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ABSTRACT

Deep learning-based methods have achieved a breakthrough in image anomaly de-
tection, but their complexity introduces a considerable challenge to understanding
why an instance is predicted to be anomalous. We introduce a novel explana-
tion method that generates multiple alternative modifications for each anomaly,
capturing diverse concepts of anomalousness. Each modification is trained to be
perceived as normal by the anomaly detector. The method provides a semantic
explanation of the mechanism that triggered the anomaly detector, allowing users
to explore “what-if scenarios.” Qualitative and quantitative analyses across various
image datasets demonstrate that applying this method to state-of-the-art anomaly
detectors provides high-quality semantic explanations.

1 INTRODUCTION

Train

Test

Why?

Conventional explanation Counterfactuals (ours)

If it were normal...

AD
Normal

Anomalous

Anomaly!

Figure 1: The figure illustrates the benefit of coun-
terfactual explanation of anomaly detectors over
traditional methods, using the Colored-MNIST
dataset of handwritten digits in various colors. The
normal data (top left) consist of red digits and
instances of the digit one in any color. An ex-
ample anomaly—a green seven—is shown on the
right. Conventional explanation methods localize
the anomaly within the image and highlight it on
a heatmap (bottom left). In contrast, the proposed
method transforms the anomaly into multiple coun-
terfactuals.

Anomaly detection involves identifying patterns
that deviate from normal behavior, the so-called
anomalies. These anomalies can correspond
to crucial actionable information in various do-
mains such as medicine, manufacturing, surveil-
lance, and environmental monitoring (Chandola
et al., 2009; Hartung et al., 2023).

Recently, deep learning-based methods have
shown tremendous success in anomaly detec-
tion (AD), reducing error rates to approximately
1% in numerous image benchmarks (Reiss et al.,
2021; Deecke et al., 2021; Ruff et al., 2021; Lizn-
erski et al., 2022). However, detectors based
on deep learning lack the out-of-the-box in-
terpretability of their traditional counterparts,
making it difficult to understand the reason-
ing behind their predictions (Liznerski et al.,
2021). Their lack of transparency is particularly
concerning in sectors where safety is crucial
and in situations where building trust is essen-
tial (Gupta et al., 2018; Montavon et al., 2018;
Samek et al., 2020). Understanding modern
anomaly detectors is a major challenge in con-
temporary AD and a necessary step before us-
ing AD in decision-making systems (Ruff et al.,
2021).

Although feature-attribution techniques such as anomaly heatmaps (Liznerski et al., 2021; Gudovskiy
et al., 2022; Roth et al., 2022) have been explored, they do not explain the underlying semantics of
anomalies relevant to the decision-making of the detectors. In domains beyond AD, counterfactual
explanation (CE) has emerged as a popular alternative. CE generates synthetic samples that change
the model’s prediction with minimal alterations to the original sample (Ghandeharioun et al., 2021;
Abid et al., 2022). CEs are user-friendly and can provide explanations on a higher, semantic level.
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In this paper, we propose the use of CE to explain anomaly detectors. To our knowledge, this paper
presents the first study of CE in modern image AD based on deep learning. The AD setting comes
with several considerable challenges. Anomalies can be rare and unlabeled in AD, making it difficult
for deep generative models to synthesize realistic counterfactuals based on semantically meaningful
concepts that are understandable to humans (Manduchi et al., 2024). Furthermore, normal samples
can have limited diversity in AD, which complicates training deep generative models.

Contributions This paper introduces a novel unsupervised method for explaining image anomaly
detectors using counterfactual examples. While previous approaches identify anomalous regions
within images, the presented technique generates a set of counterfactual examples of each anomaly,
capturing diverse disentangled aspects (see Figure 1). These counterfactual examples are created
by transforming anomalous images into normal ones, guided by a specific aspect. The method
provides semantic explanations of anomaly detectors, highlighting the higher-level aspects of an
anomaly that triggered the detector. CE allows users to explore “what-if” scenarios (see Figure 1),
improving the understanding of anomaly factors at an unprecedented level of abstraction. Qualitative
and quantitative analyses across various image datasets show the effectiveness of the method when
applied to state-of-the-art anomaly detectors. The code to reproduce the results and run the presented
methods is included in the supplementary material.

2 RELATED WORK

In the past decade, research has increased on improving the interpretability and explainability of
non-linear ML methods, particularly neural networks. This increase is driven by the growing use
of ML in decision-making systems, where transparency of predictions is crucial and even legally
mandated in many countries (Neuwirth, 2022). Here, we discuss key research articles relevant to our
work. For a general overview of explainable AI, we refer to the survey by Linardatos et al. (2020).

Explanation of image AD Research in explainable image AD has primarily focused on feature
attribution methods, pinpointing image areas that influence predictions. Some methods trace an
importance score from the model output back to the pixels (Selvaraju et al., 2017; Zhang et al., 2018),
others alter parts of the image and measure the impact on the model output. These alterations can
include masking and noising (Fong & Vedaldi, 2017), blurring (Fong & Vedaldi, 2017), pixel values
(Dhurandhar et al., 2018), or model outputs (Zintgraf et al., 2017). Some of these approaches have
been applied to AD (Liznerski et al., 2021; Li et al., 2021; Wang et al., 2021). Several methods
generate explanations using generative models or autoencoders, where the pixel-wise reconstruction
error yields an anomaly heatmap (Baur et al., 2019; Bergmann et al., 2019; Dehaene et al., 2020; Liu
et al., 2020; Venkataramanan et al., 2020). Others use fully convolutional architectures (Liznerski
et al., 2021) or transfer learning (Defard et al., 2021; Roth et al., 2022). All of these methods identify
regions within an image that influence the detector’s prediction; however, they do not explain the
detectors at a higher semantic level (Alqaraawi et al., 2020; Adebayo et al., 2018).

Counterfactual explanation of neural networks on images CE methods (Guidotti, 2022) identify
the necessary changes in the input to alter the model prediction in a specific way. Unlike feature-
attribution techniques, CE methods can explain predictions at a more sophisticated semantic level.
Such explanations can provide profound insights that enhance comprehension of model behavior
and align more closely with human cognitive processes (Pearl, 2009). Existing CE algorithms are
designed primarily for supervised learning on tabular data (Wachter et al., 2017; Mothilal et al.,
2020; Guidotti, 2022). A few studies have also explored the application of CE to image classification
(Goyal et al., 2019; Ghandeharioun et al., 2021; Abid et al., 2022; Singla et al., 2023). DISSECT
(Ghandeharioun et al., 2021) is particularly notable for its ability to generate multiple CEs with
disentangled high-level concepts. However, to date, there is no existing work on the application of
CE for image AD. Recent work explores CE for supervised image AD. Studies by Sanchez et al.
(2022); Siddiqui et al. (2024); Ahamed et al. (2024) utilize diffusion models guided by text prompts
or learnable conditions to generate normal counterparts of abnormal medical images. However,
their approaches rely on supervised learning, fine-tuning pretrained diffusion models using both
normal and ground-truth anomalies, framing the problem as a classification task. Wolleb et al.
(2022) uses diffusion models with classifier guidance—trained in a supervised manner on normal and
anomalous images—to transform diseased images into healthy ones. Fontanella et al. (2024) employ

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a diffusion model trained exclusively on healthy brain images to generate saliency maps. However,
they identify regions for counterfactual generation through supervised learning. Overall, none of
the above approaches are designed for unsupervised anomaly detection, and they are constrained to
particular types of images. Consequently, they are unsuitable for general image-AD.

Counterfactual explanation of AD on shallow data So far, CE methods for AD have been applied
only to “shallow” data types, such as tables (Angiulli et al., 2023; Datta et al., 2022a; Han et al.,
2023) or time series (Sulem et al., 2022; Cheng et al., 2022). These methods use knowledge graphs or
structural causal models to generate counterfactuals for categorical features (Datta et al., 2022b; Han
et al., 2023) or take advantage of temporal aspects (Sulem et al., 2022; Cheng et al., 2022). Some of
these methods have been applied to fairness (Han et al., 2023) and algorithmic recourse (Datta et al.,
2022a). None of the existing CE methods for AD are applicable to image data, nor are they capable
of generating disentangled CEs. This capability is a unique characteristic of the proposed approach,
which will be subsequently detailed.

3 METHODOLOGY

In this section, we formally present the proposed framework for generating counterfactuals in image
AD using state-of-the-art generators. To the best of our knowledge, this approach is the first one to
explain image AD using CE.

3.1 COUNTERFACTUAL EXPLANATIONS OF IMAGE AD

Our aim is to provide explanations for a given anomaly detector ϕ : RD → [0, 1] that maps an image
x ∈ RD to an anomaly score α ∈ [0, 1]. We define a CE for the detector ϕ and anomaly x∗ ∈ RD

(i.e., ϕ(x∗) ≫ 0) as a modified sample x̄∗ with ϕ(x̄∗) ≈ 0 and ∥x̄∗ − x∗∥1 ≤ ϵ for an ϵ ≥ 0. In
other words, a CE must be normal according to ϕ, while being minimally changed w.r.t. the original
anomaly x∗. Thus, CEs address the question: “What if the anomaly x were normal?”, explaining the
behavior of the anomaly detector at a high semantic level.

To produce such CEs for deep AD, we need to train a generator G : RD → RD to yield G(x∗) = x̄∗.
However, normal images can differ from anomalies in multiple ways, and thus multiple CEs may be
required to adequately explain an anomaly. We want the generator to consider multiple categorical
concepts k ∈ {1, . . . ,K}. Thus, the generator is now of the form G : RD × {1, . . . ,K} → RD and
is supposed to produce G(x∗, k) = x̄∗

k with ∥x̄∗
k − x̄∗

k′∥1 ≥ ϵ′.

The same data {(x0, y0), . . . , (xn, yn)} can be used for training both ϕ and G. Here, yi = 0 denotes
normal samples, while yi = 1 represents anomalies. Note that in the AD setting, the training labels
yi are typically unknown and the majority of samples are assumed to be normal.

3.2 DISENTANGLED COUNTERFACTUAL EXPLANATIONS

Outside the domain of AD, Ghandeharioun et al. (2021) have proposed Disentangled Simultaneous
Explanations via Concept Traversal (DISSECT) to create CEs. DISSECT produces sequences of CEs
with increasing impact on a classifier’s output. The proposed approach for CE of image anomaly
detectors is based on this idea.

We modify the generator G : RD × [0, 1] × {1, . . . ,K} → RD to also consider a target anomaly
score α, aiming for the trained G to produce a sample with an anomaly score of approximately α.
Following DISSECT, we train G as a concept-disentangled GAN Goodfellow et al. (2020). To this
end, we define a discriminator D : RD → [0, 1] and a concept classifier R : RD × RD → [0, 1]K .
D is trained to distinguish between generated x̄α,k = G(x, α, k) and true samples from the dataset,
encouraging realistic outcomes. R classifies the concept k for a sample x̄α,k, encouraging the
generated samples to be concept-disentangled on a semantic level. Further losses encourage the
generator to incur minimal changes on the original sample x and to yield target anomaly scores α
(i.e., ϕ(x̄α,k) ≈ α).

The proposed method’s objective summarizes to

min
G,R

max
D

λgan (LD(D) + LG(G)) + λϕLϕ(G) + λrecLrec(G) + λrecLcyc(G) + λrLcon(G,R),
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where Lϕ(G) encourages for x̄α,k an anomaly score of α:

Lϕ(G) = α log
(
ϕ(x̄α,k)

)
+
(
1− α

)
log

(
1− ϕ(x̄α,k)

)
.

The losses LD(D) and LG(G) can be any discriminative and generative GAN losses, respectively.
We specifically experimented with the spectrally normalized loss LG(G) = −D(x̄α,k) Miyato et al.
(2018) and the hinge loss Miyato & Koyama (2018):

LD(D) = −min(0,−1 +D(x))−min(0,−1−D(x̄α,k)).

The loss Lrec(G) = ∥x−G(x, ϕ(x), k)∥1 makes G reconstruct x for every concept k, when
conditioned on x and its “true” anomaly score ϕ(x). This ensures that G remains unchanged when
the sample already has the targeted anomaly score, overall encouraging minimal changes.

Similarly, the “cycle consistency loss” Zhu et al. (2017), Lcyc(G) = ∥x− x̃α,k∥1 , where x̃α,k =
G(x̄α,k, ϕ(x), k), encourages G to recreate the sample x, when targeting its true anomaly score ϕ(x)
and being conditioned on any generated sample x̄k,α based on x. It encourages minimal changes
because the generator needs to be able to revert any change of x.

Lcon(G,R) drives G to produce disentangled concepts:

Lcon(G,R) = C
(
k,R

(
x, x̄α,k

))
+ C

(
k,R

(
x̄k,α, x̃α,k

))
,

where C denotes the cross entropy loss.

In summary, the losses encourage the generated samples x̄α,k to be semantically distinguishable for
different concepts k while having an anomaly score of α according to ϕ and undergoing minimal
changes with respect to the original x. This results in a disentangled set of K counterfactual
examples for an anomaly x∗ with {G(x∗, 0, 1), . . . , G(x∗, 0,K)}. Furthermore, the generator can
also produce pseudo anomaliesG(x, α,K) when ϕ(x) ≈ 0 and α≫ 0, which can helpG in learning
how to turn anomalies into normal samples, when included in Lϕ.

CE using diffusion models We also adapt DiffEdit (Couairon et al., 2023) to generate counterfac-
tual explanations. DiffEdit modifies the LAION-5B pre-trained text-conditional latent diffusion model
known as Stable Diffusion (Rombach et al., 2022) to semantically edit images. Let AE : RD → R∆

and AD : R∆ → RD denote the encoder and decoder of the autoencoder used in Stable Diffusion.
From a high-level perspective, the DiffEdit model can be defined as ψ : R∆×T → R∆ where T
denotes the output dimension of the word embedding model. For an image x ∈ RD, we retrieve
a semantically modified version x̂ controlled by the text prompt t via x̂ = AD(ψ(AE(x), t)). For
more details, refer to the paper (Couairon et al., 2023). We incorporate DiffEdit into the pro-
posed framework by training the generator on its latent output. That is, we redefine the generator
G(x, α, k) = AD (G′(ψ(AE(x), t), α, k)) with G′ : R∆ × [0, 1] × {1, . . . ,K} → R∆. The text
prompt t is set to the normal class label (e.g., “cat” for cats being normal). We train the generator G
(i.e., the parameters of G′) as described before. Incorporating DiffEdit as described here allows one
to apply the proposed framework to higher-resolution images, where training from scratch quickly
becomes infeasible.

