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ABSTRACT

Drug discovery is a challenging task, characterized by a significant amount of time
between initial development and market release, with a high rate of attrition at
each stage. Computational virtual screening, powered by machine learning algo-
rithms, has emerged as a promising approach for predicting therapeutic efficacy of
drugs. However, the complex relationships between features learned by these al-
gorithms can be challenging to decipher. We have devised a neural network model
for the prediction of drug sensitivity, which employs a biologically-informed vis-
ible neural network (VNN), leveraging multi-omics data and molecular descrip-
tors. The trained model can be scrutinized to investigate the biological pathways
that play a fundamental role in prediction, as well as the chemical properties of
drugs that influence sensitivity We have extended the model to predict drug syn-
ergy, resulting in favorable outcomes while retaining interpretability. Given the
often unbalanced nature of publicly available drug screening datasets, our model
demonstrates superior performance compared to state-of-the-art visible machine
learning algorithms.

1 INTRODUCTION

Understanding the molecular features influencing drug sensitivity is the key element for developing
personalized therapies (Liu et al., 2021). Machine learning models can exploit screening datasets
to develop predictive algorithms useful to associate omics features with drug response such as Ge-
nomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2012). Most of these studies use models
as “black boxes” optimized for prediction accuracy without the possibility of interpreting the bi-
ological mechanisms underlying predicted outcomes. Recently, Ideker and colleagues proposed a
“visible neural network” to address this issue (Kuenzi et al., 2020). The model, called DrugCell, en-
codes cells genotypes into a network constituted by modules organized according to the Biological
Process Gene Ontology (GO) hierarchy (Ashburner et al., 2000). Interpreting the activity of each
module allows the association between specific biological pathways and drug response to be discov-
ered. Besides its great novelty, there are several possibilities to improve this biologically informed
approach. First, DrugCell relies on somatic single nucleotide variations profiles of the screened
models. Second, it is important to consider the unbalanced nature of the data since sensitivity values
tend to be skewed toward values representing a lack of sensitivity. Finally, it should be important for
an explanation tool to allow the subsetting of specific cell lines on which queries can be performed.
The use of multiple therapies in patient care has become increasingly popular in recent years, as it
has the potential to offer both greater efficacy and fewer side effects (Jaaks et al., 2022).

In order to advance the research in this area, we propose a novel approach to drug activity predic-
tion using a Multi-Omics Visible Drug Activity prediction model, or MOViDA. MOViDA extends
the existing DrugCell’s visible network approach by incorporating pathway activity from gene ex-
pression and copy number variation data. This allows for a more comprehensive understanding of
the interactions between drugs and biological systems, leading to more accurate predictions of drug
activity. To ensure that the data used to train MOViDA is representative and balanced, the training
algorithm employs a random sampler based on a multinomial distribution. This helps to account
for skewness in the input dataset. In addition, MOViDA also enhances the interpretability of drug
descriptions by using fingerprints and molecular descriptors. These descriptors relate the 3D molec-
ular structure of drugs to their physical-chemical and pharmacokinetic properties, making it easier
to understand the impact that a drug may have on a biological system. To further enhance the biolog-
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Figure 1: MOViDA architecture. a) The network is composed of three distinct sub-networks.
The Multi-omics Embedding net utilizes cell line multi-omics profiles. The Drug Embedding net
receives PubChem fingerprints and VolSurf+ molecular descriptors. The final layers combine the
embeddings and predict the AUC. b) The Multi-omics Embedding net comprises a set of modules
which are connected according to the Biological Process Gene Ontology Hierarchy. Each GO sub-
module takes in input the cell line multi-omics profile, considering those genes associated to former.

ical interpretability of the model, we developed an ad hoc network explanation method to score the
pathways affecting sensitivity prediction in specific sets of cell lines. Finally, we have also extended
MOViDA to make drug synergy predictions.

