglement, the generation process becomes free from
the harmful influence of uncredible items, while still preserving high recommendation accuracy by
retaining users’ genuine preference-related information. In addition, instead of incorporating auxil-
iary disentanglement networks and constraints which often introduce extra computation cost (Wang
et al., 2023c; Qi et al., 2024; Wang et al., 2022; Ma et al., 2025), the diffusion model itself can
serve as an effective disentangler with proper adjustments. Specifically, we reformulate the diffu-
sion objective to encourage the model generation guided by preference-related signals (i..e, signals
indicating users’ preference, such as content topics), while discouraging the generation conditioned
on uncredible content-related signals (i.e., uncredible signals such as inaccurate and misleading
information). To address the uncredible diffusion target, we introduce a credible subspace pro-
jection module to project diffusion targets into the null space of uncredible content features, which
maximally excludes uncredible information. To overcome the challenge of limited labeled data,
the uncredible content features are progressively enhanced by detecting and incorporating potential
uncredible items, making the null space projection progressively more accurate and comprehensive.
Comprehensive experiments verify the effectiveness of Disco in terms of delivering both accurate
and credible content recommendations.

In summary, our contributions can be concluded as follows:
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• We propose Disco, a novel diffusion model tailored for credible content recommendation. To
the best of our knowledge, Disco is the first work designed for credible content recommendation
under conditions of limited credibility labels.

• A novel disentangled diffusion model is designed to mitigate the recommendations of uncredible
content while preserving high recommendation accuracy.

• We propose a new progressively enhanced credible subspace projection to further suppress and
mitigate the harmful impacts of uncredible content contained in diffusion targets.

• Comprehensive experiments on three real-world datasets demonstrate the effectiveness of Disco
in generating both accurate and credible content recommendation.

2 PRELIMINARY

2.1 CREDIBLE CONTENT RECOMMENDATION

Content recommendation. The content recommendation task in this paper follows the sequential
recommendation paradigm (Wang et al., 2019; Zhang et al., 2018), which aims to infer users’ poten-
tial interests based on their chronologically ordered interaction sequences with content items (e.g.,
news, and videos and movies) (Wu et al., 2023a; Deldjoo et al., 2016; Goyani & Chaurasiya, 2020).
The set of all sequences is denoted as S = {s1, s2, · · · , s|S|}, where each sequence is represented
as s = {i1, · · · , in−1, in} (s ∈ S). Here, {i1, · · · , in−1} are the context items, and in is the tar-
get item. Each content item ik is transformed into an embedding vector ek using modality-specific
feature extractors, such as language models for textual content or visual encoders for images and
videos, yielding a sequence of embeddings {e1, · · · , en}. Given a user’s historical sequence s, the
goal is to generate a personalized ranking over a set of candidate content items and predict the next
item that the user is most likely to engage with (Kang & McAuley, 2018).

Credible content recommendation. In this paper, we formulate the task of credible content rec-
ommendation as mitigating the exposure of users to uncredible items (Wang et al., 2022; 2024a).
A recommendation model is considered more credible if its generated recommendation lists con-
tain smaller proportions of uncredible items. uncredible items include uncredible information like
fake news and misinformation, which often degrades user experience and leads to adverse societal
impacts. Moreover, we focus on a more challenging setting in which only partial credibility la-
bels indicating whether an item contains uncredible content are available during training, reflecting
the practical difficulty of obtaining exhaustive annotations in real-world RSs. In contrast, complete
labels are provided during testing to ensure an accurate evaluation.

Definition 1 Content credibility. Content credibility indicates whether an item contains uncredible
information such as false, misleading, or inaccurate content. Items containing such information are
regarded uncredible (e.g., fake news, misinformation), whereas all others are regarded credible.

2.2 DIFFUSION MODELS FOR SEQUENTIAL RECOMMENDATION

In sequential recommendation scenarios, DMs are generally utilized on the embedding of the last
item (i.e., en) in a sequence (Yang et al., 2023b; Liu et al., 2025a). The detailed process is as follows:

In the forward stage, DMs gradually add Gaussian noise to embedding en acoording to a noise
schedule [β1, · · · , βT ]:

q(etn|et−1
n ) = N (etn;

√
1− βte

t−1
n , βtI), q(etn|e0n) = N (etn;

√
ᾱte

0
n, (1− ᾱt)I), (1)

where e0n = en, αt = 1 − βt and ᾱt =
∏T

s=1 αs. The first equation is the step-by-step Markov
process from et−1

n to etn. The second equation is derived based on the Markov chain principle (Ho
et al., 2020), which can be used to directly derive etn from e0n in one step. A reparameterization trick
is then applied to obtain variable etn =

√
ᾱte

0
n +
√
1− ᾱtϵ, where ϵ ∼ N (0, I).

In the reverse stage, DMs progressively recover the diffusion target step by step starting from a
Gaussian noise p(eTn ) = N (0, I):

pθ(e
t−1
n |etn, c) = N (et−1

n ;µθ(e
t
n, c, t),Σθ(e

t
n, c, t)), (2)
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where Σθ(e
t
n, c, t) is fixed to σ2(t) = 1−αt−1

1−αt
βt following the common practice in previous work

(Yang et al., 2023b; Wang et al., 2023b). µθ(e
t
n, c, t) is the predicted mean from a network fθ(·):

µθ(e
t
n, c, t) =

√
αt(1−αt−1)√

1−αt
etn+

√
αt−1(1−αt)

1−αt
fθ(e

t
n, c, t). In DM-based recommendation methods,

fθ is generally implemented as an MLP for efficiency.

The denoising process is guided by a preference condition c constructed from the context items
({e1, · · · , en−1}) using a sequence encoder (e.g., Transformer (Kang & McAuley, 2018), GRU
(Hidasi et al., 2015)). This condition c represents users’ overall preference.

Optimization. The core of DM-based sequential recommendation is to optimize the conditional
data generation distribution pθ(e

0
n|c), which is performed by optimizing the variational bound on

negative log likelihood as follows:

E
[
−log pθ(e

0
n|c)

]
≤ Eq

[
−log pθ(e

0:T
n |c)

q(e1:Tn |e0n)

]
:= L. (3)

3 THE DISCO MODEL

In this section, we first introduce our disentangled diffusion model (Section 3.1) followed by the
projection of diffusion targets into a credible subspace (Section 3.2). These two components jointly
enable the learning of credible conditions and credible diffusion targets (i.e., two essential elements
in diffusion models) to guide the model toward credible generation. Subsequently, to address the
more realistic scenario where only a limited portion of content items are labeled with credibility
information, we propose a progressive enhancement mechanism for the credible subspace (Section
3.3). Thereafter, we present the overall optimization objective of our proposed model, which in-
tegrates a content disentanglement term and a preference contrast term to simultaneously enhance
recommendation credibility and accuracy (Section 3.4). Finally, we detail the credible generation
and recommendation process after training (Section 3.5). All components are interlocked to con-
struct a unified diffusion-based framework for accurate and credible content recommendation under
limited credibility supervision. The pseudo-codes of our model are provided in Algorithms 1, 2, 3.

3.1 DISENTANGLED DIFFUSION MODEL

Our disentangled diffusion model is built upon two objectives: (1) generating item embeddings that
reflect users’ genuine preferences; and (2) reducing the negative influence of uncredible content
on the item embedding generation process. To achieve these objectives, we guide DM to generate
the item embeddings using the preference-related condition while discouraging the guidance by
uncredible content-related condition.

To achieve this, we first introduce two content learners to extract user preference signals and uncred-
ible content signals from items’ embeddings. To ensure model simplicity and computational effi-
ciency, both learners are implemented using MLP architectures. Formally, the preference-aware em-
bedding epre and the uncredible content-aware embedding eunc are obtained via epre = MLPpre(e)
and eunc = MLPunc(e), respectively. Accordingly, the context items in a user’s interaction se-
quence can be transformed into two separate sequences: the preference-related sequence spre =
{epre1 , · · · , epren−1} and the uncredible content-related sequence sunc = {eunc1 , · · · , euncn−1}.
Thereafter, we construct preference-related and uncredible content-related conditions from corre-
sponding embedding sequences through a Transformer: cpre = Transformer({epre1 , · · · , epren−1})
and cunc = Transformer({eunc1 , · · · , euncn−1}). We employ the same Transformer architecture with
(Kang & McAuley, 2018; Yang et al., 2023b). However, applying the Transformer twice is com-
putationally expensive. Therefore, we replace the Transformer with mean pooling to construct un-
credible content-related condition (i.e., cunc = Mean({eunc1 , · · · , euncn−1})), since content credibility
does not exhibit temporal dependencies.

After constructing the two conditions, Disco is optimized by jointly encouraging generation guided
by preference-related condition cpre and discouraging generation guided by uncredible content-
related condition cunc. Specifically, it minimizes the variational bound on the target item en when
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Figure 2: The overall framework of Disco. For simplicity and ease of understanding, the progres-
sive enhancement of the credible subspace is not shown in the figure.

conditioned on cpre, while maximizing the variational bound when conditioned on cunc:

θ∗ = arg min
θ

Eq

[
−log pθ(e

0:T
n |cpre)

q(e1:Tn |e0n)

]
− Eq

[
−log pθ(e

0:T
n |cunc)

q(e1:Tn |e0n)

]
. (4)

By employing this training objective, DM can naturally disentangle the two types of information
without requiring additional components to explicitly enforce the separation. Importantly, we do
not use epren or euncn as diffusion targets. Otherwise, disentanglement would be ineffective because
the diffusion condition and target would lie in the same space, lacking a meaningful disentanglement
direction. Our ablation study in Section 4.3 further confirms this, showing that replacing en with
epren or euncn significantly deteriorates recommendation performance.

The training objective in Equation 4 can be reformulated as the following loss:

L = Ee0
n,c

pre,t

[
∥e0n − fθ(e

t
n, c

pre, t)∥22
]
− Ee0

n,c
unc,t

[
∥e0n − fθ(e

t
n, c

unc, t)∥22
]
. (5)

The detailed derivation is provided in the Appendix D. However, directly training the model with
this loss can lead to severe instability. Specifically, the second term may converge to an extremely
small value, causing the model to predominantly optimize this term while neglecting the first term.
To address this, inspired by (Liu et al., 2025a), we replace the MSE loss with a cosine loss:

L = Ee0
n,c

pre,t

[
S
(
e0n, fθ(e

t
n, c

pre, t)
)]
− Ee0

n,c
unc,t

[
S
(
e0n, fθ(e

t
n, c

unc, t)
)]

, (6)

where S(·, ·) = (1 − cos(·, ·))2 and cos(·, ·) is the cosine similarity of two embeddings. This loss
preserves the same optimization direction as that in Equation 5, while its values remain within a
stable range, thereby improving the stability of model training.

3.2 CREDIBLE SUBSPACE PROJECTION

The last item in a user’s interaction sequence may also be an uncredible item, leading to an uncred-
ible diffusion target. In such cases, optimizing Equation 6 might still be suboptimal for mitigating
uncredible content. To address this, we design a credible subspace projection operation, which
projects the diffusion target into the credible subspace to suppress uncredible content.

To achieve this, we first construct an uncredible feature matrix F ∈ R|Iunc|×d by stacking the
uncredible content embeddings of all uncredible items, i.e., {eunci |i ∈ Iunc}, where Iunc is the set
of uncredible items and d is the embedding size. The credible subspace projection is then performed
by projecting the diffusion target into the null space of F, which serves as a subspace that maximally
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excludes uncredible content. Following prior work on null-space projection (Fang et al., 2025; Wang
et al., 2021a; Hu et al., 2025), we apply Singular Value Decomposition (SVD) on F⊤:

{U,Λ,V} = SVD(F⊤), (7)

where each column of left singular matrix U is an orthogonal basis of F⊤. V denotes the right
singular matrix. Λ contains the corresponding singular values, which indicate the magnitude of
uncredible information encoded by the orthogonal basis in U. A higher singular value corresponds
to a orthogonal basis that is denser in uncredible information. Accordingly, we remove the submatrix
U1 in U whose singular values exceed a predefined threshold. The remaining submatrix, U2,
consists only of orthogonal basis containing sparse or no uncredible information. The diffusion
target is subsequently projected into the null space of F using the following operation:

ẽn = enU2U
⊤
2 , (8)

where ẽn is the credible diffusion target. To preserve the useful information contained in the original
target item embedding en, we adopt a residual connection to combine it with the projected embed-
ding, yielding the responsible diffusion target as: ẽn = (ẽn + en)/2. This credible diffusion target
is then used to replace the original target in the diffusion loss, as defined in Equation 6:

L = Eẽ0
n,c

pre,t

[
S
(
ẽ0n, fθ(ẽ

t
n, c

pre, t)
)]
− Eẽ0

n,c
unc,t

[
S
(
ẽ0n, fθ(ẽ

t
n, c

unc, t)
)]

, (9)

where ẽ0n = ẽn. Training the model with this loss further enhances the credibility of recommenda-
tion generation by projecting the diffusion target into a more credible subspace.