3.3 DEEP ANOMALY DETECTION

The proposed CE framework is general and can be applied to any anomaly detector that produces real-
valued anomaly scores. In this paper, we specifically study three state-of-the-art anomaly detectors
that are reviewed below.

DSVDD One of the first deep approaches to AD is Deep Support Vector Data Description (DSVDD)
Ruff et al. (2018). Similar to many AD methods, DSVDD is unsupervised, employing an unlabeled
corpus of data for training. DSVDD trains a neural network ϕθ : RD → Rd with parameters θ to
map the training data x1, . . . ,xn ∈ RD into a semantic space Rd, where it can be enclosed by a
minimal volume hypersphere: minθ

∑n
i=1 ||ϕθ(xi)− c||2. In contrast to shallow SVDD Tax & Duin

(2004), the hypersphere center c ∈ Rd is first randomly initialized and then kept fixed while training.
DSVDD trains the network to make normal data cluster tightly in the semantic space. Anomalies
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will have a larger distance from the center. The distance is used as the anomaly score. Since the CE
generator requires bounded anomaly scores, we slightly adjust the DSVDD objective to:

min
θ

n∑
i=1

||ϕθ(xi)− c||2

1 + ||ϕθ(xi)− c||2
.

Outlier Exposure AD has traditionally been approached as an unsupervised learning problem due
to insufficient training data to represent the diverse anomaly class, which encompasses everything
different from the normal data. However, Hendrycks et al. (2019a) showed that Outlier Exposure
(OE)—using a large unstructured collection of natural images as example anomalies during training—
consistently outperforms purely unsupervised AD methods across various image-AD benchmarks.
These auxiliary data are called OE samples. It has been found that training a Binary Cross Entropy
(BCE) loss to differentiate normal data from OE samples is competitive for most image-AD tasks.
We use the OE samples both for training the detector’s network ϕ and the generator G. The generator
G is thus trained on a more diverse training set, including additional presumably anomalous OE
samples.

Hypersphere Classification Although OE performs well in many benchmarks, there are still
scenarios where OE samples do not adequately represent anomalies, especially when the normal data
are not natural images Liznerski et al. (2022). To address this problem, the community has developed
semi-supervised AD methods Görnitz et al. (2014); Ruff et al. (2020). One of the most competitive
semi-supervised AD techniques is HyperSphere Classification (HSC) Liznerski et al. (2022). The
authors find that combining it with OE makes the AD more robust to the selection of OE data. The
HSC loss is a semi-supervised modification of the DSVDD loss:

1

n

n∑
i=1

yi · h (ϕθ(xi))− (1−yi) log (1− exp (−h (ϕθ(xi)))),

where h is the Pseudo-Huber loss h(z) =
√
∥z∥2 + 1 − 1. We employ HSC’s original objective

but modify the anomaly score from h (ϕθ(xi)) to 1− exp(−h (ϕθ(xi))), again obtaining bounded
anomaly scores for training the proposed counterfactual generator.

4 EXPERIMENTS

In this section, we empirically assess the capabilities of CEs for deep AD. The evaluation provides
qualitative (Section 4.2) and quantitative (Section 4.3) evidence of the superiority of the proposed
CEs over their traditional counterparts. Notably, the experiments expose a previously unreported bias
of supervised classifiers when used in the AD setting (Section 4.4).

4.1 EXPERIMENTAL DETAILS

We describe the considered datasets, the experimental setup, and the implementation of the method.

Datasets We evaluate the proposed approach on the following datasets:
• MNIST (Deng, 2012) is a dataset of grayscale handwritten digits with a class for each digit.

Following Liznerski et al. (2021), we use EMNIST (Cohen et al., 2017) as OE.
• Colored-MNIST, where for each sample in MNIST, copies are created in seven colors (red, yellow,

green, cyan, blue, pink, and gray). We employ a colored version of EMNIST as OE.
• CIFAR-10 (Krizhevsky et al., 2009) is a dataset of natural images with ten classes. Previous works

used 80 Mio. Tiny Images as OE (Hendrycks et al., 2019b). Since this dataset has been withdrawn
due to offensive data Birhane & Prabhu (2021), we instead use the disjunct CIFAR-100 dataset as
OE, which yields approximately the same performance (here 96.0% average AuROC, as reported
in Table 8, vs. 96.1% AuROC in Liznerski et al. (2022)).

• GTSDB Houben et al. (2013) is a dataset of German traffic signs. We use CIFAR-100 as OE.
• We introduce ImageNet-Neighbors (INN), a subset of ImageNet-1k (Russakovsky et al., 2015)

designed for anomaly detection (AD) tasks. INN comprises multiple AD setups; in each setup, one
ImageNet-1k class is considered normal, and the ten most semantically similar classes, based on

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the Wu-Palmer similarity metric (Wu & Palmer, 1994), are defined as ground-truth test anomalies.
For outlier exposure (OE), we use the disjoint ImageNet-21k dataset.

Experimental Setup Following previous work on image-AD Ruff et al. (2018); Golan & El-Yaniv
(2018); Hendrycks et al. (2019a;b); Ruff et al. (2020); Tack et al. (2020); Ruff et al. (2021); Liznerski
et al. (2021; 2022), we convert several multi-class classification datasets into AD benchmarks. This is
achieved by defining a subset of the classes to be normal and using the remaining classes as ground-
truth anomalies during testing. When only one class is considered normal, this approach is known as
one vs. rest. In addition to investigating one vs. rest, we also explore a variation in which multiple
classes are normal. This setting emulates a multifaceted normal class that includes different notions
of normality. Since our method disentangles multiple aspects of the normal data, we hypothesize
that it possesses the capability to capture these diverse facets of normality. Finally, we consider the
special INN setup, as described above, where we have particular ground-truth anomalies per normal
class. Our experiments focus on semantic image-AD rather than low-level AD, where anomalies are
defects instead of out-of-class (such as in datasets like MVTec-AD (Bergmann et al., 2019)). We
include further reasoning for this and an ablation study for CEs on MVTec-AD in Appendix C.

For both the MNIST and CIFAR-10 datasets, we construct 30 distinct scenarios: ten scenarios wherein
each individual class serves as the normal data, and an additional 20 scenarios featuring various
combinations of classes as normal. For the Colored-MNIST dataset, we define seven normal-class
scenarios through combinations of colors and digits. We consider ten different normal-class sets for
the GTSDB dataset. For ImageNet-Neighbors, we consider five different normal classes. For each
scenario and several random seeds, we train an AD model and a CE generator. For INN, we train a
generator based on DiffEdit, as described in the methodology section, while the other scenarios train
a GAN from scratch. Details of all scenarios are provided in Appendix G. Our quantitative analysis
reports results averaged over all scenarios and multiple seeds. Detailed quantitative results for each
scenario are in Appendix G and a collection of further qualitative results in Appendix H.

Implementation Details In our experiments, we generate and compare CEs using three state-of-
the-art deep AD methods: BCE, HSC, and DSVDD (see Section 3.3). We employ conventional
convolutional neural networks with up to five layers for the AD methods. The concept classifier is a
small ResNet He et al. (2016) with two blocks. Both the discriminator and generator are wide ResNets
Zagoruyko & Komodakis (2016) with four blocks. The λ parameters in our loss (Section 3.2) are set
to reasonable values that have been found to perform well across all settings. The hyperparameters
of the AD methods are chosen as in previous work Ruff et al. (2018); Liznerski et al. (2022). The
epochs and augmentation are slightly reduced for faster training. A description of all hyperparameters
and network architectures is given in Appendix E for both the CE generator and AD methods.

4.2 QUALITATIVE RESULTS

In this section, we present qualitative examples of CEs on four datasets, demonstrating the benefit of
using CE for AD over traditional explanation methods.

4.2.1 COUNTERFACTUALS CAN EXPLAIN WHY IMAGES ARE PREDICTED ANOMALOUS
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(c) DSVDD
Figure 2: CEs for the Colored-MNIST dataset,
with cyan digits and the digit one serving as the
normal class. The first row shows anomalous im-
ages, and the next two rows present their corre-
sponding CEs using two different concepts. The
CEs of BCE and HSC appear normal and realistic
for each concept.

Colored-MNIST Figure 2 shows the counter-
factual explanations for Colored-MNIST, when
the normal class is formed from the instances
of the digit one and digits colored cyan. We ob-
serve that the CEs generated to explain the BCE
detector align well with our expectation. The
proposed method transforms the anomalies into
ones without changing the color, or their color
is changed to cyan without changing the digit.
Both modifications are minimal alterations of
the anomaly, transforming its appearance to nor-
mality in two distinct ways. The CEs of the
HSC method also mostly correspond to normal
samples, as expected. However, in some cases,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

both the color and the digit is changed, resulting in unnecessary changes. We found that this behavior
represents a local optimum of the objective of our method, highlighting the inherent difficulty of the
unsupervised generation of CEs for AD. The CEs created to explain the DSVDD detector perform the
least effectively. They tend to appear normal for one concept but often fail for the other concept. This
behavior may be attributed to DSVDD’s limited ability to detect anomalies, when compared with the
more competitive BCE and HSC detectors, which have the advantage of having access to OE.

MNIST In Figure 3, a single digit (seven) or multiple digits (eight and nine) are considered normal.
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Figure 3: Examples of CEs for MNIST, (a-c) with the digit seven as the normal class, and (d-f) with
digits eight and nine forming the normal class. The first row shows anomalous images, the other two
rows show CEs using two different concepts. CEs of BCE and HSC in (a,b) are variations of seven
and thus represent intuitive counterfactuals. CEs of BCE and DSVDD in (d) resemble normal eights
or nines for the second concept.

When the single digit seven is considered normal, the CEs of BCE and HSC are meaningful: the
anomalies are transformed into variations of seven. Notably, when the digits eight and nine are
considered normal, some anomalies are turned into eights, and others into nines. This observation
confirms our hypothesis that our method can correctly reveal diverse notations of normality in
multifaceted normal data. As expected, the CEs of DSVDD are generally worse.
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Figure 4: CEs for GTSDB with speed signs form-
ing the normal class. The first row shows anoma-
lous images, the other two rows disentangled CEs.

GTSDB Figure 4 shows the proposed CEs for
the GTSDB dataset, when speed signs are taken
as a normal class. We refer to Appendix H for
more experimental results using other normal
scenarios with similar findings. The CEs of
BCE and HSC show well-disentangled normal
traffic signs, obtained from anomalous ones. For
instance, the CE of BCE changes the “80km/h
restriction ends” sign into a “80km/h limit” sign,
which is a minimal intervention to make the
sample appear normal. Note that all triangular
anomalies are changed to circles. The CEs show that the shape is an important feature for the detector
to rate anomalousness.
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Figure 5: Examples of CEs for CIFAR-10, when
images of ships are normal. The first row shows
anomalous images, the other two rows present CEs
using two different concepts. The CEs of BCE and
HSC display normal ships, varying the background
for successful disentanglement while keeping the
object’s color to avoid unnecessary changes.

CIFAR-10 Especially for BCE, the CEs for
CIFAR-10 in Figure 5 represent intuitive nor-
mal samples (ships) that retain the anomalous
object’s color to incur minimal changes on the
anomaly. As there is only one single normal
class, the CEs generated for HSC and BCE pri-
marily disentangle the concepts by changing the
background. Typically, ships are depicted float-
ing on water, which may vary in color. CEs for
DSVDD are generally worse, revealing weak-
nesses of DSVDD as discussed in Appendix B.
We refer to Appendix H for more experimen-
tal results using other normal classes, demon-
strating that CEs exhibit a similar behavior for
combinations of classes forming normality.
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Figure 6: Examples of CEs for INN, where im-
ages of zebras are considered normal. The first
row shows anomalous images, the other two rows
present CEs using two different concepts.

ImageNet-Neighbors Figure 6 shows CEs for
the INN dataset when zebras are normal. The
ground-truth anomalies are “similar” animals,
ranging from horses and boars to armadillos.
Since DSVDD does not perform competitively,
we show results for BCE and HSC only. The
CEs depict zebras while keeping the general
pose and background of the anomalous animal.
For disentanglement, the CEs vary the color
scheme, which apparently the detectors perceive
as normal. The CEs for the second concept for
HSC are dark and, while still showing zebras,
perturb the image with green and orange pat-
terns. Interestingly, the HSC detector assigns
lower anomaly scores to the CEs for the second
concept.

4.2.2 COUNTERFACTUALS CAN EXPLAIN WHY IMAGES ARE PREDICTED ANOMALOUS—even
when feature attribution fails

A
n
o
m

C
E
 0

C
E
 1

(a) Counterfactuals
A
n
o
m

FC
D
D

(b) Heatmaps with FCDD

Figure 7: The first row shows anomalies from
Colored-MNIST, with red digits and the digit one
forming the normal class. The other rows show
(a) corresponding CEs for two concepts, and (b)
anomaly heatmaps generated with FCDD Lizn-
erski et al. (2021). The CEs explain the anomaly
detector that perceives anomalies turned red or into
one as normal, while heatmaps just highlight the
difference to one.

Here, we demonstrate the advantage of the pro-
posed CEs over conventional explanations that
attribute features to localize anomalies. Figure
shows 7 (a) CEs generated with our method and
(b) heatmaps for the corresponding anomalies
generated with FCDD Liznerski et al. (2021).

FCDD’s heatmaps explain only spatial aspects
of the anomalies: FCDD highlights the horizon-
tal bar in digit seven, the circle in digit nine, and
all of digit eight. These spatial aspects of anoma-
lies are also explained by the CEs created for
the first concept, where the anomalies are turned
into the digit one. However, FCDD’s heatmaps
fail to identify the color as being anomalous,
whereas the proposed CEs capture this aspect
with their second concept, where the anomalies
are colored red, making them look normal. This
demonstrates that CEs can provide more holistic
explanations of anomalies.

4.3 QUANTITATIVE RESULTS

This section presents a quantitative analysis of the CEs, assessing their normality, realism, disentan-
glement, and suitability for training anomaly detectors in terms of various metrics based on AuROC,
FID, and accuracy. These metrics are described in detail in Appendix D.

4.3.1 THE COUNTERFACTUALS APPEAR
AS NORMAL

Table 1: The AuROC of normal test data vs. CEs.
The CEs appear entirely normal for values ≤ 50%.

