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ABSTRACT
Impostors are attackers who take over a smartphone and gain ac-
cess to the legitimate user’s confidential and private information.
This paper proposes a defense-in-depth mechanism that can detect
impostors quickly with simple Deep Learning algorithms, which
can achieve better detection accuracy than the best prior work
which used Machine Learning algorithms requiring computation
of multiple features. Different from previous work, we then con-
sider protecting the privacy of a user’s behavioral (sensor) data
by not exposing it outside the smartphone. For this scenario, we
propose a Recurrent Neural Network (RNN) based Deep Learning
algorithm that uses only the legitimate user’s sensor data to learn
his/her normal behavior. We propose to use Prediction Error Dis-
tribution (PED) to enhance the detection accuracy. To make the
on-device, real-time detection possible, we show how a minimalist
hardware module, dubbed SID for Smartphone Imposter Detector,
can be designed and integrated into smartphones for self-contained
impostor detection. Experimental results show that SID can sup-
port real-time impostor detection, at a very low hardware cost and
energy consumption, compared to other RNN accelerators.

1 INTRODUCTION
Smartphone theft is one of the biggest threats to smartphone users
[28]. Impostors are defined as adversaries who take over a smart-
phone and perform actions allowed only for the legitimate smart-
phone owners. Impostor attacks breach the confidentiality, privacy
and integrity of the sensitive personal information stored in the
smartphone, and accessible online through the smartphone. As
powerful attackers may already know, or can bypass, the legitimate
smartphone user’s password or personal identification number
(PIN), can a defense-in-depth mechanism be provided to detect
impostors quickly before further damage is done? Can this be done
implicitly, using behavioral biometrics, like how a user moves or
uses the phone?

The ubiquitous inclusion of motion sensors, e.g., the 3-axis ac-
celerometer and the 3-axis gyroscope, in smartphones provides a
great opportunity to capture a user’s large and small motion pat-
terns. In the literature, implicit smartphone user authentication
with sensors is primarily modeled as a binary classification prob-
lem [5, 6, 11, 12, 18, 30, 31]. While these can also be leveraged as
implicit impostor detection systems, the problem is these past work
require both the legitimate user’s sensor data and other users’ sen-
sor data for model training. This causes serious privacy issues as
users must provide their sensitive behavioral data to a centralized
training system. The privacy protection of a user’s behavioral bio-
metric data in implicit impostor detection (conversely, implicit user
authentication) has not been investigated in the past, which we do
in this paper.

The privacy of a user’s biometric data can be preserved if it
does not need to be sent to the cloud for training with other users’

data. Hence, we propose using only the legitimate user’s data to
train a Recurrent Neural Network (RNN) to learn the user’s normal
behavior. A large deviation of the currently observed behavior from
the model’s prediction indicates that the smartphone is not being
used by the legitimate user, and hence it is probably being used
by an impostor. To achieve high detection accuracy, we further
propose comparing the model’s prediction error distributions. We
show that this can significantly improve the detection accuracy in
one-class deep learning scenarios like ours.

To reduce the attack surface and the time taken for impostor
detection, we design a small and energy-efficient hardware module
for impostor detection on the smartphone. While previous ML/DL
accelerators try to maximize the performance of one or a few spe-
cific ML or DL algorithms (e.g. RNN), which is only a part of the
detection process, our goal is to support the end-to-end detection
process and provide sufficient performance at low cost and low power
consumption.

Our Smartphone Impostor Detector (SID) module is flexible in
that it supports not only the best deep learning algorithms we found
for impostor detection in both user scenarios (with and without
other users’ data for training) but also other Machine learning (ML)
and Deep Learning (DL) algorithms. Furthermore, it accelerates
the computation of empirical probability distributions and statis-
tical tests. SID reuses functional units where possible to reduce
hardware size and cost. It is also scalable for higher performance if
more parallel datapath tracks are implemented. Programmability
provides flexibility in selecting algorithms and adjusting trade-offs
in security, privacy, usability and costs, e.g., execution time, mem-
ory requirements and energy consumption. Our key contributions
are as follows:
• Wepropose privacy-preserving smartphone detection algorithms
that detect imposters and implicitly authenticates users, while
protecting their behavioral data privacy.

• We show that we can significantly improve the accuracy of a
deep learning algorithm (LSTM or other RNN) for detecting
abnormal users (i.e., impostors) by comparing prediction error
distributions.

• When both the user and non-users’ data are used for centralized
(2-class) model training, we show that a simple deep learning
algorithm, MLP, can outperform the previous best implicit user
authentication algorithm, KRR with honed feature selection.

• We propose a new light-weight hardware module, SID, that is
versatile, scalable and efficient for performing impostor detec-
tion without preprocessing or postprocessing on the CPU or
other devices. This eliminates the storage of sensor data and
the network exposure for data transmissions, thus significantly
reducing user data exposure.



2 THREAT MODEL AND ASSUMPTIONS
Our threat model includes powerful attackers who can bypass the
conventional explicit authentication mechanisms, e.g. password or
personal identification number (PIN). For example, the PIN/pass-
word may not be strong enough. The attacker can actively figure
out the weak pin/password by guessing or social engineering. An-
other example is the attacker taking the phone after the legitimate
user has entered his password.