3.3 PROGRESSIVE ENHANCEMENT OF CREDIBLE PROJECTION

Owing to the second challenge mentioned in the introduction, the uncredible feature matrix F may
capture only a limited set of uncredible features, leading to an incomplete credible subspace projec-
tion. To address this, we propose a progressive enhancement strategy for credible projection.

Let Iunc denote the set of items already labeled as uncredible content, and the remaining items
in I \ Iunc have uncertain labels. Actually, there is still a proportion of items in I \ Iunc that
are uncredible items but are not verified. In real-world scenarios, uncredible content often exhibits
shared features. For instance, fake news articles tend to use emotionally charged or sensational
headlines, such as those written in all capital letters1. In light of this, we try to detect the potential
uncredible items by calculating the uncredible degree of items in I \ Iunc:

UD(i) =
1

|Iunc|
∑

i′∈Iunc

cos(eunci , eunci′ ), (10)

where eunci and eunci′ are uncredible content embeddings of item i in I \ Iunc and item i′ in Iunc.
cos(·, ·) calculates the cosine similarity between two embeddings. UD(i) represents the uncredible
degree of item i, quantifying the likelihood that item i in I \ Iunc is an uncredible item. Items with
the highest uncredible degrees are selected as potential uncredible items.

At the early stages of training, the disentangled diffusion model is not fully trained, resulting in less
accurate estimates of uncredible degrees. As training goes on, the model’s capability improves.
Therefore, instead of using a fixed selection ratio, we propose a progressive selection strategy.
Specifically, we predefine a maximum selection ratio γ and linearly increase the selection ratio
from zero to γ after m training iterations. Consequently, the selection ratio at the j-th training it-
eration is given by ratio(j) = min(γ, j

mγ). After calculating the current selection ratio, the top
⌊|I \ Iunc| · ratio(j)⌋ items in I \ Iunc with the highest uncredible degrees are selected as the
potential uncredible items and added to the set Iunc. Subsequently, the uncredible feature matrix F
is updated based on the expanded set Iunc. This update enhances the comprehensiveness of the null
space of constructed uncredible content features, reduces residual uncredible features, and enables
the diffusion target to be projected into a more credible subspace.

1https://techcrunch.com/2017/04/06/facebook-puts-link-to-10-tips-for-spotting-false-news-atop-feed/
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3.4 OVERALL OPTIMIZATION OBJECTIVE OF DISCO

The optimization loss in Equation 9 primarily addresses two objectives: capturing a user’s positive
preference (i.e., the target item) and enforcing content disentanglement. However, in RSs, modeling
a user’s negative preference is also crucial, as it enables the model to understand which types of
items users are not interested in. To incorporate this objective and further enhance recommendation
accuracy, we formulate the final version of our diffusion loss with an additional preference contrast
term by enlarging the distance between positive and negative preference:

LDisco = S
(
ẽ0n, fθ(ẽ

t
n, c

pre, t)
)
− S

(
ẽ0n, fθ(ẽ

t
n, c

unc, t)
)︸ ︷︷ ︸

Content disentanglement

+ w
(
S
(
ẽ0n, fθ(ẽ

t
n, c

pre, t)
)
− S

(
e0neg, fθ(e

t
neg, c

pre, t)
))︸ ︷︷ ︸

Preference contrast

,
(11)

where e0neg = eneg is the embedding of a sampled negative preference item (i.e., an item that a
user has not interacted with). w is a hyperparameter controlling the contribution of each term, and
t ∼ U(0, T ). For simplicity, we omit the expectation notation. The second term encourages the
diffusion model to generate items reflecting users’ positive preferences rather than negative prefer-
ences. Although computing this loss requires multiple forward passes through fθ, the computational
overhead remains minimal, as fθ is implemented as an MLP, which is time-efficient. Moreover, since
all components share a single fθ network, no additional memory consumption is required.

3.5 CREDIBLE GENERATION AND CONTENT RECOMMENDATION

In this section, we describe the generation/inference process of Disco.

Following the generation paradigm of Denoising Diffusion Probabilistic Models (Ho et al., 2020),
the one-step generation procedure is defined as follows:

et−1
n =

√
ᾱt−1(1− αt)

1− αt
fθ(e

t
n, c

pre, t) +

√
αt(1− ᾱt−1)

1− ᾱt
etn +

√
1− ᾱt−1

1− ᾱt
(1− αt)ϵ. (12)

The generation step begins with eTn ∼ N (0, I). We employ preference-related condition cpre to
guide the generation, ensuring the generated embeddings capture users’ genuine preferences. This
approach prevents the generated embedding from incorporating uncredible content features, even
if users have previously interacted with uncredible items, thereby enhancing the credibility of the
generation. To improve efficiency, we adopt the DDIM sampling strategy (Song et al., 2021).

The generated embedding e0n represents the user’s predicted future preference. It is then used to
compute matching scores with candidate items: ŷi = e0n ·e⊤i , where ei is the embedding of candidate
item i. The top-K items with the highest matching scores are subsequently recommended to the user.

Discussion: Comparison between Disco and other DM-based methods.

• Model architecture: DreamRecYang et al. (2023b), DiffuRec Li et al. (2023), and PreferDiff Liu
et al. (2025a) all adopt a single-channel diffusion architecture, in which a single condition is used
to guide the generation of the target item. In contrast, Disco employs a disentangled diffusion
architecture with dual channels, leveraging two conditions to guide the generation. This design
plays a crucial role in separating preference-related information from uncredible content signals.

• Objective formulation: DreamRec uses the standard ELBO objective for diffusion models,
whereas PreferDiff adopts a variant ELBO combined with a Bayesian Personalized Ranking
(BPR) loss. DiffuRec instead uses a cross-entropy (CE) objective, essentially turning a gener-
ative diffusion model into a discriminative one. By contrast, our model also belongs to a variant
of the ELBO, but one specifically designed to achieve both accurate and credible generation—an
ability that DreamRec, DiffuRec, and PreferDiff do not possess.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on three datasets: PolitiFact, GossipCop and MHMisinfo. The
PolitiFact and GossipCop datasets are derived from FakeNewsNet repository2 (Shu et al., 2020).
These datasets contain user-news interaction data, where fake news is treated as uncredible content
items. Our task requires user–item interaction sequences together with credibility labels indicating
whether the items are credible items or not. To the best of our knowledge, these three datasets are the
only publicly available datasets that meet these requirements, which can be used in our experiments.
MHMisinfo is collected from a video-based mental health misinformation dataset3 (Nguyen et al.,
2025). This dataset contains users’ interaction sequence with videos and the videos containing
misinformation are uncredible items. Since this dataset does not provide video metadata but only
textual descriptions, we use the textual descriptions as the item content. A detailed description of
these datasets is provided in the Appendix B.1.

Baselines. To evaluate the effectiveness of Disco, we compare it with four categories of sequential
recommendation methods: (1) Traditional methods, including GRU4Rec (Hidasi et al., 2015),
SASRec (Kang & McAuley, 2018), Bert4Rec (Sun et al., 2019), and LRURec (Yue et al., 2024); (2)
Contrastive learning-based methods, including CL4SRec (Xie et al., 2022) and ContraRec (Wang
et al., 2023a); (3) Credible recommendation methods, including Rec4Mit (Wang et al., 2022),
HDInt (Wang et al., 2024a), and PRISM (Ma et al., 2025); (4) DM-based methods, including
DreamRec (Yang et al., 2023b), DiffuRec (Li et al., 2023), PRISM (Ma et al., 2025), PreferDiff (Liu
et al., 2025a). The details of these methods are provided in the Appendix B.2.

Evaluation Metrics. We evaluate model performance using three types of metrics: accuracy-
oriented metrics such as HR@K and NDCG@K, a credibility-oriented metric CR@K (i.e., credible
rate), and a combined metric HC@K that integrates HR@K and CR@K. We follow the standard top-
K evaluation protocol with K = 5, 10, as commonly adopted in sequential recommendation tasks
(Kang & McAuley, 2018). Specifically, CR@K, proposed by (Wang et al., 2022), measures the pro-
portion of credible content items in the top-K recommendation list, where a higher value indicates a
more credible output. The detailed definitions of these metrics are provided in Appendix B.3.

Implementation Details. During training, we assume that labels for 20% of randomly selected un-
credible items are available, simulating the sparsity of labeled data in real-world scenarios. For fair
comparison, we initialize each model’s hyperparameters as suggested in the original papers and then
fine-tune them on our datasets to ensure their best performances are reported. The hyperparameter
w is tuned within {0.5, 1, 1.5, 2, 5}, and γ within {0.1, 0.2, 0.3, 0.4, 0.5}, while m is fixed at 10,000.
The threshold for constructing the null space is fixed at 3. Model parameters are optimized using
AdamW (Loshchilov & Hutter, 2017). Each method is run five times, and we report the average per-
formance along with the standard deviation. Additional implementation details and hyperparameter
settings are provided in the Appendix B.4.

4.2 OVERALL PERFORMANCE COMPARISON

From the results reported in Table 1, we have the following observations:

Our proposed method, Disco, consistently outperforms competitive methods in both accu-
rate and credible content recommendation. Disco achieves the best performance across all
datasets and metrics. These results indicate that Disco can effectively reduce the recommenda-
tions of uncredible content while maintaining high recommendation accuracy. This is enabled by
the disentangled diffusion model and the progressively enhanced credible subspace projection. No-
tably, Disco excels in recommendation accuracy due to the incorporation of negative preference
modeling, thereby better modeling users’ genuine preference.

DM-based methods generally exhibit better recommendation accuracy than other approaches.
Thanks to their strong ability to model complex distributions of user behaviors and item content,
as well as to capture the inherent uncertainty in user behaviors, DM-based methods consistently

2https://github.com/KaiDMML/FakeNewsNet
3https://zenodo.org/records/13191247
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Table 1: Overall performance comparison. The best performances are in bold, and the second-best
performances are underlined. The standard deviation is present in the form of percentage (%).
Datasets Methods HR@5↑ HR@10↑ NDCG@5↑ NDCG@10↑ CR@5↑ CR@10↑ HC@5↑ HC@10↑

PolitiFact

GRU4Rec 0.2142 ±0.51 0.3390 ±0.64 0.1463 ±0.37 0.1863 ±0.41 0.9266 ±0.84 0.9122 ±0.76 0.2929 ±0.51 0.3889 ±0.51

SASRec 0.2158 ±0.10 0.3519 ±0.18 0.1386 ±0.05 0.1823 ±0.10 0.9059 ±0.41 0.9028 ±0.39 0.2929 ±0.12 0.3955 ±0.13

LRURec 0.2168 ±0.14 0.3506 ±0.35 0.1443 ±0.06 0.1872 ±0.13 0.8976 ±0.20 0.8956 ±0.16 0.2924 ±0.14 0.3938 ±0.23

Bert4Rec 0.2191 ±0.11 0.3473 ±0.16 0.1472 ±0.05 0.1883 ±0.08 0.9172 ±0.11 0.9045 ±0.15 0.2960 ±0.09 0.3929 ±0.13

CL4SRec 0.2247 ±0.05 0.3527 ±0.17 0.1508 ±0.07 0.1919 ±0.05 0.9132 ±0.63 0.9027 ±0.67 0.3012 ±0.09 0.3960 ±0.14

ContraRec 0.2241 ±0.25 0.3512 ±0.36 0.1508 ±0.11 0.1917 ±0.17 0.8803 ±2.67 0.8979 ±0.60 0.2969 ±0.35 0.3941 ±0.16

Rec4Mit 0.2118 ±0.28 0.3449 ±0.40 0.1413 ±0.11 0.1840 ±0.15 0.8959 ±0.73 0.8925 ±0.59 0.2876 ±0.30 0.3891 ±0.25

HDInt 0.2153 ±0.27 0.3594 ±0.34 0.1272 ±0.19 0.1734 ±0.21 0.8944 ±0.31 0.8946 ±0.36 0.2906 ±0.21 0.3985 ±0.18

PRISM 0.1927 ±0.48 0.2758 ±0.27 0.1348 ±0.31 0.1615 ±0.25 0.9335 ±0.02 0.9172 ±1.21 0.2727 ±0.47 0.3446 ±0.26

DreamRec 0.2416 ±1.88 0.3287 ±1.94 0.1767 ±1.70 0.2047 ±1.69 0.8620 ±3.24 0.8437 ±2.03 0.3054 ±1.42 0.3664 ±1.15

DiffuRec 0.2606 ±1.21 0.3558 ±1.69 0.1894 ±0.92 0.2214 ±1.08 0.9265 ±1.60 0.9153 ±0.76 0.3334 ±0.81 0.4027 ±0.88