Datasets
Methods

BCE OE HSC OE DSVDD

Single
normal
class

MNIST 72.0 ± 4.0 80.8 ± 5.3 75.2 ± 9.2
CIFAR-10 47.5 ± 10.0 49.9 ± 4.4 54.6 ± 3.4
INN 69.1 ± 18.1 67.9 ± 13.2 ×

Multiple
normal
classes

C-MNIST 55.6 ± 1.5 55.8 ± 4.7 61.5 ± 4.3
MNIST 78.1 ± 4.1 82.1 ± 3.8 73.4 ± 6.5
CIFAR-10 49.0 ± 8.5 44.4 ± 6.7 50.7 ± 3.3
GTDSB 50.2 ± 8.0 48.6 ± 14.4 53.1 ± 4.8

An important attribute for any CE in deep AD
is that it must be perceived as normal by the
anomaly detector. To evaluate this quality cri-
terion, we compare the anomaly scores of the
normal test samples with those of the generated
CEs in terms of AuROC. Ideally, the AuROC
should approach 50%, indicating that CE and
normal samples are indistinguishable. As shown
in Table 1, the AuROC is indeed very close to
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50% on CIFAR-10, GTSDB, and Colored-MNIST (here abbreviated as C-MNIST), underlining
that the detector perceives the CEs as normal. Only on MNIST and INN, some of the CEs appear
anomalous. This might be due to the enforced disentanglement that produces diverse samples despite
a limited variety of possible normal variations.

4.3.2 THE COUNTERFACTUALS CAN BE USED TO TRAIN AN ANOMALY DETECTOR
EFFECTIVELY

If the CEs resemble normal images, they can serve as viable normal training samples. We retrain
the AD methods using CEs instead of the normal training set and report the AuROC for normal
vs. anomalous test samples in Table 2a. The results show that the CEs are effective normal training
samples, as the AuROC values are mostly well above the chance level of 50%.

Table 2: AuROC of normal vs. anomalous test samples when (a) the AD is trained with the normal
training set being substituted with CEs and (b) the AD is trained with the usual normal training set.

(a) AD AuROC with the CEs as normal training data.

Datasets
Methods

BCE OE HSC OE DSVDD

Single
normal
class

MNIST 91.3 ± 4.6 85.6 ± 9.2 46.2 ± 10.5
CIFAR-10 59.0 ± 6.1 54.8 ± 2.6 50.8 ± 3.2
INN 59.2 ± 5.8 53.0 ± 11.0 ×

Multiple
normal
classes

C-MNIST 80.6 ± 4.5 81.7 ± 4.8 59.9 ± 8.4
MNIST 62.2 ± 13.2 54.7 ± 9.9 41.6 ± 4.5
CIFAR-10 58.7 ± 4.6 53.1 ± 1.8 49.7 ± 4.1
GTDSB 90.1 ± 5.3 89.9 ± 5.1 58.4 ± 7.0

(b) AD AuROC with the proper normal training set.

Datasets
Methods

BCE OE HSC OE DSVDD

Single
normal
class

MNIST 97.7 ± 1.5 97.6 ± 1.6 78.8 ± 8.6
CIFAR-10 96.0 ± 2.5 95.9 ± 2.5 55.4 ± 4.7
INN 93.6 ± 5.7 92.6 ± 6.7 ×

Multiple
normal
classes

C-MNIST 97.1 ± 1.0 95.7 ± 2.3 76.9 ± 6.5
MNIST 93.5 ± 2.8 92.9 ± 3.3 75.4 ± 7.1
CIFAR-10 93.8 ± 2.7 94.0 ± 2.7 52.6 ± 3.6
GTDSB 94.3 ± 4.7 93.0 ± 5.6 58.2 ± 6.7

The AD methods significantly outperform a random detector when trained with CEs, affirming their
viability as normal samples. A notable exception is DSVDD, a method that does not utilize OE and
struggles when trained purely with CEs. Table 2b shows the AuROC values of the models when
trained with the proper normal training set.

4.3.3 THE COUNTERFACTUALS ARE REALISTIC

Table 3: Normalized FID scores for the CEs.
Most of the CEs are as realistic as the anoma-
lies, which are also realistic since they follow the
general data distribution (e.g., are digits in case
of MNIST).

Datasets
Methods

BCE OE HSC OE DSVDD

Single
normal
class

MNIST 43 ± 8.1 68 ± 14.6 100 ± 8.8
CIFAR-10 116 ± 20.8 300 ± 90.0 116 ± 12.0
INN 85.0 ± 28.6 85.4 ± 24.6 ×

Multiple
normal
classes

C-MNIST 56 ± 12.4 95 ± 30.5 83 ± 8.7
MNIST 78 ± 26.0 96 ± 25.0 100 ± 10.7
CIFAR-10 103 ± 27.9 254 ± 69.7 110 ± 10.0
GTDSB 110 ± 101.8 95 ± 73.5 131 ± 118.1

To assess the realism of the CEs, we compute
the FID between CEs and normal test samples.
For an intuitive score, we normalize the FID for
CEs by dividing by the FID between normal and
anomalous test samples. The normalized FID
is 100% if the CEs are equally realistic as the
anomalies. Details are provided in Appendix D.
We found that a normalized FID of 50 to 100% is
a reasonable target for expressive CEs. If the CEs
became too similar to the normal data distribution,
they would not be valid counterfactuals, as they
would not retain non-anomalous features from the
anomalies. Table 3 displays the normalized FID
scores. The CEs for BCE and HSC are mostly as
realistic as the anomalies. On MNIST, INN and
Colored-MNIST, the CEs are even more realistic than the anomalies. As CEs for DSVDD tend to
reconstruct anomalies, their realism is also reasonable.

4.3.4 THE COUNTERFACTUALS CAPTURE MULTIPLE DISENTANGLED ASPECTS

Here we show that, for each anomaly, our method generates concept-disentangled CEs. Recall that
the concept classifier is trained to predict the concept of each CE (see Section 3). Consequently, we
have a metric for assessing the disentanglement of the generated samples. We present the accuracy of
this concept classifier on test data in Table 4.
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Table 4: The accuracy of the concept classifier for
the generated CEs.

Datasets
Methods

BCE OE HSC OE DSVDD

Single
normal
class

MNIST 94.3 ± 3.9 90.8 ± 4.8 77.5 ± 14.1
CIFAR-10 93.0 ± 4.3 98.8 ± 3.2 97.1 ± 2.9
INN 97.0 ± 5.4 98.9 ± 1.1 ×

Multiple
normal
classes

C-MNIST 99.4 ± 1.3 98.9 ± 2.0 98.0 ± 3.0
MNIST 93.8 ± 5.1 85.7 ± 9.6 81.6 ± 11.3
CIFAR-10 86.2 ± 7.5 98.9 ± 2.4 92.2 ± 4.2
GTDSB 98.8 ± 0.8 94.0 ± 8.4 93.4 ± 4.5

Our models demonstrate a consistent ability to
disentangle concepts effectively, with the ex-
ception of DSVDD, which has suboptimal AD
performance, making it difficult to provide ex-
planations in general. In particular, disentangle-
ment is effective even in the case where just one
class is considered normal. On CIFAR-10 the
generator exploits the background, on INN the
color scheme, and on MNIST it generates disen-
tangled variants of digits. We hypothesize that
this strong disentanglement is the reason behind
the CEs appearing less normal for MNIST.

4.4 COUNTERFACTUALS REVEAL A
PREVIOUSLY UNREPORTED CLASSIFIER BIAS IN DEEP AD
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(b) BCE with blue
anomalies

Figure 8: The first row shows anomalies for
Colored-MNIST with red digits and the digit one
forming the normal class. The other two rows
present CEs of BCE trained with OE in (a) and
of a classifier trained with only blue anomalies in
(b). The generator’s inability to generate normal-
looking CEs for anomalies other than blue suggests
that the classifier in (b) is biased.

In this section, we present a scientific find-
ing: classifiers may be biased when trained for
deep AD. The hypothesis of “classification bias,”
suggesting supervised classifiers underperform
when trained with limited and biased anomaly
subsets Ruff et al. (2020), remains insufficiently
investigated. To test this hypothesis, we train a
supervised classifier on Colored-MNIST, aiming
to distinguish between a normal set (red digits
and the digit one) and a subset of the ground-
truth anomalies, specifically all blue anomalies.
We select a subset of the anomalies for train-
ing to simulate a realistic scenario in which one
has no access to all variations of the ground-
truth anomalies. A key requirement in AD is the
model’s ability to identify all forms of unseen
anomalies. The classifier bias becomes appar-
ent as the AuROC of normal test samples vs.
ground-truth anomalies decreases from 98 for
BCE with OE (unsupervised) to 75 for supervised BCE. Our CEs further illuminate this phenomenon
(see Figure 8). While our explanation for the AD method with OE in (a) indicates that anomalies
should be transformed into red or digit one to appear normal, they depict a different picture for the
supervised classifier in (b). Here, only for the blue anomalous zero, which is seen during training, the
CEs roughly show intuitive normal versions of the anomaly. For other unseen anomalies, such as the
cyan five or yellow eight, the explanations do not show intuitive normal images. This suggests that
the classifier is biased towards detecting blue anomalies and fails to generalize to other colors not
present in the training set. This underlines the need for specialized AD methods (e.g., using OE or
semi-supervised objectives) because they are less prone to bias.

5 CONCLUSION

This paper introduced a novel method that can interpret image anomaly detectors at a semantic
level. This is achieved by modifying anomalies until they are perceived as normal by the detector,
creating instances known as counterfactuals. We found that counterfactuals can provide a deeper, more
nuanced understanding of image anomaly detectors, far beyond the traditional feature-attribution level.
Extensive experiments across various image benchmarks and deep anomaly detectors demonstrated
the efficacy of the proposed approach. This research marks a paradigm shift and a significant departure
from the more superficial interpretation of anomaly detectors using feature attribution, enhancing our
understanding of detectors on a more abstract, semantic level. This may be a substantial milestone in
the pursuit of more transparent and accountable AD systems.
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A BROADER IMPACT

As an explanation technique, our method naturally aids in making deep AD more transparent. It may
reveal biases in the model (see Section 4.4) and improve trustworthiness. For example, it may reveal
a social bias when a portrait of a person is labeled anomalous due to race or gender. In this scenario,
our method might generate CEs where merely the skin color has been changed. Applying our method
can prevent a harmful deployment of such an AD model.

B LIMITATIONS OF OUR APPROACH

In the main paper, we proposed a method to generate counterfactual explanations (CEs) for deep
anomaly detection (AD). As seen in Section 4, the quality of the generated counterfactual explanations
relies on the performance of the AD model. DSVDD without OE Ruff et al. (2018) performs weakly
on some image datasets. Consequently, CEs for DSVDD are often not very intuitive and sometimes
collapse to a mere reconstruction of the anomaly. This happens because DSVDD struggles to
recognize an anomaly and thus assigns a low anomaly score to it. Our method doesn’t have a reason
to change an anomaly to turn it normal for DSVDD. Another limitation of our method is that the
generator might change more than necessary to turn the anomaly normal, thereby falling into a local
optimum of the overall objective. Learning to balance the objectives of our method in an unsupervised
manner is challenging, especially given the limited variety and amount of normal samples. Future
work may improve upon this.

C COUNTERFACTUAL EXPLANATIONS OF DEFECTS

In the main paper, we did not include experiments on datasets such as MVTec-AD, where anomalies
are subtle modifications of normal samples (e.g., cracked hazelnuts for healthy hazelnuts being
normal) rather than being out of class. Such datasets are not interesting in the context of high-level
explanations. Contrary to usual assumptions in AD, where anomalies are everything, which is not
normal, in MVTec-AD there is a very precise definition of anomalousness and only one specific way
to turn anomalies normal (i.e., by removing the defect). CEs would not help in understanding the
model. Hence, we focus on the well-established and important semantic image-AD setting.

To visualize why CEs are not a useful tool for explaining low-level AD, we trained our proposed
method from scratch with a single concept on several classes of MVTec-AD. Figure 9 shows some
generated CEs for the classes bottle, grid, hazelnut, metal nut, screw, tile, and wood. Mostly, the CEs
are high-quality: realistic and normal. However, they do not help us to understand the behavior of the
model. They simply show the sample with the defect removed, which is a trivial explanation of the
anomaly but does not explain the anomaly detector.

An
om

CE
 0

Figure 9: CEs for MVTec-AD and an anomaly detector trained with BCE and ImageNet-21k as OE.
For each class, a different detector and CE generator was trained. The first row shows anomalies, the
other corresponding CEs.

D METRICS

In this section, we provide details of the metrics used for the quantitative analysis in Section 4.3.

Normality of counterfactuals To assess the normality of the generated CEs, we computed the
AuROC of normal test samples against CEs generated for all ground-truth anomalies from the test
set. The Area Under the ROC curve (AuROC) is a widely recognized metric in the AD literature
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for comparing anomaly scores of normal and anomalous samples Hanley & McNeil (1982). An
AuROC of 1 indicates perfect separation between anomalies and normal samples, 0.5 corresponds to
random guessing, and a score below 0.5 suggests that anomalies appear more normal than the actual
normal samples. To assess the normality of our CEs, we computed the AuROC with the anomalies
being CEs. Then, an AuROC of significantly more than 0.5 indicates that the CEs retain some degree
of anomalousness according to the chosen detector. An AuROC of 0.5 indicates that CEs appear
completely normal, and for below 0.5 the CEs are even more normal than the normal test samples.
This may happen when the anomaly detector does not generalize perfectly and hence perceives some
normal test samples as somewhat anomalous.

Usefulness of counterfactuals for training AD To further assess the normality and realism of the
CEs, we tested their ability to train a new anomaly detector. To this end, we replaced the entire normal
training set with a collection of CEs generated for all ground-truth anomalies. With this modified
training set, we retrained the AD methods, additionally using an outlier exposure set in case of
BCE and HSC. If the CEs resemble normal images, the retrained anomaly detectors will outperform
random guessing. We measure this by computing the AuROC for true normal vs. anomalous test
samples and compare the outcome to the chance level, which is 0.5.

Realism of counterfactuals To assess the realism of generated samples, the standard approach
involves computing the Fréchet inception distance (FID) introduced by Heusel et al. (2017) for GANs.
The FID is the Wasserstein distance between the feature distributions of a generated dataset and a
ground-truth dataset. The larger the distance, the less the generated dataset resembles the ground
truth. The features are extracted using an InceptionNet v3 model Szegedy et al. (2015) trained on
ImageNet. In this paper, we used the normal test set as ground truth and a collection of CEs for all
test anomalies as the generated dataset. For a more intuitive scoring, we also computed a second FID
with the test anomalies as the generated dataset. Then, we normalize the FID for CEs by dividing
through the FID for test anomalies. The normalized FID is 100% if the CEs are as realistic as the test
anomalies, below 100% if they are more realistic, and 0% if they exactly match the normal test set. It
is important to note that, although anomalies are naturally anomalous, they are still realistic in the
sense that they come from the same classification dataset and thus follow the general distribution of,
e.g., handwritten digits. A normalized FID of 100% is therefore sufficient for a counterfactual to be
expressive. A normalized FID of close to 0% would actually be spurious, as the generator then seems
to entirely reproduce normal samples that do not retain non-anomalous features from the anomaly.

