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Abstract

We revisit the problem of private online learning, in which a learner receives a
sequence of T data points and has to respond at each time-step a hypothesis. It
is required that the entire stream of output hypotheses should satisfy differential
privacy. Prior work of Golowich and Livni [2021] established that every concept
class H with finite Littlestone dimension d is privately online learnable in the
realizable setting. In particular, they proposed an algorithm that achieves an
Od(log T ) mistake bound against an oblivious adversary. However, their approach
yields a suboptimal Õd(

√
T ) bound against an adaptive adversary. In this work,

we present a new algorithm with a mistake bound of Od(log T ) against an adaptive
adversary, closing this gap. We further investigate the problem in the agnostic
setting, which is more general than the realizable setting as it does not impose any
assumptions on the data. We give an algorithm that obtains a sublinear regret of
Õd(
√
T ) for generic Littlestone classes, demonstrating that they are also privately

online learnable in the agnostic setting.

1 Introduction

Machine learning has demonstrated remarkable performance in various applications due to its
capability of extracting informative patterns from vast amounts of data. However, this success also
raises critical privacy concerns, particularly in domains like healthcare or finance, where models often
process sensitive personal data. As machine learning technologies continue to advance, ensuring the
protection of individual privacy has become an urgent societal and technical challenge.

Differential privacy (DP) [Dwork et al., 2006b,a] is the de facto privacy-preserving technique that
addresses these concerns by rigorously formalized privacy guarantees. To ensure that an algorithm
protects privacy, DP requires that its output distribution remains nearly indistinguishable when any
single individual’s data is modified, thereby limiting privacy leakage. The central challenge in
differentially private learning lies in designing algorithms that satisfy the DP requirement while
remaining effective.

To understand the statistical cost of DP in learning, extensive research has studied probably approxi-
mately correct (PAC) learning under DP. A line of works [Alon et al., 2019, Bun et al., 2020, Alon
et al., 2022] has established that private learnability is characterized by the Littlestone dimension,
a combinatorial measure originally proposed by Littlestone [1988] to describe (non-private) online
learnability. In other words, a concept class is privately learnable if and only if it is online learnable.

Motivated by this compelling equivalence, Golowich and Livni [2021] pioneered the study of privately
online learning generic concept classes and demonstrated that the equivalence includes private online
learnability in the realizable setting. For any concept classH with Littlestone dimension d, their algo-
rithm achieves an Od(log T ) mistake bound in T rounds against an oblivious adversary that generates
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the entire data stream prior to interacting with the learner. However, for an adaptive adversary—which
dynamically adjusts each data point based on the learner’s output history—their approach yields a
suboptimal Õd(

√
T ) mistake bound. While this upper bound is sufficient to preserve a qualitative

equivalence between private and non-private online learning against an adaptive adversary, it leaves
open whether adaptive adversaries inherently require higher error rates. Subsequent works [Cohen
et al., 2024, Dmitriev et al., 2024, Li et al., 2024] confirmed that a cost of Ω(log T ) is unavoidable,
yet whether Od(log T ) is achievable for adaptive settings remains unresolved.

Another limitation of their algorithm is that it operates under the realizability assumption, which
requires all the data to be perfectly labeled by some h ∈ H. However, this assumption does not hold
in many real-world scenarios, as the labeling function may not belong to H or even not exist due
to noise in data generation. This necessitates the consideration of the agnostic setting, where no
assumptions are made for the data. Notably, in both (non-private) online learning and private PAC
learning, Littlestone classes remain provably learnable in the agnostic setting [Ben-David et al., 2009,
Bun et al., 2020, Ghazi et al., 2021b, Beimel et al., 2021, Alon et al., 2020]. This raises a compelling
open question: Can this result be generalized to private online learning?

1.1 Our Contributions

Our first contribution is an algorithm for private online learning in the realizable adaptive setting with
a logarithmic mistake bound.

Theorem 1.1. Let H be a concept class with Littlestone dimension d. In the realizable setting,
there exists an (ε, δ)-differentially private online learner forH with an expected mistake bound of
O(22

O(d)

(log T + log(1/δ))/ε) against any adaptive adversary.

This result improves upon the previous Õd(
√
T ) upper bound established by Golowich and Livni

[2021] and addresses an open question they posed. As noted, the logarithmic dependence on T is
optimal. However, same as their algorithm, our approach exhibits a double exponential dependence
on d, which is significantly worse than the non-private case [Ghazi et al., 2021b].

We next turn to the agnostic setting. For general Littlestone classes, we show that it is possible to
achieve an Õ(

√
T ) regret, which is comparable to the non-private case in terms of T .

Theorem 1.2. Let H be a concept class with Littlestone dimension d. Then there exists an (ε, δ)-
differentially private online learner forH with an expected regret of Õ(d

√
T/ε) + Õd(T

1/3/ε2/3)
against any adaptive adversary in the agnostic setting. When the adversary is oblivious, the regret
can be further reduced to O(

√
dT log T ) + Õd(T

1/3/ε2/3).

As previously discussed, the results of Golowich and Livni [2021] can be interpreted as an equivalence
between non-private and private online learning in the realizable setting. The above conclusion
generalizes this equivalence to the agnostic setting. Moreover, for an oblivious adversary, the
resulting regret matches the best known non-private constructive algorithm [Hanneke et al., 2021]
when ε ≥ Ω̃d(1/T

1/4). Such a “privacy is free” phenomenon has been widely observed by previous
works on private OPE (e.g., [Asi et al., 2023b, 2024]). Our result can be viewed as extending this to
the nonparametric setting where the class can be infinite (but has finite Littlestone dimension).

1.2 Related Work

The investigation of private learning in the PAC framework [Valiant, 1984] was pioneered by Ka-
siviswanathan et al. [2011]. Following this, a series of studies aimed to characterize the learnability
and sample complexity of learning generic concept classes under DP [Beimel et al., 2010, 2019,
Feldman and Xiao, 2014, Beimel et al., 2016, Alon et al., 2019, Ghazi et al., 2021b, Alon et al.,
2022]. Beimel et al. [2019] demonstrated that, under pure DP, the sample complexity is tightly
determined by a measure called the representation dimension. For approximate DP, it was found that
learnability is characterized by the Littlestone dimension [Alon et al., 2019, Bun et al., 2020, Alon
et al., 2022]. However, a substantial gap persists between the upper and lower bounds concerning
sample complexity [Alon et al., 2019, Ghazi et al., 2021b].

Golowich and Livni [2021]’s work extended private learning to the online model. Building upon the
method of Bun et al. [2020] for private PAC learning, they proposed algorithms that attain mistake
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bounds sublinear in the time horizon T . For the lower bound, several works [Cohen et al., 2024,
Dmitriev et al., 2024, Li et al., 2024] discovered that Ω(log T ) mistakes are necessary under DP. This
finding highlights a notable discrepancy between private and non-private settings, as the mistake
bound does not grow with T without privacy [Littlestone, 1988]. Whether a stronger separation holds
was questioned by Sanyal and Ramponi [2022].

The problem of private online learning generic concept classes is also closely related to private online
prediction from experts (OPE), which has been extensively studied in the literature [Dwork et al.,
2010a, Smith and Thakurta, 2013, Jain and Thakurta, 2014, Agarwal and Singh, 2017, Asi et al.,
2023a,b, 2024]. While DP-OPE algorithms can be directly applied to finite concept classes, they
are not suitable for infinite concept classes with finite Littlestone dimension, which are the focus
of this article. Another related problem is private online prediction studied by Kaplan et al. [2023],
where the learner only releases a single bit representing the prediction result for the current data point.
Under this weaker model, they achieved a better mistake bound compared to the results in [Golowich
and Livni, 2021] (in the stronger online learning model) in terms of the Littlestone dimension.

2 Preliminaries

We provide some background on online learning, differential privacy, and sanitization in this section.

2.1 Online Learning

Online learning can be modeled as a sequential game played between a learner and an adversary.
Let H ⊆ {0, 1}X be a concept class over some domain X and T be an integer indicating the total
number of rounds, both of which are known to the learner and the adversary. At each round t ∈ [T ],
the learner outputs some hypothesis ht : X → {0, 1} while at the same time the adversary selects an
example zt = (xt, yt) ∈ X × {0, 1} and presents it to the learner. The performance of the learner is
measured by the regret, which is the difference between the number of mistakes made by the learner
and by the optimal concept inH (in hindsight), defined as

T∑
t=1

I[ht(xt) ̸= yt]− min
h⋆∈H

T∑
t=1

I[h⋆(xt) ̸= yt].

The above scenario is referred to as the agnostic setting, where there are no restrictions on the data
generated by the adversary. This is in contrast to the realizable setting, where there is some h⋆ ∈ H
such that yt = h⋆(xt) for every t ∈ [T ]. In this case, the regret is also called the mistake bound, as it
simply counts the number of mistakes made by the learner. A learner is proper if it always outputs
ht ∈ H for every t ∈ [T ]. Otherwise we say the learner is improper.

We consider two variants of adversaries according to their ability of choosing examples: oblivious
and adaptive adversaries. An oblivious adversary can only determine the entire data sequence before
interacting with the learner. That is, the data are independent of the learner’s internal randomness.
In contrast, an adaptive adversary can decide (xt, yt) after observing the learner’s output history
(h1, . . . , ht−1). Note that in the realizable setting, the adversary does not have to fix in advance an
h⋆ that labels all the data but just needs to ensure the set {(x1, y1), . . . , (xT , yT )} is consistent with
some h⋆ ∈ H at the end of the game. Clearly, an adaptive adversary is more powerful and makes it
harder to design an effective learning algorithm.

A learner is considered effective if it always attains a sublinear (i.e., o(T )) expected regret. We say
a concept class H is online learnable if there exists such a learner for H. Without privacy, online
learnability is characterized by the Littlestone dimension [Littlestone, 1988, Ben-David et al., 2009].
Definition 2.1 (Shattered Tree). An X -valued tree of depth n is a complete binary T of depth n (i.e,
the number of vertices on any root-to-leaf path is n) whose vertices are labeled by elements from X .
Every vertex located at the t-th layer of T can be identified by a binary sequence (y1, . . . , yt−1) ∈
{0, 1}t−1 such that it can be reached by starting from the root, then moving to the left child if yi = 0
and to right child if otherwise yi = 1 at step i ∈ [t−1]. For every t ∈ [n], define Tt : {0, 1}t−1 → X
be the mapping from every sequence (y1, . . . , yt−1) ∈ {0, 1}t−1 to the label of the vertex it identifies.
We say T is shattered byH if for every (y1, . . . , yn) ∈ {0, 1}n, there exists h ∈ H such that

∀t ∈ [n], h(Tt(y1, . . . , yt−1)) = yt.
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Definition 2.2 (Littlestone Dimension). The Littlestone dimension of a concept class H over X ,
denoted by Ldim(H), is the largest d such that there is X -valued tree T of depth d shattered byH.

One can also view X as a concept class over domainH by defining x(h) = h(x) for any x ∈ X and
h ∈ H. This class X is called the dual class ofH. The dual Littlestone dimension ofH, denoted by
Ldim⋆(H), is defined as the Littlestone dimension of the dual class X .

In the realizable setting, it was shown by Littlestone [1988] that the best attainable mistake bound
is exactly Ldim(H) for deterministic learners.1 The mistake bound is achieved by an algorithm
called the Standard Optimal Algorithm (SOA) that makes at most Ldim(H) mistakes on any realizable
sequence. Like the work of Golowich and Livni [2021], we will access the SOA as a black box and
our algorithm only relies on the fact that the SOA has a mistake bound of Ldim(H).
We next introduce the online prediction from experts (OPE) problem. In this problem, there are N
experts. At each round t, the algorithm chooses an expert it ∈ [N ] while the adversary chooses a loss
function ℓt : [N ] → [0, 1]. Then the function ℓt is released to the algorithm and a loss of ℓt(it) is
incurred. The regret of the algorithm is defined as

T∑
t=1

ℓt(it)− min
i∈[N ]

T∑
t=1

ℓt(i).

Similar to online learning, an oblivious adversary can only choose (ℓ1, . . . , ℓT ) at the very beginning
while an adaptive adversary can choose ℓt after seeing (i1, . . . , it−1).

2.2 Differential Privacy

We start by recalling the classical notion of differential privacy. Let Z be some data domain
(Z = X × {0, 1} in online learning). Let S = (z1, . . . , zT ) ∈ ZT and S′ = (z′1, . . . , z

′
T ) ∈ ZT be

two data sequences of length T . We say S and S′ are neighboring if they differ in at most one entry,
i.e., there exists some i such that zj = z′j for all j ∈ [T ] \ {i}.
Definition 2.3 (Differential Privacy). A randomized algorithm A is (ε, δ)-differentially private if for
any pair of neighboring data sequences S, S′ ∈ ZT and any set O of outputs, we have

Pr[A(S) ∈ O] ≤ eε Pr[A(S′) ∈ O] + δ.

The above standard definition of differential privacy cannot capture the scenario that the data sequence
is adaptively generated by an adversary. We next rigorously define differential privacy in the presence
of adaptive inputs following the formulation of Jain et al. [2023]. Consider a T -round game played
between an algorithm A and an adversary B, where A presents some ht to B and receives some data
zt from B at every round t. The adversary B can (adaptively) choose one special round t⋆ ∈ [T ]. At
this round, B generates two data points z(0)t⋆ and z

(1)
t⋆ . Then z

(b)
t⋆ will be sent toA, where b ∈ {0, 1} is

some global parameter that is unknown to both A and B. Let ΠA,B(b) denote B’s view of the game,
including (h1, . . . , hT ) and the internal randomness of B. To ensure privacy, we require that B is
unlikely to tell the value of b, formalized as follows.
Definition 2.4 (Differential Privacy with Adaptive Inputs). A randomized algorithm A is (ε, δ)-
differentially private if for any adversary B and any set O of views, we have

Pr[ΠA,B(0) ∈ O] ≤ eε Pr[ΠA,B(1) ∈ O] + δ.

Following the common treatment of privacy parameters in private learning Dwork et al. [2014], Bun
et al. [2020], we will assume throughout this article that ε is at most some small constant (say, 0.1)
and δ is significantly smaller than the reciprocal of the time horizon (i.e., δ = T−ω(1)). We say
a concept class H is privately online learnable in the realizable (or agnostic) setting if there is an
(ε, δ)-differentially private algorithm that attains a sublinear expected mistake bound (or regret) with
ε ≤ 0.1 and δ = T−ω(1).