PreferDiff 0.2531 ±1.02 0.3554 ±0.52 0.1818 ±1.04 0.2147 ±0.86 0.8925 ±2.08 0.8981 ±2.34 0.3228 ±0.90 0.3968 ±0.75

Disco 0.2678 ±0.53 0.3775 ±0.70 0.1983 ±0.17 0.2336 ±0.19 0.9823 ±0.34 0.9425 ±1.72 0.3466 ±0.50 0.4192 ±0.78
p-values 6.3e−2 8.1e−3 2.9e−2 2.4e−2 7.8e−4 1.8e−2 1.8e−2 2.4e−2

GossipCop

GRU4Rec 0.2226 ±2.44 0.3194 ±3.10 0.1466 ±1.83 0.1778 ±1.94 0.8864 ±1.80 0.8706 ±1.60 0.2957 ±2.61 0.3678 ±2.61

SASRec 0.3078 ±0.19 0.4706 ±0.05 0.1607 ±0.19 0.2135 ±0.14 0.8743 ±1.87 0.8526 ±1.38 0.3612 ±0.49 0.4473 ±0.41

LRURec 0.3316 ±0.18 0.5101 ±0.11 0.1697 ±0.12 0.2276 ±0.09 0.8544 ±2.39 0.8439 ±1.57 0.3732 ±0.52 0.4618 ±0.57

Bert4Rec 0.2372 ±0.18 0.3711 ±0.18 0.1338 ±0.15 0.1770 ±0.14 0.8764 ±2.00 0.8587 ±0.74 0.3073 ±1.08 0.3984 ±0.12

CL4SRec 0.2898 ±0.39 0.4100 ±0.45 0.1784 ±0.30 0.2174 ±0.30 0.8938 ±0.04 0.8932 ±1.50 0.3516 ±0.32 0.4275 ±0.39

ContraRec 0.2848 ±0.14 0.4224 ±0.16 0.1574 ±0.15 0.2020 ±0.19 0.8754 ±2.06 0.8549 ±0.94 0.3450 ±0.39 0.4249 ±0.20

Rec4Mit 0.2775 ±1.73 0.4403 ±1.98 0.1606 ±1.26 0.2133 ±1.28 0.8979 ±0.62 0.8649 ±1.39 0.3427 ±1.57 0.4360 ±0.89

HDInt 0.3407 ±0.15 0.5249 ±0.27 0.1748 ±0.09 0.2345 ±0.09 0.8986 ±0.30 0.8694 ±0.91 0.3875 ±0.14 0.4755 ±0.25

PRISM 0.2948 ±0.33 0.3447 ±0.25 0.2301 ±0.30 0.2463 ±0.29 0.8806 ±3.09 0.8738 ±1.63 0.3531 ±0.70 0.3852 ±0.42

DreamRec 0.4619 ±0.08 0.5501 ±0.13 0.3415 ±0.05 0.3704 ±0.07 0.8464 ±3.77 0.8339 ±1.93 0.4415 ±1.04 0.4742 ±0.61

DiffuRec 0.4571 ±0.43 0.5008 ±0.65 0.3887 ±0.23 0.4029 ±0.26 0.8313 ±0.58 0.8157 ±0.45 0.4354 ±0.19 0.4495 ±0.24

PreferDiff 0.4969 ±0.05 0.6022 ±0.07 0.3655 ±0.01 0.3999 ±0.02 0.8307 ±3.36 0.8228 ±2.76 0.4523 ±1.14 0.4887 ±0.88

Disco 0.5236 ±0.80 0.6143 ±0.66 0.3996 ±0.91 0.4292 ±0.81 0.9277 ±0.28 0.9039 ±1.53 0.4918 ±0.40 0.5207 ±0.60
p-values 1.4e−3 9.5e−3 5.5e−2 2.5e−3 9.8e−5 2.4e−1 1.7e−3 3.0e−3

MHMisinfo

GRU4Rec 0.1151 ±4.47 0.1894 ±2.47 0.0760 ±4.43 0.0998 ±1.71 0.8380 ±2.68 0.8608 ±2.38 0.1803 ±2.18 0.2624 ±2.86

SASRec 0.1485 ±0.39 0.2592 ±1.31 0.0826 ±0.26 0.1179 ±0.26 0.8839 ±1.24 0.8915 ±0.58 0.2190 ±0.56 0.3276 ±1.21

LRURec 0.1571 ±0.77 0.2704 ±0.39 0.0877 ±0.42 0.1268 ±0.39 0.8359 ±0.78 0.8818 ±0.76 0.2283 ±0.93 0.3350 ±0.23

Bert4Rec 0.1391 ±0.70 0.2299 ±0.03 0.0847 ±0.44 0.1138 ±0.53 0.8162 ±0.75 0.8786 ±0.60 0.2074 ±0.92 0.3017 ±1.08

CL4SRec 0.1734 ±0.50 0.2621 ±0.35 0.1101 ±0.30 0.1387 ±0.19 0.8577 ±0.43 0.9081 ±0.21 0.2469 ±0.57 0.3323 ±0.33

ContraRec 0.1357 ±0.62 0.2258 ±0.58 0.0832 ±0.27 0.1122 ±0.28 0.8275 ±3.79 0.8760 ±2.45 0.2043 ±0.85 0.2980 ±0.74

Rec4Mit 0.1460 ±1.00 0.2659 ±0.90 0.0886 ±0.60 0.1269 ±0.34 0.8424 ±0.76 0.9006 ±0.48 0.2166 ±1.24 0.3343 ±0.83

HDInt 0.1471 ±0.40 0.2654 ±1.20 0.0852 ±0.25 0.1230 ±0.24 0.8306 ±0.38 0.8881 ±0.55 0.2168 ±0.61 0.3301 ±0.83

PRISM 0.1700 ±1.31 0.2339 ±1.56 0.1181 ±0.62 0.1388 ±0.69 0.8398 ±3.91 0.8919 ±1.94 0.2418 ±1.39 0.3065 ±1.28

DreamRec 0.1819 ±0.84 0.2426 ±0.67 0.1313 ±0.60 0.1509 ±0.54 0.9002 ±2.94 0.8952 ±3.06 0.2633 ±1.10 0.3176 ±0.87

DiffuRec 0.1402 ±2.34 0.2095 ±2.77 0.0919 ±2.05 0.1142 ±1.97 0.8976 ±3.18 0.9114 ±1.75 0.2128 ±2.57 0.2861 ±2.49

PreferDiff 0.1974 ±0.72 0.2620 ±0.59 0.1389 ±0.54 0.1598 ±0.51 0.8693 ±3.73 0.8874 ±2.31 0.2713 ±0.85 0.3294 ±0.80

Disco 0.2215 ±0.89 0.2822 ±0.89 0.1580 ±0.69 0.1778 ±0.64 0.9305 ±0.82 0.9264 ±1.01 0.3000 ±0.97 0.3507 ±0.86
p-values 7.2e−3 6.0e−2 4.8e−3 6.6e−3 1.7e−2 4.3e−3 3.1e−3 1.5e−2

outperform traditional recommendation approaches. Specifically, Disco consistently achieves the
best performance, while DiffuRec and PreferDiff generally rank second across most cases. This
observation aligns with prior works (Yang et al., 2023b; Liu et al., 2025a).

Other methods focusing on credible content recommendation perform poorly under limited
labeled data. Although methods such as Rec4Mit, HDInt, and PRISM aim to mitigate the recom-
mendation of uncredible content, they assume full access to labels for all uncredible items. This
assumption does not hold in real-world scenarios, where a large portion of content items remain
unverified. Consequently, these methods cannot achieve satisfactory uncredible content mitigation,
as they rely on accurate and complete labeled data to train classifiers for detecting uncredible items.
This limitation motivates our design of the progressively enhanced credible subspace projection,
which has been empirically shown to effectively mitigate uncredible content.

4.3 ABLATION STUDY AND HYPERPARAMETER ANALYSIS

Ablation Study. In this section, we evaluate the effectiveness of each key component of Disco.
We design six variants: (1) w/o Dis, which removes the disentanglement module (i.e., using origi-
nal item embeddings for subsequent modeling); (2) w/o CSP, which removes the credible subspace
projection; (3) w/o PERS, which removes the progressive enhancement of credible subspace; (4)
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Table 2: Ablation study of Disco.
Methods PolitiFact GossipCop MHMisinfo

HR@5 NDCG@5 CR@5 HC@5 HR@5 NDCG@5 CR@5 HC@5 HR@5 NDCG@5 CR@5 HC@5
Disco 0.2664 0.1975 0.9835 0.3455 0.5236 0.3996 0.9272 0.4918 0.2215 0.1580 0.9305 0.3000
w/o Dis 0.2273 0.1605 0.9121 0.3033 0.4984 0.3678 0.9193 0.4783 0.1910 0.1342 0.8654 0.2650
w/o CSP 0.2575 0.1809 0.9431 0.3331 0.5183 0.3898 0.9155 0.4860 0.2178 0.1548 0.9066 0.2942
w/o PERS 0.2651 0.1919 0.9423 0.3393 0.5147 0.3891 0.9267 0.4876 0.2103 0.1498 0.9113 0.2877
w/o PC 0.2637 0.1934 0.9677 0.3413 0.4643 0.3531 0.9316 0.4651 0.2006 0.1419 0.8708 0.2747
w/o CE 0.1034 0.0622 0.7600 0.1626 0.0005 0.0003 0.7600 0.0010 0.1613 0.1011 0.8000 0.2299
w/ DDT 0.2609 0.1899 0.9499 0.3368 0.4025 0.3190 0.9069 0.4265 0.2089 0.1458 0.8466 0.2797

w/o PC, which removes the preference contrast term in Equation 11; (5) w/o CE, which replaces
cosine error with MSE in Equation 11; (6) w/ DDT, which utilizes disentangled embedding of tar-
get item as the diffusion target in Equation 4. As shown in Table 2, each component contributes
positively. Specifically, removing the disentanglement module significantly harms model perfor-
mance, highlighting that this module can effectively separate uncredible content and preserve users’
preference-related information. Figure 3 also verifies that our designed disentangled diffusion model
can effectively separate preference-related content and uncredible content. Both removing cred-
ible subspace projection and progressive enhancement of credible subspace significantly degrade
Disco’s recommendation credibility (i.e., CR@5). In addition, without the preference contrast
term, the recommendation accuracy will deteriorate. In particular, if not replacing MSE loss with
cosine error, Disco’s performance will be degraded to a great extent, due to unstable training (this
issue is discussed in Appendix B.10 in detail). Meanwhile, if using the disentangled item embed-
ding as the diffusion target, Disco cannot obtain satisfactory recommendation performance, due to
ineffective disentanglement.

Figure 3: Disentanglement visualization. Figure 4: Effect of w on Disco.

Hyperparameter Analysis. The hyperparameter w controls the contribution of negative preference
diffusion. As shown in Figure 4, Disco achieves the best performance when w = 0.5 on PolitiFact,
w = 1.5 on GossipCop, and w = 1 on MHMisinfo. These results demonstrate the effectiveness of
incorporating negative preference diffusion. However, continuously increasing the value of w leads
to an imbalance between different training objectives, thereby deteriorating model performance.
More analysis of hyperparameters are provided in Appendix B.5. After analyzing the relationship
between dataset statistics and the hyperparameter w, we found that the optimal value of w is pro-
portional to the number of items in a dataset. The hyperparameter w controls the contribution of
the preference-contrast term, which involves sampling negative items from the set of un-interacted
items. When the number of items is larger, the sampled negative items represent a smaller portion
of users’ negative preferences. Therefore, a relatively larger w is needed to adequately learn users’
negative preferences, thereby improving recommendation accuracy.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we proposed Disco, a model designed to steer DMs towards credible content rec-
ommendation. To this end, we first designed a disentangled diffusion model to separate uncredible
content from the generation process. Considering the limited labeled data, a progressively enhanced
credible subspace projection is proposed to make the diffusion training process more credible. How-
ever, similar to previous work (Liu et al., 2025a; Yang et al., 2023b), Disco also requires a relatively
large embedding dimension to achieve strong performance. This inevitably leads to increased train-
ing time, which is a common limitation of current DM-based recommendation methods (Liu et al.,
2025a). Future work could focus on designing DM-based models that maintain strong performance
even under low-dimensional embeddings.
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Ethics Statement. This paper aims to develop a diffusion model (DM)-based method for credible
content recommendation. The goal of our approach is to serve societal good by mitigating the
spread of uncredible content through recommender systems. We confirm that we do not anticipate
any negative impacts and our work does not violate the ICLR code of ethics.

Reproducibility Statement. All results reported in this paper are fully reproducible. The pseudo
codes of our model are provided in Algorithms 1, 2, and 3. The hyperparameter search space and
experimental environment are discussed in Section B.4 and Table 4. We provide the code and data
of our method at https://anonymous.4open.science/r/Disco-4657/.
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A RELATED WORK

Our content recommendation task follows the paradigm of sequential recommendation (SRec)
(Kang & McAuley, 2018; Wang et al., 2019). Accordingly, our work is closely aligned with the
research on sequential recommendation and diffusion model (DM)-based sequential recommenda-
tion. In this section, we review the studies on these two topics in detail.