Disentanglement of counterfactuals We also evaluated the disentanglement of the sets of CEs for
each anomaly. As introduced in Section 3, the proposed method includes a concept classifier trained
to predict the concept of each CE. Consequently, we have a metric for assessing the disentanglement
of the generated samples. The higher the accuracy of this classifier, the stronger the disentanglement
of the generated CEs. We chose a rather small network for the concept classifier to encourage the
network not to overfit on non-semantic features to predict the concepts.

E HYPERPARAMETERS

In this section, we provide an exhaustive enumeration of all the hyperparameters that we used for
training our AD and CE module. All hyperparameters were adopted from existing research Ruff et al.
(2018); Ghandeharioun et al. (2021); Liznerski et al. (2022). We start by describing the CE module,
which is the same for all datasets and AD objectives. Then we separately describe the AD module
and other hyperparameters for MNIST, Colored-MNIST, CIFAR-10, and GTSDB.

E.1 THE CE MODULE

Generator The generator is a wide ResNet Zagoruyko & Komodakis (2016) structured as an
encoder-decoder network. The encoder consists of a sequential arrangement of a batch normalization
layer, a convolutional layer with 64 kernels, and three residual blocks. Each residual block comprises
two sets, each containing a conditional batch normalization layer De Vries et al. (2017), followed
by an activation function (ReLU), and a convolutional layer. The convolutional layers in these sets
have 256, 512, and 1024 kernels, respectively, for the first, second, and third block. The initial two
residual blocks employ average pooling in each set to reduce the spatial dimension of the feature
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maps by one-half of the input, while the third residual block is implemented without average pooling
to maintain the spatial dimension. Conversely, the decoder follows a similar sequential arrangement,
featuring three residual blocks, followed by a batch normalization layer, a final convolutional layer
mapping to the image space, and an activation function (ReLU). Again, each residual block comprises
two sets, each containing a conditional batch normalization layer, followed by RelU activation,
and a convolutional layer. The convolutional layers in these sets have 1024, 512, and 256 kernels,
respectively, for the first, second, and third block. The first residual block in the decoder retains the
spatial dimension, while the subsequent two residual blocks employ an interpolation layer in each set
to upsample the spatial dimension by a multiplicative factor of 2 using nearest-neighbor interpolation.
We apply spectral normalization to all layers of the decoder, following Miyato et al. (2018). The last
layer of the decoder uses a tanh activation. The conditional information, i.e., the discretized target
anomaly score α and the target concept k are transformed into a single categorical condition and
processed through the categorical conditional batch normalization layers.

Discriminator The discriminator contains four residual blocks arranged sequentially, followed
by a final linear layer mapping to a scalar. The first block is implemented with two convolutional
layers with 64 kernels, where the first layer is followed by a ReLU activation and the second layer is
followed by an average pooling with a kernel size of 2. The next two residual blocks consist of two
convolutional layers, where each one is preceded by a ReLU activation and followed by an average
pooling layer in the end to halve the spatial dimension. The fourth residual block also contains
two convolutional layers preceded by a ReLU, but does not use any downsampling. The number of
kernels in the convolutional layers from the second to fourth block is 128, 256, and 512, respectively.
We apply spectral normalization to all layers.

Concept Classifier The concept classifier is composed of two sequentially arranged residual blocks,
succeeded by a linear layer with two outputs for the classification of two concepts. In the first residual
block, three convolutional layers are employed with 64 kernels each. The initial convolutional layer
is succeeded by a ReLU activation, and the last two convolutional layers are followed by average
pooling layers, which reduce the spatial dimension by a factor of two. The second residual block
consists of two convolutional layers with 128 kernels, each followed by a ReLU activation, followed
by an average pooling with a kernel size of two. We take the sum over the remaining spatial dimension
to prepare the output for the final linear layer. Again, we apply spectral normalization to all layers.

Training We train the generator to generate CEs with two disentangled concepts and a discretized
target anomaly score α ∈ 0, 0.5, 1. The CE module is trained for 350 (2000 for GTSDB) epochs
with a batch size of 64 normal and, if used, 64 OE samples. The initial learning rate is set to
2e−4, with reductions by a multiplicative factor of 0.1 occurring after 300 and 325 epochs. For
GTSDB, we instead use an initial learning rate of 1e−4 and reduce it after 1750 and 1900 epochs. We
employ the Adam optimizer, with the generator and discriminator optimized every 1 and 5 batches,
respectively. The CE objective involves a combination of different losses which are weighted using λ
hyperparameters. Specifically, we set λgan = 1, λrec = 100, λϕ = 1, and λr = 10. For GTSDB,
we instead set λgan = 5, λrec = 20, λϕ = 1, and λr = 10. For INN, we use a different set of
hyperparameters. We set λgan = 10, λrec = 1, λϕ = 1, and λr = 0.5. Also, we consider only α = 0,
as we train the generator with only OE samples to reduce the training time, while the discriminator is
trained with normal and generated samples. Due to the immense VRAM requirements of the diffusion
model, we train with a batch size of 1 and use the running statistics of all BatchNorm layers during
training. The initial learning rate is set to 1e−4. It is reduced by a factor of 0.5 at 100, 120, 130, 140,
and 145 epochs. The model is trained for 150 epochs in total.

E.2 AD ON MNIST

For MNIST and all the following datasets, we trained anomaly detectors with a binary cross entropy
(BCE) and hypersphere classification (HSC) loss, both with Outlier Exposure (OE) Hendrycks et al.
(2019a), as well as DSVDD Ruff et al. (2018) without OE.

We use a LeNet-style neural network comprising layers arranged sequentially without residual
connections. The network contains four convolutional layers and two fully-connected layers. Each
convolutional layer is followed by batch normalization, a leaky ReLU activation, and max-pooling.
The first fully connected layer is followed by batch normalization and a leaky ReLU activation, while
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the last layer is only a linear transformation. The number of kernels in the convolutional layers is,
from first to last, 4, 8, 16, and 32. The kernel size is increased from the default of 3 to 5 for all of
these. The two fully connected layers have 64 and 32 units, respectively. For DSVDD we remove
bias from the network, following Ruff et al. (2018), and for BCE we add another linear layer with
sigmoid activation.

We used Adam for optimization and balanced every batch to contain 128 normal and 128 OE samples
during training. We trained the AD model for 80 epochs starting with a learning rate of 1e−4, which
we reduced to 1e−5 after 60 epochs.

E.3 AD ON COLORED-MNIST

Based on the MNIST dataset, we create Colored-MNIST where for each sample in MNIST six
copies in different colors (red, yellow, green, cyan, blue, pink) are created. We use a colored
version of EMNIST as OE. The network for Colored-MNIST is a slight variation of the AD network
used on MNIST. We remove the last convolutional layer and change the number of kernels for the
convolutional layers to 16, 32, and 64, respectively.

We use Adam for optimization, balance every batch to contain 128 normal and 128 OE samples
during training, and train the AD model for 120 epochs, starting with a learning rate of 5e−5, reduced
to 5e−6 after 100 epochs.

E.4 AD ON CIFAR-10

For CIFAR-10, previous work used 80 Mio. Tiny Images as OE Hendrycks et al. (2019b). However,
since 80 Mio. Tiny Images has officially been withdrawn due to offensive data, we instead use
the disjunct CIFAR-100 dataset as OE. We found that this does not cause a significant drop of
performance. Again, we use a slight variation of the AD network used on MNIST. We remove the
last convolutional layer and change the number of kernels for the convolutional layers to 32, 64, and
128, respectively. The fully connected layers have 512 and 256 units instead.

We use Adam for optimization and balance every batch to contain 128 normal and 128 OE samples
during training. We train the AD model for 200 epochs starting with a learning rate of 1e−3, which
we reduce by a factor of 0.1 after 100 and 150 epochs.

E.5 AD ON GTSDB

We use the same setup on GTSDB as on CIFAR-10.

E.6 AD ON IMAGENET-NEIGHBORS

For ImageNet-Neighbors (INN), we use the disjoint ImageNet-21k as OE and the same WideResNet
architecture as in (Hendrycks et al., 2019b; Liznerski et al., 2022). We use Adam for optimization
and balance every batch to contain 64 normal and 64 OE samples during training. We train the AD
model for 150 epochs starting with a learning rate of 1e−3, which we reduce by a factor of 0.1 after
100 and 125 epochs.

F COMPUTE RESOURCES

Most of the experiments with MNIST, Colored-MNIST, CIFAR-10, and GTSDB were carried out
on a NVIDIA DGX-1 server containing 8 GV100 GPUs with 32 GB memory. For Colored-MNIST,
each experiment with one seed and normal class definition took around one and a half days. For
MNIST and CIFAR-10, each experiment took approximately 8 hours. Each GTSDB experiment took
only about 3 hours. The time to run each experiment varies depending on the precise setup. For
the INN experiments, most experiments were carried out on a NVIDIA DGX A-100 server with 8
A100 GPUs with 40 GB memory. One experiment with one seed and normal class definition took
approximately 10 days.
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G FULL QUANTITATIVE RESULTS PER NORMAL CLASS

In the main paper, we proposed a method to generate counterfactual explanations (CEs) for deep
anomaly detection on images. We also presented several objective evaluation techniques to validate
their performance on MNIST, Colored-MNIST (C-MNIST), CIFAR-10, GTSDB, and ImageNet-
Neighbors (INN) across different definitions of normality. Following previous work on semantic
image-AD Ruff et al. (2018); Golan & El-Yaniv (2018); Hendrycks et al. (2019a;b); Ruff et al.
(2020); Tack et al. (2020); Ruff et al. (2021); Liznerski et al. (2021; 2022), we turned classification
datasets into AD benchmarks by defining a subset of the classes to be normal and using the remainder
as ground-truth anomalies for testing. If only one class is normal, this approach is termed one
vs. rest AD. Apart from investigating one vs. rest, we also explored a variation with multiple classes
being normal. For our experiments, we considered all classes of MNIST and CIFAR-10 as single
normal classes and, to keep the computational load at a reasonable level, a subset of 20 normal class
combinations. The class combinations were chosen from {(i, (i+ 1) mod 10) |i ∈ {0, . . . , 9}} ∪
{(i, (i+ 2) mod 10) |i ∈ {0, . . . , 9}}. For Colored-MNIST, we considered all combinations of
color and the digit one as normal. For GTSDB, we considered the following pairs of street signs as
normal: all four combinations of speed limit signs, the “give way” and stop sign, and the “danger”
and “construction” warning sign. Additionally, we considered four larger sets of normal classes:
all “restriction ends” signs, all speed limit signs, all blue signs, and all warning signs. In total, we
consider ten different scenarios of normal definitions for GTSDB.

We introduced ImageNet-Neighbors (INN), which is a subset of ImageNet-1K. As before, we define
an AD setup by considering one of the classes normal. However, instead of using the entire remainder
as ground-truth test anomalies, we choose only the ten most similar classes, based on the Wu-Palmer
similarity metric (Wu & Palmer, 1994), as test anomalies. This AD setup becomes harder as compared
to the usual one vs. rest AD setup (Hendrycks et al., 2019a), as the anomalies are more similar to
the normal class and thus harder to detect, especially in an unsupervised manner. In this paper, we
consider five different AD setups for INN. (1) An airliner is normal with airship, wreck, warplane,
balloon, monocycle, fireboat, schooner, space shuttle, pirate ship, and gondola as test anomalies. (2)
An ambulance is normal with limousine, taxi, waggon, racing car, minivan, jeep, sports car, golf cart,
Model T, and convertible as test anomalies. (3) A black widow (spider) is normal with centipede,
trilobite, wolf spider, garden spider, barn spider, harvestman, scorpion, black and gold garden spider,
tarantula, and tick as test anomalies. (4) A lion is normal with cougar, cheetah, jaguar, tiger cat,
leopard, snow leopard, lynx, tiger, tabby cat, and Siamese cat as test anomalies. (5) A zebra is normal
with sorrel, llama, warthog, boar, hamster, armadillo, hog, beaver, Arabian camel, and hippo as test
anomalies.

For each scenario on each dataset, a new AD model and counterfactual generator was trained for four
random seeds. Due to space constraints, we reported our quantitative results averaged over all normal
definitions in the main paper. Here, we report results averaged over four random seeds separately for
each normal definition. We consider the following metrics from the main paper:

• The AD AuROC (Section 4.3.2) is the AuROC of normal vs. anomalous test samples,
thereby measuring the AD performance of the AD model. 50% is random, 100% indicates
optimal separation.

• The CF AuROC (Section 4.3.1) is the AuROC of normal test samples vs. counterfactuals.
The counterfactuals appear entirely normal for an AuROC ≤ 50%.

• The Sub. AuROC (Section 4.3.2) is the AuROC of normal vs. anomalous test samples when
the AD is trained with counterfactuals in place of the normal training set.

• The FIDN (Section 4.3.3) denotes the normalized FID scores. 0% indicates that the
counterfactuals follow the same feature distribution as normal samples, 100% as anomalies,
which are also realistic, and above 100% indicates less realistic counterfactuals.

• The Concept Acc (Section 4.3.4) is the accuracy of the concept classifier. A 100% accuracy
indicates optimal disentanglement of the concepts.

Additionally, we report the “Score distance”, which is the L1 distance between the average anomaly
score of normal and anomalous test samples. Note that the L1 distance between normal training data
and OE samples is usually 1. Thus, the “Score distance” measures the generalizability of the AD
model to ground-truth anomalies in terms of anomaly score calibration.
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Tables 5, 6, and 7 show results for MNIST and single normal classes for BCE, HSC, and DSVDD,
respectively. In Tables 8, 9, and 10, we instead report results for CIFAR-10 and single normal classes
for BCE, HSC, and DSVDD, respectively. Tables 11, 12, and 13 show results for Colored-MNIST
(here abbreviated as C-MNIST) for BCE, HSC, and DSVDD, respectively. Tables 14, 15, and 16
show results for GTSDB and combined normal classes for BCE, HSC, and DSVDD, respectively.
Tables 17, 18, and 19 show results for MNIST and combined normal classes for BCE, HSC, and
DSVDD, respectively. Tables 20, 21, and 22 show results for CIFAR-10 and combined normal classes
for BCE, HSC, and DSVDD, respectively. Tables 23 and 24 show results for ImageNet-Neighbors
and single normal classes for BCE and HSC, respectively.