We next present some useful tools to achieve differential privacy. The first is the AboveThreshold
mechanism [Dwork et al., 2009]. Given a sequence of sensitivity-1 data point, the AboveThreshold
mechanism allows us to privately monitor whether the cumulative sum exceeds some threshold.

1For randomized learners, the optimal expected mistake bound is equal to the randomized Littlestone
dimension of H [Filmus et al., 2023], which is between Ldim(H)/2 and Ldim(H).
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Theorem 2.5 ([Dwork et al., 2009, 2014]). Let T be the time horizon, ε be the privacy parameter, and
τ be some threshold value. There exists an (ε, 0)-differentially private algorithm AboveThreshold
that at each round t ∈ [T ] receives some bt ∈ [0, 1] (may be chosen adaptively) and responds an
at ∈ {⊤,⊥} such that with probability 1− β, we have:

• For all at = ⊤, it holds that
∑t

i=1 bi ≥ τ − 8(lnT+ln(2/β))
ε .

• For all at = ⊥, it holds that
∑t

i=1 bi ≤ τ + 8(lnT+ln(2/β))
ε .

For a dataset S = (z1, . . . , zn), let CountS(z) denote the number of occurrence of z in S, i.e.,
CountS(z) =

∑
i∈[n] I[zi = z]. We can use the PrivateHistogram algorithm to privately publish

CountS . The problem was studied in the context of sanitization in [Beimel et al., 2016, Bun et al.,
2019]. Here we adopt the algorithm from [Aliakbarpour et al., 2024] as the resulting error bound is
easier to work with.
Theorem 2.6 (Private Histogram [Aliakbarpour et al., 2024]). Let S be a dataset over Z . There
exists an (ε, δ)-differentially private algorithm that outputs a function CountS : Z → R such that
with probability 1 we have

sup
z∈Z

∣∣CountS(z)− CountS(z)
∣∣ ≤ 8 ln(8/δ)

ε
.

2.3 Sanitization

Let S = (x1, . . . , xn) ∈ Xn be a dataset. For any h ∈ H, define P̂S(h) =
1
n

∑n
i=1 h(xi). The task

of sanitization is to estimate P̂S(h) for every h ∈ H.
Definition 2.7 ([Blum et al., 2013, Beimel et al., 2016]). Let H be a concept class over X . An
(α, β)-sanitizer forH takes as input a dataset S ∈ Xn and outputs a function Est : H → [0, 1] such
that with probability 1− β it holds that suph∈H|Est(h)− P̂S(h)| ≤ α.

Note that in the above definition we only require the sanitizer to output a function rather than a
sanitized dataset. But one can always use it to generate a synthetic dataset by finding an S′ such
that |Est(h)− P̂S′(h)| ≤ α for all h ∈ H. With probability 1− β, such an S′ is guaranteed to exist
since the input S satisfies this property. By the triangle inequality, we have |P̂S′(h)− P̂S(h)| ≤ 2α.
Therefore, we can also assume a sanitizer directly outputs a sanitized dataset with error 2α.

Sometimes we may want to sanitize a labeled dataset S ∈ (X × {0, 1})n with respect to an extended
class Hlabel = {hlabel : h ∈ H} over X × {0, 1}, where hlabel : X × {0, 1} → {0, 1} is the
predicate indicating whether h makes an error, i.e., hlabel((x, y)) = I[h(x) ̸= y]. The following
lemma demonstrates that a sanitizer forH can be converted to one forHlabel.
Lemma 2.8 ([Bousquet et al., 2020]). Suppose there is an (ε, δ)-differentially private (α, β)-sanitizer
for H with input size n. Then there exists an (O(ε), O(δ))-differentially private (O(α), O(β))-
sanitizer forHlabel with input size n as long as n ≥ C ln(1/β)/εα for some constant C.

3 Realizable Online Learning

In this section, we present our realizable learner that achieves a logarithmic mistake bound against
an adaptive adversary. For clarity, we denote byH the given concept class and by d its Littlestone
dimension. For a sequence S of length t, we write SOA(S) to represent the hypothesis that the SOA
will output at time-step t+ 1.

We start by reiterating the method of Golowich and Livni [2021] and analyzing why it fails to provide
a logarithmic mistake bound in the presence of an adaptive adversary. Their algorithm creates a forest
consisting of sufficiently many binary trees of depth d and maintains a set of nodes called pertinent
nodes. Initially, every leaf node is pertinent and is associated with an empty sequence. At each round,
the learner randomly selects a pertinent node and inserts the input example into the sequence assigned
to this node. After that, an update step is performed.

The update procedure follows the key idea of constructing tournament examples in [Bun et al., 2020].
Let S1 and S2 be two sequences associated with two pertinent sibling nodes. Once it becomes the
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case that SOA(S1) ̸= SOA(S2), the algorithm chooses some x̄ such that SOA(S1)(x̄) ̸= SOA(S2)(x̄)
and guesses its label ȳ ∈ {0, 1} randomly. Suppose the SOA predicts the label of x̄ incorrectly as
1− ȳ on Sk (k ∈ {0, 1}). Then a new sequence is created by appending the pair (x̄, ȳ) to Sk. The
two sibling nodes are removed from the pertinent node set while their parent becomes pertinent and
is associated with the new sequence. The algorithm then recursively performs the update on their
parent until reaching a node whose sibling is not pertinent.

Suppose the input sequence is fixed and let h⋆ ∈ H be the labeling function. They observed that the
random insertion of the examples is equivalent to a random permutation on every layer. Based on this
observation, they proved that among the hypotheses produced by running the SOA on the sequences
assigned to pertinent nodes, with high probability there exists at least a frequent one. They designed
a mechanism that privately releases a frequent hypothesis at each round with logarithmic cost.

Since the output hypothesis is frequent at every round, once the algorithm makes a mistake, with
some positive probability the state of the SOA on some sequence will change and an update will be
performed. Note that h⋆(x̄) = ȳ with probability 1/2. Therefore, for every tree the SOA will output
h⋆ at the root with probability roughly 1/22

d

. As long as the number of trees is sufficiently large, the
algorithm is able to identify h⋆ privately. As a result, the total number of mistakes can be bounded by
the number of nodes in the forest.

In the presence of an adaptive adversary, there are two main obstacles in applying their algorithm:

• The output at each round partially reveals the information about the random assignment of
examples. This disqualifies their random permutation argument in proving the existence of
frequent hypotheses as it requires the examples and the random insertion to be independent.

• The labeling function h⋆ ∈ H is not fixed in advance. Then one cannot simply conclude
that every tournament example is correct with probability 1/2.

In their work, they resort to a standard reduction [Cesa-Bianchi and Lugosi, 2006] that transforms a
learner against an oblivious adversary to one against an adaptive adversary. However, the reduction
requires running a new instance from the beginning at each round, incurring a mistake bound of

√
T

due to advanced composition [Dwork et al., 2010b] of DP.

We next illustrate how we tackle these two challenges to obtain a logarithmic regret. We address the
first one by a lazy update technique and the second one by the uniform convergence argument.

Lazy update. Unlike their algorithm, which performs the update immediately, we delay the update
until there are enough collisions (i.e., sibling nodes with sequences on which the SOA outputs
differently) in one layer. Once the condition is met, we update the whole layer and proceed to the
upper layer. We then perform a random permutation in order to leverage their argument. Since the
randomness is independent of the examples in the process, their argument can be successfully applied.

Uniform convergence. Since the labeling function h⋆ is not predetermined, we have to argue that
the number of trees consistent with h is sufficiently large simultaneously for every h ∈ H that is
consistent with the data we have seen so far. However, one cannot directly apply the union bound
since there can be infinitely many feasible labeling functions. To circumvent this, we observe that the
number of data points in the forest (including input data points and tournament examples we generate)
is bounded. We can then prove the result by a classical uniform convergence argument [Vapnik and
Chervonenkis, 1971] overH.

We present our update subroutine in Algorithm 1. We use the symbol ⊥ for the case that the SOA fails
on a non-realizable sequence. At the s-th layer, there are Ns sequences Ss

1 , . . . , S
s
Ns

, where Ss
2i−1

and Ss
2i (i ∈ [Ns/2]) are as considered sibling sequences. In the update procedure, we will create

a new sequence from every pair of sibling sequences by padding a tournament example. The new
sequence is then placed to a random location at the next layer, i.e., Ss+1

π(i) .

We next describe how the entire algorithm works. At the s-th layer, the algorithm maintains Ns

sequences and a list Ls of frequent hypotheses. We keep outputting a hypothesis from Ls and run an
instance of AboveThreshold to inspect the number of mistakes. Once the number exceeds a particular
threshold, we switch to the next frequent hypothesis with a new instance of AboveThreshold. We
also insert the data point received at each round into a random sequence. After iterating over all the
frequent hypotheses in Ls, we perform an update, invoke PrivateHistogram to filter all the frequent
hypotheses out, and repeat the same procedure for Ls+1. The details are presented in Algorithm 2.
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Algorithm 1: Update
Global Parameter: concept classH
Input: sequences Ss

1 , . . . , S
s
Ns

1 Ns+1 ← Ns/2.
2 Create Ss+1

1 , . . . , Ss+1
Ns+1

such that every Ss+1
i is initialized as ⊥.

3 Let π be a random permutation over [Ns+1].
4 for i = 1, . . . , Ns+1 do
5 if Ss

2i−1 ̸= ⊥ and Ss
2i ̸= ⊥ and SOA(Ss

2i−1) ̸= SOA(Ss
2i) then

6 Pick x̄i such that SOA(Ss
2i−1)(x̄i) ̸= SOA(Ss

2i)(x̄i) and draw ȳi from {0, 1}
uniformly.

7 Ss+1
π(i) ← (Ss

j , (x̄i, ȳi)) where j ∈ {2i− 1, 2i} is such that SOA(Ss
j )(x̄i) ̸= ȳi.

8 end
9 end

10 Output Ss+1
1 , . . . , Ss+1

Ns+1

Algorithm 2: Realizable learner
Global Parameter: time horizon T , concept classH, privacy parameters ε, δ, failure

probability β, initial number of nodes N0

Input: input sequence ((x1, y1), . . . , (xT , yT ))
1 d← Ldim(H), s← 0, ε0 ← ε/2, Ni ← N0/2

i for i ∈ [d].
2 Create S0

1 , . . . , S
0
N0

such that every S0
i is initialized as ∅.

3 Create a list L0 ← {SOA(∅)}.
4 Initiate an instance of AboveThreshold with privacy parameter ε0 and threshold

N0 +
8(lnT+ln(6T/β))

ε0
.

5 for t = 1, . . . , T do
6 Set ht to be the first element in Ls and output ht, halt if Ls is empty.
7 Sample it uniformly from [Ns/2].
8 if SOA(Ss

2it−1) = SOA(Ss
2it

) ̸= ⊥ and SOA(Ss
2it−1)(xt) ̸= yt then

9 Ss
2it−1 ← (Ss

2it−1, (xt, yt)).
10 end
11 Feed I[ht(xt) ̸= yt] to AboveThreshold and receive at ∈ {⊤,⊥}.
12 if at = ⊤ then
13 Halt the current AboveThreshold and remove the first element in Ls.
14 while s < d and Ls is empty do
15 Feed Ss

1 , . . . , S
s
Ns

to Update and receive Ss+1
1 , . . . , Ss+1

Ns+1
.

16 s← s+ 1.
17 Create a multiset

Vs ← {SOA(Ss
2i) : i ∈ [Ns/2] and SOA(S

s
2i−1) = SOA(Ss

2i) ̸= ⊥}.
18 Run PrivateHistogram with privacy parameters (ε0/d, δ/d) on Vs and obtain

CountVs .
19 Set Ls ← {h : CountVs(h) ≥ 3Ms/4}, where Ms = 128 · 2−6·2sNs.
20 end
21 Initiate a new instance of AboveThreshold with privacy parameter ε0 and threshold

Ns +
8(lnT+ln(6T/β))

ε0
.

22 end
23 end

It is not hard to see that the algorithm preserves privacy. For utility, note that PrivateHistogram
extracts all the frequent hypotheses at layer s and store them in Ls. Suppose h ∈ Ls can be obtained
by running the SOA on Ms pairs of sibling sequences. By the property of AboveThreshold, we will
output h until it makes roughly Ns mistakes. Since every data point is inserted uniformly at random,
classical results of the coupon collector’s problem ensure that at least Ms/2 pairs are covered and
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become collisions (i.e., SOA(Ss
2i−1) ̸= SOA(Ss

2i)). Once Ls is exhausted, we proceed to the next
layer by invoking the update subroutine. By leveraging the idea of Golowich and Livni [2021] and
the uniform convergence argument, we can prove that for every h ∈ H that is consistent with the data
we have seen so far, after update there are Ms+1 = CM2

s /Ns+1 (C is some constant) pairs of sibling
sequences that are still consistent with h and, either they are already collisions or running the SOA on
them gives the same hypothesis h0. This allows us to act recursively until s = d, which indicates
Ld contains all the possible labeling functions. Solving the recurrence relation gives N0 ≈ 2O(2d),
which yields the desired mistake bound.

We formally state our results in the following theorem. A detailed proof is given in Appendix B.
Setting the failure probability β = 1/T directly yields Theorem 1.1.

Theorem 3.1. LetH be a concept class with Littlestone dimension d. Algorithm 2 with parameter
N0 = 2Θ(2

d)(ln(1/β) + ln(1/δ)/ε) is an (ε, δ)-differentially private online learner that makes at
most

O

(
2O(2

d)(log T + log(1/β) + log(1/δ))

ε

)
mistakes with probability 1− β.

We remark that the SOA can be replaced by any deterministic online learner with bounded number of
mistakes. For classes that can be properly learned by a deterministic online learner (e.g., thresholds
over finite domain), our algorithm can be made proper as well. However, there are simple examples
suggesting that randomness is necessary for proper online learning (see, e.g., [Hanneke et al., 2021]).
Hence, our algorithm is improper in general.

4 Agnostic Online Learning

In this section, we present our algorithms in the agnostic setting. We first give a simple proper learner
with a suboptimal regret. Then we show how to improve the regret to Õd(

√
T ) (but result in an

improper learner).

4.1 A Simple Algorithm Using Sanitization

In our algorithm, we divide the entire time horizon into batches of size B. After each batch, we
invoke a sanitizer forHlabel to obtain synthetic examples. All the synthetic data are partitioned into
B disjoint subsequences, where each subsequence contains exactly one data point from each batch.
Our prediction at each round is determined by running a (non-private) online learner on one of the
disjoint subsequences. The overall framework is depicted in Algorithm 3. Similar to the SOA, we
write A(S) to denote the output distribution of A after inputting a sequence S.