A.1 SEQUENTIAL RECOMMENDATION

Sequential recommendation (SRec) has been widely studied in RSs, owing to the natural temporal
order of users’ behaviors (Wang et al., 2019; 2021b). SRec can be technically divided into two
categories: traditional sequential models and deep learning-based models. Traditional sequential
models generally leverage sequential pattern mining (Yap et al., 2012) or Markov chain models
(He & McAuley, 2016) to model the item dependencies in users’ interaction sequences. Tradi-
tional sequential methods can only capture simple interaction patterns or short-term dependencies,
thereby cannot achieve satisfactory recommendation performance. To overcome these limitations,
deep learning-based sequential recommendation methods are proposed to model complex and long-
term dependencies in users’ behaviors. Among this category, one research line focuses on designing
the effective sequence encoders and backbone networks to encode users’ interaction sequence, in-
cluding GRU (Hidasi et al., 2015), CNNs (Tang & Wang, 2018), Transformer (Kang & McAuley,
2018), and Mamba (Liu et al., 2025b). Building upon these, another research line further introduces
advanced models, such as Graph Neural Networks (GNNs) (Chang et al., 2021) and generative
models (Deldjoo et al., 2024). Among them, generative models have recently attracted significant
attention. In particular, DMs Liu et al. (2025a) and large language models (LLMs) (Sheng et al.,
2025) have emerged as the two most prominent approaches. DM-based methods will be discussed in
detail in Section A.2. LLM-based methods focus on leveraging the open-world knowledge encoded
in LLMs to enhance sequential recommendation performance (Harte et al., 2023).

A.2 DIFFUSION MODELS FOR SEQUENTIAL RECOMMENDATION

In recent years, owing to the strong capability to model complex distributions of user behaviors
and item content, diffusion models (DMs) have been widely applied in recommendation scenarios
(Wei & Fang, 2025; Lin et al., 2024), including top-K recommendation (Wang et al., 2023b; Zhao
et al., 2024) and multimodal recommendation (Ma et al., 2024c; Li et al., 2025a). In SRec, DM-
based recommendation methods can be broadly categorized into two types: next item generation-
based methods, and data augmentation-based methods. The former generally employ sequence
encoders (e.g., GRU and Transformer) to encode users’ context items into condition embeddings,
which then guide the generation of next items (Yang et al., 2023b; Liu et al., 2025a; Li et al.,
2025b; Cai et al., 2025; Hu et al., 2024; Li et al., 2025b; Ma et al., 2024b; Wang et al., 2024b;
Xie et al., 2024). For example, (Yang et al., 2023b; Liu et al., 2025a) utilize Transformer to learn
condition embeddings from users’ historical interactions, which are then utilized to guide the next-
item generation process. The latter category leverages DMs to generate additional interaction data in
order to enrich users’ interaction sequences and alleviate sequence sparsity. For instance, (Liu et al.,
2023; Ma et al., 2024a; Wu et al., 2023b) propose generating pseudo interaction sequences with
DMs to mitigate the sequence sparsity problem. Additionally, several methods integrate contrastive
learning with diffusion models to generate augmented views, thereby enhancing the training of DM-
based recommendation methods (Cui et al., 2024b;a; Qu & Nobuhara, 2025).

Although these methods have achieved remarkable success, they pose a significant risk of generating
uncredible content recommendations (e.g., fake news (Wang et al., 2022; 2024a; Ma et al., 2025),
misinformation (Pathak et al., 2023; Fernandez et al., 2024)), which can severely harm both user
experience and societal well-being. While (Ma et al., 2025) attempts to leverage DMs to mitigate
fake news, its effectiveness is limited under the challenge of scarce labeled data. This limitation mo-
tivates us to steer DMs towards credible content recommendation while simultaneously addressing
the challenge of learning from only limited annotated data.
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B MORE EXPERIMENTAL DETAILS

B.1 DATASETS

In our task setting, we require users’ chronological interaction sequences with content items, to-
gether with labels indicating whether each item contains uncredible content. However, only a lim-
ited number of public datasets fulfill these requirements. In this paper, we utilize three datasets:
PolitiFact, GossipCop, and MHMisinfo.

The PolitiFact and GossipCop datasets are derived from the FakeNewsNet repository4 , which col-
lects data from two well-known fact-checking websites: PolitiFact and GossipCop. These datasets
provide user–news interaction sequences along with labels that indicate whether each news article
is fake or true. The MHMisinfo dataset is collected from a video-based mental health misinforma-
tion dataset5 , containing users’ interaction sequences with videos annotated by whether the videos
contain mental health misinformation. Although this dataset records user–video interactions, the
original video and image contents are not provided. Therefore, we represent the items using their
video descriptions instead of visual features.

Given the high sparsity of these datasets, we adopt a data augmentation strategy following common
practice (Yang et al., 2023b;a). Specifically, for each user, we transform their interaction sequence
into multiple sub-sequences by treating each item as the target item and the items preceding it as
historical context. This transformation increases the number of user–item interaction sequences and
enriches the training data. The statistics of these datasets are reported in Table 3. After augmenta-
tion, the datasets have more sequences, thereby the recommendation performances of Rec4Mit and
HDInt are different from the results reported in (Wang et al., 2022) and (Wang et al., 2024a).

Table 3: The statistics of the three used datasets after preprocessing.
Datasets PolitiFact GossipCop MHMisinfo
# Content items 616 9,529 3,160
# Credible content items 306 6,792 2,815
# Uncredible content items 310 2,737 345
# Training sequences 103,335 510,149 38,083
# Test sequences 21,490 68,002 8,060

B.2 BASELINE DESCRIPTIONS

In this section, we introduce the baseline methods used in our comparison.

Traditional sequential recommendation methods:

• GRU4Rec (Hidasi et al., 2015) utilizes the Gated Recurrent Unit (GRU) to model the temporal
dependencies of items in users’ interaction sequences.

• SASRec (Kang & McAuley, 2018) employs the Transformer architecture to model the item de-
pendencies in users’ interaction sequences. This is one of the most representative sequential rec-
ommendation methods.

• Bert4Rec (Sun et al., 2019) replaces SASRec’s unidirectional Transformer with a bidirectional
Transformer architecture to model complex item dependencies. It also introduces a cloze task
paradigm for sequential recommendation.

• LRU4Rec (Yue et al., 2024) designs linear recurrent units for sequential recommendation. It
decomposes linear recurrence operations and proposes recursive parallelization, reducing model
size and enabling efficient parallel training.

Contrastive learning-based sequential recommendation methods:

• CL4SRec (Xie et al., 2022) uses contrastive learning to address the data sparsity problem in
sequential recommendation. It designs three sequence augmentation operations for contrastive

4https://github.com/KaiDMML/FakeNewsNet
5https://zenodo.org/records/13191247
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learning: item cropping, item masking, and item reordering. Transformer is used as the sequential
encoder of CL4SRec.

• ContraRec (Wang et al., 2023a) proposes two types of contrastive perspectives to enhance the per-
formance of contrastive learning-based sequential recommendation: context-target contrast and
context-context contrast. Transformer is used as the sequential encoder of ContraRec.

Sequential recommendation methods for mitigating uncredible content:

• Rec4Mit (Wang et al., 2022) first utilizes a disentangler to extract event- and veracity-aware in-
formation, respectively. Thereafter, the event embeddings are utilized to derive users’ genuine
preferences and predict the next items users may be interested in.

• HDInt (Wang et al., 2024a). Similar to Rec4Mit, HDInt is also dedicated to mitigating fake news
in recommender systems. HDInt also considers the political bias. We omit this part, since it
requires additional data and the political bias is not considered in our task.

• PRISM (Ma et al., 2025) proposes a protection-enhanced news recommendation method based
on interest-aware sequential modeling. It utilizes DMs’ controllable ability to learn user interest
and mitigate fake news. However, it assumes all the labels of fake news are fully available, which
does not hold in the real world. It is also a DM-based sequential recommendation method.

DM-based recommendation methods:

• DreamRec (Yang et al., 2023b) assumes that each user has an “oracle” item in mind and selects
items that match his ideal item. It uses a Transformer to learn users’ preferences, which then serve
as the condition for generating the oracle item for each user.

• DiffuRec (Li et al., 2023) employs a diffusion model to represent item embeddings in a distribu-
tion space and then feeds the embeddings into an approximator to generate target item represen-
tations. It argues that the standard objective function of DMs is unsuitable for recommendation
tasks and uses cross-entropy loss to optimize model parameters.

• PreferDiff (Liu et al., 2025a) proposes a surrogate optimization objective which extend BPR
recommendation loss (Rendle et al., 2009) to variational format. Meanwhile, this surrogate opti-
mization objective can also be extended to multiple negative items.

B.3 EVALUATION METRICS

HR@K and NDCG@K are two commonly used metrics to evaluate the recommendation accuracy,
thereby we do not make further introduction for them. Credible Rate (CR@K) is a metric to measure
the credibility of a recommendation model. Specifically, it calculates the average rate of the credible
content items in the recommendation lists:

CR@K =
1

|Stest|
∑

s∈Stest

K − |Rs ∩ IGround−truth
unc |
K

, (13)

where Stest is the test set of sequences. Rs is the recommendation list for sequence s.
IGround−truth
unc denotes the ground-truth set of uncredible items. |Rs ∩ IGround−truth

neg | calculates
the number of uncredible items in the recommendation list. The higher value of CR@K means the
better performance in delivering credible recommendations.

In addition, we test how our methods perform in terms of both accurate and credible recommenda-
tions, we design a combined metric HC@K (i.e., combining HR@K and CR@K). Formally, HC@K
is calculated as follows:

HC@K =
2×HR@K× (CR@K/2)

HR@K+ (CR@K/2)
. (14)

This combined metric is inspired by the F1-score, which combines precision rate and recall rate.
To note that, since the values of HR@K and CR@K are not on the same scale, we divide CR@K
with a factor of 2 to rescale it into a similar value level with HR@K. This adjustment ensures a
fair combination; otherwise, the metric with a much smaller magnitude would disproportionately
dominate the combined score.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 IMPLEMENTATION DETAILS

In this paper, we consider a more challenging and realistic scenario in which only a small proportion
of uncredible items are verified. To simulate this setting, we randomly select 20% of the uncredible
items with available labels during the training process, while the labels of the remaining items are
treated as unknown. It is similar to the semi-supervised setting. In contrast, during the testing stage,
all content labels are provided to enable an accurate evaluation.

The items in PolitiFact and GossipCop are news articles, and we use their textual descriptions as item
content. In MHMisinfo, although the items are videos, only textual descriptions are available; thus,
we can only rely on the textual descriptions for content representation. We encode these textual de-
scriptions into language embeddings using LLaMA2-7B (Touvron et al., 2023), and further project
them into a lower dimension through an MLP. Following (Liu et al., 2025a), we fix the transformed
embedding dimension at 3072 for all DM-based methods, as they exhibit strong performance only
with higher embedding sizes. For other methods, the embedding size is set to 64. We also experi-
mented with larger embedding sizes for these methods, but observed little or no performance gain,
and even performance drops for some methods, consistent with the findings in (Liu et al., 2025a).

In our implementation, we select Transformer as our sequence encoder. Following the standard
configuration (Vaswani et al., 2017), the Transformer architecture in our implementation includes
multi-head attention, position-wise feed-forward network, layer normalization, and dropout.

For our method Disco, the hyperparameter w is tuned within {0.5, 1, 1.5, 2, 5}. We fix m at
10,000 and tune γ within {0.1, 0.2, 0.3, 0.4, 0.5} to control the maximum selection ratio as well as
the growth rate of the current selection ratio. The maximum number of diffusion steps is fixed at
2,000 and the DDIM step is set to 100, following the settings of (Liu et al., 2025a). For all DM-based
methods, we utilize a linear schedule for βt in range [0.0001, 0.02]. In our implementation, we do
not use a classifier-free guidance (Ho & Salimans), since we found it does not influence much to the
performance of Disco. In our implementation, we found that the singular values in Λ are relatively
large; therefore, the threshold for constructing the null space of uncredible features is fixed at 3 for
all datasets in our experiments. We search learning rate in range {1e-5, 5e-5, 1e-4, 5e-4, 1e-3}. The
batch size is searched in {2048 × 2i}i=0,1,2,3. The model parameters are initialized using normal
initialization and optimized by AdamW (Loshchilov & Hutter, 2017). The hyperparameter settings
of baseline methods are reported in Table 4. All experiments are conducted on an NVIDIA A40
GPU with 48 GB of memory. Each method is run five times, and we report the average performance
along with the standard deviation.