Table 5: AD and explanation performance averaged over 4 random seeds on MNIST for BCE (OE).
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

zero 0.99 ± 0.0010 0.78 ± 0.0079 0.76 ± 0.0684 0.93 ± 0.0104 0.42 ± 0.0366 0.97 ± 0.0360
one 1.00 ± 0.0005 0.87 ± 0.0155 0.66 ± 0.0977 0.97 ± 0.0107 0.47 ± 0.4474 0.99 ± 0.0082
two 0.97 ± 0.0083 0.69 ± 0.0379 0.75 ± 0.0253 0.85 ± 0.0183 0.56 ± 0.0431 0.87 ± 0.0505
three 0.99 ± 0.0018 0.67 ± 0.0286 0.77 ± 0.0242 0.94 ± 0.0073 0.33 ± 0.0392 0.89 ± 0.0834
four 0.97 ± 0.0090 0.75 ± 0.0359 0.70 ± 0.0787 0.88 ± 0.0457 0.48 ± 0.0954 0.91 ± 0.0563
five 0.97 ± 0.0058 0.65 ± 0.0398 0.66 ± 0.0076 0.84 ± 0.0184 0.44 ± 0.0405 0.98 ± 0.0252
six 1.00 ± 0.0010 0.90 ± 0.0106 0.71 ± 0.0527 0.98 ± 0.0066 0.33 ± 0.0348 0.96 ± 0.0359
seven 0.96 ± 0.0107 0.71 ± 0.0275 0.70 ± 0.0519 0.92 ± 0.0133 0.50 ± 0.0464 0.96 ± 0.0281
eight 0.95 ± 0.0102 0.54 ± 0.0337 0.72 ± 0.0817 0.87 ± 0.0054 0.31 ± 0.0271 0.94 ± 0.0794
nine 0.96 ± 0.0092 0.60 ± 0.0329 0.77 ± 0.0147 0.94 ± 0.0080 0.47 ± 0.0593 0.97 ± 0.0189

mean 0.98 ± 0.0154 0.72 ± 0.1067 0.72 ± 0.0400 0.91 ± 0.0456 0.43 ± 0.0808 0.94 ± 0.0385

Table 6: AD and explanation performance averaged over 4 random seeds on MNIST for HSC (OE).
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

zero 0.99 ± 0.0011 0.81 ± 0.0306 0.84 ± 0.0772 0.91 ± 0.0101 0.58 ± 0.1412 0.98 ± 0.0106
one 1.00 ± 0.0011 0.89 ± 0.0231 0.88 ± 0.0783 0.95 ± 0.0089 0.60 ± 0.3820 0.90 ± 0.0868
two 0.98 ± 0.0013 0.72 ± 0.0338 0.77 ± 0.0332 0.77 ± 0.0438 0.80 ± 0.3295 0.92 ± 0.0575
three 0.98 ± 0.0056 0.67 ± 0.0166 0.82 ± 0.0717 0.85 ± 0.0209 0.48 ± 0.2057 0.83 ± 0.1941
four 0.96 ± 0.0038 0.73 ± 0.0269 0.80 ± 0.0658 0.84 ± 0.0394 0.83 ± 0.2911 0.81 ± 0.1526
five 0.96 ± 0.0054 0.62 ± 0.0334 0.83 ± 0.0603 0.70 ± 0.1316 0.77 ± 0.1088 0.92 ± 0.1010
six 1.00 ± 0.0010 0.88 ± 0.0211 0.77 ± 0.0607 0.98 ± 0.0076 0.84 ± 0.3493 0.95 ± 0.0547
seven 0.97 ± 0.0052 0.71 ± 0.0066 0.70 ± 0.0319 0.92 ± 0.0112 0.52 ± 0.0301 0.91 ± 0.0675
eight 0.95 ± 0.0069 0.52 ± 0.0334 0.89 ± 0.0278 0.73 ± 0.0590 0.88 ± 0.3052 0.94 ± 0.0739
nine 0.97 ± 0.0043 0.59 ± 0.0192 0.80 ± 0.0227 0.92 ± 0.0031 0.53 ± 0.0739 0.91 ± 0.0512

mean 0.98 ± 0.0157 0.72 ± 0.1156 0.81 ± 0.0526 0.86 ± 0.0919 0.68 ± 0.1464 0.91 ± 0.0478
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Table 7: AD and explanation performance averaged over 4 random seeds on MNIST for DSVDD.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

zero 0.82 ± 0.0685 0.01 ± 0.0038 0.76 ± 0.0870 0.41 ± 0.0680 1.16 ± 0.5100 0.96 ± 0.0467
one 1.00 ± 0.0020 0.05 ± 0.0086 0.99 ± 0.0054 0.76 ± 0.1219 1.02 ± 0.0600 0.84 ± 0.1254
two 0.72 ± 0.1254 0.01 ± 0.0057 0.69 ± 0.1664 0.34 ± 0.0203 0.89 ± 0.0117 0.49 ± 0.1150
three 0.72 ± 0.0274 0.00 ± 0.0036 0.70 ± 0.0545 0.42 ± 0.0527 0.90 ± 0.0234 0.59 ± 0.1276
four 0.72 ± 0.0517 0.01 ± 0.0040 0.65 ± 0.0669 0.46 ± 0.0180 0.88 ± 0.1156 0.80 ± 0.1840
five 0.73 ± 0.0316 0.01 ± 0.0050 0.71 ± 0.0562 0.44 ± 0.0632 0.97 ± 0.0869 0.87 ± 0.1221
six 0.83 ± 0.0964 0.01 ± 0.0126 0.80 ± 0.1238 0.44 ± 0.0466 1.08 ± 0.0339 0.84 ± 0.1877
seven 0.84 ± 0.0450 0.01 ± 0.0135 0.80 ± 0.0533 0.46 ± 0.0858 1.04 ± 0.0408 0.88 ± 0.0291
eight 0.70 ± 0.0359 0.00 ± 0.0007 0.69 ± 0.0440 0.46 ± 0.0792 0.99 ± 0.0775 0.82 ± 0.0962
nine 0.81 ± 0.0331 0.01 ± 0.0056 0.74 ± 0.0568 0.44 ± 0.0599 1.09 ± 0.0822 0.65 ± 0.3127

mean 0.79 ± 0.0865 0.01 ± 0.0119 0.75 ± 0.0916 0.46 ± 0.1050 1.00 ± 0.0876 0.78 ± 0.1410
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Table 8: AD and explanation performance averaged over 4 random seeds on CIFAR-10 for BCE OE.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

airplane 0.96 ± 0.0009 0.78 ± 0.0083 0.47 ± 0.0372 0.65 ± 0.0322 1.48 ± 0.1439 0.93 ± 0.0659
automobile 0.99 ± 0.0005 0.87 ± 0.0026 0.62 ± 0.0540 0.62 ± 0.0347 1.08 ± 0.0582 0.92 ± 0.0757
bird 0.93 ± 0.0030 0.65 ± 0.0020 0.42 ± 0.0378 0.53 ± 0.0138 1.42 ± 0.0777 0.99 ± 0.0069
cat 0.91 ± 0.0035 0.55 ± 0.0127 0.30 ± 0.0054 0.53 ± 0.0159 1.37 ± 0.0773 0.91 ± 0.1449
deer 0.96 ± 0.0020 0.74 ± 0.0043 0.40 ± 0.0209 0.53 ± 0.0103 1.09 ± 0.1095 0.99 ± 0.0151
dog 0.94 ± 0.0013 0.64 ± 0.0051 0.36 ± 0.0061 0.57 ± 0.0134 1.23 ± 0.0777 0.93 ± 0.1008
frog 0.98 ± 0.0011 0.79 ± 0.0067 0.50 ± 0.0247 0.54 ± 0.0127 0.80 ± 0.0652 0.88 ± 0.1341
horse 0.98 ± 0.0006 0.82 ± 0.0060 0.59 ± 0.0303 0.64 ± 0.0213 1.21 ± 0.1013 0.99 ± 0.0107
ship 0.98 ± 0.0002 0.85 ± 0.0032 0.55 ± 0.0098 0.72 ± 0.0300 0.93 ± 0.0810 0.89 ± 0.0760
truck 0.97 ± 0.0018 0.78 ± 0.0080 0.54 ± 0.0602 0.56 ± 0.0242 1.03 ± 0.1231 0.88 ± 0.2031

mean 0.96 ± 0.0252 0.75 ± 0.0964 0.47 ± 0.1000 0.59 ± 0.0610 1.16 ± 0.2078 0.93 ± 0.0429

Table 9: AD and explanation performance averaged over 4 random seeds on CIFAR-10 for HSC OE.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

airplane 0.96 ± 0.0012 0.75 ± 0.0056 0.51 ± 0.0754 0.52 ± 0.0111 2.95 ± 0.1509 0.89 ± 0.0873
automobile 0.99 ± 0.0005 0.85 ± 0.0030 0.58 ± 0.0152 0.59 ± 0.0129 1.71 ± 0.1914 0.99 ± 0.0054
bird 0.93 ± 0.0015 0.62 ± 0.0018 0.46 ± 0.0293 0.52 ± 0.0149 4.81 ± 0.2365 1.00 ± 0.0007
cat 0.90 ± 0.0020 0.53 ± 0.0072 0.43 ± 0.0255 0.52 ± 0.0088 3.98 ± 0.4753 1.00 ± 0.0009
deer 0.96 ± 0.0007 0.71 ± 0.0040 0.51 ± 0.0121 0.57 ± 0.0230 3.45 ± 0.3143 1.00 ± 0.0000
dog 0.95 ± 0.0012 0.65 ± 0.0047 0.46 ± 0.0317 0.53 ± 0.0257 3.09 ± 0.2897 1.00 ± 0.0023
frog 0.98 ± 0.0004 0.77 ± 0.0043 0.52 ± 0.0062 0.57 ± 0.0569 2.92 ± 0.4138 1.00 ± 0.0009
horse 0.98 ± 0.0008 0.79 ± 0.0040 0.54 ± 0.0466 0.54 ± 0.0281 3.13 ± 0.0463 1.00 ± 0.0001
ship 0.98 ± 0.0003 0.83 ± 0.0027 0.48 ± 0.0257 0.56 ± 0.0316 1.86 ± 0.5187 1.00 ± 0.0032
truck 0.97 ± 0.0011 0.77 ± 0.0055 0.51 ± 0.0257 0.57 ± 0.0623 2.19 ± 0.1318 1.00 ± 0.0010

mean 0.96 ± 0.0254 0.73 ± 0.0939 0.50 ± 0.0438 0.55 ± 0.0259 3.01 ± 0.8998 0.99 ± 0.0325

Table 10: AD and explanation performance averaged over 4 random seeds on CIFAR-10 for DSVDD.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

airplane 0.48 ± 0.0952 -0.00 ± 0.0022 0.54 ± 0.0733 0.45 ± 0.0265 1.28 ± 0.0382 0.98 ± 0.0114
automobile 0.51 ± 0.0339 0.00 ± 0.0003 0.52 ± 0.0606 0.49 ± 0.0198 1.15 ± 0.0266 0.99 ± 0.0076
bird 0.54 ± 0.0375 0.00 ± 0.0005 0.52 ± 0.0601 0.51 ± 0.0133 1.23 ± 0.0548 0.91 ± 0.1548
cat 0.52 ± 0.0216 0.00 ± 0.0008 0.51 ± 0.0513 0.50 ± 0.0260 1.38 ± 0.1380 0.98 ± 0.0221
deer 0.65 ± 0.0312 0.01 ± 0.0030 0.62 ± 0.0996 0.53 ± 0.0611 1.12 ± 0.0467 1.00 ± 0.0028
dog 0.53 ± 0.0259 0.00 ± 0.0030 0.51 ± 0.0296 0.50 ± 0.0195 1.21 ± 0.0830 0.96 ± 0.0523
frog 0.60 ± 0.0692 0.01 ± 0.0027 0.54 ± 0.0371 0.57 ± 0.0747 0.99 ± 0.0550 0.99 ± 0.0074
horse 0.56 ± 0.0253 0.00 ± 0.0025 0.53 ± 0.0281 0.51 ± 0.0143 1.21 ± 0.0094 1.00 ± 0.0037
ship 0.57 ± 0.0543 0.00 ± 0.0010 0.58 ± 0.0350 0.53 ± 0.0561 0.97 ± 0.0611 0.93 ± 0.0758
truck 0.58 ± 0.0673 0.00 ± 0.0008 0.58 ± 0.0470 0.48 ± 0.0224 1.10 ± 0.0258 0.97 ± 0.0417

mean 0.55 ± 0.0473 0.00 ± 0.0022 0.55 ± 0.0336 0.51 ± 0.0315 1.16 ± 0.1195 0.97 ± 0.0287
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Table 11: AD and explanation performance averaged over 4 random seeds on C-MNIST for BCE
(OE). Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

gray+one 0.96 ± 0.0037 0.17 ± 0.0127 0.55 ± 0.1105 0.75 ± 0.0429 0.75 ± 0.3352 0.96 ± 0.0327
yellow+one 0.97 ± 0.0027 0.24 ± 0.0129 0.56 ± 0.0252 0.74 ± 0.0082 0.60 ± 0.1572 1.00 ± 0.0001
cyan+one 0.96 ± 0.0138 0.19 ± 0.0373 0.54 ± 0.0410 0.83 ± 0.0180 0.38 ± 0.0340 1.00 ± 0.0007
green+one 0.99 ± 0.0044 0.49 ± 0.0546 0.58 ± 0.0457 0.80 ± 0.0676 0.60 ± 0.2606 1.00 ± 0.0001
blue+one 0.98 ± 0.0034 0.48 ± 0.0110 0.55 ± 0.0075 0.81 ± 0.0640 0.52 ± 0.1925 1.00 ± 0.0002
pink+one 0.97 ± 0.0021 0.25 ± 0.0193 0.57 ± 0.0279 0.88 ± 0.0127 0.43 ± 0.0647 1.00 ± 0.0003
red+one 0.98 ± 0.0031 0.42 ± 0.0364 0.54 ± 0.1100 0.83 ± 0.0938 0.69 ± 0.4817 1.00 ± 0.0015

mean 0.97 ± 0.0101 0.32 ± 0.1265 0.56 ± 0.0154 0.81 ± 0.0451 0.57 ± 0.1240 0.99 ± 0.0132