Algorithm 3: A simple private online learner
Global Parameter: time horizon T , concept classH, batch size B
Input: online learner A, sanitizer B forHlabel, input sequence ((x1, y1), . . . , (xT , yT ))

1 Initialize S1
1 , . . . , S

1
B as ∅.

2 for t = 1, . . . , T do
3 Let b = ⌈t/B⌉ be the batch index.
4 Draw it uniformly from [B], output ht where ht ∼ A(Sb

it
).

5 if t ≡ 0 (mod B) then
6 Run B on ((xt−B+1, yt−B+1), . . . , (xt, yt)) and construct synthetic data

((x′
t−B+1, y

′
t−B+1), . . . , (x

′
t, y

′
t)), exit if fail.

7 Perform a random permutation over ((x′
t−B+1, y

′
t−B+1), . . . , (x

′
t, y

′
t)).

8 Sb+1
i ← (Sb

i , (x
′
t−B+i, y

′
t−B+i)) for every i ∈ [B].

9 end
10 end
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Theorem 4.1. Let A be a (non-private) proper online learner with expected regret R(T ) for any
time horizon T and B be an (ε, δ)-differentially private (α, β)-sanitizer for Hlabel with input size
B. Then Algorithm 3 is an (ε, δ)-differentially private proper online learner that attains an expected
regret of O(B · R(T/B) + αT ) against an adaptive adversary conditioned on some event E with
Pr[E] ≥ 1− T/B · β.

We now leverage the sanitizer for generic Littlestone classes proposed by Ghazi et al. [2021b]. The
original statement exhibits a sample complexity of Õ(d6

√
d⋆/εα3), which was obtained by applying

their private proper agnostic learner to the synthetic data generator proposed by Bousquet et al. [2020].
But we can save a factor of 1/α through a few tweaks to the algorithm and analysis:

• The sample complexity of the private proper PAC (realizable) learner [Ghazi et al., 2021b]
can be improved to Õ(d6/εα) by replacing the uniform convergence argument in their proof
with a weaker relative uniform convergence argument.

• The discriminator of [Bousquet et al., 2020] can be implemented using a private agnostic
empirical learner, which does not incur the Õd(1/α

2) generalization cost.

We provide a detailed discussion in Appendix D and present the final result below.

Theorem 4.2 ([Bousquet et al., 2020] and [Ghazi et al., 2021b], Strengthened). LetH be a concept
class with Littlestone dimension d and dual Littlestone dimension d⋆. Then there exists an (ε, δ)-
differentially private (α, β)-sanitizer forH with sample complexity Õ(d6

√
d⋆/εα2).

A combination of Theorem 4.1, Theorem 4.2, Lemma 2.8, and regret bounds for proper online
learning [Alon et al., 2021, Hanneke et al., 2021] yields the following regret bound for private online
learning. Since d⋆ ≤ 22

d+2 − 2 [Bhaskar, 2021], it implies that every Littlestone class is privately
(and properly) online learnable in the agnostic setting.

Corollary 4.3. LetH be a concept class with Littlestone dimension d and dual Littlestone dimension
d⋆. Then there exists an (ε, δ)-differentially private proper online learner for H with an expected
regret of Õ(T 3/4 · (d7

√
d⋆/ε)1/4) against an adaptive adversary.

4.2 Online Learning via Privately Constructing Experts

We have shown a private online learner with regret Õd(T
3/4). However, even if we have a sanitizer

with error α = 1/B, optimizing the choice of B (i.e., B = Θd(T
1/3)) gives an Od(

√
TB+T/B) =

Od(T
2/3) regret, which is still significantly worse than the Od(

√
T ) bound in the non-private case.

To break this barrier, we exploit the approach of constructing experts, which was proposed by Ben-
David et al. [2009] for agnostic online learning. The idea is based on the fact that for any h ∈ H the
SOA makes at most d mistakes on the sequence relabeled by h. Hence one can enumerate the rounds
at which the SOA errors and use the SOA to simulate the behavior of h on the entire input sequence.
Then an Õ(

√
dT ) regret can be achieved by creating

(
T
≤d

)
= O(T d) instances of the SOA as experts

and running an OPE algorithm [Littlestone and Warmuth, 1994].

Since the constructed experts heavily depend on the input data, directly employing the same method
would violate privacy. Therefore, we again resort to the idea of sanitization. By incorporating the
binary mechanism for continual observation [Dwork et al., 2010a], we can detect if a concept makes
more than Õd(

√
T ) mistakes in a time interval. We can enumerate the d endpoints that decide the

intervals. Since we also have to enumerate which sanitized data points are fed to the SOA, the number
of experts will grow by some amount, but remains adequate to run a private OPE algorithm.

An issue of the above construction is that the output hypothesis of the SOA may not belong toH and
its mistakes cannot be observed on the sanitized sequence. Moreover, the structure of the output
hypotheses of the SOA is hard to characterize. We bypass this by replacing the SOA with the online
learner proposed by Hanneke et al. [2021]. Their online learner has a slightly larger mistake bound of
O(d), but the output is guaranteed to be the majority of very few concepts inH. Thus, we only have
to sanitize a moderately larger class. Now we have a set of experts such that one of them is no worse
than the optimal h⋆ ∈ H by Õd(

√
T ). This allows us to run any private OPE algorithm to obtain a

private online learner forH.
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Note that we can further reduce the number of mistakes made by the experts if we have a sanitizer with
a better dependence on α. Though we don’t know if the current sample complexity of sanitization
can be improved, we can still refine the above result by an alternative approach. This is due to an
observation that we only need to detect if an expert already made a lot of mistakes rather than an
absolute bound on the number of mistakes. We design an algorithm for this problem with sample
complexity Õd(1/α

1.5) based on Bousquet et al. [2020]’s framework, thereby achieving a better
regret. We present below a simplified statement of our final result, which implies Theorem 1.2 by
applying existing algorithms for private OPE [Jain and Thakurta, 2014, Asi et al., 2024]. The detailed
results and proofs can be found in Appendix E.
Theorem 4.4. Let H be a concept class with Littlestone dimension d. Suppose there exists an
(ε, δ)-differentially private algorithm for the OPE problem with N experts and time horizon T that
has an expected regret of R(ε, δ, T,N). Then there exists a (2ε, 2δ)-differentially private online
learner forH with an expected regret of R(ε, δ, T,N) + Õd(T

1/3/ε2/3). Furthermore, if the regret
bound for the OPE problem holds against an adaptive adversary, and the resulting regret bound for
online learningH also holds against an adaptive adversary.

5 Discussion and Future Work

In this work, we study online learning under differential privacy. For the realizable setting, we propose
an algorithm with an Od(log T ) mistake bound against any adaptive adversary, which significantly
improves the previous result of Golowich and Livni [2021] and achieves an optimal dependence on
T . For the agnostic setting, our algorithm achieves a regret of Õd(

√
T ), which achieves nearly the

same rate as the non-private case in terms of T up to logarithmic factors.

We discuss some potential future directions below.

Proper private online learning. Our optimal algorithms for the realizable and agnostic settings are
improper. For the realizable setting, it is known that a mistake bound of Od(polylog(T )) is attainable
without privacy [Daskalakis and Golowich, 2022]. We ask if this is also possible under differential
privacy. For the agnostic setting, our Algorithm 3 has a suboptimal Õd(T

3/4) regret. We believe this
can be improved to Õd(

√
T ) and leave it as future work.

Dependence on d. All of our algorithms incur a doubly exponential dependence on d. We wonder if
the dependence can be improved to polynomial as in private PAC learning [Ghazi et al., 2021b].

Unknown horizon T . In this work, we assume the time horizon T is known in advance. This
requirement can be removed by the classical doubling trick — splitting the input sequence into buckets
of lengths 1, 2, 4, 8, · · · and running our algorithm on each bucket separately (with T = 1, 2, 4, 8, · · · ).
This does not affect our regret bound for the agnostic setting but will increase the mistake bound of
our realizable learner (Algorithm 2) to Od(log

2 T ). Whether a mistake bound of Od(log T ) is still
achievable without knowing T in advance is an interesting question.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: Complete proofs of all the results can be found in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is primarily theoretical and does not have direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Preliminaries

A.1 PAC Learning

Let P be a distribution over domain X and h be a hypothesis, we write P (h) to denote Ex∼P [h(x)].
For an unlabeled dataset S ∈ Xn, we write P̂S to denote the empirical distribution over S. Given two
hypotheses h1 and h2, we define h1⊕h2 as the hypothesis such that (h1⊕h2)(x) = I[h1(x) ̸= h2(x)]
for all x ∈ X . For two hypothesis classes H1 and H2, define H1 ⊕ H2 = {h1 ⊕ h2 : h1 ∈
H1, h2 ∈ H2}. The generalization disagreement between h1 and h2 with respect to P is defined
as disP (h1, h2) = P (h1 ⊕ h2). The empirical disagreement between h1 and h2 is defined as
disS(h1, h2) = disP̂S

(h1, h2).

We then take into account the labels. For a distribution P over X × {0, 1}. The generalization
error of a hypothesis h with respect to P is defined as errP (h) = Pr(x,y)∼P [h(x) ̸= y]. Recall that
hlabel((x, y)) = I[h(x) ̸= y], we have errP (h) = P (hlabel). For a labeled dataset S ∈ (X×{0, 1})n,
the empirical error of h with respect to S is defined as errS(h) = errP̂S

(h).

We now introduce the PAC learning model. In this model, the learner takes as input a labeled dataset
S with each element sampled from some unknown distribution P . Moreover, it is guaranteed that
there exists some h⋆ ∈ H that labels all the data points. The task of the leaner is to find a hypothesis
that minimizes the generalization error.

Definition A.1 (PAC Learning [Valiant, 1984]). An algorithm A is said to be an (α, β)-PAC learner
for concept class H with sample complexity n if for any distribution P over X × {0, 1} such that
Pr(x,y)∼P [h

⋆(x) = y] = 1 for some h⋆ ∈ H, it takes as input a dataset S = ((x1, y1), . . . , (xn, yn)),
where every (xi, yi) is drawn i.i.d. from P , and outputs a hypothesis h satisfying

Pr[errP (h) ≤ α] ≥ 1− β,

where the probability is taken over the random generation of S and the random coins of A.

In contrast to PAC learning, the agnostic learning model [Haussler, 1992, Kearns et al., 1994] imposes
no assumptions on the underlying distribution. The objective is to identify a hypothesis whose
generalization error is close to that of the best one inH.

Definition A.2 (Agnostic Learning). An algorithm A is said to be an (α, β)-agnostic learner for
concept classH with sample complexity n if for any distribution P over X × {0, 1}, it takes as input
a dataset S = ((x1, y1), . . . , (xn, yn)), where every (xi, yi) is drawn i.i.d. from P , and outputs a
hypothesis h satisfying

Pr[errP (h) ≤ inf
h⋆∈H

errP (h
⋆) + α] ≥ 1− β,

where the probability is taken over the random generation of S and the random coins of A.

A learner A is said to be proper if it always output some h ∈ H. Otherwise we say A is improper.

Definition A.3 (Growth Function). Let S = (x1, . . . , xn) be an unlabeled dataset. The projection of
H onto S is defined as

ΠH(S) = {((x1, h(x1)), . . . , (xn, h(xn))) : h ∈ H}.

The growth function ofH is defined as ΠH(n) = maxS∈Xn |ΠH(S)|.

Now we can define the Vapnik-Chervonenkis (VC) dimension [Vapnik and Chervonenkis, 1971],
which characterizes the PAC and agnostic learnability of a concept class.

Definition A.4. LetH be a concept class over X . The VC dimension ofH, denoted by VCdim(H),
is the largest d such that ΠH(d) = 2d.

Also, one can view X as the concept class and H as the domain. The dual VC dimension of H is
then defined as VCdim⋆(H) = VCdim(X ).
The following Sauer’s lemma [Sauer, 1972] states that the growth function is polynomially bounded
as long as the class has finite VC dimension.
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Lemma A.5 (Sauer’s Lemma). LetH be a concept class with VC dimension dV . Then ΠH(n) ≤ 2n

for any n ≤ dV and

ΠH(n) ≤
dV∑
i=0

(
n

i

)
≤
(
en

dV

)dV

for all n > dV .

In this work, we may use the following technical lemma together with Sauer’s lemma to derive
sample complexity bounds.
Lemma A.6 ([Shalev-Shwartz and Ben-David, 2014]). Let a ≥ 1 and b > 0. Then:

x ≥ 4a ln(2a) + 2b⇒ x ≥ a ln(x) + b.

The following realizable generalization result [Vapnik and Chervonenkis, 1971, Blumer et al., 1989]
suggests that given sufficient examples, with high probability every pair of concepts with a small
empirical disagreement also has a small generalization disagreement.
Lemma A.7 (Realizable Generalization Bound). LetH be a concept class with VC dimension dV
and P be a distribution over X . Suppose S ∈ Xn is a dataset of size n, where each element in S is
drawn i.i.d. from P and

n ≥ C
dV ln(1/α) + ln(1/β)

α
for some universal constant C (i.e., C does not depend onH and P ). Then with probability 1− β
over the random generation of S, we have for all h1, h2 ∈ H:

• If disP (h1, h2) ≤ α then disS(h1, h2) ≤ 2α.

• If disS(h1, h2) ≤ α then disP (h1, h2) ≤ 2α.

The above bound requires the disagreement to be small. This is in contrast to the following agnostic
generalization bound, which provides an absolute upper bound on the difference between empirical
error and generalization error. However, it incurs an extra factor of 1/α.
Lemma A.8 (Agnostic Generalization Bound [Talagrand, 1994]). LetH be a concept class with VC
dimension dV and P be a distribution over X × {0, 1}. Suppose S ∈ (X × {0, 1})n is a dataset of
size n, where each element in S is drawn i.i.d. from P and

n ≥ C
dV + ln(1/β)

α2

for some universal constant C. Then with probability 1 − β over the random generation of S, we
have suph∈H|errS(h)− errP (h)| ≤ α.

In PAC (and agnostic) learning, the output hypothesis is required to have a low generalization error.
In contrast, empirical learners produce hypotheses only with low empirical errors.
Definition A.9 (Empirical Learner [Bun et al., 2015]). An algorithm A is said to be an (α, β)-
PAC empirical learner for concept class H with sample complexity n if it takes as input a dataset
S ∈ (X × {0, 1})n such that minh⋆∈H errS(h

⋆) = 0, and outputs a hypothesis h satisfying
Pr[errS(h) ≤ α] ≥ 1− β.