We assume the smartphone has common, built-inmotion sensors,
e.g. the accelerometer and the gyroscope.We assume that the sensor
readings are always available. We explicitly consider protecting
the privacy of smartphone users’ behavioral data. We assume that
due to privacy concerns, many smartphone users are not willing
to send their sensor data to a centralized authentication service
for joint model training with other users’ data. We consider both
scenarios, where training is done with or without other users’ data.

While this paper assumes a single legitimate user of a smart-
phone, our detection methodology can be extended to allow multi-
ple legitimate users to share a smartphone by deploying multiple
models trained for different users.

3 ALGORITHMS FOR IMPOSTOR DETECTION
For impostor detection, we explicitly consider three important fac-
tors: attack detection capability (security), usability and user data
privacy of the solution. We first show that Deep Learning algo-
rithms can work better than the best past work using sensors and
Machine Learning, e.g. [12], in the conventional 2-class classifica-
tion scenario (Section 3.1). We then explore the privacy-preserving
scenario (Section 3.2) where only the legitimate user’s data is used
for training.

3.1 Two-class Algorithms and Metrics
A good impostor detection solution needs to be able to detect suspi-
cious impostors while not affecting the usability of the smartphone
owner. At the center of this trade-off is selecting an appropriate
algorithm for impostor detection. One of our key takeaways is
that choosing the right algorithm (and model) is more important
for achieving security and performance goals than increasing the
model size or adding hardware complexity to accelerate a model.

Previouswork on implicit smartphone user authenticationmostly
leverage (user, non-user) binary classification techniques [6, 12, 31].
This scenario requires both data from the real user and other users
for training, and we call it the Impostor Detection-as-a-Service
(IDaaS) scenario in this paper. For a specific customer, the data
from him/herself are labeled as benign or negative (the user), while
all data from other customers are labeled as malicious or positive
(non-users). We select certain classification-based machine learn-
ing algorithms that give the best accuracy for impostor detection
(security) and legitimate user recognition (usability) in the non-
privacy-preserving IDaaS scenario. We treat them as benchmarks
when comparing with our privacy-preserving impostor detection
algorithms.

Among the many Machine Learning (ML) algorithms we investi-
gated, we report the results on Support Vector Machine (SVM) and
Kernel Ridge Regression (KRR). SVM is a powerful and commonly

used linear model, which can establish a non-linear boundary us-
ing the kernel method. KRR alleviates over-fitting by penalizing
large parameters and also achieves the highest detection rate in
the literature [12] while requiring the computation of 14 heuris-
tically chosen features. Surprisingly, we show that even a simple
Deep Learning algorithm (Multi-layer perceptron, MLP) without
heuristic and tedious hand-crafting, can outperform it.
Metrics. While security is commonly measured as FNR, the per-
centage of actual attacks that are not detected, we use the inverse
term TPR, the percentage of attacks that are detected. Similarly,
while usability is commonly measured in FPR, the percentage of
normal user attempts that are incorrectly detected as attacks, we
use the inverse term TNR, which is the percentage of normal user at-
tempts detected as normal. TPR and TNR enable us to have metrics
where higher is always better.

Eq (1) gives the formulae for TPR and TNR, as well as for the
other metrics commonly used in comparing the ML/DL models:
accuracy, recall, precision and F1. Accuracy is the percentage of
correctly identified samples over all samples. Recall, like TPR, is
the percent of all attacks that are detected whereas precision is
the percent of all reported attacks that are real attacks. F1 is the
harmonic mean of recall and precision.

TNR =
TN

TN + FP

TPR = Recall ,R =
TP

TP + FN

Accuracy =
TN +TP

TN + FP +TP + FN

Precision, P =
TP

TP + FP

F1 Score =
2 × Recall × Precision

Recall + Precision

(1)

3.2 Protecting Behavioral Data Privacy
The above binary classification approaches can only be applied to
the IDaaS scenarios where the data from other users are available.
However, smartphone users may not be willing to send their sensor
data to a centralized service for training, due to privacy concerns.
Therefore, we need to consider another important scenario where
the smartphone user only has his/her data for training. We call this
the local anomaly detection (LAD) scenario.

We consider two representative algorithms for one-class learn-
ing, i.e. One-Class SVM (OCSVM) and Long Short-Term Memory
(LSTM). We propose enhancing the LSTM-based deep learning mod-
els with the comparison of reference and actual Prediction Error
Distributions (PEDs). We show that generating and comparing the
prediction error distributions is the key to a successful detection for
this LAD scenario. The accuracy of the DL prediction algorithm
itself appears to be only of secondary importance.
OCSVM. OCSVM is an extension of normal SVM, by separating all
the data points from the origin in the feature space and maximizing
the distance from this hyperplane to the origin. Intuitively, the
OCSVM looks for the minimum support of the normal data, and
recognizes points outside this support as anomalies.
LSTM. Different from the above discussed stateless models (SVM,
KRR, OCSVM, etc.), the LSTM model has two hidden states, ht
and ct , which can remember the previous input information (see
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Appendix A for details). We use an LSTM-based model as an outlier
detector [17], by training it to predict the next sensor reading, and
investigating the prediction errors. The intuition is that an LSTM
model trained on only the normal user’s data predicts better for
his/her behavior than for other users’ behavior. The deviations of
the actual monitored behavior from the predicted behavior indicate
anomalous behavior. Typically, a threshold value is used to decide
if the prediction error is normal or not.
LSTM + Comparing Prediction Error Distributions (PEDs).
Our intuition is that a single prediction error may vary signifi-
cantly, but the probability distribution of the errors is more stable.
Therefore, comparing the observed PED and a reference PED from
the real user’s validation data is more stable than comparing the
average prediction error with a pre-calculated threshold.