Table 12: AD and explanation performance averaged over 4 random seeds on C-MNIST for HSC
(OE). Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

gray+one 0.92 ± 0.0075 0.27 ± 0.0410 0.51 ± 0.0486 0.76 ± 0.0457 0.86 ± 0.1567 0.99 ± 0.0136
yellow+one 0.94 ± 0.0251 0.43 ± 0.0509 0.54 ± 0.0615 0.82 ± 0.0081 0.82 ± 0.2713 1.00 ± 0.0020
cyan+one 0.97 ± 0.0196 0.39 ± 0.0630 0.56 ± 0.0296 0.88 ± 0.0462 0.63 ± 0.2201 1.00 ± 0.0000
green+one 0.98 ± 0.0139 0.52 ± 0.0258 0.56 ± 0.0323 0.89 ± 0.0102 0.94 ± 0.2280 1.00 ± 0.0005
blue+one 0.99 ± 0.0028 0.65 ± 0.0159 0.66 ± 0.0896 0.75 ± 0.1384 1.66 ± 1.1219 0.94 ± 0.0834
pink+one 0.94 ± 0.0139 0.38 ± 0.0323 0.52 ± 0.0751 0.83 ± 0.0339 0.83 ± 0.0292 1.00 ± 0.0015
red+one 0.98 ± 0.0031 0.60 ± 0.0127 0.57 ± 0.0244 0.78 ± 0.0674 0.93 ± 0.3331 1.00 ± 0.0055

mean 0.96 ± 0.0231 0.46 ± 0.1226 0.56 ± 0.0472 0.82 ± 0.0482 0.95 ± 0.3047 0.99 ± 0.0198

Table 13: AD and explanation performance averaged over 4 random seeds on C-MNIST for DSVDD.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

gray+one 0.73 ± 0.0350 0.00 ± 0.0001 0.56 ± 0.0449 0.71 ± 0.0755 0.85 ± 0.2079 0.91 ± 0.0834
yellow+one 0.86 ± 0.0262 0.00 ± 0.0010 0.60 ± 0.0595 0.65 ± 0.0639 0.82 ± 0.2240 1.00 ± 0.0044
cyan+one 0.83 ± 0.0866 0.00 ± 0.0005 0.61 ± 0.0781 0.63 ± 0.0589 0.79 ± 0.0524 0.99 ± 0.0057
green+one 0.64 ± 0.1336 0.00 ± 0.0003 0.57 ± 0.0250 0.60 ± 0.0755 0.69 ± 0.0350 1.00 ± 0.0019
blue+one 0.78 ± 0.1502 0.00 ± 0.0001 0.68 ± 0.2173 0.42 ± 0.1223 1.01 ± 0.1866 1.00 ± 0.0016
pink+one 0.75 ± 0.1343 0.00 ± 0.0001 0.67 ± 0.1040 0.61 ± 0.0999 0.85 ± 0.0998 0.97 ± 0.0214
red+one 0.79 ± 0.0424 0.00 ± 0.0004 0.62 ± 0.0917 0.57 ± 0.1607 0.81 ± 0.1763 0.99 ± 0.0149

mean 0.77 ± 0.0650 0.00 ± 0.0003 0.61 ± 0.0430 0.60 ± 0.0841 0.83 ± 0.0875 0.98 ± 0.0297
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Table 14: AD and explanation performance averaged over 4 random seeds on GTSDB for BCE OE.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

speed limit 30 + 50 0.92 ± 0.0037 0.65 ± 0.0103 0.51 ± 0.0563 0.88 ± 0.0158 0.77 ± 0.3590 1.00 ± 0.0018
speed limit 50 + 70 0.88 ± 0.0151 0.59 ± 0.0188 0.49 ± 0.0576 0.86 ± 0.0066 0.69 ± 0.3249 0.99 ± 0.0080
speed limit 70 + 100 0.88 ± 0.0053 0.57 ± 0.0048 0.55 ± 0.0708 0.89 ± 0.0136 0.42 ± 0.1348 0.99 ± 0.0130
speed limit 100 + 120 0.89 ± 0.0200 0.55 ± 0.0409 0.49 ± 0.1331 0.87 ± 0.0297 0.51 ± 0.0854 0.99 ± 0.0115
give way + stop 0.99 ± 0.0021 0.89 ± 0.0131 0.66 ± 0.0758 0.81 ± 0.1369 2.29 ± 0.4255 0.99 ± 0.0184
danger + construction warning 0.93 ± 0.0078 0.73 ± 0.0072 0.43 ± 0.0799 0.91 ± 0.0155 3.60 ± 0.5202 1.00 ± 0.0040
all restriction ends signs 1.00 ± 0.0029 0.90 ± 0.0167 0.56 ± 0.1341 1.00 ± 0.0033 0.24 ± 0.1129 0.97 ± 0.0183
all speed limit signs 0.99 ± 0.0016 0.79 ± 0.0226 0.54 ± 0.0172 0.96 ± 0.0085 0.41 ± 0.0870 0.99 ± 0.0134
all blue signs 1.00 ± 0.0023 0.93 ± 0.0131 0.40 ± 0.0381 0.90 ± 0.0258 0.64 ± 0.1553 0.98 ± 0.0109
all warning signs 0.96 ± 0.0089 0.89 ± 0.0132 0.38 ± 0.0343 0.95 ± 0.0035 1.51 ± 0.5426 0.99 ± 0.0076

mean 0.94 ± 0.0474 0.75 ± 0.1437 0.50 ± 0.0803 0.90 ± 0.0526 1.11 ± 1.0182 0.99 ± 0.0085

Table 15: AD and explanation performance averaged over 4 random seeds on GTSDB for HSC OE.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

speed limit 30 + 50 0.88 ± 0.0014 0.63 ± 0.0126 0.31 ± 0.1032 0.88 ± 0.0113 0.79 ± 0.2196 0.96 ± 0.0420
speed limit 50 + 70 0.89 ± 0.0111 0.57 ± 0.0170 0.49 ± 0.1537 0.85 ± 0.0135 1.45 ± 0.6565 1.00 ± 0.0000
speed limit 70 + 100 0.86 ± 0.0164 0.56 ± 0.0146 0.60 ± 0.1389 0.85 ± 0.0379 0.69 ± 0.4033 0.91 ± 0.0807
speed limit 100 + 120 0.85 ± 0.0112 0.50 ± 0.0132 0.66 ± 0.0952 0.86 ± 0.0172 0.59 ± 0.2818 0.95 ± 0.0613
give way + stop 0.98 ± 0.0056 0.81 ± 0.0415 0.70 ± 0.1508 0.83 ± 0.0929 1.00 ± 0.1991 0.70 ± 0.0922
danger + construction warning 0.91 ± 0.0099 0.68 ± 0.0121 0.32 ± 0.0889 0.90 ± 0.0137 2.82 ± 0.2851 0.97 ± 0.0210
all restriction ends signs 1.00 ± 0.0000 0.93 ± 0.0127 0.60 ± 0.0791 1.00 ± 0.0039 0.21 ± 0.0519 0.94 ± 0.0221
all speed limit signs 0.96 ± 0.0174 0.79 ± 0.0075 0.51 ± 0.0419 0.95 ± 0.0175 0.29 ± 0.0730 0.97 ± 0.0469
all blue signs 1.00 ± 0.0011 0.94 ± 0.0165 0.34 ± 0.0640 0.91 ± 0.0224 0.38 ± 0.0667 1.00 ± 0.0023
all warning signs 0.97 ± 0.0042 0.86 ± 0.0182 0.33 ± 0.0692 0.96 ± 0.0061 1.31 ± 0.2118 1.00 ± 0.0036

mean 0.93 ± 0.0563 0.73 ± 0.1517 0.49 ± 0.1439 0.90 ± 0.0508 0.95 ± 0.7345 0.94 ± 0.0840

Table 16: AD and explanation performance averaged over 4 random seeds on GTSDB for DSVDD.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

speed limit 30 + 50 0.53 ± 0.0718 0.06 ± 0.0214 0.56 ± 0.0583 0.57 ± 0.0240 1.07 ± 0.4804 0.95 ± 0.0439
speed limit 50 + 70 0.55 ± 0.0487 0.07 ± 0.0640 0.60 ± 0.1042 0.57 ± 0.0485 3.59 ± 3.8551 0.87 ± 0.1167
speed limit 70 + 100 0.56 ± 0.0433 0.02 ± 0.0108 0.53 ± 0.1288 0.63 ± 0.0291 0.34 ± 0.0187 0.92 ± 0.0376
speed limit 100 + 120 0.61 ± 0.0497 0.04 ± 0.0171 0.53 ± 0.0625 0.64 ± 0.0488 0.28 ± 0.0315 0.95 ± 0.0302
give way + stop 0.49 ± 0.0673 0.00 ± 0.0150 0.46 ± 0.0981 0.49 ± 0.0725 1.88 ± 0.5662 0.98 ± 0.0138
danger + construction warning 0.61 ± 0.0429 0.02 ± 0.0049 0.59 ± 0.0402 0.47 ± 0.0348 3.04 ± 0.3589 0.90 ± 0.1063
all restriction ends signs 0.70 ± 0.0860 0.06 ± 0.0450 0.53 ± 0.1242 0.69 ± 0.0862 0.26 ± 0.1251 0.94 ± 0.0273
all speed limit signs 0.69 ± 0.0473 0.05 ± 0.0095 0.57 ± 0.0533 0.64 ± 0.0145 0.51 ± 0.1984 0.98 ± 0.0182
all blue signs 0.51 ± 0.1008 0.02 ± 0.0161 0.49 ± 0.0985 0.64 ± 0.0117 0.20 ± 0.0484 0.86 ± 0.0565
all warning signs 0.56 ± 0.0242 0.01 ± 0.0087 0.46 ± 0.0616 0.51 ± 0.0484 1.93 ± 0.5590 1.00 ± 0.0034

mean 0.58 ± 0.0668 0.04 ± 0.0233 0.53 ± 0.0478 0.58 ± 0.0699 1.31 ± 1.1807 0.93 ± 0.0453
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Table 17: AD and explanation performance averaged over 4 random seeds on MNIST for BCE (OE).
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

zero+one 0.97 ± 0.0062 0.51 ± 0.0596 0.79 ± 0.0864 0.45 ± 0.0944 1.00 ± 0.0674 0.98 ± 0.0154
zero+two 0.95 ± 0.0129 0.44 ± 0.0694 0.82 ± 0.0696 0.59 ± 0.0292 0.77 ± 0.0372 0.95 ± 0.0520
one+two 0.94 ± 0.0188 0.46 ± 0.0688 0.74 ± 0.0251 0.40 ± 0.0411 1.25 ± 0.0237 0.99 ± 0.0101
one+three 0.95 ± 0.0097 0.45 ± 0.0222 0.70 ± 0.0433 0.56 ± 0.0241 1.18 ± 0.0250 0.97 ± 0.0192
two+three 0.97 ± 0.0095 0.56 ± 0.0667 0.76 ± 0.0720 0.79 ± 0.0188 0.51 ± 0.0498 0.99 ± 0.0131
two+four 0.89 ± 0.0196 0.35 ± 0.0551 0.75 ± 0.0415 0.42 ± 0.0421 0.83 ± 0.0824 1.00 ± 0.0017
three+four 0.91 ± 0.0070 0.33 ± 0.0250 0.81 ± 0.0290 0.58 ± 0.0415 0.85 ± 0.0359 0.93 ± 0.0687
three+five 0.95 ± 0.0058 0.48 ± 0.0487 0.74 ± 0.0213 0.67 ± 0.0515 0.43 ± 0.0501 0.95 ± 0.0360
four+five 0.90 ± 0.0259 0.30 ± 0.0148 0.83 ± 0.0474 0.40 ± 0.0485 0.92 ± 0.0715 0.82 ± 0.1926
four+six 0.95 ± 0.0052 0.57 ± 0.0364 0.77 ± 0.0333 0.63 ± 0.0650 0.67 ± 0.1253 0.98 ± 0.0277
five+six 0.97 ± 0.0063 0.60 ± 0.0319 0.82 ± 0.0672 0.63 ± 0.0514 0.55 ± 0.0666 0.91 ± 0.0797
five+seven 0.88 ± 0.0228 0.40 ± 0.0453 0.76 ± 0.0546 0.59 ± 0.0416 1.02 ± 0.0697 0.94 ± 0.0361
six+seven 0.94 ± 0.0143 0.44 ± 0.0618 0.85 ± 0.0437 0.66 ± 0.0622 0.92 ± 0.1281 0.82 ± 0.1436
six+eight 0.95 ± 0.0145 0.45 ± 0.0398 0.81 ± 0.0474 0.63 ± 0.0608 0.38 ± 0.0205 0.96 ± 0.0539
seven+eight 0.87 ± 0.0208 0.33 ± 0.0300 0.73 ± 0.0562 0.70 ± 0.0264 0.90 ± 0.0669 0.91 ± 0.0795
seven+nine 0.95 ± 0.0209 0.58 ± 0.0374 0.77 ± 0.0628 0.88 ± 0.0201 0.94 ± 0.1804 0.86 ± 0.1010
eight+nine 0.93 ± 0.0189 0.42 ± 0.0492 0.80 ± 0.0483 0.83 ± 0.0144 0.48 ± 0.0423 0.93 ± 0.1050
eight+zero 0.93 ± 0.0100 0.39 ± 0.0219 0.77 ± 0.0908 0.69 ± 0.0240 0.46 ± 0.0200 0.98 ± 0.0177
nine+zero 0.95 ± 0.0047 0.49 ± 0.0184 0.85 ± 0.0398 0.77 ± 0.0424 0.54 ± 0.0610 0.92 ± 0.0678
nine+one 0.93 ± 0.0157 0.39 ± 0.0365 0.73 ± 0.0944 0.57 ± 0.0461 1.09 ± 0.0559 0.97 ± 0.0191

mean 0.93 ± 0.0283 0.45 ± 0.0868 0.78 ± 0.0412 0.62 ± 0.1325 0.78 ± 0.2596 0.94 ± 0.0512