Similarly, an algorithm A is said to be an (α, β)-agnostic empirical learner for concept classH with
sample complexity n if it takes as input a dataset S ∈ (X × {0, 1})n and outputs a hypothesis h
satisfying

Pr[errS(h) ≤ min
h⋆∈H

errS(h
⋆) + α] ≥ 1− β.

When there are no privacy constraints, empirical learners can be trivially constructed. The following
lemma shows that one can create private empirical learners from private learners.
Lemma A.10 ([Li et al., 2025], Based on [Bun et al., 2015]). LetA be an (ε, δ)-differentially private
(α, β)-PAC learner for H with sample complexity n, where ε ≤ 1 and n ≥ 1/ε. Then there exists
a (1, O(δ/ε))-differentially private (α, β)-PAC empirical learner A′ forH with sample complexity
O(εn). Moreover, if A is proper, then A′ is also proper.
Remark. A similar result can be derived for transforming agnostic learners to agnostic empirical
learners [Bun et al., 2019]. However, this could be suboptimal in terms of α since agnostic learning
requires Ω(VCdim(H)/α2) examples [Simon, 1996] even without privacy.
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A.2 Concentration Inequalities

Lemma A.11 (Hoeffding’s Inequality [Hoeffding, 1963]). Let Z1, . . . , Zn be independent bounded
random variables with Zi ∈ [a, b]. Then

Pr

[
n∑

i=1

(E[Zi]− Zi) ≥ t

]
≤ exp

(
− 2t2

n(b− a)2

)
for all t ≥ 0.
Lemma A.12 (Mcdiarmid’s Inequality for Permutations [McDiarmid, 1989, Golowich and Livni,
2021, Talagrand, 1995, Costello, 2013]). Suppose f : Zn → R is some function such that
|f(z̄1, . . . , z̄n) − f(z̄′1, . . . , z̄

′
n)| ≤ c for any two sequences (z̄1, . . . , z̄n) and (z̄′1, . . . , z̄

′
n) that

differ in at most one element. Let (z1, . . . , zn) ∈ Zn be some fixed sequence and π be a random
permutation over [n], then we have

Pr
[
E[f(zπ(1), . . . , zπ(n))]− f(zπ(1), . . . , zπ(n)) ≥ r

]
≤ exp

(
− 2r2

9nc2

)
.

Lemma A.13 (Chernoff Bound, Sampling Without Replacement [Chernoff, 1952, Hoeffding, 1963]).
Let Z1, . . . , Zn be random variables drawn without replacement from (z1, . . . , zN ) ∈ {0, 1}N
(N ≥ n) and Z =

∑n
i=1 Zi denote their sum. Then for any t ∈ (0, 1), we have

Pr [Z ≤ (1− t)E[Z]] ≤ exp

(
− t2E[Z]

2

)
.

Lemma A.14 (Coupon Collector). Let X1, . . . , Xm be i.i.d. drawn from the uniform distribution
over [n]. Suppose m ≥ 2n and 4 ln(1/β) ≤ k ≤ n, then

Pr[|{j ∈ [k] : ∃i ∈ [m], Xi = j}| > k/2] ≥ 1− β.

Proof. For any S ⊆ [k], we have

Pr[∀i ∈ [m], Xi /∈ S] =

(
1− |S|

n

)m

≤ exp(−m|S|/n).

Therefore,

Pr[|{j ∈ [k] : ∃i ∈ [m], Xi = j}| > k/2]

=1− Pr[∃S ⊆ [k] with |S| = ⌈k/2⌉ s.t. ∀i ∈ [m], Xi /∈ S]

≥1−
(

k

⌈k/2⌉

)
exp(−m⌈k/2⌉/n)

≥1− 2k exp(−k)
≥1− β.

A.3 Closure Bounds Under Boolean Aggregation

The following notion of 0-covering number was introduced by Rakhlin et al. [2015].
Definition A.15 ([Rakhlin et al., 2015]). Let T be anX -valued tree of depth n and V be a set of {0, 1}-
valued tree of depth n. We say V is a 0-cover ofH on T if for any h ∈ H and y1, . . . , yn ∈ {0, 1}n,
there exists V ∈ V such that

∀t ∈ [n], h(Tt(y1, . . . , yt−1)) = Vt(y1, . . . , yt−1).

The 0-covering number ofH on T is defined as

N (0,H, T ) = min
V is a 0-cover of H on T

|V |.

Also, define
N (0,H, n) = max

T is an X -valued tree of depth n
N (0,H, T ).
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They proved the following upper bound on the 0-covering number for Littlestone classes, which can
be seen as an analogy of the celebrated Sauer’s lemma on trees.
Lemma A.16 ([Rakhlin et al., 2015]). LetH be a concept class with Littlestone dimension d. Then
we have N (0,H, n) ≤ 2n for any n ≤ d and

N (0,H, n) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d
for all n > d.

The following fact directly follows from the definition of shattering on trees (for a rigorous proof,
see [Ghazi et al., 2021a]).
Fact A.17. LetH be a concept class of Littlestone dimension d. Then N (0,H, d) = 2d.

Let G : {0, 1}k → {0, 1} be a boolean function andH1, . . . ,Hk be k hypothesis classes over domain
X . Define the hypothesis class G(H1, . . . ,Hk) as

G(H1, . . . ,Hk) = {G(h1, . . . , hk) : h1 ∈ H1, . . . , hk ∈ Hk},
where G(h1, . . . , hk)(x) = G(h1(x), . . . , hk(x)) for any x ∈ X . The following lemma bounds
the VC dimension and the Littlestone dimension of G(H1, . . . ,Hk). The upper bound on the
VC dimension is by a classical argument of Dudley [1978] (see [Alon et al., 2020] for a detailed
explanation) that leverages Sauer’s lemma to bound the growth function. The upper bound on the
Littlestone dimension is due to [Ghazi et al., 2021a] in a similar manner using Lemma A.16.
Lemma A.18. Let G : {0, 1}k → {0, 1} be a boolean function and H1, . . . ,Hk be k hypotheses
classes over domain X . Let d = maxi∈[k] Ldim(Hi) and dV = maxi∈[k] VCdim(Hi). Then we
have

Ldim(G(H1, . . . ,Hk)) = O(kd log k)

and
VCdim(G(H1, . . . ,Hk)) = O(kdV log k).

An analogous argument also leads to the following bounds on the dual VC dimension and the dual
Littlestone dimension. We include a proof for completeness.
Lemma A.19. Let G : {0, 1}k → {0, 1} be a boolean function and H1, . . . ,Hk be k hypotheses
classes over domain X . Let d⋆ = maxi∈[k] Ldim

⋆(Hi) and d⋆V = maxi∈[k] VCdim
⋆(Hi). Then we

have
Ldim⋆(G(H1, . . . ,Hk)) = O(kd⋆ log k)

and
VCdim⋆(G(H1, . . . ,Hk)) = O(kd⋆V log k).

Proof. We bound the dual VC dimension first. Let

S = (G(h1
1, . . . , h

1
k), . . . , G(hn

1 , . . . , h
n
k ))

be a dataset of size n ≥ d⋆V over G(H1, . . . ,Hk). Construct k datasets S1, . . . , Sk, where Si =
(h1

i , . . . , h
n
i ) is a dataset overHi for every i ∈ [k]. By Sauer’s lemma, we have (since the function

(en/x)x is monotonically increasing when 1 ≤ x ≤ n)

|ΠX (Si)| ≤
(

en

VCdim⋆(Hi)

)VCdim⋆(Hi)

≤
(
en

d⋆V

)d⋆
V

.

Then we can bound the size of projection of X onto S:

|ΠX (S)| = |{(G(h1
1, . . . , h

1
k)(x), . . . , G(hn

1 , . . . , h
n
k )(x)) : x ∈ X}|

= |{(G(h1
1(x), . . . , h

1
k(x)), . . . , G(hn

1 (x), . . . , h
n
k (x))) : x ∈ X}|

≤ |{(G(h1
1(x1), . . . , h

1
k(xk)), . . . , G(hn

1 (x1), . . . , h
n
k (xk))) : (x1, . . . , xk) ∈ X k}|

≤ |{((h1
1(x1), . . . , h

1
k(xk)), . . . , (h

n
1 (x1), . . . , h

n
k (xk))) : (x1, . . . , xk) ∈ X k}|

= ΠX (S1)× · · · ×ΠX (Sk)

≤ (en/d⋆V )
kd⋆

V .
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This implies ΠX (n) ≤ (en/d⋆V )
kd⋆

V , which is o(2n) as n → ∞. Therefore, G(H1, . . . ,Hk) has
finite dual VC dimension. Denote it by D⋆

V , taking n = D⋆
V gives 2D

⋆
V ≤ (eD⋆

V /d
⋆
V )

kd⋆
V . Solving

the inequality yields D⋆
V = O(kd⋆V log k).

We now bound the dual Littlestone dimension in a similar way. Let T be a G(H1, . . . ,Hk)-valued
tree with depth n ≥ d⋆. Then there exists k trees T 1, . . . , T k such that T i is anHi-valued tree with
depth n for every i ∈ [k], and

Tt(y1, . . . , yt−1) = G(T 1
t (y1, . . . , yt−1), . . . , T k

t (y1, . . . , yt−1))

for all t ∈ [n] and (y1, . . . , yt−1) ∈ {0, 1}t−1. By Lemma A.16, we have

N (0,X , T i) ≤
(

en

Ldim⋆(Hi)

)Ldim⋆(Hi)

≤
(en
d⋆

)d⋆

.

For every i ∈ [k], pick a 0-cover V i = {Vi,1, . . . ,Vi,|V i|} of X on T i with size |V i| = N (0,X , T i).
Construct

V = {Vj1,...,jk : j1 ∈ [|V 1|], . . . , jk ∈ [|V k|]},
where Vj1,...,jk is a {0, 1}-valued tree such that

Vj1,...,jk
t (y1, . . . , yt−1) = G(V1,j1

t (y1, . . . , yt−1), . . . ,Vk,jk
t (y1, . . . , yt−1))

for all t ∈ [n] and (y1, . . . , yt−1) ∈ {0, 1}t−1. Then we have |V | ≤ (en/d⋆)kd
⋆

. For any x ∈ X and
(y1, . . . , yn) ∈ {0, 1}n, for every i ∈ [k] there exists Vi,ji ∈ V i such that

∀t ∈ [n], x(T i
t (y1, . . . , yt−1)) = Vi,ji

t (y1, . . . , yt−1)

since V i is a 0-cover of X on T i. As a consequence, we have for all t ∈ [n]:

x(Tt(y1, . . . , yt−1)) = G(x(T 1
t (y1, . . . , yt−1)), . . . , x(T k

t (y1, . . . , yt−1)))

= G(V1,j1
t (y1, . . . , yt−1), . . . ,Vk,jk

t (y1, . . . , yt−1))

= Vj1,...,jk
t (y1, . . . , yt−1).

This means V is a 0-cover of X on T . The desired upper bound is then implied by the same
calculation as for the dual VC dimension.

A.4 Other Tools for Privacy

One of the basic mechanisms for ensuring differential privacy is the Laplace mechanism.
Definition A.20 (Laplace Distribution). A random variable has probability distribution Lap(b) if its
probability density function is f(x) = 1

2b exp(−|x|/b).
Definition A.21 (Sensitivity). Let f : Zn → R be a function. We say f has sensitivity ∆ if for any
neighboring datasets S1 and S2, we have |f(S1)− f(S2)| ≤ ∆.
Lemma A.22 (Laplace Mechanism [Dwork et al., 2006b]). Let f be a function with sensitivity ∆.
The mechanism that takes as input a dataset S ∈ Zn and outputs f(S) +X with X ∼ Lap(∆/ε) is
(ε, 0)-differentially private. Moreover, we have

Pr
X∼Lap(∆/ε)

[
|X| ≤ ln(1/β)∆

ε

]
≥ 1− β.

Given a finite set R and a score function q : Zn ×R→ R. We say q has sensitivity ∆ if q(·, h) has
sensitivity ∆ for all h ∈ R. The exponential mechanism takes as input a dataset S ∈ Zn and selects
an element h ∈ R with probability

exp(−ε · q(S, h)/2∆)∑
f∈R exp(−ε · q(S, f)/2∆)

.

Lemma A.23 ([McSherry and Talwar, 2007]). The exponential mechanism is (ε, 0)-differentially
private. Moreover, with probability 1− β, it outputs an h ∈ R such that

q(S, h) ≤ min
f∈R

q(S, f) +
2∆

ε
ln(|R|/β).
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B Proof of Theorem 3.1

We first prove the following important property of the subroutine Update.

Lemma B.1. Let H be a concept class with Littlestone dimension d and F be a subset of H. Let
Ss
1 , . . . , S

s
Ns

be the input of Update (Algorithm 1) such that |Ss
i | ≤ 2s for all i ∈ [Ns]. Define

Isf = {i ∈ [Ns/2] : S
s
2i−1 and Ss

2i are consistent with f}

and Is+1
f similarly for the output Ss+1

1 , . . . , Ss+1
Ns+1

.

Suppose for every f ∈ F , we have∣∣{i ∈ Isf : SOA(Ss
2i−1) ̸= SOA(Ss

2i)}
∣∣ ≥M.

Then for any 0 < r1 ≤ M
2 − 6 and r2 > 0, with probability at least

1−
(
e(4d+ 1)Ns

2d

)d

·
(
exp

(
−2r21

M

)
+ exp

(
− 2r22
9Ns+1

))
,

it holds that for each f ∈ F , either

|{i ∈ Is+1
f : SOA(Ss+1

2i−1) ̸= SOA(Ss+1
2i )}| > (M/2− r1)

2

6Ns+1
− r2,

or there exists some h0 (depends on f ) such that

|{i ∈ Is+1
f : SOA(Ss+1

2i−1) = SOA(Ss+1
2i ) = h0}| >

(M/2− r1)
2

6Ns+1
− r2.

Proof. Let P be the set of unlabelled data points occurred in any Ss
1 , . . . , S

s
Ns

, i.e.,

P =

Ns⋃
i=1

{x : (x, 0) ∈ Ss
i ∨ (x, 1) ∈ Ss

i }.

Let Q = {x̄i : i ∈ [Ns+1]}. Then we have |P | ≤ 2sNs and |Q| ≤ Ns/2. By Sauer’s lemma, we can
identify a subset G ⊆ F with |G| ≤

(
em
d

)d
, where m = (2d+ 1/2)Ns ≥ (2s+ 1/2)Ns ≥ |P ∪Q|,

such that for every f ∈ F , there exists some g ∈ G such that f and g are consistent on both P and Q.
Hence, it suffices to first prove the conclusion for every g ∈ G, then apply a union bound over G.