As we do not need to assume the prior distribution of PED, non-
parametric tests are powerful tools to determine if two distributions
are the same. The Kolmogorov-Smirnov (KS) test is a statistical test
that determines whether two i.i.d sets of samples follow the same
distribution. The KS statistic for two sets with n andm samples is:

Dn,m = supx |Fn (x) − Fm (x) | (2)

where Fn and Fm are the empirical distribution functions of two
sets of samples respectively, i.e. Fn (t) = 1

n
∑n
i=1 1xi ≤t , and sup is

the supremum function. The null hypothesis that the two sets of
samples are i.i.d. sampled from the same distribution, is rejected at
level α if:

Dn,m > c (α )

√
n +m
nm

(3)

where c (α) is a pre-calculated value and can be found in the stan-
dard KS test lookup table.

3.3 Algorithm Experimental Settings
We evaluate the algorithms for impostor detection using the WALK
subset in the Human Activities and Postural Transitions (HAPT)
dataset [22] at UCI [4]. The HAPT dataset contains smartphone
sensor readings. The smartphone is worn on the waist of a group of
30 participants of various ages from 19 to 48. Each reading consists
of the 3-axial measurements of both the linear acceleration and
angular velocity, so it could be treated as a 6-element vector. The
sensors are sampled at 50Hz. We select 25 out of the 30 users in the
HAPT dataset as the registered users while the other 5 users act
as unregistered users. To investigate the feasibility of user versus
impostor classification, the samples from the correct user are labeled
negative for impostor detection while all the data from the other 24
registered users and the 5 unregistered users are labeled as positive.

In the IDaaS scenario, each data sample used in both training
and testing contains 64 consecutive readings from the same user. At
50Hz sampling frequency, 64 readings correspond to 1.28 seconds
which is the latency to detect an impostor. Models are trained for
each registered user using his/her data and randomly picked sensor
data of the other 24 registered users. We make sure that the training
samples have no overlap with the testing samples. The samples from
unregistered users are used to examine whether unseen attackers
can be successfully detected.

In the LAD scenario, the training data only contains the data from
the real user. The testing samples still include the data from the real

Table 1: Impostor detection in the IDaaS secnario, using bi-
nary classification models, achieves 97%-98% accuracy.

Models 64-reading Window
TNR
(%)

TPR/Recall
(%)

Accuracy
(%) P F1

KRR 88.91 82.66 85.78 0.87 0.83
SVM 99.26 97.57 98.42 0.99 0.98
MLP-50 98.31 92.70 95.51 0.98 0.94
MLP-100 98.60 94.65 96.63 0.98 0.96
MLP-200 98.41 95.72 97.06 0.98 0.97
MLP-500 98.68 95.47 97.07 0.99 0.96
MLP-50-25 98.13 94.49 96.31 0.98 0.96
MLP-100-50 98.44 95.45 96.95 0.98 0.96
MLP-200-100 98.47 95.72 97.10 0.98 0.97

user and the other users. We test for window sizes of 64, which is
the same size as the IDaaS scenario, and 200, which corresponds to
a longer detection latency of 4s but shows how much the detection
accuracy can be improved by (Table 2). An LSTM-based model is
trained to minimize its average prediction error for each registered
user. In the testing of LSTM-based models, prediction errors for
consecutive readings in each sample form a testing PED.

3.4 Algorithm Evaluation
We evaluate each of the 25 registered users against each of the 30
users, i.e. 750 test pairs in total, and we report the average metrics of
all pairs. Table 1 and Table 2 show the results of different algorithms
in the IDaaS and the LAD scenarios, respectively. Table 1 shows
that in the IDaaS scenario, the SVM model outperforms the other
models, including KRR with 14 manually designed features [12], on
all evaluated metrics. A simple deep learning model, MLP, performs
almost as well, achieving accuracy > 97%. Larger models, e.g. MLP-
500 and models with more layers, e.g. MLP-200-100, also slightly
lift the accuracy.

Table 2 shows the approaches we evaluated for the LAD scenario,
for 2 window sizes of 64 (left) and 200 (right) sensor measurements.
For each LSTM algorithm, we also tested different hidden state sizes,
from 50 to 500. LSTM-th compares the average prediction error in
a window with a threshold obtained from the validation set, while
PED-LSTM-Vote compares the empirically-derived PEDs. We ran-
domly choose 20 samples of prediction errors from the validation
set and use them to represent the reference PEDs. In the testing
phase, the prediction error distribution of each testing sample is
compared to all the reference distributions. The PED-LSTM-Vote
models consider a sample as abnormal if more than half of the D
statistics of KS-test are larger than the fixed threshold in Eq (3). Ta-
ble 2 shows the results for the α-values that give the best detection
accuracy, i.e. α = 0.10 for a 64-reading window and α = 0.05 for a
200-reading window.