Table 4: The hyperparameter settings of baseline methods.
Methods Hyperparameter searching space

GRU4Rec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0
SASRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0
Bert4Rec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, mask probability∼{0.2, 0.4, 0.6, 0.8}
LRURec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, dropout rate∼{0.2, 0.4, 0.6, 0.8}
CL4SRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, mask/reorder/crop proportion∼{0.2, 0.4, 0.6, 0.8},

λ ∼{0.1, 0.3, ..., 0.9}
ContraRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, mask/reorder/crop proportion∼{0.2, 0.4, 0.6, 0.8},

τ1, τ2 ∼{0.1, 0.2, ..., 1}, γ ∼{0, 0.01, 0.1, 1, 5, 10}
Rec4Mit lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, k ∼{2, 4, ..., 20}
HDInt lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, λ ∼{1, 2, ..., 10}, γ ∼{2, 4, 6, 8, 10}
PRISM lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{500, 1000, 1500, 2000}, w ∼{0, 2, 4, 6, 8},

λOT , λc, λr, λrec ∼{0.2, 0.4, 0.6, 0.8, 1}, embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}
DreamRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{500, 1000, 1500, 2000}, w ∼{0, 2, 4, 6, 8},

embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}
DiffuRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{16, 32, 64, 128}, δ=0.001,

embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}
PreferDiff lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{500, 1000, 1500, 2000}, w ∼{0, 2, 4, 6, 8},

λ ∼{0.2, 0.4, 0.6, 0.8}, embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}

B.5 MORE HYPERPARAMETER EXPERIMENTS

The hyperparameter γ controls the selection ratio of potential uncredible items. We evaluate the
performance of Disco (using combined metric HC@5) under different values of γ in range {0.1,
0.2, 0.3, 0.4, 0.5}. As shown in Figure 5, Disco achieves the best performance when fixing w =
0.1 on PolitiFact and GossipCop, and w = 0.4 on MHMisinfo. Lower values prevent the model
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Figure 5: Effect of γ on Disco.

from effectively capturing potentially uncredible items, while higher values may introduce excessive
noise, both of which degrade model performance.

B.6 TIME EFFICIENCY ANALYSIS

We conduct experiments to evaluate the training and inference cost (in seconds) of our model Disco
and four DM-based methods under the same batch size. As shown in Table 5, the training cost of
Disco is relatively higher than DreamRec and PreferDiff, mainly due to our additional designs for
credible content recommendation, including content disentanglement and credible subspace projec-
tion. This is acceptable due to the higher recommendation accuracy and credibility of our proposed
method. Our training cost is much lower than that of DiffuRec an PRISM. As for inference cost,
our proposed method Disco demonstrates the highest efficiency. This is because we adopt DDIM
(Song et al., 2021) as our generation strategy, which is more efficient than the DDPM (Ho et al.,
2020) paradigm employed by DreamRec, DiffuRec and PRISM. Even compared with PreferDiff,
which also adopts DDIM, Disco also exhibits higher efficiency. It is because we do not employ
classifier-free guidance in our implementation, since it has limited influence on our model while in-
curring additional time consumption. Although Disco requires disentangling item embeddings first
in the inference stage, it’s inference cost remains comparable to PreferDiff on GossipCop dataset,
which contain large number of items.

Table 5: Time cost (s) of different models on PolitiFact, GossipCop, and MHMisinfo.
Datasets Time cost (s) DreamRec DiffuRec PRISM PreferDiff Disco

PolitiFact Training/epoch 9.4 74.8 25.3 11.3 12.6
Inference 278.2 224.3 994.3 15.2 10.5

GossipCop Training/epoch 43.3 376.9 137.6 58.8 73.1
Inference 956.8 783.1 3223.6 127.9 133.5

MHMisinfo Training/epoch 3.3 26.9 8.9 3.9 4.2
Inference 107.6 87.1 372.9 8.7 7.7

B.7 DISCUSSION ON EMBEDDING DIMENSION

As pointed out in our paper, DM-based methods can only achieve strong performance when the
embedding dimension is high. To demonstrate the necessity of using high embedding dimension
(i.e., 3072) for all DM-based methods, we conducted experiments on DM-based methods when
fixing embedding dimension to 64. The results are shown in Table 6:

As shown in Table 6, not only Disco but also other DM-based recommendation methods (PRISM,
DreamRec, and PreferDiff) experience a substantial performance drop when the embedding size is
reduced to 64. This observation is consistent with the findings reported in [1] and further validates
the necessity of using high-dimensional embeddings in DM-based recommender systems.

Although a higher embedding dimension increases the per-epoch training time, it also provides the
benefit of significantly faster convergence. In our revised manuscript, we include a figure illustrating
the convergence curves of Disco and SASRec. As presented in Figure 6, Disco converges much
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Table 6: Performance comparison under embedding dimension 64 for DM-based methods.

Methods HR@5 HR@10 NDCG@5 NDCG@10 CR@5 CR@10 HC@5 HC@10
PolitiFact

GRU4Rec 0.2142 0.3390 0.1463 0.1863 0.9266 0.9122 0.2929 0.3889
SASRec 0.2158 0.3519 0.1386 0.1823 0.9059 0.9028 0.2923 0.3955
Bert4Rec 0.2191 0.3473 0.1472 0.1883 0.9127 0.9045 0.2960 0.3929
CL4SRec 0.2247 0.3527 0.1508 0.1919 0.9132 0.9027 0.3012 0.3960

PRISM (emb size=3072) 0.1927 0.2758 0.1348 0.1615 0.9325 0.9178 0.2727 0.3446
PRISM (emb size=64) 0.0806 0.1261 0.0569 0.0715 0.7807 0.7222 0.1336 0.1869
DreamRec (emb size=3072) 0.2416 0.3287 0.1767 0.2047 0.8620 0.8437 0.3054 0.3661
DreamRec (emb size=64) 0.0814 0.1074 0.0651 0.0734 0.5744 0.5605 0.1268 0.1553
PreferDiff (emb size=3072) 0.2531 0.3554 0.1818 0.2147 0.8925 0.8981 0.3228 0.3968
PreferDiff (emb size=64) 0.1227 0.1841 0.0882 0.1078 0.8934 0.8788 0.1925 0.2595
Disco (emb size=3072) 0.2678 0.3775 0.1983 0.2336 0.9823 0.9425 0.3466 0.4192
Disco (emb size=64) 0.1171 0.1962 0.1107 0.1422 0.9916 0.9665 0.1895 0.2791

GossipCop

GRU4Rec 0.2226 0.3194 0.1466 0.1778 0.8864 0.8706 0.2957 0.3678
SASRec 0.3078 0.4706 0.1607 0.2135 0.8743 0.8526 0.3612 0.4473
Bert4Rec 0.2372 0.3711 0.1338 0.1770 0.8764 0.8587 0.3078 0.3981
CL4SRec 0.2898 0.4100 0.1784 0.2174 0.8938 0.8932 0.3516 0.4275

PRISM (emb size=3072) 0.2948 0.3447 0.2301 0.2463 0.8806 0.8733 0.3531 0.3852
PRISM (emb size=64) 0.0023 0.0034 0.0015 0.0018 0.6570 0.6940 0.0046 0.0067
DreamRec (emb size=3072) 0.4619 0.5501 0.3415 0.3704 0.8464 0.8336 0.4415 0.4742
DreamRec (emb size=64) 0.0036 0.0049 0.0027 0.0031 0.5791 0.5903 0.0071 0.0096
PreferDiff (emb size=3072) 0.4969 0.6022 0.3655 0.3999 0.8307 0.8228 0.4523 0.4887
PreferDiff (emb size=64) 0.0084 0.0139 0.0053 0.0070 0.6542 0.7400 0.0164 0.0268
Disco (emb size=3072) 0.5236 0.6143 0.3996 0.4292 0.9272 0.9039 0.4918 0.5207
Disco (emb size=64) 0.0087 0.0162 0.0053 0.0077 0.7993 0.7993 0.0170 0.0311

MHMisinfo

GRU4Rec 0.1151 0.1894 0.0760 0.0998 0.8380 0.8608 0.1803 0.2624
SASRec 0.1485 0.2592 0.0826 0.1179 0.8339 0.8915 0.2190 0.3276
Bert4Rec 0.1391 0.2299 0.0847 0.1138 0.8162 0.8786 0.2074 0.3017
CL4SRec 0.1734 0.2621 0.1101 0.1387 0.8577 0.9081 0.2469 0.3323

PRISM (emb size=3072) 0.1700 0.2339 0.1181 0.1388 0.8398 0.8919 0.2418 0.3065
PRISM (emb size=64) 0.0239 0.0295 0.0190 0.0208 0.7095 0.7317 0.0448 0.0546
DreamRec (emb size=3072) 0.1819 0.2426 0.1313 0.1509 0.9002 0.8952 0.2633 0.3176
DreamRec (emb size=64) 0.0282 0.0347 0.0233 0.0254 0.8281 0.8901 0.0528 0.0644
PreferDiff (emb size=3072) 0.1974 0.2620 0.1389 0.1598 0.8693 0.8874 0.2713 0.3294
PreferDiff (emb size=64) 0.0325 0.0380 0.0290 0.0308 0.8290 0.8989 0.0603 0.0701
Disco (emb size=3072) 0.2215 0.2822 0.1580 0.1778 0.9305 0.9264 0.3000 0.3507
Disco (emb size=64) 0.0123 0.0572 0.0074 0.0213 0.9968 0.9873 0.0240 0.1025

more rapidly than the non-DM-based method SASRec (embedding size = 64). Specifically, Disco
reaches its best performance at approximately the 40-th epoch, whereas SASRec requires around
400 epochs. This fast convergence rate of Disco partially offsets the additional computational cost
introduced by high-dimensional embeddings.

In addition, we conducted further experiments to demonstrate that Disco can still achieve superior
performance compared with non-DM-based methods when the embedding dimension is restricted
to 64, as long as a minor modification is applied to the overall optimization objective. In particular,
we augment Disco’s loss function with an additional Cross-Entropy term:
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Figure 6: The performance convergence curve of SASRec and Disco on PolitiFact dataset.

Table 7: Performance comparison of Disco (optimized by LDisco∗ ) and non-DM recommendation
methods on PolitiFact, GossipCop, and MHMisinfo when embedding dimension is se to 64.

Methods HR@5 HR@10 NDCG@5 NDCG@10 CR@5 CR@10 HC@5 HC@10
PolitiFact

GRU4Rec 0.2142 0.3390 0.1463 0.1863 0.9266 0.9122 0.2929 0.3889
SASRec 0.2158 0.3519 0.1386 0.1823 0.9059 0.9028 0.2923 0.3955
Bert4Rec 0.2191 0.3473 0.1472 0.1883 0.9127 0.9045 0.2960 0.3929
CL4SRec 0.2247 0.3527 0.1508 0.1919 0.9132 0.9027 0.3012 0.3960
Disco (emb size=64, LDisco∗ ) 0.2335 0.3555 0.1642 0.2034 0.9316 0.9213 0.3111 0.4013

GossipCop

GRU4Rec 0.2226 0.3194 0.1466 0.1778 0.8864 0.8706 0.2957 0.3678
SASRec 0.3078 0.4706 0.1607 0.2135 0.8743 0.8526 0.3612 0.4473
Bert4Rec 0.2372 0.3711 0.1338 0.1770 0.8764 0.8587 0.3078 0.3981
CL4SRec 0.2898 0.4100 0.1784 0.2174 0.8938 0.8932 0.3516 0.4275
Disco (emb size=64, LDisco∗ ) 0.4250 0.5060 0.3320 0.3583 0.9151 0.9080 0.4407 0.4786

MHMisinfo

GRU4Rec 0.1151 0.1894 0.0760 0.0998 0.8380 0.8608 0.1803 0.2624
SASRec 0.1485 0.2592 0.0826 0.1179 0.8339 0.8915 0.2190 0.3276
Bert4Rec 0.1391 0.2299 0.0847 0.1138 0.8162 0.8786 0.2074 0.3017
CL4SRec 0.1734 0.2621 0.1101 0.1387 0.8577 0.9081 0.2469 0.3323
Disco (emb size=64, LDisco∗ ) 0.1856 0.2660 0.1214 0.1475 0.8669 0.9129 0.2599 0.3361

LDisco∗ = LDisco − log
(

exp(fθ(ẽtn, c
pre, t) · e⊤n )∑

i∈I exp(fθ(ẽtn, cpre, t) · e⊤i )

)
. (15)

The added term encourages the diffusion network fθ to align its predictions more closely to the
target items than with other items. Using this enhanced loss function LDisco∗ , Disco can achieve
better performance than non-DM based methods. The comparison results are reported in Table 7.