Fix some g ∈ G and define the following multiset

Ug = {i ∈ [Ns+1] : S
s+1
π(i) is consistent with g}.

By Hoeffding’s inequality, we have

Pr [|Ug| ≤M/2− r1] ≤ exp

(
−2r21

M

)
.

Note that according to our algorithm, Ug only depends on the randomness of ȳi’s and is independent
of π. Consequently, the above probability is only taken over the randomness of ȳi’s.

We then condition on a fixed multiset Ug with |Ug| > M/2 − r1. Let ch = |{SOA(Ss+1
π(i)) = h :

i ∈ Ug}| denote the number of occurrence of h when running the SOA on Ss+1
π(i) for all i ∈ Ug. As

a consequence,
∑

h ch = |Ug|. If maxh ch <
2|Ug|

3 , it follows that
∑

h c
2
h ≤ maxh ch

∑
h ch <
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2
3 |Ug|2. Hence for any i ∈ [Ns+1/2], we have

Pr[i ∈ Is+1
g ∧ SOA(Ss+1

2i−1) ̸= SOA(Ss+1
2i ) | Ug]

=Pr[Ss+1
2i−1 and Ss+1

2i are consistent with g ∧ SOA(Ss+1
2i−1) ̸= SOA(Ss+1

2i ) | Ug]

=
∑
h

ch
Ns+1

·
∑

h′ ̸=h ch′

Ns+1 − 1

=
1

Ns+1(Ns+1 − 1)
·
∑
h

ch(|Ug| − ch)

=
|Ug|2 −

∑
h c

2
h

Ns+1(Ns+1 − 1)

>
|Ug|2

3N2
s+1

.

Therefore, we can leverage Mcdiarmid’s inequality for permutations (by setting f to be the function
that counts i ∈ [Ns+1/2] such that i ∈ Is+1

g and SOA(Ss+1
2i−1) ̸= SOA(Ss+1

2i )) to show

Pr[|{i ∈ Is+1
g : SOA(Ss+1

2i−1) ̸= SOA(Ss+1
2i )}| ≤ R− r2 | Ug] ≤ exp

(
− 2r22
9Ns+1

)
,

where R = (M/2−r1)
2

6Ns+1
< Ns+1/2 · |Ug|2

3N2
s+1

< E[f ].

Now consider the case that maxh ch ≥ 2|Ug|
3 . Let h0 be the hypothesis such that ch0

= maxh ch.
Then for any i ∈ [Ns+1/2], we have

Pr[Ss+1
2i−1 and Ss+1

2i are consistent with g ∧ SOA(Ss+1
2i−1) = SOA(Ss+1

2i ) = h0 | Ug]

=
ch0

Ns+1
· ch0

− 1

Ns+1 − 1

≥4|Ug|2 − 6|Ug|
9N2

s+1

>
|Ug|2

3N2
s+1

,

where the last inequality is because |Ug| > M/2− r1 ≥ 6. Similarly, we have

Pr[|{i ∈ Is+1
g : SOA(Ss+1

2i−1) = SOA(Ss+1
2i ) = h0}| ≤ R− r2 | Ug] ≤ exp

(
− 2r22
9Ns+1

)
.

Putting what we have proved so far together, for every g ∈ G, it holds with probability at least

1− exp

(
−2r21

M

)
− exp

(
− 2r22
9Ns+1

)
that either

|{i ∈ Is+1
g : SOA(Ss+1

2i−1) ̸= SOA(Ss+1
2i )}| > R− r2

or there exists some h0 such that
|{i ∈ Is+1

g : SOA(Ss+1
2i−1) = SOA(Ss+1

2i ) = h0}| > R− r2.

Applying a union bound over G yields the desired result.

We then analyze the privacy of Algorithm 2.
Lemma B.2. Algorithm 2 is (ε, δ)-differentially private.

Proof. During the entire procedure, we run many instances of AboveThreshold on disjoint sequences.
Therefore by Theorem 2.5, putting them all together is still ε/2-differentially private.

Now consider the multiple executions of PrivateHistogram. Note that changing a single input exam-
ple (xt, yt) only changes at most one Ss

i for every s. Then by Theorem 2.6, each PrivateHistogram
is (ε/2d, δ/d)-differentially private. Since we run PrivateHistogram only once for every s ∈ [d],
basic composition ensures the overall algorithm is (ε, δ)-differentially private.
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We now show the following utility guarantee using Lemma B.1. Combining Lemma B.2 and B.3
yields Theorem 3.1.

Lemma B.3. LetH be a concept class with Littlestone dimension d and N0 = N0(ε, δ, β, d, T ) be
appropriately chosen. For any adaptive adversary generating the sequence (x1, y1), . . . , (xT , yT ) in
the realizable setting, Algorithm 2 makes at most

O

(
2O(2

d)(log T + log(1/β) + log(1/δ))

ε

)
mistakes with probability 1− β.

Proof. First by Theorem 2.5 and the union bound, it holds with probability 1− β/3 that during the
execution of each instance of AboveThreshold, the number of mistakes made by the algorithm is
within [τ −α, τ +α+1], where τ is the threshold assigned to the instance and α = 8(lnT+ln(6T/β))

ε0
.

In particular, if the instance was created with layer number s, the number of mistakes made during
the execution is within [

Ns, Ns +
16(lnT + ln(6T/β))

ε0
+ 1

]
.

We use E1 to denote the above event.

Then by Theorem 2.6 and the union bound, it holds with probability 1 that

sup
h∈H
|CountVs

(h)− CountVs
(h)| ≤ 8d ln(8d/δ)

ε0
.

for every s ∈ [d]. We use E2 to denote this event.

Moreover, consider an execution of AboveThreshold that eventually halts by returning at = ⊤. We
know that the algorithm keeps outputting ht = h during the execution, where h is the first element
of Ls. Let I ⊆ [Ns/2] be a index set with size k ≥ 4 ln(3T/β) and I ′ be the collection of all it
(during the execution of this AboveThreshold) such that h(xt) ̸= yt. By Lemma A.14, it holds with
probability 1 − β/3T conditioned on E1 that |I ∩ I ′| ≥ k/2. Let E3 be the event that this holds
for all instances of AboveThreshold that terminates by returning ⊤. By the union bound, we have
Pr[E3 | E1] ≥ 1− β/3.

Let Ft be the set consisting of all h ∈ H that is consistent with the data points received up to round t.
That is,

Ft = {h ∈ H : h is consistent with (x1, y1), . . . , (xt, yt)}.
Let ts denote the round at which Ss

1 , . . . , S
s
Ns

were created. Define Isf (t) to be the set

{i ∈ [Ns/2] : S
s
2i−1 and Ss

2i are consistent with f}

at the end of round t. For every s ∈ {0, 1, . . . , d}, let E4,s denote the following event: for every
f ∈ Fts either

|{i ∈ Isf (ts) : SOA(S
s
2i−1) ̸= SOA(Ss

2i)}| ≥Ms

or there exists some h0 such that

|{i ∈ Isf (ts) : SOA(S
s
2i−1) = SOA(Ss

2i) = h0}| ≥Ms,

where Ms = 128 · 2−6·2sNs = 128 · 2−6·2s ·N0 · 2−s.

Since S0
1 , . . . , S

0
N0

are initialized as ∅, it follows that Isf (t0) = [N0/2] and SOA(S0
2i−1) =

SOA(S0
2i) = SOA(∅) for all i ∈ [N0/2]. Therefore, E4,0 happens with probability 1. We next bound

the probability of E4,s+1 conditioned on E1 ∪ E2 ∪ E3 and E4,s. If we set N0 ≥ d·26·2
d+d ln(8d/δ)

ε0
,

then
8d ln(8d/δ)

ε0
≤ 32 · 2−6·2s ·N0 · 2−s = Ms/4.

By E2, for every f ∈ Fts that satisfies the second property of E4,s, we have CountVs
(h0) ≥ 3Ms/4,

which implies h0 ∈ Ls. Observe that from round t = ts + 1 to t = ts+1 we only insert data points
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that are realizable by Fts+1 , it follows that Isf (ts+1) = Isf (ts) for all f ∈ Fts+1 . Thus by E3, we
have for all f ∈ Fts+1

that
|{i ∈ Isf (ts+1) : SOA(S

s
2i−1) ̸= SOA(Ss

2i)}| ≥Ms/2

if we set k = Ms = 128 · 2−6·2s ·N0 · 2−s ≥ 4 ln(3T/β). Also, it is easy to see from our algorithm
that |Ss

i | ≤ 2s for all i ∈ [Ns] since we will at most insert one data point from the input and one
from Update for every s. Now we have fulfilled the conditions of Lemma B.1. Setting M = Ms/2,
r1 = M/4 (this requires r1 = Ms/8 ≤Ms/4− 6, which can be satisfied by letting N0 ≥ 26·2

d+d),
and r2 = M2/(384Ns+1) gives

(M/2− r1)
2

6Ns+1
− r2 =

M2

128Ns+1

=
M2

s

512Ns+1

=
16384 · 2−12·2sN2

0 · 2−2s

512N0 · 2−(s+1)

= 128 · 2−6·2s+1

·N0 · 2−(s+1)

= Ms+1.

As a result, the E4,s+1 holds for s+ 1 with probability

1−
(
e(4d+ 1)Ns

2d

)d

·
(
exp

(
−2r21

M

)
+ exp

(
− 2r22
9Ns+1

))
≥1− (7N0)

d

(
exp

(
−Ms

16

)
+ exp

(
M4

s

72 · 3842N3
s+1

))
=1− (7N0)

d

(
exp

(
− 8N0

26·2s+s

)
+ exp

(
− 2048N0

81 · 224·2s+s−3

))
≥1− 2 exp

(
− N0

224·2d+d
+ d ln(7N0)

)
≥1− β

3d
conditioned on E1 ∪ E2 ∪ E3 and E4,s as long as

2 exp

(
− N0

224·2d+d
+ d ln(7N0)

)
≤ β

3d
⇔ N0 ≥ 224·2

d+d (d ln 7 + d lnN0 + ln(6d/β)) ,

which, by Lemma A.6, can be established by requiring

N0 ≥ 4 · 224·2
d+d · d ln

(
224·2

d+d · 2d
)
+ 2 · 224·2

d+d(d ln 7 + ln(6/β)).

Let E4 = E4,0 ∪ · · · ∪ E4,d, we have Pr[E4 | E1 ∪ E2 ∪ E3] ≥ 1− β/3.

Summarizing what we have proved so far gives Pr[E1 ∪ E2 ∪ E3 ∪ E4] ≥ 1− β for some

N0 = O

(
2O(2

d)
(
log(1/β) +

log(1/δ)

ε

))
.

We now condition on E1 ∪ E2 ∪ E3 ∪ E4 and bound the number of mistakes. Note that the size of
Ls at round t = ts can be bounded by

Ns/2

3Ms/4−Ms/4
≤ 26·2

s

128

for s ∈ [d] and by 1 ≤ 26·2
s

/128 for s = 0. Hence, the number of mistakes before s reaches d is at
most

d−1∑
s=0

(
Ns +

16(lnT + ln(6T/β))

ε0
+ 1

)
· 2

6·2s

128

=O

(
2O(2

d)(log T + log(1/β) + log(1/δ))

ε

)
.
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Once the value of s reaches d, event E4 indicates that Idf (td) ≥Md for all f ∈ Ftd . Notice that for
every i ∈ Idf (td), the SOA makes at least d mistakes on Sd

2i−1 and Sd
2i. Therefore, the property of the

SOA implies that SOA(Sd
2i−1) = SOA(Sd

2i) = f . Then by E2, we have f ∈ Ld. This means we can
make at most(

Nd +
16(lnT + ln(6T/β))

ε0
+ 1

)
· 2

6·2d

128
= O

(
2O(2

d)(log T + log(1/β) + log(1/δ))

ε

)
mistakes after t = td. Combining the two bounds yields the desired result.

C Proofs for Section 4.1

C.1 Proof of Theorem 4.1

Proof. The privacy guarantee directly follows from the post-processing property of DP and the fact
that we run B on disjoint batches. Let E denote the event that all executions of B succeed, we have
Pr[E] ≥ 1− T/B · β. In the rest of the proof we condition on E. Note that under event E, the input
sequence is always a valid synthetic sequence. Thus, the algorithm won’t fail.

Assume without loss of generality T ≡ 0 (mod B). Consider the b-th batch and fix Sb
1, . . . , S

b
B .

Since A is proper, the utility guarantee of B gives (note that the error rate is 2α since we require B to
output a sanitized dataset, see our discussion after Definition 2.7)

E

 bB∑
t=(b−1)B+1

I[ht(xt) ̸= yt]

 =

bB∑
t=(b−1)B+1

1

B

B∑
i=1

Ef∼Ai(Sb
i )
[I[f(xt) ̸= yt]]

=
1

B

B∑
i=1

Ef∼Ai(Sb
i )

 bB∑
t=(b−1)B+1

I[f(xt) ̸= yt]


≤ 1

B

B∑
i=1

Ef∼Ai(Sb
i )

 bB∑
t=(b−1)B+1

I[f(x′
t) ̸= y′t]

+ 2αB.

Let pbi be the probability that A(Sb
i ) makes a mistake on the last element of Sb+1

i (note that pbi itself
is a random variable). Since we perform a random permutation over the synthetic data sequence
((x′

(b−1)B+1, y
′
(b−1)B+1), . . . , (x

′
bB , y

′
bB)), we have

E[pbi ] =
1

B
Ef∼Ai(Sb

i )

 bB∑
t=(b−1)B+1

I[f(x′
t) ̸= y′t]

 .

Summing over all batches yields

E

[
T∑

t=1

I[ht(xt) ̸= yt]

]
≤ E

 B∑
i=1

T/B∑
b=1

pbi

+ 2αT.

Let mi(h) be the number of mistakes made by h ∈ H on S
T/B+1
i . Note that ST/B+1

1 , . . . , S
T/B+1
B

are disjoint subsequences of ((x′
1, y

′
1), . . . , (x

′
T , y

′
T )). We thus have

E

 B∑
i=1

T/B∑
b=1

pbi − min
h⋆∈H

T∑
t=1

[h⋆(x′
t) ̸= y′t]

 ≤ E

 B∑
i=1

T/B∑
b=1

pbi −
B∑
i=1

min
h⋆∈H

mi(h
⋆)


=

B∑
i=1

E

T/B∑
b=1

pbi − min
h⋆∈H

mi(h
⋆)


≤ B ·R(T/B),
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where the last line is due to Lemma 4.1 of [Cesa-Bianchi and Lugosi, 2006] (see also Lemma 11
of [Gonen et al., 2019]) and the regret bound of A. Again by the utility guarantee of B we have

E

[
min
h⋆∈H

T∑
t=1

I[h⋆(xt) ̸= yt]

]
≥ E

[
min
h⋆∈H

T∑
t=1

I[h⋆(x′
t) ̸= y′t]

]
− 2αT.