Table 18: AD and explanation performance averaged over 4 random seeds on MNIST for HSC (OE).
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

zero+one 0.98 ± 0.0056 0.53 ± 0.0871 0.88 ± 0.0450 0.46 ± 0.0714 1.13 ± 0.0433 0.92 ± 0.1256
zero+two 0.95 ± 0.0120 0.52 ± 0.0508 0.87 ± 0.0267 0.39 ± 0.0644 0.96 ± 0.0884 0.94 ± 0.0697
one+two 0.96 ± 0.0061 0.48 ± 0.0493 0.83 ± 0.0163 0.46 ± 0.1134 1.23 ± 0.0469 0.95 ± 0.0382
one+three 0.95 ± 0.0081 0.51 ± 0.0142 0.84 ± 0.0519 0.55 ± 0.0545 1.24 ± 0.0717 0.85 ± 0.2038
two+three 0.95 ± 0.0116 0.58 ± 0.0371 0.74 ± 0.0500 0.59 ± 0.0706 0.73 ± 0.1404 0.87 ± 0.1477
two+four 0.86 ± 0.0132 0.33 ± 0.0276 0.77 ± 0.0338 0.39 ± 0.0131 0.92 ± 0.0227 0.98 ± 0.0168
three+four 0.87 ± 0.0190 0.34 ± 0.0472 0.73 ± 0.0515 0.55 ± 0.0355 0.87 ± 0.0564 0.87 ± 0.1123
three+five 0.93 ± 0.0294 0.50 ± 0.0450 0.80 ± 0.0902 0.54 ± 0.0523 0.54 ± 0.0908 0.85 ± 0.1274
four+five 0.87 ± 0.0160 0.33 ± 0.0228 0.86 ± 0.0449 0.42 ± 0.0571 1.35 ± 0.4027 0.58 ± 0.0420
four+six 0.95 ± 0.0128 0.55 ± 0.0598 0.82 ± 0.0360 0.50 ± 0.1191 0.82 ± 0.0307 0.97 ± 0.0223
five+six 0.95 ± 0.0058 0.57 ± 0.0471 0.83 ± 0.0505 0.54 ± 0.0711 1.03 ± 0.3435 0.83 ± 0.0677
five+seven 0.89 ± 0.0022 0.40 ± 0.0223 0.83 ± 0.0281 0.58 ± 0.0241 1.33 ± 0.2102 0.80 ± 0.1326
six+seven 0.92 ± 0.0166 0.43 ± 0.0602 0.81 ± 0.0535 0.54 ± 0.0695 1.02 ± 0.3005 0.87 ± 0.0852
six+eight 0.94 ± 0.0031 0.44 ± 0.0373 0.81 ± 0.0184 0.51 ± 0.0417 0.51 ± 0.1461 0.88 ± 0.0918
seven+eight 0.90 ± 0.0090 0.42 ± 0.0328 0.78 ± 0.0331 0.66 ± 0.0287 1.14 ± 0.0710 0.91 ± 0.0864
seven+nine 0.96 ± 0.0034 0.63 ± 0.0163 0.85 ± 0.0637 0.81 ± 0.0430 1.17 ± 0.2448 0.65 ± 0.2011
eight+nine 0.93 ± 0.0049 0.44 ± 0.0268 0.83 ± 0.0483 0.69 ± 0.0317 0.67 ± 0.1301 0.87 ± 0.1908
eight+zero 0.93 ± 0.0075 0.44 ± 0.0215 0.83 ± 0.0602 0.55 ± 0.0547 0.80 ± 0.4024 0.85 ± 0.1161
nine+zero 0.94 ± 0.0052 0.48 ± 0.0601 0.85 ± 0.0379 0.61 ± 0.0466 0.65 ± 0.0405 0.77 ± 0.1480
nine+one 0.95 ± 0.0119 0.44 ± 0.0212 0.83 ± 0.0464 0.60 ± 0.0340 1.13 ± 0.0206 0.92 ± 0.0678

mean 0.93 ± 0.0332 0.47 ± 0.0809 0.82 ± 0.0378 0.55 ± 0.0987 0.96 ± 0.2502 0.86 ± 0.0963
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Table 19: AD and explanation performance averaged over 4 random seeds on MNIST for DSVDD.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

zero+one 0.93 ± 0.0323 0.00 ± 0.0018 0.90 ± 0.0393 0.57 ± 0.0150 1.05 ± 0.1323 0.97 ± 0.0254
zero+two 0.71 ± 0.1290 0.00 ± 0.0015 0.70 ± 0.1319 0.36 ± 0.0439 0.99 ± 0.0301 0.54 ± 0.2298
one+two 0.73 ± 0.0542 0.00 ± 0.0003 0.73 ± 0.0648 0.38 ± 0.0584 1.16 ± 0.0277 0.92 ± 0.0666
one+three 0.77 ± 0.0422 0.00 ± 0.0002 0.78 ± 0.0470 0.43 ± 0.1285 1.13 ± 0.0103 0.87 ± 0.1073
two+three 0.69 ± 0.0508 0.00 ± 0.0015 0.67 ± 0.0495 0.38 ± 0.1011 0.86 ± 0.0373 0.81 ± 0.2033
two+four 0.85 ± 0.0253 0.00 ± 0.0009 0.80 ± 0.0380 0.39 ± 0.0484 0.75 ± 0.1440 0.85 ± 0.2204
three+four 0.77 ± 0.0716 0.00 ± 0.0015 0.73 ± 0.0736 0.46 ± 0.0377 0.92 ± 0.0610 0.72 ± 0.2467
three+five 0.66 ± 0.0275 0.00 ± 0.0003 0.66 ± 0.0346 0.43 ± 0.0459 0.86 ± 0.0218 0.76 ± 0.1619
four+five 0.71 ± 0.1077 0.00 ± 0.0026 0.70 ± 0.0907 0.41 ± 0.0192 0.98 ± 0.0285 0.71 ± 0.0798
four+six 0.81 ± 0.0719 0.01 ± 0.0037 0.80 ± 0.0915 0.37 ± 0.0288 1.03 ± 0.0127 0.86 ± 0.1675
five+six 0.72 ± 0.0814 0.00 ± 0.0028 0.70 ± 0.0749 0.41 ± 0.0568 0.93 ± 0.0151 0.73 ± 0.1704
five+seven 0.72 ± 0.0564 0.00 ± 0.0009 0.69 ± 0.0281 0.44 ± 0.0658 0.96 ± 0.0983 0.85 ± 0.1442
six+seven 0.84 ± 0.0609 0.00 ± 0.0015 0.79 ± 0.0271 0.41 ± 0.0469 1.13 ± 0.0494 0.94 ± 0.0260
six+eight 0.78 ± 0.0681 0.00 ± 0.0013 0.75 ± 0.0787 0.44 ± 0.0241 0.93 ± 0.1650 0.79 ± 0.1834
seven+eight 0.70 ± 0.0095 0.00 ± 0.0002 0.70 ± 0.0046 0.39 ± 0.0721 1.12 ± 0.0105 0.95 ± 0.0364
seven+nine 0.74 ± 0.0744 0.00 ± 0.0020 0.75 ± 0.0758 0.38 ± 0.0345 1.10 ± 0.0419 0.72 ± 0.1768
eight+nine 0.69 ± 0.0688 0.00 ± 0.0006 0.68 ± 0.0712 0.42 ± 0.0329 0.95 ± 0.1594 0.97 ± 0.0480
eight+zero 0.66 ± 0.0560 0.00 ± 0.0009 0.65 ± 0.0630 0.37 ± 0.0299 1.05 ± 0.0253 0.82 ± 0.1814
nine+zero 0.72 ± 0.0834 0.00 ± 0.0016 0.67 ± 0.1228 0.46 ± 0.0408 0.99 ± 0.1008 0.65 ± 0.3174
nine+one 0.84 ± 0.0555 0.00 ± 0.0010 0.85 ± 0.0489 0.42 ± 0.1575 1.13 ± 0.0173 0.91 ± 0.0509

mean 0.75 ± 0.0712 0.00 ± 0.0013 0.73 ± 0.0649 0.42 ± 0.0450 1.00 ± 0.1074 0.82 ± 0.1132

Table 20: AD and explanation performance averaged over 4 random seeds on CIFAR-10 for BCE OE.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

airplane+automobile 0.96 ± 0.0024 0.79 ± 0.0066 0.59 ± 0.0300 0.66 ± 0.0187 1.04 ± 0.0824 0.75 ± 0.1067
airplane+bird 0.92 ± 0.0017 0.68 ± 0.0043 0.45 ± 0.0226 0.61 ± 0.0087 1.34 ± 0.2551 0.88 ± 0.1167
automobile+bird 0.93 ± 0.0023 0.70 ± 0.0029 0.57 ± 0.0340 0.59 ± 0.0264 1.79 ± 0.0164 0.73 ± 0.2012
automobile+cat 0.90 ± 0.0038 0.61 ± 0.0005 0.46 ± 0.0113 0.54 ± 0.0060 1.73 ± 0.0686 0.87 ± 0.0738
bird+cat 0.87 ± 0.0022 0.53 ± 0.0019 0.35 ± 0.0207 0.54 ± 0.0140 1.19 ± 0.1377 0.81 ± 0.1128
bird+deer 0.92 ± 0.0004 0.64 ± 0.0046 0.39 ± 0.0233 0.53 ± 0.0069 0.92 ± 0.0889 0.97 ± 0.0038
cat+deer 0.90 ± 0.0025 0.58 ± 0.0077 0.39 ± 0.0301 0.53 ± 0.0148 0.94 ± 0.0475 0.89 ± 0.1547
cat+dog 0.91 ± 0.0023 0.59 ± 0.0108 0.30 ± 0.0103 0.58 ± 0.0099 0.91 ± 0.0472 0.81 ± 0.1551
deer+dog 0.92 ± 0.0006 0.64 ± 0.0040 0.42 ± 0.0333 0.55 ± 0.0137 0.88 ± 0.0511 0.93 ± 0.0495
deer+frog 0.94 ± 0.0014 0.70 ± 0.0042 0.49 ± 0.0381 0.52 ± 0.0124 0.76 ± 0.0422 0.82 ± 0.1905
dog+frog 0.93 ± 0.0010 0.67 ± 0.0053 0.46 ± 0.0181 0.56 ± 0.0121 0.93 ± 0.0769 0.94 ± 0.0597
dog+horse 0.95 ± 0.0022 0.71 ± 0.0056 0.50 ± 0.0085 0.58 ± 0.0106 1.01 ± 0.0391 0.89 ± 0.1399
frog+horse 0.96 ± 0.0007 0.76 ± 0.0080 0.55 ± 0.0314 0.56 ± 0.0170 1.03 ± 0.0501 0.81 ± 0.1722
frog+ship 0.95 ± 0.0010 0.76 ± 0.0046 0.53 ± 0.0225 0.62 ± 0.0188 1.06 ± 0.2823 0.88 ± 0.0802
horse+ship 0.97 ± 0.0010 0.80 ± 0.0047 0.58 ± 0.0259 0.61 ± 0.0420 0.95 ± 0.1126 0.97 ± 0.0323
horse+truck 0.96 ± 0.0008 0.77 ± 0.0046 0.56 ± 0.0293 0.60 ± 0.0195 1.08 ± 0.0864 0.87 ± 0.1812
ship+truck 0.96 ± 0.0011 0.77 ± 0.0059 0.54 ± 0.0200 0.62 ± 0.0171 0.78 ± 0.0594 0.93 ± 0.1109
ship+airplane 0.97 ± 0.0008 0.80 ± 0.0044 0.52 ± 0.0392 0.71 ± 0.0113 0.77 ± 0.1048 0.97 ± 0.0441
truck+airplane 0.95 ± 0.0008 0.75 ± 0.0027 0.55 ± 0.0137 0.61 ± 0.0370 0.93 ± 0.0557 0.73 ± 0.1478
truck+automobile 0.98 ± 0.0010 0.85 ± 0.0041 0.62 ± 0.0429 0.60 ± 0.0240 0.75 ± 0.0793 0.80 ± 0.1978

mean 0.94 ± 0.0266 0.71 ± 0.0839 0.49 ± 0.0847 0.59 ± 0.0460 1.04 ± 0.2794 0.86 ± 0.0745
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Table 21: AD and explanation performance averaged over 4 random seeds on CIFAR-10 for HSC OE.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

airplane+automobile 0.96 ± 0.0005 0.75 ± 0.0017 0.51 ± 0.0900 0.54 ± 0.0163 2.14 ± 0.0882 0.99 ± 0.0164
airplane+bird 0.93 ± 0.0012 0.67 ± 0.0024 0.44 ± 0.0439 0.52 ± 0.0059 2.21 ± 0.1630 1.00 ± 0.0002
automobile+bird 0.92 ± 0.0029 0.66 ± 0.0065 0.45 ± 0.0424 0.51 ± 0.0065 4.12 ± 1.1471 1.00 ± 0.0001
automobile+cat 0.91 ± 0.0011 0.62 ± 0.0054 0.53 ± 0.0285 0.50 ± 0.0023 3.10 ± 0.3450 1.00 ± 0.0011
bird+cat 0.87 ± 0.0019 0.47 ± 0.0046 0.32 ± 0.0328 0.53 ± 0.0401 3.34 ± 1.0615 1.00 ± 0.0002
bird+deer 0.92 ± 0.0026 0.63 ± 0.0097 0.38 ± 0.0144 0.54 ± 0.0248 3.49 ± 0.1061 1.00 ± 0.0012
cat+deer 0.90 ± 0.0017 0.54 ± 0.0053 0.35 ± 0.0228 0.52 ± 0.0166 2.58 ± 0.1145 1.00 ± 0.0000
cat+dog 0.93 ± 0.0018 0.59 ± 0.0085 0.39 ± 0.0252 0.52 ± 0.0042 1.97 ± 0.0935 1.00 ± 0.0003
deer+dog 0.92 ± 0.0017 0.60 ± 0.0095 0.38 ± 0.0401 0.52 ± 0.0107 2.44 ± 0.5742 0.96 ± 0.0734
deer+frog 0.95 ± 0.0011 0.68 ± 0.0010 0.42 ± 0.0065 0.56 ± 0.0535 2.27 ± 0.0879 1.00 ± 0.0002
dog+frog 0.93 ± 0.0014 0.63 ± 0.0045 0.43 ± 0.0110 0.51 ± 0.0036 2.53 ± 0.1879 1.00 ± 0.0001
dog+horse 0.96 ± 0.0003 0.70 ± 0.0064 0.44 ± 0.0062 0.52 ± 0.0190 3.22 ± 0.1861 1.00 ± 0.0001
frog+horse 0.96 ± 0.0015 0.73 ± 0.0027 0.48 ± 0.0143 0.52 ± 0.0176 2.75 ± 0.3541 1.00 ± 0.0001
frog+ship 0.96 ± 0.0009 0.75 ± 0.0084 0.48 ± 0.0313 0.56 ± 0.0346 3.29 ± 0.6680 1.00 ± 0.0001
horse+ship 0.96 ± 0.0007 0.77 ± 0.0036 0.40 ± 0.0675 0.53 ± 0.0124 1.87 ± 0.0485 1.00 ± 0.0005
horse+truck 0.95 ± 0.0016 0.73 ± 0.0074 0.50 ± 0.0339 0.53 ± 0.0520 2.93 ± 0.8821 1.00 ± 0.0011
ship+truck 0.96 ± 0.0005 0.76 ± 0.0051 0.41 ± 0.0426 0.57 ± 0.0625 1.73 ± 0.0526 0.99 ± 0.0075
ship+airplane 0.97 ± 0.0013 0.80 ± 0.0037 0.53 ± 0.0811 0.55 ± 0.0359 1.65 ± 0.2366 0.98 ± 0.0247
truck+airplane 0.95 ± 0.0020 0.72 ± 0.0041 0.46 ± 0.0542 0.53 ± 0.0176 1.85 ± 0.1448 0.97 ± 0.0579
truck+automobile 0.99 ± 0.0004 0.85 ± 0.0067 0.60 ± 0.0790 0.53 ± 0.0340 1.49 ± 0.1063 0.90 ± 0.1301

mean 0.94 ± 0.0270 0.68 ± 0.0883 0.44 ± 0.0666 0.53 ± 0.0175 2.55 ± 0.6970 0.99 ± 0.0244

Table 22: AD and explanation performance averaged over 4 random seeds on CIFAR-10 for DSVDD.
Each row shows results for a different normal definition.