In Table 2, the one-class SVM (OCSVM) achieves average accu-
racy of 62.9%, thirty percent worse than the 2-class SVM model
trainedwith positive data involved. The LSTM-thmodels (64-reading
window) have an accuracy between 72% and 75%, only slightly bet-
ter than the one-class SVM model, regardless of the hidden state
size. If PED and statistical KS test are leveraged, we see a significant
improvement in the detection accuracy up to 87.1% and 90.2% for a
64-reading window and a 200-reading window, respectively.
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Table 2: Impostor detection accuracy in the LAD secnario, using one-class models. The numbers next to LSTM-th and PED-
LSTM-Vote, i.e. 50 to 500, are the size of hidden states in the LSTM cell. We test some common levels of α , i.e. 0.15, 0.10, 0.05,
0.025 [29], and present the best choices for different window sizes in this table.

64-reading Window 200-readingWindow

Models TNR
(%)

TPR/Recall
(%)

Accuracy
(%) Avg P F1 Models TNR

(%)
TPR/Recall

(%)
Accuracy

(%) Avg P Avg F1

OCSVM 64.24 74.19 69.22 0.59 0.65 OCSVM 50.02 75.81 62.92 0.55 0.62

LSTM-th

50 79.37 65.13 72.25 0.59 0.60

LSTM-th

50 72.43 67.04 69.74 0.57 0.60
100 78.76 66.72 72.74 0.61 0.62 100 72.20 69.27 70.73 0.58 0.62
200 78.50 69.64 74.07 0.62 0.64 200 67.88 71.60 69.74 0.58 0.62
500 79.14 70.29 74.71 0.63 0.65 500 67.57 74.42 70.99 0.60 0.65

PED-LSTM
-Vote
(α = 0.10)

50 85.55 83.60 84.58 0.84 0.84 PED-LSTM
-Vote
(α = 0.05)

50 82.16 91.96 87.06 0.92 0.85
100 87.80 85.68 86.74 0.86 0.85 100 84.98 93.20 89.09 0.93 0.86
200 89.27 85.00 87.13 0.85 0.87 200 88.49 92.00 90.24 0.92 0.89
500 87.02 83.86 85.44 0.84 0.86 500 87.14 91.16 89.15 0.91 0.88

However, the overhead in execution time may increase. In Sec-
tion 5, we discuss such security-performance trade-offs, which are
essential to algorithm selection in practice.

3.5 Insights from Algorithm Performance
The results in Section 3.4 show that For the IDaaS scenario, de-
tection in 1.28s with very high sensitivity levels (95%-99%) can be
achieved for accuracy, security (TPR) and usability (TNR) when
SVM or MLP models are used. In the data-privacy preserving LAD
scenario, the detection accuracy, using our LSTM-based models
enhanced by collecting error distributions, can reach 87.13% for
the same detection latency of 1.28s. If the user allows a detection
latency of 4 seconds which is usually not long enough for an im-
postor to perform malicious operations on the smartphone after
stealing it, the accuracy can be increased to 90.24%. Although the
accuracy is not perfect, it is comparable to the state-of-the-art one
class smartphone authentication using various handcrafted features
and complex model fusion [10] in the literature. Also, our privacy-
preserving 1-class model achieves better detection accuracy, F1
score, TPN and TNR results than the state-of-the-art 2-class KRR
model with hand-crafted features [12] for this data set when both
are using a 64-reading window.

A key contribution we make is to show that it is the Pre-
diction Error Distributions and KS test that provide the sig-
nificant increase in detection capability.While tuning the size
of deep learning models, e.g. LSTM, has little impact on accuracy,
the KS test for PED comparison increases the overall accuracy by
+12.4% for the 64-reading window and +19.2% for the 200-reading
window. Therefore, we provide the hardware support for generating
empirical PEDs and computing the KS statistic in Section 4.4.

4 HARDWARE DETECTION MODULE
Our goal is to design a small but versatile hardware module that
can be integrated into a smartphone to perform the entire impos-
tor detection, without needing another processor or accelerator.
This not only eliminates the network and cloud attack vectors but
also reduces the cost to move data and the contention with other
applications for computing on the CPU or the GPU. Ideally, the
hardware module can read the latest sensor measurements from a
buffer so that the main memory does not need to be involved. Our
design goals are:

• Suitable for smartphones and other battery and resource-cons-
trained devices,

• Reduced attack surface for better security,
• Flexibility for different ML/DL algorithms and trade-offs of se-
curity, usability, privacy, execution time, storage and energy
consumption,

• Scalability for more performance in the future if needed.
Unlike prior work on implementing deep learning models in

hardware [7, 14, 27], we are interested in neither the highest per-
formance nor the lowest energy consumption. Rather we want to
investigate what performance is sufficient with minimum hard-
ware that can achieve an important security goal (like imposter
detection), while still being flexible for future needs, such as differ-
ent algorithms or more performance. To reduce the attack surface,
SID should be able to support detection without subsequent pro-
cessing on another device like the CPU. This includes collecting and
comparing empirical probability distributions to enhance DL mod-
els. While our primary goal is to perform the best algorithms for
impostor detection, namely, MLP and SVM for the IDaaS scenario,
and PED-LSTM-Vote for the LAD scenario, we also want SID to
be flexible enough to support other ML/DL algorithms as well. For
performance scalability, we design SID to allow more parallel data
tracks to be implemented, if desired. An innovative aspect of our
design is that the SID macro instructions implementing the selected
ML/DL algorithm do not even have to be changed when the number
of parallel tracks is increased and performance increased. This is in
line with our goal of minimal hardware.