Hence, the overall expected regret can be bounded by

E

[
T∑

t=1

I[ht(xt) ̸= yt]− min
h⋆∈H

T∑
t=1

I[h⋆(xt) ̸= yt]

]

≤E

 B∑
i=1

T/B∑
b=1

pbi − min
h⋆∈H

T∑
t=1

I[h⋆(x′
t) ̸= y′t]

+ 4αT

≤B ·R(T/B) + 4αT.

Moreover, since every ht is produced by A, Algorithm 3 is also proper.

C.2 Proof of Corollary 4.3

Proof. By Theorem 4.2 and Lemma 2.8, there exists an (ε, δ)-differentially private (α, β)-sanitizer
for Hlabel with sample complexity Õ(d6

√
d⋆/εα2). For any B ≤ T , this translates to a sanitizer

with α = Õ(d3 4
√
d⋆/
√
εB) and β = 1/T 2. Then by Theorem 4.1 and the regret bound of proper

online learner [Hanneke et al., 2021, Alon et al., 2021], we obtain a private online learner with
expected regret Õ(

√
dTB + Td3 4

√
d⋆/
√
εB). Choosing B = Θ̃((Td5

√
d⋆/ε)1/2) gives the desired

result.

D Sanitization with Better Sample Complexity

In this section, we discuss how to reduce the sample complexity of the sanitizer in [Ghazi et al.,
2021b] by a factor of 1/α. We achieve this improvement in two steps: first refine the sample
complexity of the private proper PAC learner of Ghazi et al. [2021b], then make it applicable in the
framework of Bousquet et al. [2020].

D.1 Refined Sample Complexity for Proper PAC Learning

The proof in [Ghazi et al., 2021b] utilizes the uniform convergence result (aka agnostic generalization)
to ensure that the empirical error of every f̃ ∈ F̃ (F̃ is some hypothesis class whose VC dimension
is bounded by the Littlestone dimension of the given concept classH) is close to its generalization
error. This is indeed an overkill — their proof only requires this to hold for hypotheses with low
error. Therefore, one could replace the uniform convergence bound by the following relative uniform
convergence results.
Lemma D.1 (Relative Uniform Convergence [Anthony and Bartlett, 1999, Anthony and Shawe-Taylor,
1993]). Suppose H is a concept class over X with VC dimension dV and P is a distribution over
X × {0, 1}. Let S be a dataset of size n where every data point in S is drawn i.i.d. from Pn. For any
0 < λ, µ < 1, we have

Pr[∃h ∈ H, errP (h) > (1 + λ)errS(h) + µ] ≤ 4

(
2en

dV

)dV

exp

(
−λµn

4(λ+ 1)

)
and

Pr[∃h ∈ H, errS(h) > (1 + λ)errP (h) + µ] ≤ 4

(
2en

dV

)dV

exp

(
−λµn

4(λ+ 1)

)
.

Such a modification leads to the following result, which saves a factor of 1/α.
Theorem D.2 ([Ghazi et al., 2021b], Slightly Strengthened). LetH be a concept class with Littlestone
dimension d. Then there exists an (ε, δ)-differentially private proper (α, β)-PAC learner forH with
sample complexity Õ

(
d6/εα

)
.
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D.2 Sanitization via Proper PAC Learning

We now demonstrate how to construct a sanitizer using a proper PAC learner based on the sequential-
fooling framework of [Bousquet et al., 2020]. The framework can be described as a sequential game
played between a generator and a discriminator, where the discriminator holds a dataset S and the
generator wants to obtain an accurate sanitization of S. At each round t, the generator proposes
a distribution Pt. The generator wins the game if Pt and P̂S are within error α with respect to
H. Otherwise, the discriminator returns some h ∈ H such that |P (h) − P̂S(h)| > α. Bousquet
et al. [2020] proved that the generator can always win the game within Õ(d⋆/α2) rounds. They
also showed how to simulate the discriminator using a private proper agnostic learner. Putting the
two pieces together yields an algorithm for sanitization. In our construction, we will use the same
generator and modify the discriminator so that a proper PAC learner can be directly employed.

We first leverage a technique from [Li et al., 2025] to construct a private agnostic empirical learner
directly using a private PAC learner without incurring a generalization cost of Õ(VCdim(H)/α2).
Lemma D.3. Suppose there is an (ε, δ)-differentially private proper (α, β)-PAC learner forH with
sample complexity m. Then there exists an (O(ε), O(δ))-differentially private proper (O(α), O(β))-
agnostic empirical learner forH with sample complexity

n = O

(
m+

dV log(1/α) + log(1/β)

εα

)
,

where dV is the VC dimension ofH.

Applying the above lemma to the learner in Theorem D.2 leads to the following private proper
agnostic empirical learner.
Corollary D.4. Let H be a concept class with Littlestone dimension d. Then there exist an
(ε, δ)-differentially private proper (α, β)-agnostic empirical learner forH with sample complexity
Õ(d6/εα).

We now prove Lemma D.3. Given a dataset S of size n and an index set I ⊆ [n], we write SI to
denote the collection containing elements from S with indices in I . For simplicity, we may abuse
notation and write disS(h1, h2) for labeled dataset S. This means we ignore the labels and only
calculate the disagreement on the feature portion of S. We illustrate the conversion in Algorithm 4.

Algorithm 4: Agnostic empirical learner
Global Parameter: concept classH, parameter ε
Input: private empirical PAC learner A forH, private dataset S = ((x1, y1), . . . , (xn, yn))

1 Sample I ⊆ [n] of size |I| = ⌈εn⌉ uniformly at random.
2 Initialize R = ∅.
3 For every possible labeling in ΠH(SI), add to R an arbitrary h ∈ H that is consistent with

the labeling.
4 Define q(S, h) = minf∈H{disSI (h, f) + errS(f)}.
5 Choose h0 ∈ R using the exponential mechanism with privacy parameter ε, score function q,

and sensitivity parameter ∆ = 1/n.
6 Let D be the dataset constructed by relabeling SI with h0.
7 Output A(D).

The following claim states the privacy guarantee of Algorithm 4. The proof is nearly identical to the
proof of Lemma 15 in [Li et al., 2025].
Claim D.5. Suppose A is (1, δ)-differentially private and 1/n ≤ ε ≤ 0.1. Then Algorithm 4 is
(O(ε), O(εδ))-differentially private.

Proof. Let S1 and S2 be two neighboring datasets and O be any subset of outputs. Without loss of gen-
erality, we assume S1 and S2 differ in their first element, i.e., S1 = ((x1, y1), (x2, y2), . . . , (xn, yn))
and S2 = ((x′

1, y
′
1), (x2, y2), . . . , (xn, yn)). Let B denote Algorithm 4. For any I ⊆ [n] of size

m = ⌈εn⌉ and k ∈ {1, 2}, define

pk(I) = Pr[B(Sk) ∈ O | the sampled indexed set is I].
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Since I is sampled uniformly, we have

Pr[B(Sk) ∈ O] =
1(
n
m

) ∑
I∈Q

pk(I),

where Q = {I ⊆ [n] : |I| = m}.
Fix an index set I and consider two cases: 1 ∈ I and 1 /∈ I . If 1 /∈ I , then B(S1) and B(S2)
will construct the same set R. For every h ∈ R, there is some fh ∈ H such that disSI

1
(h, fh) +

errS1
(fh) = q(S1, h), then we have

q(S2, h) = min
f∈H
{disSI

2
(h, f) + errS2(f)}

≤ disSI
2
(h, fh) + errS2(fh)

≤ disSI
1
(h, fh) + errS1

(fh) + 1/n

≤ q(S1, h) + 1/n.

By symmetry, we also have q(S1, h) ≤ q(S2, h)+1/n for every h ∈ H. Let Ek(h) denote event that
the hypothesis h0 chosen by the exponential mechanism on Sk is h. It then follows by Lemma A.23
that

Pr[E1(h)] ≤ eε Pr[E2(h)]

for any h. The post-processing property of DP immediately implies

p1(I) ≤ eεp2(I).

Now suppose 1 ∈ I . Fix some i /∈ I and let J = (I \ {1}) ∪ {i} and K = I ∩ J . Since 1 ∈ I , we
have

SI
1 ∩ SJ

2 = SK
1 = SK

2 ,

whose size is exactly |K| = m− 1. Let RI
1 and RJ

2 be the set R constructed from SI
1 and SJ

2 . Pick a
finite set U ⊆ H such that for every labeling of SK

1 = SK
2 , there is exactly one h ∈ U consistent

with this labeling. For each h ∈ U , define

P I
1 (h) = {h′ ∈ RI

1 : disSK
1
(h, h′) = 0}

and
P J
2 (h) = {h′ ∈ RJ

2 : disSK
2
(h, h′) = 0}.

Since the label set is {0, 1}, we have 1 ≤ |P I
1 (h)|, |P J

2 (h)| ≤ 2. For any h1 ∈ P I
1 (h) and

h2 ∈ P J
2 (h), let qI(S1, h1) be the score function calculated on S1 with sampled index set I

and qJ(S2, h2) that on S2 with sampled index set J . Since there is some fh1 ∈ H such that
disSI

1
(h1, fh1) + errS1(fh1) = qI(S1, h1), we have

qJ(S2, h2) = min
f∈H
{disSJ

2
(h2, f) + errS2(f)}

≤ disSJ
2
(h2, fh1) + errS2(fh1)

≤ disSI
1
(h1, fh1

) + 1/m+ errS1
(fh1

) + 1/n

≤ qI(S1, h1) + 1/n+ 1/m,

where the third line is because h1 and h2 agree on SI
1 ∩SJ

2 , which has size m−1. Since (1/n)/2∆ =
1/2 and (1/m)/2∆ = n/2m ≤ 1/2ε, we have

exp(−εqJ(S2, h2)/2∆) ≥ exp(−ε(qI(S1, h1) + 1/n+ 1/m)/2∆)

≥ exp(−εqI(S1, h1)/2∆) · exp(−ε(1/2 + 1/2ε))

≥ exp(−εqI(S1, h1)/2∆) · exp(−1),

where in the last inequality is because ε ≤ 1. By symmetry, we also have

exp(−εqI(S1, h1)/2∆) ≥ exp(−εqJ(S2, h2)/2∆) · exp(−1).
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Then the fact that 1 ≤ |P I
1 |, |P J

2 | ≤ 2 gives∑
h1∈P I

1 (h)

exp(−εqI(S1, h1)/2∆) ≥ 1

2

∑
h2∈PJ

2 (h)

exp(−εqJ(S2, h2)/2∆) · exp(−1).

Summing over all h1 ∈ RI
1 yields∑

f∈RI
1

exp(−εqI(S1, f)/2∆) =
∑
h∈U

∑
h1∈P I

1 (h)

exp(−εqI(S1, h1)/2∆)

≥
∑
h∈U

1

2

∑
h2∈PJ

2 (h)

exp(−εqJ(S2, h2)/2∆) · exp(−1)

=
1

2e

∑
f∈RJ

2

exp(−εqJ(S2, f)/2∆).

Let DI
1(h1) be the dataset obtained by relabeling SI

1 with h1 and DJ
2 (h2) be the one obtained by

relabeling SJ
2 with h2. Recall that h1 and h2 agree on SI

1 ∩ SJ
2 , which has size m − 1. We know

that DI
1(h1) and DJ

2 (h2) are neighboring datasets. Let EI
1 (h1) be the event of choosing h1 when

running on S1 with sampled index set I and EJ
2 (h2) be the event of choosing h2 when running on

S2 with sampled index set J . Since A is (1, δ)-differentially private, we have

Pr[EI
1 (h1)] · Pr[A(DI

1(h1)) ∈ O]

=
exp(−εqI(S1, h1)/2∆)∑

f∈RI
1
exp(−εqI(S1, f)/2∆)

· Pr[A(DI
1(h1)) ∈ O]

≤2e2 · exp(−εqJ(S2, h2)/2∆)∑
f∈RJ

2
exp(−εqJ(S2, f)/2∆)

· (ePr[A(DJ
2 (h2)) ∈ O] + δ)

=2e2 Pr[EJ
2 (h2)] · (ePr[A(DJ

2 (h2)) ∈ O] + δ).

Then we have the following relation between p1(I) and p2(J):

p1(I) =
∑
h∈U

∑
h1∈P I

1 (h)

Pr[EI
1 (h1)] · Pr[A(DI

1(h1)) ∈ O]

≤
∑
h∈U

2
∑

h2∈PJ
2 (h)

2e2 Pr[EJ
2 (h2)] · (ePr[A(DJ

2 (h2)) ∈ O] + δ)

= 4e3p2(J) + 4e2δ.

Note that
∑

I∈Q:1∈I

∑
i∈[n]\I p2((I \ {1}) ∪ {i}) counts every p2(J) (J ∈ Q and 1 /∈ J) exactly

|I| = m times. Therefore, we have∑
I∈Q:1∈I

p1(I) =
1

n−m

∑
I∈Q:1∈I

∑
i∈[n]\I

p1(I)

≤ 1

n−m

∑
I∈Q:1∈I

∑
i∈[n]\I

(
4e3p2((I \ {1}) ∪ {i}) + 4e2δ

)
=

m

n−m

∑
J∈Q:1/∈J

(
4e3p2(J) + 4e2δ

)
≤ 24e3ε

∑
J∈Q:1/∈J

p2(J) + 4e2δ ·
(
n− 1

m− 1

)
,

where the last line is due to
m

n−m
· |{J ∈ Q : 1 /∈ J}| = m

n−m
·
(
n− 1

m

)
=

(
n− 1

m− 1

)
and

m

n−m
=

⌈εn⌉
n− ⌈εn⌉

≤ 2εn

n− 2εn
≤ 6ε
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as long as εn ≥ 1 and ε ≤ 1/3. Finally, we have

Pr[B(S1) ∈ O] =
1

|Q|

 ∑
I∈Q:1/∈I

p1(I) +
∑

I∈Q:1∈I

p1(I)


≤ 1(

n
m

)
eε

∑
I∈Q:1/∈I

p2(I) + 24e3ε
∑

J∈Q:1/∈J

p2(J) + 4e2δ ·
(
n− 1

m− 1

)
≤ (eε + 24e3ε)

1(
n
m

) ∑
I∈Q

p2(I) + 4e2δ · m
n

= eO(ε) Pr[B(S2) ∈ O] +O(εδ).