As shown in the Table 7, Disco can achieve better performance than non-DM recommendation
methods with only a minor adjustment to its overall loss. This improvement arises because adding
a discriminative loss (i.e., Cross Entropy loss) to the generative loss (LDisco) can partially mitigate
the dimensionality limitations inherent to diffusion models.
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However, this practice will transform a purely generative model into a discriminative one. Our work
does not make such a compromise. Nevertheless, the results clearly suggest that our model retains
strong potential to surpass non-DM-based recommenders even when operating with substantially
reduced embedding dimensions. This highlights the potential of Disco to achieve an effective
trade-off between efficiency and performance.

B.8 DISCUSSION ON DIFFUSION STEP T

In this section, we conducted experiments to investigate whether Disco still strong performance
when the diffusion step T is much smaller. The experimental results are reported in Table 8.

From Table 8, we can have the following observations:

• As the diffusion step T increases, the performance of our proposed model, Disco, im-
proves.

• Disco maintains superior performance compared with non-DM methods even at much
smaller diffusion step (T=100 for PolitiFact and GossiCop, and T=500 for MHMisinfo).

Table 8: Performance comparison of Disco and non-DM recommendation methods under different
diffusion steps T .

Methods HR@5 HR@10 NDCG@5 NDCG@10 CR@5 CR@10 HC@5 HC@10
PolitiFact

GRU4Rec 0.2142 0.3390 0.1463 0.1863 0.9266 0.9122 0.2929 0.3889
SASRec 0.2158 0.3519 0.1386 0.1823 0.9059 0.9028 0.2923 0.3955
Bert4Rec 0.2191 0.3473 0.1472 0.1883 0.9127 0.9045 0.2960 0.3929
CL4SRec 0.2247 0.3527 0.1508 0.1919 0.9132 0.9027 0.3012 0.3960

Disco (Diffusion step T=100) 0.2494 0.3724 0.1751 0.2146 0.9488 0.9352 0.3269 0.4146
Disco (Diffusion step T=200) 0.2602 0.3752 0.1842 0.2211 0.9427 0.9340 0.3353 0.4161
Disco (Diffusion step T=500) 0.2591 0.3828 0.1811 0.2208 0.9434 0.9272 0.3345 0.4193
Disco (Diffusion step T=1000) 0.2525 0.3784 0.1752 0.2156 0.9488 0.9369 0.3296 0.4186
Disco (Diffusion step T=2000) 0.2678 0.3775 0.1983 0.2336 0.9823 0.9425 0.3466 0.4192

GossipCop

GRU4Rec 0.2226 0.3194 0.1466 0.1778 0.8864 0.8706 0.2957 0.3678
SASRec 0.3078 0.4706 0.1607 0.2135 0.8743 0.8526 0.3612 0.4473
Bert4Rec 0.2372 0.3711 0.1338 0.1770 0.8764 0.8587 0.3078 0.3981
CL4SRec 0.2898 0.4100 0.1784 0.2174 0.8938 0.8932 0.3516 0.4275

Disco (Diffusion step T=100) 0.4603 0.5479 0.3419 0.3705 0.9304 0.9252 0.4627 0.5016
Disco (Diffusion step T=200) 0.4759 0.5659 0.3537 0.3831 0.9242 0.9199 0.4689 0.5075
Disco (Diffusion step T=500) 0.4867 0.5798 0.3621 0.3925 0.9258 0.9169 0.4745 0.5120
Disco (Diffusion step T=1000) 0.4936 0.5956 0.3651 0.3984 0.9202 0.9039 0.4763 0.5139
Disco (Diffusion step T=2000) 0.5236 0.6143 0.3996 0.4292 0.9272 0.9039 0.4918 0.5207

MHMisinfo

GRU4Rec 0.1151 0.1894 0.0760 0.0998 0.8380 0.8608 0.1803 0.2624
SASRec 0.1485 0.2592 0.0826 0.1179 0.8339 0.8915 0.2190 0.3276
Bert4Rec 0.1391 0.2299 0.0847 0.1138 0.8162 0.8786 0.2074 0.3017
CL4SRec 0.1734 0.2621 0.1101 0.1387 0.8577 0.9081 0.2469 0.3323

Disco (Diffusion step T=100) 0.1378 0.1998 0.0914 0.1111 0.8526 0.8783 0.2083 0.2746
Disco (Diffusion step T=200) 0.1393 0.2191 0.0921 0.1178 0.9161 0.9209 0.2136 0.2969
Disco (Diffusion step T=500) 0.1819 0.2610 0.1299 0.1553 0.9076 0.9144 0.2597 0.3323
Disco (Diffusion step T=1000) 0.2144 0.2638 0.1547 0.1708 0.9379 0.9311 0.2943 0.3358
Disco (Diffusion step T=2000) 0.2215 0.2822 0.1580 0.1778 0.9305 0.9264 0.3000 0.3507
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B.9 DISCUSSION ON VARIOUS RATIOS OF AVAILABLE CREDIBILITY LABELS

we conduct additional experiments under different credibility label ratio of uncredible content (i.e.,
5%, 10%, 20%, 30%, 50%). The experimental results are reported in Table 9. From the results
reported in the Table, we can have the following findings:

• Finding 1: As the credibility label ratio increases, the recommendation credibility (CR)
improves steadily. This is because a larger number of credibility labels enables the con-
struction of a more comprehensive and accurate credible subspace, allowing uncredible
content to be mitigated more effectively.

• Finding 2: The recommendation accuracy fluctuates only slightly within a narrow range
across different label ratios. This stability is attributed to our proposed disentangled
diffusion model, which effectively mitigates uncredible content while preserving users’
preference-related information, thereby maintaining high recommendation accuracy.

Table 9: Performance comparison under different credibility label ratios.

Label ratios HR@5 HR@10 NDCG@5 NDCG@10 CR@5 CR@10 HC@5 HC@10
PolitiFact

5% 0.2617 0.3869 0.1819 0.2222 0.9422 0.9279 0.3365 0.4219
10% 0.2541 0.3836 0.1768 0.2184 0.9476 0.9357 0.3308 0.4216
20% 0.2678 0.3775 0.1983 0.2336 0.9823 0.9425 0.3466 0.4192
30% 0.2704 0.3838 0.1980 0.2345 0.9829 0.9518 0.3489 0.4249
50% 0.2678 0.3832 0.1923 0.2294 0.9842 0.9486 0.3468 0.4239

GossipCop
5% 0.5179 0.6021 0.4003 0.4279 0.9261 0.8726 0.4889 0.5060
10% 0.5290 0.6115 0.4089 0.4359 0.9266 0.8764 0.4940 0.5105
20% 0.5236 0.6143 0.3996 0.4292 0.9272 0.9039 0.4918 0.5207
30% 0.5196 0.6141 0.3947 0.4255 0.9278 0.9101 0.4902 0.5227
50% 0.5151 0.6069 0.3953 0.4253 0.9284 0.9176 0.4883 0.5226

MHMisinfo
5% 0.2127 0.2762 0.1500 0.1705 0.9149 0.9114 0.2904 0.3439
10% 0.2112 0.2798 0.1506 0.1728 0.9217 0.9152 0.2897 0.3473
20% 0.2215 0.2822 0.1580 0.1778 0.9305 0.9264 0.3001 0.3507
30% 0.2207 0.2836 0.1551 0.1755 0.9303 0.9244 0.2994 0.3515
50% 0.2134 0.2715 0.1533 0.1721 0.9331 0.9279 0.2929 0.3425

Figure 7: The loss and performance (HC@5) curves of variant w/o CE on PolitiFact dataset.
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B.10 DISCUSSION ON THE INSTABILITY OF ABLATION VARIANT W/O CE

In this section, we conduct an empirical study on the convergence of the ablation variant ”w/o CE”.
As show in Figure 7, we observe that the variant w/o CE (i.e., not replacing the MSE error with
cosine error) leads to extremely unstable training and performance. Specifically, the loss rapidly
collapses to an extremely small value (around −1.2× 1018), and the performance (HR@5) exhibits
severe fluctuations. These results verify the necessity of replacing the MSE error with the cosine
error to ensure stable optimization.

C WHY DMS POSE A DANGER OF GENERATING UNCREDIBLE CONTENT
RECOMMENDATION?

In this section, we empirically and theoretically analyze why existing DM-based recommendation
methods risk generating uncredible recommendations.

C.1 EMPIRICAL FINDINGS

In DM-based recommendation methods, the condition and diffusion target are two critical factors.
In this section, we conduct experiments to examine how they influence the recommendation cred-
ibility of DM-based methods. Specifically, we divide the training dataset into four subsets based
on whether the context items or the diffusion target (i.e., target items) contain uncredible content.
We use ✓ to denote that context items or target items contain uncredible content, and ✗ to denote
the opposite. After this dataset division, we train two representative DM-based recommendation
methods (DreamRec (Yang et al., 2023b) and PreferDiff (Liu et al., 2025a)) on each subset. From
the results reported in Table 10, we can find that these two factors indeed affect the recommenda-
tion credibility of DM-based methods. We refer to these two factors as uncredible condition and
uncredible diffusion target.

• Uncredible condition. When controlling the diffusion target, if the context items contain uncredi-
ble content that leads to an uncredible condition, the credibility metric CR@10 (i.e., credible Rate)
decreases to some extent for both DreamRec and PreferDiff across the PolitiFact and GossipCop
datasets. This finding indicates that the uncredible condition is a factor contributing to the risk of
DMs generating uncredible recommendation results.

• Uncredible diffusion target. When controlling the condition, if the diffusion target is an un-
credible item (i.e., an uncredible diffusion target), CR@10 drops to an extremely low level. This
further emphasizes that the uncredible diffusion target is another key contributing factor.

Apart from these two findings, we also observe that training with the complete datasets yields worse
recommendation credibility compared to the subset where neither the condition nor the diffusion
target contains uncredible items. This further validates that the uncredible condition and the uncred-
ible diffusion target are indeed the key contributing factors that place DM-based recommendation
methods at risk of generating uncredible recommendation results.

Moreover, although simply removing uncredible items from the datasets can improve recom-
mendation credibility, it significantly deteriorates recommendation accuracy. This is because
uncredible items may also reflect users’ genuine preferences, thereby discarding them restricts the
model’s ability to accurately learn users’ true interests. Therefore, it is crucial to design advanced
models that can mitigate the recommendation of uncredible content while simultaneously preserv-
ing high recommendation accuracy. This is the motivation and research significance of our proposed
model, Disco.

C.2 THEORETICAL ANALYSIS

Proof: Uncredible condition can enhance DM’s generation of uncredible results

The training of a conditional DM is to maximize Epdata(en,c) [log pθ(en|c)], where en is the diffu-
sion target (i.e., the last item in a user’s interaction sequence) and c is the condition. This training
objective pushes the generation toward the real data distribution.
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Table 10: Performance comparison of DreamRec and PreferDiff under different settings of uncredi-
ble content items in condition and diffusion target on PolitiFact and GossipCop datasets. Best results
are highlighted in bold.

Methods
Whether contain uncredible content items? Politi Gossip
condition diffusion target HR@10 NDCG@10 CR@10 HC@10 HR@10 NDCG@10 CR@10 HC@10

DreamRec

Training with complete dataset 0.3287 0.2047 0.8437 0.3661 0.5501 0.3704 0.8336 0.4742
✗ ✗ 0.2674 0.1571 0.9935 0.3477 0.4658 0.3160 0.9771 0.4769
✗ ✓ 0.0577 0.0409 0.1888 0.0716 0.0372 0.0284 0.0522 0.0307
✓ ✗ 0.2671 0.1541 0.9875 0.3467 0.1927 0.1368 0.9340 0.2728
✓ ✓ 0.0684 0.0413 0.0806 0.0507 0.0539 0.0404 0.0450 0.0317

PreferDiff

Training with complete dataset 0.3554 0.2147 0.8981 0.3968 0.6022 0.3999 0.8228 0.4887
✗ ✗ 0.3035 0.1915 0.9591 0.3717 0.5036 0.3657 0.9315 0.4839
✗ ✓ 0.0557 0.0410 0.1073 0.0547 0.0407 0.0304 0.0833 0.0412
✓ ✗ 0.2625 0.1553 0.8561 0.3254 0.2074 0.1454 0.9076 0.2847
✓ ✓ 0.0568 0.0385 0.0837 0.0482 0.0573 0.0421 0.0254 0.0208

When an uncredible content-related condition cunc is utilized to guide the generation process, the
model aims to maximize Epdata(en,cunc) [log pθ(en|cunc)]. Then, we have:

Epdata(en,cunc) [log pθ(en|cunc)] =Epdata(cunc)Epdata(en|cunc) [log pθ(en|cunc)]

=Epdata(cunc)

[∫
en

pdata(en|cunc)log pθ(en|cunc)den
]

=Epdata(cunc) [−H(pdata(e
∗
n|cunc), pθ(e∗n|cunc)]

=Epdata(cunc) [−H(pdata(e
∗
n|cunc))]

− Epdata(cunc) [DKL(pdata(e
∗
n|cunc)∥pθ(e∗n|cunc))]

=−Hpdata
(E|Cunc)

− Epdata(cunc) [DKL(pdata(e
∗
n|cunc)∥pθ(e∗n|cunc))] ,

(16)

where E represents the whole generation space and e∗n ∈ E . Cunc is the whole space of uncredible
condition cunc. H(·, ·) is the entropy between two variables or distributions. According to the above
derivation, we have:

Hpdata
(E|Cunc) =− Epdata(en,cunc) [log pθ(en|cunc)]

− Epdata(cunc) [DKL(pdata(e
∗
n|cunc)∥pθ(e∗n|cunc))]

≤ −Epdata(en,cunc) [log pθ(en|cunc)] .
(17)

Ideally, when the model is optimally trained, the DKL term will approach zero, indicating that the
conditional generation distribution approaches the real data distribution. Therefore, the mutual in-
formation between the whole conditional generation space E and the whole uncredible condition
space Cunc can be calculated as:

Ipθ
(E , Cunc) =Ipdata

(E , Cunc)
=Hpdata

(E)−Hpdata
(E|Cunc)

≥Hpdata
(E) + Epdata(en,cunc) [log pθ(en|cunc)] .