4.1 Functional Operations Supported
We first consider what operations are needed by the Deep Learning
(and Machine Learning) algorithms we want to implement. These
are first the PED-LSTM algorithm, and also the MLP and SVM
algorithms, which are the best imposter detection algorithms for
the two scenarios considered in the previous section. Table 4 shows
the operations needed for these different DL/ML algorithms. The
instructions from Vargmax to Vsqrt (at the bottom of Table 4)
are needed only by the KRR algorithm [12], the previous highest
performing method, to compute the 7 features for the accelerometer
and the gyroscope each, i.e., the average, maximum, minimum and
variance of the sensor data and three frequency domain features:
the main frequency and its amplitude and the second frequency.
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Figure 1: A SIDmodule implementing vector and matrix op-
erations with 4 parallel datapath tracks.

127 124 123 110 109 96 95 64 63 32 31 0
Mode Length Width Addr_x Addr_y Addr_z
4 bits 14 bits 14 bits 32 bits 32 bits 32 bits

Table 3: SID Macro-instruction with Scalable FSM Control

We decide not to implement these operations, since they are not
needed by the other higher-performing algorithms, while needing
significant extra hardware.

4.2 Programming Model and
Macro-instructions

The programming model of SID is to execute macro-instructions,
where each macro instruction is a whole vector or matrix opera-
tion. The number of iterations is automatically determined by the
hardware, in a Finite State Machine (FSM), based on the hardware’s
knowledge of the number of parallel data tracks available in the im-
plementation. The macro-instruction supplies the type of operation
needed, and the dimensions of the vector or matrix.

The format of a SID macro instruction is shown in Table 3. The
Mode field specifies one of the operation modes in Table 4. Three
memory addresses can be specified in a macro-instruction: Addr_x
and Addr_y for up to two operands, and Addr_z for the result.
Instead of implementing vector machines with vector registers of
fixed length, we use memory to store the vector or matrix operands
and results. This design is less expensive than vector registers.
It is also more efficient since it supports the flexible-size inputs
and outputs and operates seamlessly with our automatic hardware
control of the execution of a vector or matrix operation. This is one
way (memory not vector registers) to use minimal hardware and
achieve scalability (macro-instruction with FSM control).

Each macro-instruction initializes the FSM state of the control
unit to indicate the number of iterations of the specified operation.
Each cycle, the FSM updates the number of uncomputed iterations,
according to the number of parallel tracks, to decide when a macro-
instruction finishes (details in the following paragraphs). Thus, the
same SID software program can run on SID hardware modules with
a different number of parallel tracks, without modification. This
achieves our performance scalability goal.

The Length and Width fields can initialize three state regis-
ters, reg_length, reg_width and reg_width_copy, which define
the control FSM state. The FSM can be configured by instructions

in two ways: the one-dimension iteration and the matrix-vector
iteration. For the one-dimension iteration in a vector operation,
the value of reg_length is initialized by the length field of the
instruction. During execution, reg_length is decreased every cycle
by N(track), which is the number of parallel datapath tracks, until
reg_length is no larger than N(track) and the next instruction will
be fetched.

When an instruction for a matrix-vector operation is fetched, the
length field initializes reg_length and the width field initializes
both reg_width and reg_width_copy. A matrix-vector multipli-
cation macro-instruction computes the product of a matrix of size
width-by-length with a vector containing length elements. The
SID module performs loop tiling by computing a tile of width rows
by N(track) columns in the matrix before moving to the next tile.
When the last tile of columns in the matrix is computed, the next
instruction can be fetched.

4.3 Parallel Datapaths and Functional Unit
Reuse

Figure 1 shows a SID implementation with four parallel datapath
tracks. Each track consists of a Look-up Table (LUT), a multiplier
(MUL) and an adder (ADD), which are put into three consecutive
pipelined execution stages (EXE0, EXE1 and EXE2). We also have
a small local scratchpad memory in the last execution stage (EXE2)
for faster access to intermediate results during a macro-instruction.
The control path shows 6 pipeline stages: fetch, decode instruction,
3 execution stages and write the result back to memory.

Each macro-instruction is decoded into the FSM control mecha-
nism in the Decode stage of SID ’s pipeline. This design is scalable
since the hardware is aware of the number of parallel datapath
tracks that are implemented and can perform automatic control of
the FSM for vector and matrix operations, and any loop iterations
required. For performance, the control by an FSM avoids using
branch instructions for frequent jump-backs in loop-control, as is
needed in general-purpose processors, which can take up a large
portion of processor throughput for the simple loops needed to
implement vector and matrix computation.

We discuss two optimizations: we reduce the number of memory
accesses with local storage and we minimize the hardware design
cost by reusing functional units.

When computing the matrix-vector multiplication in the MV-
mulmode, we use a local scratchpadmemory and loop tiling to save
the latency of storing and accessing partial sums from memory and
also reduce the memory traffic. In the Vmaxabs mode which finds
the maximum absolute value in a vector by doing a comparison of
input elements in the EXE2 stage, a temporary maximum is stored
in the local scratchpad to reduce external memory accesses; it gets
updated every cycle. In the Vsqnorm mode which computes the
squared L2-norm of a vector, the local scratchpad memory stores
the partial sum of x[i]2 (x is the input vector), which are computed
by the multipliers and adders in the EXE1 and EXE2 stages.