The utility guarantee of Algorithm 4 is shown in the following claim.
Claim D.6. Suppose A is a proper (α, β)-PAC empirical learner for H with sample complexity
m = ⌈εn⌉. Then Algorithm 4 is a proper (O(α), O(β))-agnostic empirical learner with sample
complexity n as long as m ≥ C(dV log(1/α) + log(1/β))/α for some constant C and n ≥ 1/ε,
where dV is the VC dimension ofH. In other words,

n = O

(
m

ε
+

dV log(1/α) + log(1/β)

εα

)
.

Proof. By Sauer’s Lemma, we have |R| ≤ (em/dV )
dV . Then by Lemma A.23, with probability at

least 1− β the exponential mechanism chooses some h0 such that

q(S, h0) ≤ min
h∈R

q(S, h) +
2

nε
ln(|R|/β) ≤ min

h∈R
q(S, h) + α

as long as

n ≥ 2

εα
(ln(1/β) + dV ln(em/dV )) .

Since m = ⌈εn⌉ ≤ 2εn, by Lemma A.6, the above holds if

m ≥ C1
dV log(1/α) + log(1/β)

α

for some constant C1. Let h⋆ = argminf∈HerrS(f). There exists some h ∈ R such that
disSI (h⋆, h) = 0. For such h, we have q(S, h) = errS(h

⋆). This implies q(S, h0) ≤ errS(h
⋆) + α,

or equivalently, disSI (h0, f0) + errS(f0) ≤ errS(h
⋆) + α for some f0 ∈ H.

Since disSI (h0, f0) is non-negative, we have errS(f0) ≤ errS(h
⋆) + α. Also, we have

disSI (h0, f0) ≤ α because errS(f0) ≥ errS(h
⋆). Then by Lemma A.7 and the fact that the

Chernoff bound is more concentrated for sampling without replacement [Hoeffding, 1963], with
probability at least 1− β we have

disSI (h1, h2) ≤ α⇒ disS(h1, h2) ≤ 2α

simultaneously holds for all h1, h2 ∈ H as long as

m ≥ C2
dV log(1/α) + log(1/β)

α

for some constant C2. As a consequence, we have disS(h0, f0) ≤ 2α.

Since D is labeled by h0, with probability 1−β the output g = A(D) satisfies that disSI (g, h0) ≤ α.
Moreover, we have g ∈ H since A is proper. Hence, Algorithm 4 is proper and disS(g, h0) ≤ 2α.
By the triangle inequality and the union bound, we have

errS(g) ≤ errS(f0) + disS(f0, g)

≤ errS(h
⋆) + α+ disS(f0, h0) + disS(h0, g)

≤ errS(h
⋆) + 5α

with probability at least 1− 3β.
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Proof of Lemma D.3. By Lemma A.10, there is a (1, O(δ/ε))-differentially private proper (α, β)-
PAC empirical learner A forH with sample complexity O(εm). Then by Claim D.5, Algorithm 4 is
(O(ε), O(δ))-differentially private. Moreover, by Claim D.6, Algorithm 4 is a proper (O(α), O(β))-
agnostic empirical learner with sample complexity

n = O

(
m+

dV log(1/α) + log(1/β)

εα

)
.

We now show how to construct the discriminator using proper agnostic empirical learner in the
following lemma.

Lemma D.7. Given a dataset S ∈ Xn and a public distribution Pt. Suppose for anyF ⊆ H∪(1−H),
there is an (ε/3, δ)-differentially private proper (α/10, β/3)-agnostic empirical learner for F with
sample complexity n and

n ≥ C
ln(1/αβ)

εα

for some constant C. Then there exists an (ε, δ)-differentially private algorithm such that with
probability 1− β:

• If it outputs some h ∈ H ∪ (1−H) then P̂S(h)− Pt(h) ≥ α/2.

• If it outputs “WIN” then |P̂S(h)− Pt(h)| ≤ α for all h ∈ H.

Proof. Let k = ⌈10/α⌉ and define

Fi = {h ∈ H ∪ (1−H) : Pt(h) ∈ [(i− 1)/k, i/k]}

for all i ∈ [k]. Construct score function q(S, i) = −(maxh∈Fi P̂S(h) − i/k). It is easy to verify
that the sensitivity of q is 1/n. By Lemma A.23, running the exponential mechanism with privacy
parameter ε/3 returns some j ∈ [k] such that q(S, j) ≤ mini∈[k] q(S, i) + 2 ln(3k/β)/εn with
probability 1− β/3. This implies

max
h∈Fj

P̂S(h)− j/k ≥ max
i∈[k]

(
max
h∈Fi

P̂S(h)− i/k

)
− α/10

as long as

n ≥ 20 ln(60/αβ)

εα
.

We then construct a dataset S′ by labeling all points in S with 1 and run the proper agnostic empirical
learner for Fj on S′ to find some h0 ∈ Fj such that

errS′(h0) ≤ min
h∈Fj

errS′(h) + α/10

with probability 1− β/3. This is equivalent to P̂S(h0) ≥ maxh∈Fj P̂S(h)− α/10. We output h0 if
P̂S(h0) +X − j/k ≥ 3α/5 and output “WIN” otherwise, where X ∼ Lap(3/ε). Note that this step
is (ε/3, 0)-differentially private, and we have

Pr[|X| ≤ α/10] ≥ Pr[|X| ≤ 3 ln(3/β)/εn] ≥ 1− β/3

given that

n ≥ 30 ln(3/β)

εα
.

The privacy guarantee directly follows from basic composition. By the union bound, with probability
1− β, if we output h0 then

P̂S(h0) ≥ j/k −X + 3α/5 ≥ Pt(h0)− α/10 + 3α/5 ≥ Pt(h0) + α/2.
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Otherwise, for any i ∈ [k] and h ∈ Fi we have

P̂S(h)− Pt(h) ≤ P̂S(h)− (i− 1)/k

≤
(
max
f∈Fi

P̂S(f)− i/k

)
+ 1/k

≤
(
max
f∈Fj

P̂S(f)− j/k

)
+ α/10 + 1/k

≤ P̂S(h0) + α/10− j/k + α/10 + 1/k

< 3α/5−X + α/10 + α/10 + 1/k

≤ 3α/5 + α/10 + α/10 + α/10 + α/10

≤ α.

The desired conclusion holds sinceH ∪ (1−H) is symmetric.

The property of the generator used in [Bousquet et al., 2020] is described in the following lemma.
Lemma D.8 ([Bousquet et al., 2020]). LetH be a concept class with dual Littlestone dimension d⋆.
Suppose there is a discriminator such that:

• If it outputs some h ∈ H ∪ (1−H) then P̂S(h)− Pt(h) ≥ α/2.

• If it outputs “WIN” then |P̂S(h)− Pt(h)| ≤ α for all h ∈ H.

Then there exists a generator that makes the discriminator respond “WIN” within O
(

d⋆

α2 log
(

d⋆

α

))
rounds.

Following the proof strategy of [Ghazi et al., 2021b], which strengthens the proof of [Bousquet et al.,
2020] by applying the advanced composition theorem, we are able to show Theorem 4.2.

Proof of Theorem 4.2. We have Ldim(H ∪ (1−H)) = O(d) and Ldim⋆(H ∪ (1−H)) = d⋆ (see,
e.g., [Alon et al., 2020] and [Bousquet et al., 2020]). By Corollary D.4, for any F ⊆ H ∪ (1−H)
there is an (ε′/3, δ′)-differentially private proper (α/10, β′/3)-agnostic empirical learner for F with
sample complexity Õ(d6/ε′α). Then we can use Lemma D.7 to construct an (ε′, δ′)-differentially
private discriminator, which with probability 1−β′ either outputs “WIN” (hence, |P̂S(h)−Pt(h)| ≤ α

for all h ∈ H) or some h ∈ H ∪ (1−H) such that P̂S(h)− Pt(h) ≥ α/2. Now run the generator in
Lemma D.8. By setting β′ = β/T , we know that with probability 1− β the generator produces some
Pt such that |P̂S(h)− Pt(h)| ≤ α for all h ∈ H. To ensure the entire process is (ε, δ)-differentially
private, by advanced composition [Dwork et al., 2010b] it suffices to set

δ′ = δ/2T and ε′ =
ε

2
√
2T ln(2/δ)

.

Hence, the overall sample complexity is Õ(d6
√
T/εα) = Õ(d6

√
d⋆/εα2)

E Online Learning via Privately Constructing Experts

E.1 Realizable Sanitization

We first define the notion of realizable sanitization.
Definition E.1 (Realizable Sanitization). We say an algorithm is an (α, β)-realizable sanitizer forH
with input size n if it takes as input a dataset S ∈ Xn and outputs a function Est : H → {0, 1} such
that with probability 1− β, for any h ∈ H:

• If P̂S(h) ≥ α then Est(h) = 1.

• If P̂S(h) = 0 then Est(h) = 0.
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It turns out that we can again leverage private proper agnostic empirical learners to construct a private
realizable sanitizer.
Lemma E.2. Given a private dataset S ∈ Xn and a public function Qt : H → {0, 1}. Suppose
for any F ⊆ H there is an (ε/4, δ/2)-differentially private proper (α/9, β/4)-agnostic empirical
learner for F with sample complexity n and

n ≥ 36 ln(4/β)

εα
.

Then there exists an (ε, δ)-differentially private algorithm such that with probability 1− β:

• If it outputs (h, 0) for some h ∈ H then

P̂S(h) ≤ 4α/9 and Qt(h) = 1.

• If it outputs (h, 1) for some h ∈ H then

P̂S(h) ≥ 5α/9 and Qt(h) = 0.

• If it outputs “WIN” then for all h ∈ H:

P̂S(h) ≥ α⇒ Qt(h) = 1 and P̂S(h) = 0⇒ Qt(h) = 0.

Proof. LetH0 = {h ∈ H : Qt(h) = 0} and S0 be the dataset obtained by labeling all data in S with
1. We run an (ε/4, δ/2)-differentially private proper (α/9, β/4)-agnostic empirical learner forH0

on S0 and obtain h0 ∈ H. With probability 1− β/4 we have

errS0
(h0) ≤ min

h∈H0

errS0
(h) + α/9.

This is equivalent to P̂S(h0) ≥ maxh∈H0
P̂S(h)−α/9. We output (h0, 1) and exit if P̂S(h0)+X0 ≥

2α/3, where X0 ∼ Lap(4/εn). Note that this step is (ε/4, 0)-differentially private, and we have

Pr[|X0| ≤ α/9] ≥ Pr[|X0| ≤ 4 ln(4/β)/εn] ≥ 1− β/4.

If we do not exit, then similarly let H1 = {h ∈ H : Qt(h) = 1} and S1 be the dataset obtained by
labeling all data in S with 0. We run an (ε/4, δ/2)-differentially private proper (α/9, β/4)-agnostic
empirical learner forH1 on S1 and obtain h1 ∈ H. With probability 1− β/4 we have

errS1
(h1) ≤ min

h∈H1

errS1
(h) + α/9.

This is equivalent to P̂S(h1) ≤ minh∈H1
P̂S(h) + α/9. We output (h1, 0) if P̂S(h1) +X1 ≤ α/3,

where X1 ∼ Lap(4/εn). Otherwise we output “WIN”. Also, we have Pr[|X1| ≤ α/9] ≥ 1− β/4.

The privacy guarantee directly follows from basic composition. By the union bound, with probability
1− β we have

P̂S(h0) ≥ 2α/3−X0 ≥ 2α/3− α/9 = 5α/9

if we output (h0, 1). If we instead output (h1, 0), then

P̂S(h1) ≤ α/3−X1 ≤ α/3 + α/9 = 4α/9.

Otherwise if we output “WIN”, we have

P̂S(h) ≤ P̂S(h0) + α/9

< 2α/3−X0 + α/9

≤ 2α/3 + α/9 + α/9

< α

for all h ∈ H0 and

P̂S(h) ≥ P̂S(h1)− α/9

> α/3−X1 − α/9

≥ α/3− α/9− α/9

> 0

for all h ∈ H1 as desired.
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Given a concept classH over X , we define a hypothesis class

Xm,α/2 = {(x1, . . . , xm) ∈ Xm}

overH, where every predicate (x1, . . . , xm) ∈ Xm,α/2 is defined as

(x1, . . . , xm)(h) = I

[
1

m

m∑
i=1

h(xi) ≥
α

2

]
.

The right-hand side can be seen as a boolean function of h(x1), . . . , h(xm). Then Lemma A.18
provides an upper bound on the Littlestone dimension of Xm,α/2.
Claim E.3. LetH be a concept class over X with dual Littlestone dimension d⋆. Then the Littlestone
dimension of Xm,α/2 is at most O(md⋆ logm).

It can be shown that for any dataset S, the class Xm,α/2 contains a good realizable sanitization of S
as long as m is sufficiently large.
Lemma E.4. Let H be a concept class over X with VC dimension dV . Set m = CdV ln(1/α)/α,
where C is some universal constant. For any dataset S over X , there exists (x1, . . . , xm) ∈ Xm

such that for all h ∈ H

• If P̂S(h) ≥ 5α/9 then 1
m

∑m
i=1 h(xi) ≥ α/2.

• If P̂S(h) ≤ 4α/9 then 1
m

∑m
i=1 h(xi) < α/2.

Proof. Let x1, . . . , xm be i.i.d. drawn from P̂S . By Lemma A.7 (or Lemma D.1), the desired property
holds with probability 1/2. Hence there exists a realization with the property.

Given the above result, one can obtain a realizable sanitization by using any online learner (e.g., the
SOA) to interact with the discriminator from Lemma E.2. This leads to the following theorem.
Theorem E.5. Let H be a concept class over X with Littlestone dimension d, dual Littlestone d⋆,
and VC dimension dV . Then there exists an (ε, δ)-differentially private (α, β)-realizable sanitizer for
H with sample complexity

Õ

(
d6
√
d⋆dV

εα1.5

)
.

Proof. Set m as in Lemma E.4. Let D be the Littlestone dimension of Xm,α/2 and T = D + 1. By
Claim E.3, we have T = O(md⋆ logm). Run a sequential game using the SOA for Xm,α/2 as the
generator and the algorithm from Lemma E.2 with privacy parameter (ε′, δ′) and success probability
1− β/T as the discriminator. By the union bound, with probability 1− β the discriminator succeeds
for all rounds. Condition on this event, if the discriminator outputs “WIN” at some round t then we
can simply output Est = Qt and exit.