(18)

The second equation is derived according to the property of mutual information: I(X,Y ) =
H(X) − H(X|Y ). As the training goes on, the second term becomes larger. At the same time,
Hpdata

(E) is a constant based on the real data distribution pdata. Hence, the lower bound of
Ipθ

(E , Cunc) also becomes larger. Based on this, we can conclude that training the diffusion model
with uncredible conditions increases the mutual information between the generation space and the
uncredible condition space. This indicates that the generation space increasingly contains uncredible
features reflected in the uncredible conditions.

Proof: Uncredible diffusion target can enhance DM’s generation of uncredible results

The optimization loss of existing DM-based recommendation methods can be formulated as:

L = Et∼U(0,T )[∥e0n − fθ
(
etn, c, t

)
∥22]. (19)
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When an uncredible item embedding ej (j ∈ Iunc) is used as the diffusion target (i.e., uncredible
diffusion target) during training, the diffusion loss encourages the prediction direction of the diffu-
sion network fθ to move closer to ej . Specifically, the MSE distance between the diffusion target
and the output of fθ will be smaller, indicating higher similarity.

In the inference stage, the generation process of diffusion recommenders can be expressed as:

et−1
n = w1fθ(e

t
n, c, t) + w2e

t
n + w3ϵ, ϵ ∼ N (0, I), (20)

where w1 =
√
ᾱt−1βt

1−ᾱt
, w2 =

√
αt(1−ᾱt−1)

1−ᾱt
, and w3 =

√
1−ᾱt−1

1−ᾱt
(1− αt). This generation process

is performed step by step, and the final embedding e0n is taken as the generation result, which then
serves as the reference for item prediction and recommendations.

Let et−1
n denote the generated embedding at step t− 1 without using uncredible diffusion target ej

during training. In such case, the parameters of the diffusion network are denoted as θ. Similarly, let
êt−1
n denote the generated embedding at step t− 1 with ej as the uncredible diffusion target during

training. In this case, the diffusion parameters are denoted as θ̂. We then calculate the difference in
similarity between the normalized ej and the normalized generated embeddings êt−1

n and et−1
n at

step t− 1 as follows:

∆t−1 = sim(ej , ê
t−1
n )− sim(ej , e

t−1
n )

=
[
w1

(
fθ̂(ê

t
n, c, t)− fθ(e

t
n, c, t)

)
+ w2 (ê

t
n − etn) +�����w3(ϵ

t − ϵt
]
· e⊤j

= w1

(
fθ̂(ê

t
n, c, t)− fθ(e

t
n, c, t)

)
· e⊤j + w2 (ê

t
n − etn) · e⊤j .

(21)

Here, we utilize the dot product to calculate the similarity. To avoid the interference from sampled
noise, we use ϵt to denote the sample noise ϵ in step t− 1, and use it for both generation processes
to control this variable.

When t = T , we have:

∆T−1 = sim(ej , ê
T−1
n )− sim(ej , e

T−1
n )

= w1

(
fθ̂(ê

T
n , c, T )− fθ(e

T
n , c, T )

)
· e⊤j + w2

(
êTn − eTn

)
· e⊤j

= w1

(
fθ̂(ϵ

T , c, T )− fθ(ϵ
T , c, T )

)
· e⊤j +((((((((

w2

(
ϵT − ϵT

)
· e⊤j

= w1

(
fθ̂(ϵ

T , c, T ) · e⊤j − fθ(ϵ
T , c, T ) · e⊤j

)
= w1︸︷︷︸

>0

(
sim

(
ej , fθ̂(ϵ

T , c, T )
)
− sim

(
ej , fθ

(
ϵT , c, T

)))︸ ︷︷ ︸
>0

> 0.

(22)

We control the process of two generations start from the same point êTn = eTn = ϵT for fair com-
parison. As mentioned earlier, the prediction direction of fθ̂ is closer to ej than that of fθ. Hence,
the MSE distance between the output of fθ̂ and to ej is smaller than that between the output of fθ
and ej . When the embeddings are normalized, a smaller MSE distance corresponds to a higher dot
product similarity. Consequently, sim

(
ej , fθ̂(ϵ

T , c, T )
)
− sim(ej , fθ

(
ϵT , c, T )

)
> 0. At the same

time, w1 > 0, therefore ∆T−1 > 0. This indicates that, when starting from the same initial point,
the generation result at step T −1 produced by model fθ̂, which has been trained with an uncredible
diffusion target, will be more similar to this uncredible diffusion target.

When t = T − 1, we have:

∆T−2 = w1

(
fθ̂(ê

T−1
n , c, T − 1)− fθ(e

T−1
n , c, T − 1)

)
· e⊤j + w2

(
êT−1
n − eT−1

n

)
· e⊤j

= w1C
+
T−1 + w2

(
sim(ej , ê

T−1
n )− sim(ej , e

T−1
n )

)
= w1C

+
T−1 + w2∆

T−1.
(23)

As mentioned before, when a uncredible item embedding ej is taken for training, the diffusion loss
will encourage the prediction direction of fθ̂ closer to ej . At the same time, êT−1

n is closer to ej , as
compared to that of eT−1

n . This further enforces fθ̂(ê
T−1
n , c, T − 1) more similar to ej , than that of

fθ(e
T−1
n , c, T − 1). Hence, the first term is a positive constant, and we denote it by C+

T−1.

Similarly, when t < T − 1, we have:

∆T−3 = w1C
+
T−2 + w2∆

T−2

= w1C
+
T−2 + w2(w1C

+
T−1 + w2∆

T−1)
= w1C

+
T−2 + w1w2C

+
T−1 + w2

2∆
T−1.

(24)
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∆T−4 = w1C
+
T−3 + w2∆

T−3

= w1C
+
T−3 + w2(w1C

+
T−2 + w1w2C

+
T−1 + w2

2∆
T−1)

= w1C
+
T−3 + w1w2C

+
T−2 + w1w

2
2C

+
T−1 + w3

2∆
T−1.

(25)

· · ·
∆0 = w1C

+
1 + w1w2C

+
2 + · · ·+ w1w

T−2
2 C+

T−1 + wT−1
2 ∆T−1

=

T−1∑
m

w1w
m−1
2 C+

m︸ ︷︷ ︸
>0

+wT−1
2 ∆T−1︸ ︷︷ ︸

>0

= sim(ej , ê
0
n)− sim(ej , ê

0
n)

> 0.

(26)

According to above analysis, the final generated result ê0n using diffusion network fθ̂ is more similar
with uncredible item embedding ej , as compared to the final generated result e0n using diffusion
network fθ. This indicates that when uncredible items are used as the diffusion targets during
training, the model tends to generate outputs that carry more uncredible features, i.e., embeddings
that are more similar to uncredible items.

Algorithm 1 Training of Disco

1: Input: Training dataset Strain = {(en, eneg, spre, sunc)}|Strain|
s=1 , available uncredible item

set Iunc, trainable parameters Θ, total diffusion steps T , learning rate η, variance schedules
{αt}Tt=0.

2: Output: Optimized parameters Θ.
3: F = Stack({eunci }i∈Iunc) ▷ Construct uncredible feature matrix
4: repeat
5: (en, eneg, s

pre, sunc) ∼ Strain ▷ Sample training data
6: cpre = Tramsformer(spre) ▷ Obtain preference-related condition
7: cunc = Mean(sunc) ▷ Obtain uncredible content-related condition
8: Update F by Algorithm 3 ▷ Progressive uncredible feature matrix enhancement
9: [U1;U2],Λ,V = SVD(F⊤) ▷ Construct null space of uncredible feature matrix

10: ẽn = enU2U
⊤
2 ▷ Credible subspace projection for diffusion target en

11: ẽn = (ẽn + en)/2 ▷ Residual connection
12: t ∼ Uniform(1, T ) ▷ Sample diffusion step
13: ẽtn =

√
ᾱtẽ

0
n +
√
1− ᾱtϵ ▷ Add noise to the embedding of diffusion target

14: etneg =
√
ᾱte

0
neg +

√
1− ᾱtϵ ▷ Add noise to the embedding of negative preference item

15: Θ← Θ− η∇ΘLDisco(ẽn, eneg, cpre, cunc, t,Θ) ▷ Update parameters
16: until convergence
17: return Θ

Algorithm 2 Inference of Disco

1: Input: Test dataset Stest = {spre}|Stest|
s=1 , trained diffusion network parameters θ ∈ Θ, total

reverse steps T , DDIM steps T ′, variance schedules {αt}Tt=0.
2: Output: A recommendation list for each user/sequence.
3: spre ∼ Stest ▷ Sample test sequence
4: cpre = Transformer(spre) ▷ Obtain preference-related condition
5: for t′ = T ′, · · · , 1 do
6: t = ⌊t′ × (T/T ′)⌋ ▷ Calculate DDIM denoising step
7: eTn ∼ N (0, I) ▷ Start from Gaussian noise

8: et−1
n =

√
ᾱt−1(1−αt)

1−αt
fθ(e

t
n, c

pre, t) +
√
αt(1−ᾱt−1)

1−ᾱt
etn +

√
1−ᾱt−1

1−ᾱt
(1− αt)ϵ ▷

Step-by-step generation
9: end for

10: ŷi = e0n · e⊤i ▷ Calculate the matching score between a user/sequence and a candidate item ei
11: R = {i|TopK(ŷi), i ∈ I} ▷ Select top K items with highest matching scores
12: returnR
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Algorithm 3 Progressive enhancement of uncredible feature matrix
1: Input: Original uncredible feature matrix F, available uncredible item set Iunc, current iteration

j, maximum selection ratio γ, maximum iteration m to reach γ.
2: Output: Updated uncredible feature matrix F.
3: UD(i) = 1

|Iunc|
∑

i′∈Iunc
cos(eunci , eunci′ ) ▷ Calculate uncredible degree of items in I \ Iunc

4: ratio(j) = min(γ, j
mγ) ▷ Calculate the selection ratio at current iteration

5: select ⌊|I \ Iunc| · ratio(j)⌋ items with highest uncredible degree ▷ Select potential uncredible
items

6: Add potential uncredible items into Iunc ▷ Extension of uncredible item set
7: F = Stack({eunci }i∈Iunc

) ▷ Enhancement of uncredible feature matrix
8: return F

D DERIVATION OF EQUATION 5

In this section, we provide the derivation of Equation 5. For simplicity, we only need to derive
the first term, since the derivation of the second term follows the same procedure. The detailed
derivation is as follows:

−Eq

[
log

pθ
(
e0:Tn |cpre

)
q(e1:Tn |e0n)

]
1
= − Eq

[
log

p(eTn |cpre)pθ(e0n|e1n, cpre)
∏T

t>1 pθ
(
et−1
n |etn, cpre

)
q(e1n|e0n)

∏T
t>1 q(e

t
n|et−1

n , e0n)

]

2
= − Eq

log
p(eTn |cpre)pθ(e0n|e1n, cpre)

∏T
t>1 pθ

(
et−1
n |etn, cpre

)
q(e1n|e0n)

∏T
t>1

q(et−1
n |et

n,e
0
n)q(e

t
n|e0

n)

q(et−1
n |e0

n)


3
= − Eq

log
p(eTn |cpre)pθ(e0n|e1n, cpre)

∏T
t>1 pθ

(
et−1
n |etn, cpre

)
����
q(e1n|e0n)�

���q(e2
n|e

0
n)

����q(e1
n|e

0
n)
· · · q(eT

n |e0
n)

�����
q(eT−1

n |e0
n)

∏T
t>1 q(e

t−1
n |etn, e0n)


4
= − Eq

[
log p(e0n|e1n, cpre) + log

pθ(e
T
n )

q(eTn |e0n)
+ log

∏T
t>1 pθ

(
et−1
n |etn, cpre

)∏T
t>1 q(e

t−1
n |etn, e0n)

]
5
= − Eq

[
log p(e0n|e1n, cpre)

]
− Eq

[
log

pθ(e
T
n )

q(eTn |e0n)

]
−

T∑
t>1

Eq

[
log

pθ
(
et−1
n |etn, cpre

)
q(et−1

n |etn, e0n)

]
6
= − Eq

[
log p(e0n|e1n, cpre)

]︸ ︷︷ ︸
reconstruction term

+DKL
(
q(eTn |e0n)∥pθ(eTn )

)︸ ︷︷ ︸
prior matching term

+

T∑
t>1

Eq

[
DKL

(
q(et−1

n |etn, e0n)∥pθ
(
et−1
n |etn, cpre

))]
︸ ︷︷ ︸

denoising matching term

.