When computing non-linear functions like sigmoid (Vsig), tanh
(Vtanh) and exponential (Vexp), we avoid implementing complex
non-linear functional units but use the flexible look-up table (LUT)
to look up the slope and intercept for linear approximation. An
added benefit of our approach over prior work, e.g. [2], is that
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Operations Description IDaaS LAD

KRR MLP SVM
Basic

SVM w/
Gaussian
Kernel

OCSVM w/
Gaussian
Kernel

LSTM KS-test LSTM-KS
-Mvote

Support
Status

Vadd Element-wise addition of two vectors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes
Vsub Element-wise subtraction of two vectors ✓ ✓ ✓ ✓ ✓ Yes
Vmul Element-wise multiplication of two vectors ✓ ✓ ✓ ✓ ✓ ✓ Yes
Vsgt Element-wise set-greater-than of two vectors ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes
Vsig Sigmoid function of a vector ✓ ✓ ✓ ✓ Yes
Vtanh Tanh function of a vector ✓ ✓ ✓ Yes
Vexp Exponential function of a vector ✓ ✓ Yes
MVmul Multiplication of a matrix and a vector ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

VSsgt Set-greater-than to compare a scalar and
a vector’s elements ✓ ✓ Yes

Vmaxabs Find the maximum absolute value of a vector ✓ ✓ ✓ Yes
Vsqnorm Squared L2-norm of a vector ✓ ✓ ✓ ✓ Yes
Vargmax Find the index of the maximum in a vector ✓ No
Vmin Find the minimum in a vector ✓ No
Vmax2 Find the second largest number in a vector ✓ No
VFFT Compute the Fourier transform of a vector ✓ No

Vsqrt Compute the square root of each
element in a vector ✓ No

Table 4: Computation primitives needed by different ML/DL models and statistical testing.

we place the LUTs before the multipliers and adders in the three
consecutive execution stages so that no extra multipliers or adders
are needed. The ELE0 (LUT) stage of SID outputs a slope, k[i], and
an intercept, b[i], for each input value. The interpolation is then
computed in the later two stages as z[i] = k[i] × x[i] + b[i] with
z[i] being the value of the non-linear function for input x[i]. Also,
instead of having another adder tree stage for theMVmul mode,
we save on hardware cost by reusing the adders in the EXE2 stage to
sum the products computed in the EXE1 stage and the partial sum
read from the local scratchpad. The new partial sum is written back
to the local scratchpad memory if the computation is not finished.
Integration in smartphone SOC. We integrate our SID anomaly
detection module closer to the sensors to reduce the attack surface
and also to save the overhead of memory accesses. (If software
processing was used, the sensor measurements would have to be
stored to memory first, then read back from memory to the CPU or
GPU for software imposter detection.) Modern smartphones have
already implemented the interface to write the collected sensor
measurements to a cache memory for efficient signal processing [3].
The SID module can leverage a similar interface (viz., "Sensor In-
puts" in Figure 1). A valid incoming sensor input can reset the
program counter of SID to the beginning of the detection program.

4.4 Support for Empirical Distribution
Representation and Comparison

Another novel contribution of this work is to show that empirical
probability distributions can be collected and compared efficiently
using the multipliers and adders already needed for the ML/DL
algorithms. To the best of our knowledge, we are the first to describe
the following simple and efficient hardware support for collecting
error distributions and comparing them with the KS test.

We add two operations for this KS test, but we feel these are
general-purpose operations that may also be useful for otherML/DL
algorithms and statistical tests as well. The first is a vector-scalar
comparison (VSsgt described in Table 4). The second operation is
Vmaxabs, which can be used to find the maximum absolute value
in a vector.
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Figure 2: An example of five-step KS test.

We illustrate with an example in Figure 2, showing a five-step
workflow. The grey dotted boxes represent inputs, which include
the reference prediction error distribution (PED), the test PED,
the threshold and the output. The reference PED is collected in
the training phase and is represented by reference histogram bin
boundaries and a reference cumulative histogram. The test PED is
collected online and represented by a series of observed test errors.

Step①: compare an observed error with reference bin boundaries.
The output of this step is a vector of “0”s and “1”s. “1” means
that the corresponding bin boundary is greater than the observed
error, and “0” otherwise. This uses the VSsgt operation. Step ②:
accumulate all binary vectors from ①. The accumulated vector,
namely the “test cumulative histogram”, represents the cumulative
histogram of the observed test errors using the reference bins. Step
③ and step ④: find the largest difference in the reference and test
cumulative histograms. Step ③ is a vector subtraction and step ④

is the Vmaxabs operation, to find the maximum absolute value in
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Figure 3: Execution time and accuracy of detection algo-
rithms. The red line stands for the average accuracy.

a vector. Step ⑤: compare the largest difference with a threshold,
which are both treated as single-element vectors, to determine if
the test histogram is normal.

Since the result of Step④ is the maximum difference in frequency
and not normalized, we do the equivalent comparison as Eq (3) by
scaling the threshold in Eq (2) up by the number of data points in the
testing error distribution (ntest ). In our experiments, nr ef , which
is the number of data points in the reference error distribution, and
ntest are hyper-parameters that are decided during training and
always set to be the same. In the example of Figure 2, both nr ef
and ntest are 5.

5 EVALUATION
We evaluate the cost in terms of execution time (performance)
and memory usage for the detection algorithms from Section 3
implemented on the SID module. We also show that SID has lower
energy consumption and needs much fewer hardware resources
than other hardware implementations.