Thus, it suffices to prove that the discriminator always outputs “WIN” at some round under the above
event. Suppose, for the sake of contradiction, that it produces a sequence ((h1, y1), . . . , (hT , yT )).
Then we have Qt(ht) ̸= yt for all t ∈ [T ]. By Lemma E.4, there exists some Q = (x1, . . . , xm) ∈
Xm,α/2 such that for all h ∈ H:

• If P̂S(h) ≥ 5α/9 then Q(h) = 1.

• If P̂S(h) ≤ 4α/9 then Q(h) = 0.

Consequently, we have Q(ht) = yt for all t ∈ [T ]. This means the entire sequence is realizable by
Xm,α/2. However, the SOA makes T = D + 1 mistakes, a contradiction.

In order to ensure the entire process is (ε, δ)-differentially private, by advanced composition [Dwork
et al., 2010b], it suffices to set

δ′ = δ/2T and ε′ =
ε

2
√
2T ln(2/δ)

.
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We now analyze the sample complexity. It depends on the sample complexity of the learner used in
Lemma E.2. Employing the one in Corollary D.4 results in a sample complexity of

Õ

(
d6

ε′α

)
= Õ

(
d6
√
T

εα

)
= Õ

(
d6
√
d⋆dV

εα1.5

)

E.2 Constructing Experts

We first extends our realizable sanitizer to the sequential setting by the binary mechanism [Dwork
et al., 2010a, Chan et al., 2011], which is based on the following fact.
Fact E.6. Let T > 1 be the time horizon. There exists a set I ⊆ {(l, r) : l, r ∈ [T ] and l ≤ r} and a
universal constant C such that:

• |I| ≤ CT .

• For every t ∈ [T ], we have |{(l, r) ∈ I : l ≤ t ≤ r}| ≤ C lnT .

• For any L,R ∈ [T ] and L ≤ R, there exists L = t1 < · · · < tu < tu+1 = R+ 1 for some
u ≤ C lnT such that (ti, ti+1 − 1) ∈ I for every i ∈ [u].

We describe the sequential realizable sanitizer in Algorithm 5. Note that it actually sanitizes a larger
hypothesis classHm,1/2 ⊕H, where

Hm,1/2 = {(h1, . . . , hm) ∈ Hm}

is a hypothesis class over X and the predicate (h1, . . . , hm) is defined as

(h1, . . . , hm)(x) = I

[
1

m

m∑
i=1

hi(x) ≥
1

2

]
.

Since the right-hand side of the above is a boolean function and the operation ⊕ is also a boolean
function, the following claim then follows from Lemma A.18 and A.19.
Claim E.7. Let H be a concept class with Littlestone dimension d, dual Littlestone dimension d⋆,
and VC dimension dV . ThenHm,1/2 ⊕H has Littlestone dimension O(md logm), dual Littlestone
dimension O(md⋆ logm), and VC dimension O(mdV logm).

In Algorithm 5, the algorithm B is indeed a series of sanitizers with varying error parameters α(n)
for different input sizes n because we have to sanitize sequences with different lengths. Furthermore,
we assume for simplicity that an (α(n), β)-realizable sanitizer directly outputs a synthetic sequence
of length n rather than an estimation. This is done by first computing Est, then finding a dataset S′

of size n such that P̂S′(f) > 0 for all f ∈ Hm,1/2 ⊕H with Est(f) = 1. Note that with probability
1 − β, the private dataset S satisfies this property and hence such S′ exists. The lemma below
summarizes the privacy and utility properties of Algorithm 5.
Lemma E.8. Let B be an (ε, δ)-differentially private (α(n), β)-sanitizer forHm,1/2 ⊕H with input
size n and C be the constant in Fact E.6. Then Algorithm 5 is (C lnT · ε, C lnT · δ)-differentially
private. Moreover, let ∆ = maxn∈[T ] nα(n). Then with probability 1−CTβ, for all 1 ≤ l ≤ r ≤ T
we have

(r − l + 1)P̂Sl,r
(f) ≥ C lnT∆⇒ P̂S′

l,r
(f) > 0

for all f ∈ Hm,1/2 ⊕H, where Sl,r = (xl, . . . , xr).

Proof. The privacy guarantee directly follows from Fact E.6 and basic composition. Since |I| ≤ CT ,
with probability at least 1 − CTβ all executions of B succeed. For any 1 ≤ l ≤ r ≤ T , we have
S′
l,r = (S′

t1,t2−1, . . . , S
′
tu,tu+1−1) for some l = t1 < · · · < tu < tu+1 = r + 1 and u ≤ C lnT .

Then for any f ∈ Hm,1/2 ⊕ H such that (r − l + 1)P̂Sl,r
(f) ≥ C lnT∆, there is some i ∈ [u]

such that (ti+1− ti)P̂Sti,ti+1−1(f) ≥ ∆ ≥ (ti+1− ti)α(ti+1− ti). This implies P̂S′
ti,ti+1−1

(f) > 0

(since running B on Sti,ti+1−1 gives Est(f) = 1) and hence P̂S′
l,r
(f) > 0.
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Algorithm 5: Sanitization for intervals
Global Parameter: time horizon T , hypothesis classHm,1/2 ⊕H
Input: realizable sanitizer B forHm,1/2 ⊕H, data sequence (x1, . . . , xT )

1 Let I be the set in Fact E.6.
2 for t = 1, . . . , T do
3 for l = t, t− 1, . . . , 1 do
4 if (l, t) ∈ I then
5 S′

l,t ← B(xl, . . . , xt).
6 else
7 Find l = t1 < · · · < tu < tu+1 = t+ 1 for some u ≤ C lnT such that

(ti, ti+1 − 1) ∈ I for every i ∈ [u] as in Fact E.6.
8 S′

l,t ← (S′
t1,t2−1, . . . , S

′
tu−1,tu−1).

9 end
10 end
11 end

We now present our construction of experts. As illustrated in Algorithm 6, each expert is indexed by
i1, . . . , iM , j1, . . . , jM such that 1 ≤ j1 ≤ i1 < j2 ≤ i2 < · · · < jM ≤ iM ≤ T . The expert will
keep the output unchanged from round ik + 1 to round ik+1. After round ik+1, it changes the output
by feeding a sanitized data point x′

jk
to the online learner A and forcing A to make a mistake. Note

that for the expert, it suffices to receive (x′
ik+1, . . . , xik+1

) at round ik+1 rather than in a real-time
manner.

Algorithm 6: Expert
Global Parameter: time horizon T , concept classH
Input: online learner A forH, indices i1, . . . , iM , j1, . . . , jM , data sequence (x′

1, . . . , x
′
T )

1 S ← ∅.
2 for t = 1, . . . , T do
3 Output ht = A(S).
4 if t = ik for some k ∈ [M ] then
5 S ← (S, (x′

jk
, 1−A(S)(x′

jk
))).

6 end
7 end

As we discussed in Section 4.2, the structure of the classifiers outputted by the online learner A
cannot be too complex. Otherwise we have to sanitize a huge hypothesis class and this may lead to an
unacceptable error rate. Therefore, we exploit the online learner proposed by Hanneke et al. [2021]
whose output hypothesis at each round is a sparse majority of concepts inH (i.e., inHm,1/2).

Lemma E.9 ([Hanneke et al., 2021]). Let H be a concept class with Littlestone dimension d and
dual VC dimension d⋆V . There exists an online learner whose output hypothesis at each round is
always inHm,1/2 and has a mistake bound of M = O(d), where m = O(d⋆V ).

Theorem E.10. LetH be a concept class with Littlestone dimension d, dual Littlestone dimension
d⋆, VC dimension dV , and dual VC dimension d⋆V . Then there exists an (ε, δ)-differentially private
algorithm that receives an adaptively generated data sequence (x1, . . . , xT ) and constructs a set
of N = O(TO(d)) experts such that with probability at least 1 − β, for any h ∈ H there exists an
expert with output (h1, . . . , hT ) such that

T∑
t=1

I[ht(xt) ̸= h(xt)] = Õ

(
T 1/3 (d

⋆
V )

14/3d4(d⋆dV )
1/3

ε2/3

)
.

Proof. Write Sl,r = (xl, . . . , xr). By Claim E.7, Hm,1/2 ⊕ H has Littlestone dimension
D = O(md logm), dual Littlestone dimension D⋆ = O(md⋆ logm), and VC dimension
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Algorithm 7: Constructing experts
Global Parameter: time horizon T , concept classH, hypothesis classHm,1/2

Input: online learner A forH with output inHm,1/2, data sequence (x1, . . . , xT )
1 J ← {(i1, . . . , iM , j1, . . . , jM ) : 1 ≤ j1 ≤ i1 < j2 ≤ i2 < · · · < jM ≤ iM ≤ T}.
2 Initialize Expert(i1, . . . , iM , j1, . . . , jM ) for every (i1, . . . , iM , j1, . . . , jM ) ∈ J .
3 Let B be Algorithm 5.
4 for t = 1, . . . , T do
5 Feed xt to B and receive S′

1,t, . . . , S
′
t,t from B.

6 foreach (i1, . . . , iM , j1, . . . , jM ) ∈ J do
7 Receive h

(i1,...,iM ,j1,...,jM )
t from Expert(i1, . . . , iM , j1, . . . , jM ).

8 if t = ik for some k ∈ [M ] then
9 Feed S′

ik−1+1,ik
to Expert(i1, . . . , iM , j1, . . . , jM ) (define i0 = 0).

10 end
11 end
12 end

DV = O(mdV logm). By Theorem E.5, there exists an (ε/C lnT, δ/C lnT )-differentially pri-
vate (α(n), β/CT )-realizable sanitizer forHm,1/2 ⊕H with input size n, where

α(n) =

(
D6
√
D⋆DV

εn

)2/3

.

Then by Lemma E.8, running Algorithm 5 with this sanitizer is (ε, δ)-differentially private and with
probability 1− β we have

(r − l + 1)P̂Sl,r
(f) ≥ C lnT∆⇒ P̂S′

l,r
(f) > 0

for all 1 ≤ l ≤ r ≤ T and f ∈ Hm,1/2 ⊕H, where C is the constant in Fact E.6 and

∆ = max
n∈[T ]

nα(n) = Õ

(
T 1/3 ·

(
D6
√
D⋆DV

ε

)2/3
)
.

Set m and M as in Lemma E.9 and use the online learner to construct Expert (Algorithm 6).
Running Algorithm 7 gives a set of experts with size N = |J | = O(TM ) = O(TO(d)). Since the
algorithm can be seen as post-processing of the output of Algorithm 5. The overall algorithm is also
(ε, δ)-differentially private. Now suppose there exists some h ∈ H such that

T∑
t=1

I[hi1,...,iM ,j1,...,jM
t (xt) ̸= h(xt)] > ⌈C lnT∆⌉ ·M

for every (i1, . . . , iM , j1, . . . , jM ) ∈ J . Note that Expert(i1, . . . , iM , j1, . . . , jM ) only changes its
output after round t = i1, then there is some i′1 such that

i′1∑
t=1

I[hi′1,i2...,iM ,j1,...,jM
t (xt) ̸= h(xt)] = ⌈C lnT∆⌉ ≥ C lnT∆

for every (i′1, i2, . . . , iM , j1, . . . , jM ) ∈ J . This implies P̂S′
1,i′1

(f ⊕ h) > 0 for

f = h
i′1,i2...,iM ,j1,...,jM
1 = · · · = h

i′1,i2...,iM ,j1,...,jM
i′1

.

Let S′
1,i′1

= (x′
1, . . . , x

′
i′1
). There is some j′1 ∈ [i′1] such that

h
i′1,i2...,iM ,j′1,j2,...,jM
j′1

(xj′1
) ̸= h(xj′1

).

By induction, we can similarly identify i′2, j
′
2, . . . , i

′
M , j′M such that

i′k∑
t=i′k−1+1

I[hi′1,...,i
′
M ,j′1,...,j

′
M

t (xt) ̸= h(xt)] = ⌈C lnT∆⌉
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and
h
i′1,...,i

′
M ,j′1,...,j

′
M

j′k
(xj′k

) ̸= h(xj′k
)

for every k ∈ [M ]. This means until round t = i′M , the online learner A used by
Expert(i′1, . . . , i

′
M , j′1, . . . , j

′
M ) received a sequence of length M that is labeled by h and made

a mistake on every data point. However, by our assumption, we have

T∑
t=i′M+1

I[hi′1,...,i
′
M ,j′1,...,j

′
M

t (xt) ̸= h(xt)] > 0.

This contradicts Lemma E.9. Hence, for all h ∈ H, there exists (i1, . . . , iM , j1, . . . , jM ) ∈ J such
that

T∑
t=1

I[hi1,...,iM ,j1,...,jM
t (xt) ̸= h(xt)] = O(log T∆M)

= Õ

(
T 1/3

(
m6d6

√
m2d⋆dV
ε

)2/3

· d

)

= Õ

(
T 1/3

(
(d⋆V )

7d6
√
d⋆dV

ε

)2/3

· d

)
.

E.3 Incorporating Private OPE

Now we can run any private OPE algorithm over the experts constructed in Theorem E.10. We use
the following results from [Jain and Thakurta, 2014] and [Asi et al., 2024] for adaptive and oblivious
adversaries, respectively.
Theorem E.11 ([Jain and Thakurta, 2014]). For the OPE problem with N experts, there exists an
(ε, δ)-differentially private algorithm with an expected regret of

O

(√
T log(1/δ) logN

ε

)
against any adaptive adversary.

Theorem E.12 ([Asi et al., 2024]). For the OPE problem with N experts, there exists an (ε, δ)-
differentially private algorithm with an expected regret of

O

(√
T logN +

T 1/3 logN log(T/δ)

ε2/3

)
.

against any oblivious adversary.

Putting the above results and Theorem E.10 together yields the following regret bounds.
Corollary E.13. LetH be a concept class with Littlestone dimension d, dual Littlestone dimension
d⋆, VC dimension dV , and dual VC dimension d⋆V . Then there exists an (ε, δ)-differentially private
online learner forH with an expected regret of

O

(√
T log(1/δ)d log T

ε

)
+ Õ

(
T 1/3 · (d

⋆
V )

14/3d5(d⋆dV )
1/3

ε2/3

)
against any adaptive adversary. Moreover, if the adversary is oblivious, then there exists an (ε, δ)-
differentially private learner forH with an expected regret of

O
(√

dT log T
)
+ Õ

(
T 1/3 · (d

⋆
V )

14/3d5(d⋆dV )
1/3

ε2/3

)
.
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