(27)

Equation 2 is derived through Bayes rule: q(etn|et−1
n , e0n) =

q(et−1
n |et

n,e
0
n)q(e

t
n|e

0
n)

q(et−1
n |e0

n)
. Equation 4 is

obtained since p(eTn |cpre) = p(eTn ) given eTn ∼ N (0, I), which is independent with condition cpre.

DMs generally optimize the denoising matching term DKL
(
q(et−1

n |etn, e0n)∥pθ
(
et−1
n |etn, cpre

))
in-

stead of the whole variational bound. Then, this denoising matching term can be derived into the
optimization loss L = Ee0

n,c
pre,t

[
1

2σ2
t

∣∣∣∣µq(e
t
n, e

0
n)− µθ(e

t
n, c

pre, t)
∣∣∣∣2
2

]
, by adding the condition

cpre into µθ(e
t
n, t) in (Ho et al., 2020). Similar with (Pathak et al., 2023), µq(e

t
n, e

0
n) is defined as
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(Pathak et al., 2023):

µq(e
t
n, e

0
n) =

√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)e

0
n

1− ᾱt
. (28)

In our model, µθ(e
t
n, c

pre, t) is defined as:

µθ(e
t
n, c

pre, t) =

√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)fθ(e

t
n, c

pre, t)

1− ᾱt
, (29)

where fθ(e
t
n, c

pre, t) is the predicted e0n using the diffusion network fθ.

Then, the optimization term can be rewritten as:

L =Ee0
n,c

pre,t

[
1

2σ2
t

∥∥µq(e
t
n, e

0
n)− µθ(e

t
n, t)

∥∥2
2

]
=Ee0

n,c
pre,t

[
1

2σ2
t

∥∥∥∥∥
√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)e

0
n

1− ᾱt

−
√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)fθ(e

t
n, c

pre, t)

1− ᾱt

∥∥∥∥∥
2

2

]

=Ee0
n,c

pre,t

[
1

2σ2
q (t)

∥∥∥∥√ᾱt−1(1− αt)

1− ᾱt
e0n −

√
ᾱt−1(1− αt)

1− ᾱt
fθ(e

t
n, c

pre, t)

∥∥∥∥2
2

]

=Ee0
n,c

pre,t

[
1

2σ2
q (t)

(√
ᾱt−1(1− αt)

1− ᾱt

)2 ∥∥e0n − fθ(e
t
n, c

pre, t)
∥∥2
2

]
.

(30)

In practice, the coefficient 1
2σ2

q(t)

(√
ᾱt−1(1−αt)

1−ᾱt

)2

is generally omitted (Ho et al., 2020). Hence,
the optimization loss of our preference-related condition guided generation can be rewritten as
Lpre = Ee0

n,c
pre,t

[∥∥e0n − fθ(e
t
n, c

pre, t)
∥∥2
2

]
. Similarly, the optimization loss of uncredible content-

related condition guided generation is: Lunc = Ee0
n,c

unc,t

[∥∥e0n − fθ(e
t
n, c

unc, t)
∥∥2
2

]
. Our Disco

model aims to encourage the generation guided by preference-related condition and discourage the
generation guided by uncredible content-related condition. To achieve this goal, the optimization
objective is formulated as shown in Equation 5:

L = Lpre − Lunc = Ee0
n,c

pre,t

[∥∥e0n − fθ(e
t
n, c

pre, t)
∥∥2
2

]
− Ee0

n,c
unc,t

[∥∥e0n − fθ(e
t
n, c

unc, t)
∥∥2
2

]
.

(31)

E THEORETICAL JUSTIFICATION OF CREDIBLE SUBSPACE PROJECTION

Our credible subspace projection is constructed using SVD. Applying SVD to the uncredible feature
matrix F⊤ yields the eigenvector matrix U and the diagonal eigenvalue matrix Λ. U and Λ can

be expressed as U = [U1;U2] and Λ =

[
Λ1 0
0 Λ2

]
. Correspondingly, V can be expressed as

V = [V1;V2]. All zero or near-zero singular values are contained in Λ2, and the corresponding
eigenvectors are given by U2 and V2.

According to the principles of SVD, the following equation holds:

U⊤
2 F

⊤ = U⊤
2 U1Λ1V

⊤
1 . (32)

Since the matrix U obtained from the SVD is an orthogonal matrix, we have:

U⊤
2 F

⊤ = U⊤
2 U1︸ ︷︷ ︸
=0

Λ1V
⊤
1 = 0. (33)
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Our credible diffusion target is derived through ẽn = enU2U
⊤
2 . Hence, we have:

ẽnF
⊤ = enU2 U

⊤
2 F

⊤︸ ︷︷ ︸
=0

= 0. (34)

This indicates that the derived credible diffusion target ẽn is orthogonal to the uncredible feature
matrix F. In summary, our proposed credible subspace projection effectively removes uncredible
content from the diffusion targets by ensuring that the projected targets lie orthogonally to the un-
credible content.

F CASE STUDY

In this section, we conduct a case study using the GossipCop dataset to evaluate the effectiveness of
Disco. The GossipCop dataset contains users’ interaction sequences with news articles, including
both true news (i.e., credible items) and fake news (i.e., uncredible items). Specifically, we present
the historical interaction sequences and recommendation lists for five users. The credible content
items are marked in green, while uncredible items are marked in red. In addition, to illustrate the
semantic relevance between content items, we utilize the same background color to highlight content
with similar or related topics. From Table 11, we have the following observations:

• Disco demonstrates strong capability in delivering credible recommendations. Specifically, al-
though all these users have interacted with uncredible items in their historical interaction se-
quences, the recommendation lists generated by Disco contain no uncredible content.

• Disco is capable of mitigating uncredible content while still preserving high recommenda-
tion accuracy. This is achieved by removing uncredible features while retaining users’ genuine
preference-related information. For example, taking User4 as an example, this user had histori-
cally interacted with some news (including fake news) about the death of celebrities (highlighted
in yellow). Disco can effectively capture this user’s genuine preference and recommend some
content also in such topics. It is worth noting that User4 had interacted with fake news about the
death of “Tom Petty”, and Disco recommends this user with a credible news article about the
same event. This plays an important role in countering misinformation, as it helps users correct
false impressions formed through prior exposure to uncredible content.

G USAGE CLAIM OF LARGE LANGUAGE MODELS

We only utilize ChatGPT for polishing the academic writing, with the prompt “Proofread the gram-
mar and polish the writing of the given sentences”.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 11: Five cases showcasing the historical interaction sequences and the recommendation lists
of five users sampled from GossipCop dataset. Credible refers to credible content (i.e., true news)
and Uncredible refers to uncredible content (i.e., fake news). In a user sample, the texts marked
by the same-color background refer to similar topics. “ground truth” means the corresponding
recommended content items have been actually read by the user in the test set.

User1 Historical
sequence

Credible: Justin
Timberlake, Chris
Stapleton release
’Say Something’
song, video.

Uncredible: Nicole
Kidman, Keith Ur-
ban: Secrets to a Suc-
cessful Relationship.

Uncredible:Kendall
Jenner Shades Scott
Disick Over Photo
With Sofia Richie
and His Kids.

Uncredible:
Grammy winners
2018: the complete
list.

Recommen-
dations

Credible 2018 Latin
GRAMMY Awards
Complete Winners
List.

Credible: Weinstein
Company Files for
Bankruptcy and Re-
vokes Nondisclosure
Agreements.

Credible: Oscars:
The Complete Win-
ners List.

Credible:
Pop superstar Lady
Gaga has officially
landed her first Las
Vegas residency.

Credible (ground
truth): TV News
Roundup: Netflix
Reveals Fuller House
Season 4 Premiere
Date

User2 Historical
sequence

Credible: 13 Nights
Of Halloween 2017
Schedule: Full List
of Movies.

Uncredible: Taylor
Swift will reportedly
keep her new album
off streaming ser-
vices like Spotify
and Apple Music for
a week.

Uncredible: Former
NBC interviewer
lashes out at Trump
in an NYT op-ed for
reportedly casting
doubt on the authen-
ticity of the infamous
tape.

Credible: ’Big Lit-
tle Lies’ Season 2
News, Premiere Date
& Cast.

Recommen-
dations

Credible (ground
truth): Justin Tim-
berlake Announces
New Album Man of
the Woods.

Credible: Seven-time
and defending cham-
pion says she isn’t
quite ready to return
after giving birth to
daughter in Septem-
ber.

Credible:
Pop superstar Lady
Gaga has officially
landed her first Las
Vegas residency.

Credible: Jamie
Lynn Spears’ second
child on the way
will join big sister
Maddie Briann.

Credible: ”Good
morning baby of
mine, John Sta-
mos’ fiance Caitlin
McHugh wrote as
she debuted her baby
bump...

User3 Historical
sequence

Credible: Hugh
Grant and Anna
Eberstein’s baby on
the way joins their
daughter.

Uncredible: The can-
cellation of the third
Sex and the City film
came with headline-
making fallout some-
thing Sarah Jessica
Parker struggled with

Uncredible: Selena
Gomez has com-
pleted her treatment
for depression and
anxiety and is re-
ported feeling

Credible: Congratu-
lations are in order
for Rachel McAdams
the 39-year-old ac-
tress is reportedly go-
ing to be a first-time
mom! Though she
has not personally
confirmed the baby
news

Recommen-
dations

Credible: All
Chicago West Baby
Photos Timeline.

Credible: Demi
Lovato Says She
Contemplated Suicide
at Age 7.

Credible: ’Black
Panther’ is the most
tweeted about movie
ever.

Credible (ground
truth): His wife
Faith Hill said the
country star had
been suffering from
dehydration.

Credible: Tisha
Campbell-Martin
Files For Divorce
From Husband of 21
Years

User4 Historical
sequence

Uncredible: Caitlyn
Jenner told Diane
Sawyer that she
had undergone the
final surgery in her
gender reassignment
procedures on Friday
night’s 20/20 special.

Credible: Indiana
police found the
actress unresponsive
after responding to a
911 call Saturday.

Credible: Roger
Ailes, Former Fox
News CEO, Dies At
77.

Uncredible:
Tom Petty Dead:
Celebrities React
on Social Media
Variety.

Recommen-
dations

Credible: An emo-
tional Celine Dion
returned to the stage
in Las Vegas on
Tuesday night.

Credible (ground
truth): Rocker
Tom Petty died
Monday after being
rushed to a Los
Angeles hospital.

Credible: Hugh
Hefner’s death cer-
tificate from the
Los Angeles County
Department of Public
Health.

Credible: The final
season of Netflix’s
”House of Cards”
keeps the secret of
how Frank Under-
wood died until the
very end.

Credible: Pauley Per-
rette announces she’s
leaving ”NCIS” after
15 seasons.

User5 Historical
sequence

Credible: Benjamin
Glaze had never
kissed a girl before
Katy Perry tricked
him during the ABC
reboot of American
Idol.

Uncredible: During
her chat with Ryan
Murphy Friday
(March 16) for the
opening night of
PaleyFest in Los
Angeles.

Credible: A longtime
aerialist for the
famed Cirque Du
Soleil plummeted to
his death in front of
a horrified crowd in
Florida on Saturday
night while trying
out a new act...

Uncredible: Justin
Bieber’s struggling
with his split from
Selena Gomez as
she’s all smiles on
her Australian vaca-
tion. Here’s how the
Biebs is coping with
his...

Recommen-
dations

Credible (ground
truth): Justin Bieber
Wants to Be With
Selena Gomez But
Is Hanging With
Baskin Champion.

Credible: The singer
covered Ariana
Grande’s ’Just a
Little Bit of Your
Heart’ in the arena
where her concert
was attacked...

Credible: Trevorrow
helmed the rebooted
franchise’s first in-
stallment.

Credible: Voting
closes at 5pm PT
today (June 29) for
this year’s News’ TV
Scoop Awards...

Credible: Blake
Shelton Gets His
Palms Read With
Jimmy Fallon, Jokes
About Having Too
Much Sex.
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