5.1 Accuracy vs. Execution Time
New sensor measurements, e.g., for motion sensors like the ac-
celerometer and gyroscope, are available every 20 ms in most smart-
phones. Hence, we cannot detect any imposter in less than this time.
Ideally, we would like the detection mechanism to be performed in
less than this time, for the fastest detection.

We consider 3 HW platforms: a CPU-only platform, a CPU-
GPU platform and our SID standalone HW module. The CPU-only
platform with 32 Intel Xeon E5-2667 cores cannot meet the real-
time detection as running a single prediction on one sensor sample
with the LSTM-200model takes more than 20 ms. The SID module
and ourCPU-GPU platformwhich has an Nvidia GTX 1080Ti GPU
can meet this requirement, so we show only these 2 platforms in
Figure 3.

Figure 3 compares different machine learning and deep learning
algorithms for their trade-offs between accuracy and execution
time on the CPU-GPU platform and SID. The algorithms to the left
of the black dashed line are used in the IDaaS scenario. Although
the SVM algorithm achieves slightly higher accuracy than MLP-
200-100 (98.4% versus 97.1%), it needs significantly longer execution
time.

The algorithms used in the LAD scenario are to the right of the
dashed line. We measure the execution time of the best algorithm
in Section 3.4, i.e. PED-LSTM-Vote, and the baseline algorithm,
LSTM-th, for comparison. We choose the best LSTM size, which
is 200, and consider the cases of both the 64-reading window and
the 200-reading window. Figure 3 shows that while the KS test
technique increases the detection accuracy, it also needs additional
execution time. However, the execution time (less than 4 ms) of all
algorithms is always much smaller than 20ms, so the performance
of SID is more than adequate to achieve imposter detection with
the highest accuracy of PED-LSTM-Vote at the fastest realtime
rate dictated by the sensor measurement speed of 20 ms.

5.2 Accuracy vs. Memory Usage
Figure 4 compares models used in the IDaaS and LAD scenarios, in
terms of their accuracy and the model size. In the IDaaS scenario
(left), we see that a 2-layer MLP-200-100 can achieve a slightly
higher detection accuracy with a smaller model size than MLP-500.
The SVM model has little improvement on the accuracy over MLP-
200-100 but incurs the highest cost in terms of memory usage as it
has to store support vectors. Hence, MLP-200-100 appears to be the
best for the cost (execution time + memory usage) versus accuracy
trade-off for the IDaaS scenario.

In the LAD scenario (right) which is better for protecting the
privacy of a user’s sensor data, we evaluate the additional memory
usage of the KS test technique compared to the baseline LSTM-
th algorithm where the size of the LSTM cell is still 200. We find
that PED-LSTM-Vote uses only 1.6% and 4.8% more space, for the
64-reading window and 200-reading window, respectively. They
are better choices in the memory-versus-accuracy trade-off as the
improvement in accuracy is significant.
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Figure 4: Model size and accuracy of detection algorithms.
The red line stands for the average accuracy.

5.3 Hardware Design Complexity
We implement an FPGA prototype of the SID module, in order to
compare with other FPGA implementations. Our implementation
has four parallel tracks and a 256-byte scratchpad memory. The size
of the datapath RAM is 1.75MB and the size of the instruction RAM
is 128KB. We use 32-bit fixed-point numbers, since prior work [14]
has shown significant accuracy degradation with 16-bit numbers.
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Table 5: SID hardware requirements and power compared to
performance-oriented RNN accelerators

C-LSTM DeltaRNN SID

Functionality Supports LSTM
only

Supports Gated
Recurrent Unit
only

Supports LSTM,
GRU, other ML/DL
models and
statistical tests

FPGA Xilinx Virtex-7 Kintex-7 XC7Z100 XC7Z045
FFG900

Quantization 16-bit fixed point 16-bit fixed point 32-bit fixed point
Slice LUT 406,861 (49.07X) 261,357 (31.52X) 8,292 (1X)
Slice Flip-flop 402,876 (106.07X) 119,260 (31.40X) 3,798 (1X)
DSP 2675 (167.19X) 768 (48X) 16 (1X)
BRAM 966 (1.98X) 457.5 (0.94X) 489 (1X)
Clock Freq 200MHz 125MHz 115MHz

Power (W) Running: 22 Static: 7.9
Running: 15.2

Static: 0.12
Running: 0.62

The platform board is Xilinx Zynq-7000 SoC ZC706 evaluation kit.
The hardware implementation is generated with Vivado 2016.2.

In Table 5, we compare SID implementing LSTM-PED-Vote to
two FPGA implementations of Recurrent Neural Network (RNN) ac-
celerators, C-LSTM [27] and DeltaRNN [7]. The C-LSTM algorithm
represents some matrices in LSTM as multiple block-circulant ma-
trices, to reduce the storage and computation complexity. DeltaRNN
ignores minor changes in the input of the Gated Recurrent Unit
(GRU) RNN to reuse the old computation result and thus reduce
the computation workload. These two accelerators are capable of
RNN inference, but lack the support for generating and comparing
empirical prediction error distributions, which we have shown is
indispensable to achieve acceptable accuracy.

The FPGA resource usage of Slice LUTs, Slice Flip-flops and DSPs
of SID are one or two orders of magnitude less than the other two
RNN implementations, which shows amajor difference between our
minimalist SID module and the performance-oriented accelerators.
We measure the FPGA power consumption using the TI Fusion
Digital Power Designer tool. The power consumption is an order
of magnitude less, making it more suitable for a smartphone.