2 METHODS

2.1 NETWORK ARCHITECTURE

MOViDA is a feedforward deep neural network that predicts the drug sensitivity of a cell line,
which structure is separated into two branches (Figure 1a): a Visible Neural Network (VNN) and
a feedforward Artificial Neural Network (ANN). The ANN on the right branch is a shallow neural
network exploiting a combination of PubChem fingerprints (pub, 2021) and molecular descriptors
relating 3D molecular shape with physical-chemical and pharmacokinetic properties (Crivori et al.,
2000). Drug features are encoded into a three-layers neural architecture with 100, 50, and 6 nodes.
The VNN (Figure 1b) on the left branch represents a Biological Process Gene Ontology hierarchy
composed of five layers and 2086 GOs. Each GO is connected to more generic GO ancestors and is
represented by a sub-submodule composed of a set of k + 1 nonlinear units. k units are connected
to the input layer and the output of previous layers. Each unit also receives a normalized gene set
enrichment score (NES) of that GO term computed from gene expression. This value is concatenated
with the activation of the k units and fed to the next layer in the hierarchy. The input layer is
composed of nodes of three different kinds: mutations, amplification, and deletions. Each GO sub-
module is connected to genes annotated with that term. The activation of the units at the root of
the hierarchy represents a multi-omic cell line embedding. The training phase aims at learning the
weights of each subsystem. In particular, every unit of each module s has the following output:

IMs = WMMs IAs = WAAs IDs = WDDs INESs = WNESNESs

ICc = WcEc +WNESc
NESc Es = f(IMs + IAs + IDs + INESs +

∑
c∈desc(s)

ICc + bs)

where: Ms, As, and Ds are binary vectors that describe mutation, amplification, and deletion status
of genes associated with subsystem s and WM , WA and WD are the corresponding weights; WNES

is the weight of the normalized enrichment score NESs of the term s resulting from gene expres-
sion; Wc and WNESc

are the weights associated to the embedding Ec and NESc of child c of the
considered subsystem. Es is the embedding of a subsystem s, which is a nonlinear transformation
f of the inputs consisting of hyperbolic tangent and batch normalization, and bs is bias term.

2



Under review at the MLDD workshop, ICLR 2023

A third neural network combines the multi-omics and drug embeddings predicting the cell’s response
to the drug, measured as the area under the dose-response curve (AUC). During the training phase,
the input data was split into three sets: training (80%), testing (10%), and validation (10%) sets.

2.2 DATASETS

We used the Genomics of Drug Sensitivity in Cancer database (GDSC) (Yang et al., 2012) and the
Cancer Therapeutics Response Portal v2 (CTRP) (Basu et al., 2013) to collect 383,998 triplets repre-
senting cell line, drug, and cell survival after treatment measure as AUC value. Overall, our dataset
contains 889 cell lines and 684 drugs. Each drug is represented by 1009 variables, 881 molecular
fragments from PubChem fingerprints (pub, 2021) , and 128 molecular descriptors from the soft-
ware VolSurf+ (Crivori et al., 2000), as detailed in Table S1. To represent the molecular properties
of a cell line, we use the mutation and copy number profiles stored in three binary vectors, where
the value corresponds to the presence or absence of a mutation/deletion/amplification in a particular
gene in a given cell line, which were downloaded from the GDSC data portal (Yang et al., 2012).
We selected 4870 (top 2.5%) frequently mutated genes in cancer using the pan-cancer compendium
encompassing 33 cancer types and more than 10,000 tumor-normal exome pairs (Ellrott et al., 2018).
Analogously, 2612 and 3625 genes contained in focal recurrently amplified copy number segments
and deleted copy number segments respectively, selected as described in (Iorio et al., 2016). These
genes were further filtered for those associated with at least one GO term present in the MOViDA
hierarchy, obtaining 2931 and 2097 genes for amplifications and deletions, respectively. Gene ex-
pression was also used to compute a normalized enrichment score (NES) using single-sample gene
set test using the Mann–Whitney–Wilcoxon Gene Set test (mww-GST) available in the yaGST pack-
age (Frattini et al., 2018). NES is an estimate of the probability that the expression of a gene in the
geneset is greater than the expression of a gene outside this set: NES = 1− U

mn where m is the num-
ber of genes in a gene set, n is the number of those outside the gene set, U = mn+m(m+1)− T ,
and T is the sum of the ranks of the genes in the gene set.