AD Explanation
Normal AuROC Score distance CF AuROC Sub. AuROC FIDN Concept Acc

airplane+automobile 0.50 ± 0.0357 0.00 ± 0.0002 0.48 ± 0.0517 0.46 ± 0.0260 1.20 ± 0.0111 0.84 ± 0.1424
airplane+bird 0.49 ± 0.0111 0.00 ± 0.0005 0.46 ± 0.0219 0.49 ± 0.0448 1.27 ± 0.0950 0.93 ± 0.0503
automobile+bird 0.49 ± 0.0145 0.00 ± 0.0002 0.49 ± 0.0081 0.49 ± 0.0184 1.23 ± 0.0524 0.93 ± 0.0859
automobile+cat 0.50 ± 0.0148 0.00 ± 0.0007 0.48 ± 0.0153 0.47 ± 0.0251 1.22 ± 0.0567 0.90 ± 0.0745
bird+cat 0.53 ± 0.0162 0.00 ± 0.0003 0.51 ± 0.0344 0.50 ± 0.0033 1.08 ± 0.0223 0.98 ± 0.0223
bird+deer 0.56 ± 0.0278 0.00 ± 0.0003 0.54 ± 0.0345 0.51 ± 0.0122 0.97 ± 0.0304 0.97 ± 0.0183
cat+deer 0.56 ± 0.0418 0.00 ± 0.0008 0.54 ± 0.0486 0.53 ± 0.0228 1.02 ± 0.0201 0.95 ± 0.0201
cat+dog 0.52 ± 0.0105 0.00 ± 0.0011 0.49 ± 0.0332 0.49 ± 0.0148 1.06 ± 0.0168 0.91 ± 0.0690
deer+dog 0.55 ± 0.0213 0.00 ± 0.0030 0.51 ± 0.0377 0.53 ± 0.0211 1.10 ± 0.0348 0.89 ± 0.1620
deer+frog 0.57 ± 0.1151 0.01 ± 0.0046 0.53 ± 0.1167 0.59 ± 0.0516 0.87 ± 0.0342 0.93 ± 0.0919
dog+frog 0.60 ± 0.0431 0.00 ± 0.0034 0.60 ± 0.0514 0.53 ± 0.0323 0.95 ± 0.0188 0.87 ± 0.0848
dog+horse 0.53 ± 0.0102 0.00 ± 0.0006 0.49 ± 0.0408 0.49 ± 0.0178 1.17 ± 0.0254 0.92 ± 0.0427
frog+horse 0.60 ± 0.0398 0.01 ± 0.0048 0.56 ± 0.0160 0.57 ± 0.0228 1.07 ± 0.0079 0.99 ± 0.0030
frog+ship 0.52 ± 0.0144 0.00 ± 0.0004 0.50 ± 0.0326 0.53 ± 0.0188 1.08 ± 0.0331 0.97 ± 0.0261
horse+ship 0.49 ± 0.0374 0.00 ± 0.0002 0.48 ± 0.0409 0.48 ± 0.0077 1.17 ± 0.0563 0.96 ± 0.0209
horse+truck 0.50 ± 0.0346 0.00 ± 0.0006 0.51 ± 0.0287 0.46 ± 0.0147 1.21 ± 0.0579 0.88 ± 0.1041
ship+truck 0.47 ± 0.0265 0.00 ± 0.0003 0.49 ± 0.0195 0.46 ± 0.0201 1.05 ± 0.0330 0.96 ± 0.0365
ship+airplane 0.50 ± 0.0246 0.00 ± 0.0002 0.48 ± 0.0400 0.42 ± 0.0326 1.10 ± 0.0722 0.87 ± 0.1070
truck+airplane 0.48 ± 0.0545 0.00 ± 0.0004 0.48 ± 0.0460 0.46 ± 0.0205 1.15 ± 0.0309 0.94 ± 0.0497
truck+automobile 0.51 ± 0.0279 0.00 ± 0.0009 0.52 ± 0.0356 0.45 ± 0.0143 1.06 ± 0.0331 0.86 ± 0.1105

mean 0.53 ± 0.0356 0.00 ± 0.0023 0.51 ± 0.0332 0.50 ± 0.0414 1.10 ± 0.0998 0.92 ± 0.0424
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Table 23: AD and explanation performance averaged over 2 random seeds on ImageNet-Neighbors
for BCE (OE). Each row shows results for a different normal definition.

AD Explanation
Normal AuROC CF AuROC Sub. AuROC FIDN Concept Acc

airliner 96.63± 0.22 76.32± 0.82 65.01± 4.57 95.75± 9.65 99.70± 0.20
ambulance 98.23± 0.03 83.91± 2.48 63.52± 4.41 105.45± 4.33 99.85± 0.15
black widow 90.31± 0.41 68.64± 4.25 56.22± 5.19 100.86± 20.66 86.20± 11.40
lion 84.00± 0.07 34.38± 1.10 61.97± 0.11 94.49± 7.87 100.00± 0.00
zebra 98.97± 0.02 82.16± 0.65 49.16± 8.66 28.29± 0.43 99.00± 0.70

mean 93.63± 5.70 69.08± 18.15 59.18± 5.83 84.97± 28.61 96.95± 5.39

Table 24: AD and explanation performance averaged over 2 random seeds on ImageNet-Neighbors
for HSC (OE). Each row shows results for a different normal definition.

AD Explanation
Normal AuROC CF AuROC Sub. AuROC FIDN Concept Acc

airliner 96.70± 0.04 83.04± 0.32 37.43± 0.32 80.26± 2.12 97.30± 2.10
ambulance 97.82± 0.01 83.42± 0.67 51.84± 17.77 104.30± 2.86 99.95± 0.05
black widow 88.20± 0.20 59.68± 0.52 55.09± 1.12 120.69± 10.51 99.60± 0.40
lion 81.35± 0.74 49.83± 7.35 49.20± 5.02 70.58± 11.86 97.85± 1.85
zebra 98.78± 0.02 63.84± 3.86 71.63± 1.02 51.17± 6.16 99.70± 0.31

mean 92.57± 6.76 67.96± 13.27 53.04± 11.04 85.40± 24.58 98.88± 1.09
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H RANDOM COLLECTION OF GENERATED COUNTERFACTUAL EXAMPLES

In the main paper, we proposed a method to generate counterfactual explanations (CEs) for deep AD.
We demonstrated their effectiveness by showing a small fraction of the generated CEs in Section
4.2. Here, we show a larger collection of CEs for all normal definitions. For each normal definition,
we randomly selected two samples to serve as examples. Figures 10, 11, and 12 show CEs for
Colored-MNIST (C-MNIST) and an AD trained with BCE, HSC, and DSVDD, respectively.
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Figure 10: CEs for Col-MNIST and an anomaly detector trained with BCE (OE). For each normal
definition, a different detector and CE generator was trained. In each subfigure, the first row shows
anomalies, the other two corresponding counterfactuals for two different concepts. Each column is
labeled with the corresponding combined normal class at the top.
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Figure 11: CEs for Col-MNIST and an anomaly detector trained with HSC (OE). For each normal
definition, a different detector and CE generator was trained. In each subfigure, the first row shows
anomalies, the other two corresponding counterfactuals for two different concepts. Each column is
labeled with the corresponding combined normal class at the top.
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Figure 12: CEs for Col-MNIST and an anomaly detector trained with DSVDD. For each normal
definition, a different detector and counterfactual generator was trained. In each subfigure, the first
row shows anomalies, the other two corresponding counterfactuals for two different concepts. Each
column is labeled with the corresponding combined normal class at the top.
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Figures 13, 14, and 15 show CEs for MNIST, single classes being normal, and an AD trained with
BCE, HSC, and DSVDD, respectively.
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Figure 13: CEs for MNIST, diverse single normal classes, and an anomaly detector trained with BCE
(OE). For each normal definition, a different detector and counterfactual generator was trained. In
each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding single normal class at the top.

An
om

zero zero one one two two three three four four five five six six seven seven eight eight nine nine

CE
 0

CE
 1

Figure 14: CEs for MNIST, diverse single normal classes, and an anomaly detector trained with HSC
(OE). For each normal definition, a different detector and counterfactual generator was trained. In
each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding single normal class at the top.
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Figure 15: CEs for MNIST, diverse single normal classes, and an anomaly detector trained with
DSVDD. For each normal definition, a different detector and counterfactual generator was trained. In
each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding single normal class at the top.
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Figures 16, 17, and 18 show CEs for CIFAR-10, single classes being normal, and an AD trained with
BCE, HSC, and DSVDD, respectively.
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Figure 16: CEs for CIFAR-10, diverse single normal classes, and an anomaly detector trained with
BCE (OE). For each normal definition, a different detector and counterfactual generator was trained.
In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding single normal class at the top.
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Figure 17: CEs for CIFAR-10, diverse single normal classes, and an anomaly detector trained with
HSC (OE). For each normal definition, a different detector and counterfactual generator was trained.
In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding single normal class at the top.
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Figure 18: CEs for CIFAR-10, diverse single normal classes, and an anomaly detector trained with
DSVDD. For each normal definition, a different detector and counterfactual generator was trained. In
each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding single normal class at the top.
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Figures 19, 20, and 21 show CEs for MNIST, class combinations being normal, and an AD trained
with BCE, HSC, and DSVDD, respectively.
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Figure 19: CEs for MNIST, diverse combined normal classes, and an anomaly detector trained with
BCE (OE). For each normal definition, a different detector and counterfactual generator was trained.
In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding combined normal class at the top.
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Figure 20: CEs for MNIST, diverse combined normal classes, and an anomaly detector trained with
HSC (OE). For each normal definition, a different detector and counterfactual generator was trained.
In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding combined normal class at the top.
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Figure 21: CEs for MNIST, diverse combined normal classes, and an anomaly detector trained with
DSVDD. For each normal definition, a different detector and counterfactual generator was trained. In
each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding combined normal class at the top.
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Figures 22, 23, and 24 show CEs for CIFAR-10, class combinations being normal, and an AD trained
with BCE, HSC, and DSVDD, respectively.
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Figure 22: CEs for CIFAR-10, diverse combined normal classes, and an anomaly detector trained
with BCE (OE). For each normal definition, a different detector and counterfactual generator was
trained. In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals
for two different concepts. Each column is labeled with the corresponding combined normal class at
the top.
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Figure 23: CEs for CIFAR-10, diverse combined normal classes, and an anomaly detector trained
with HSC (OE). For each normal definition, a different detector and counterfactual generator was
trained. In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals
for two different concepts. Each column is labeled with the corresponding combined normal class at
the top.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

An
om

plane+car plane+car plane+bird plane+bird car+bird car+bird car+cat car+cat bird+cat bird+cat bird+deer bird+deer cat+deer cat+deer cat+dog cat+dog deer+dog deer+dog deer+frog deer+frog

CE
 0

CE
 1

An
om

dog+frog dog+frog dog+horse dog+horse frog+horse frog+horse frog+ship frog+ship horse+ship horse+ship horse+truck horse+truck ship+truck ship+truck ship+plane ship+plane truck+plane truck+plane truck+car truck+car

CE
 0

CE
 1

Figure 24: CEs for CIFAR-10, diverse combined normal classes, and an anomaly detector trained
with DSVDD. For each normal definition, a different detector and counterfactual generator was
trained. In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals
for two different concepts. Each column is labeled with the corresponding combined normal class at
the top.
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Figures 25 and 26 show the CEs for ImageNet-Neighbors, with single classes being normal, and an
AD trained with BCE and HSC, respectively.
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Figure 25: CEs for ImageNet-Neighbors, single normal classes, and an anomaly detector trained with
BCE (OE). For each normal definition, a different detector and counterfactual generator was trained.
In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding normal class at the top.

airliner

An
om

airliner airliner ambulance ambulance ambulance black widow black widow black widow lion lion lion zebra zebra zebra

CE
 0

CE
 1

Figure 26: CEs for ImageNet-Neighbors, single normal classes, and an anomaly detector trained with
HSC (OE). For each normal definition, a different detector and counterfactual generator was trained.
In each subfigure, the first row shows anomalies, the other two corresponding counterfactuals for two
different concepts. Each column is labeled with the corresponding normal class at the top.
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Figures 27, 28, and 29 show CEs for GTSDB, class combinations being normal, and an AD trained
with BCE, HSC, and DSVDD, respectively.
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Figure 27: CEs for GTSDB and an anomaly detector trained with BCE OE. For each normal definition,
a different detector and counterfactual generator was trained. In each subfigure, the first row shows
anomalies, the other two corresponding counterfactuals for two different concepts. Each column is
labeled with the corresponding combined normal class at the top.
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Figure 28: CEs for GTSDB and an anomaly detector trained with HSC OE. For each normal definition,
a different detector and counterfactual generator was trained. In each subfigure, the first row shows
anomalies, the other two corresponding counterfactuals for two different concepts. Each column is
labeled with the corresponding combined normal class at the top.
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Figure 29: CEs for GTSDB and an anomaly detector trained with DSVDD. For each normal definition,
a different detector and counterfactual generator was trained. In each subfigure, the first row shows
anomalies, the other two corresponding counterfactuals for two different concepts. Each column is
labeled with the corresponding combined normal class at the top.
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