While we have used an FPGA implementation as a prototype
of SID to compare with existing FPGA accelerators, further power
reduction is achievable using an ASIC implementation in real smart-
phone products.

6 RELATEDWORK
User-behavior-based implicit smartphone authentication has been
investigated in the literature. Lee et al. [12] exploited smartphone
and smartwatch sensors for user authentication. Frank et al. [6]
proposed Touchalytics, a smartphone authentication system based
on touchscreen input as a behavioral biometric. Zheng et al. [31]
proposed leveraging user tapping behaviors for authentication.
These work require other users’ data for model training, falling into
our IDaaS scenario and raising behavioral data privacy concerns.
There have been preliminary works on authenticating smartphone
users with only that user’s data, which might fit under our LAD
scenario. For example, multi-motion sensor [25], fusion of swiping
and phone movement patterns [10] and keystroke [9, 13] have been
used for one-class smartphone user authentication. However, these
works leveraged manually-crafted features without deep learning.
In contrast, we show the superiority of deep learning algorithms,

without needing tedious feature extraction, for both the IDaaS and
LAD scenarios.

Many accelerators for a single machine learning (ML) algorithm
have been proposed, e.g. SVM [19][20], k-neatest neighbors [24]
and k-means[1]. Recent work have also been proposed for deep
neural networks (DNNs). EIE [8] and Minerva [21] exploit data
sparsity of weights and activations during inference to improve per-
formance and energy efficiency. The sparsity in training is exploited
in [23] to improve performance. Minerva [21] presents a frame-
work to reduce power consumption by finding the optimal data
quantization in the accelerator with software exploration. Weight
sharing in CNN is identified by [26] in early software exploration
before designing a dedicated accelerator. Some hardware accelera-
tors support multiple machine learning models. [16] evaluates the
acceleration of four models in an embedded CPU-GPU-Accelerator
system. MAPLE [15] accelerates the vector and matrix operations
found in five classification workloads. PuDianNao [14] highlights
the non-vector operations and data locality in seven ML techniques.
These works support their chosen ML/DL algorithms and exploit
different properties of DNN models to improve performance or
energy efficiency, while we aim for sufficient performance for real
problems at a low cost. They also do not support other analysis
techniques such as the collection and comparison of empirical prob-
ability distributions with KS tests, as we do.

For minimalist hardware design, we incorporate conventional
energy-saving techniques, e.g. the tiling method [2], that can ben-
efit multiple ML/DL algorithms. We do not implement hardware
modules for a specific ML/DL algorithm. To the best of our knowl-
edge, we are the first to explore delivering versatility and sufficient
hardware performance for detecting anomalous behavior, with re-
duced energy consumption, rather than shooting for maximum
hardware performance or maximum energy efficiency.

7 CONCLUSIONS
We study how sensors in a smartphone can be used to detect
smartphone impostors and theft using machine learning and deep
learning based algorithms. A key contribution is showing that we
can detect impostors while preserving the user’s privacy by using
LSTM-based models enhanced by comparing Prediction Error Dis-
tributions (PEDs). In both the IDaaS and LAD scenarios, our deep
learning based algorithms have better detection accuracy than the
studied machine learning algorithms including the state-of-the-art
algorithm with hand-crafted features.

To further reduce the attack surface, we design a low-cost hard-
waremodule, SID, to support the best impostor detection algorithms
we found in both scenarios. It is versatile enough to support other
ML/DL algorithms as well. It has an innovative hardware imple-
mentation for collecting and comparing empirical probability distri-
butions that we use to represent user behavior. This enables users
of SID to trade-off security with data privacy in choosing one of the
two scenarios, as well as choosing trade-offs in accuracy with over-
head. Our FGPA implementation shows that SID provides sufficient
performance with minimal cost. Compared to other model-specific
accelerators, SID provides more functional versatility and uses less
hardware resources and energy which are one to two orders of
magnitude less than performance-oriented FPGA accelerators.
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Appendix A DEEP LEARNING ALGORITHMS
Multi-layer Perceptron (MLP) is a family of feed-forward neural
network models, consisting of an input layer, an output layer and
one or more hidden layers in between. Formally, the inference of
MLP computes:

h1 = f (WT
1 x + b1)

...

hn = f (WT
n hn−1 + bn )

ŷ = so f tmax(hn )

(4)

where hi denotes the output of layer i , f denotes a non-linear
activation function, e.g. sigmoid or ReLU 1.
LSTM. When being used to model temporal sequences, an LSTM
cell updates its hidden states (ht , ct ) for each input time-frame
using the previous states (ht−1, ct−1) and the current input xt as
described in Eq (5), where the W’s and U’s are weight matrices, and
the b’s are bias vectors. Three control gates, the forget gate ft , the
input gate it and the output gate ot , are used to determine how
much of the old states are preserved.

candt = tanh(Wc × xt +Uc × ht−1 + bc )

ft = σ (Wf × xt +Uf × ht−1 + bf )

it = σ (Wi × xt +Ui × ht−1 + bi )

ot = σ (Wo × xt +Uo × ht−1 + bo )

ct = ft ⊙ ct−1 + it ⊙ candt

ht = ot ⊙ tanh(ct )

(5)

1ReLU(z) = z if z ≥ 0, else 0
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