For drug combination, we used Therapeutic Target Database (TTD) (Zhou et al., 2021) to identify
potential synergies among drug targets and then used the dataset of pharmaceutical synergies specific
to breast, colon, and pancreatic cancer cells created by Jaaks et al. (Jaaks et al., 2022) for validation.
To further advance our model’s capabilities, we extended its application to predict drug combination
therapies utilizing the dataset presented by O’Neil et al. (O’Neil et al., 2016). We selected the
cell lines and drugs with available features, resulting in a dataset of 32 compounds and 32 cell
lines, totaling 13376 instances of triplets, with 1296 instances considered synergistic. To assess
the synergistic interaction between drugs, we employed Loewe Additivity score (LOEWE, 1953),
utilizing a threshold of 30 to differentiate synergistic from non-synergistic outcomes. To overcome
limitations posed by the limited size of training set, we took steps to reduce the number of input
features, specifically by excluding copy number information from the input.

2.3 DATA UNBALANCE STRATEGIES

Drug sensitivity data exhibits a significant skewness, characterized by many screens with low sensi-
tivity outcomes (AUC close to 1) and very few with high sensitivity (AUC close to 0). To mitigate
the potentially deleterious effects of this data unbalancing during the training, we used a weighted
random sampler based on a multinomial distribution estimated from the data.

The AUC sensitivity scores are divided into twelve equally spaced bins between 0 and 1.2, and we
used the inverse frequencies with additive smoothing to fix the weights of the multinomial sampler:

fi =
si∑c
j=0 sj

vi =
1

fi
+ ϵ wi =

vi∑c
j=0 vj

(1)

Where si is the number of samples in bin i, c is the number of bin, fi is the relative frequency
of the bin i, ϵ is the smoothing penalty term. We also used a weighted loss function to give more
importance to errors associated with lower scores of ground truth and predictions. Hence we adopted
the following double-weighted MSE loss.

L(p, t) = max(wcp , wct) ∗ (p− t)2 (2)
Here, p is model prediction, t is the ground truth, wcp and wct are weights associated with corre-
sponding cp and ct bins as computed in Equation (1). This loss function guarantees higher weights
for errors when either the ground truth or the prediction are in a class with few samples.
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If an evaluation measure conceived for balanced datasets was used, a trivial system assigning the
majority of the items the values with the highest frequency may even outperform genuinely engi-
neered systems. Evaluating measures that can handle imbalance are recommended to avoid these
cases, so we adopted a measure developed in the field of ordinal regression (Baccianella et al., 2009),
which is the macroaverage MSE, based on a sum of the classification errors across classes. This is
motivated by the fact that sensitivity classes can be considered ordinal variables, and the ordering
between the values is significant, as they represent discretized degrees of sensitivity.

MSEM =
1

c

c∑
j=0

1

|cj |
∑
x∈cj

(px − tx)
2 (3)

where cj represents the set of samples in class j, c is the number of classes, tx id the ground truth
of sample x and px is its prediction. The macroaverage MSE does not depend on the frequency of
each class, as every class contributes to 1/c of the total measure. Therefore trivial assignments are
penalized, whereas to have better MSEM the errors in all classes should be minimized.

2.4 MODEL EXPLANATION

The Biology informed nature of MOViDA allows performing accurate post-hoc analyses, enabling
us to identify the biological processes that contribute to the prediction of a cell line’s drug sensitivity
the most. Therefore, we developed an interpretation score, relative improvement score (RIS), specif-
ically tailored for our model that measures the relative contribution of a sub-module concerning its
children in the GO hierarchy. This score is inspired by ablative brain surgery (Meyes et al., 2019),
which involves removing components of the brain while keeping its functions intact.

First, we calculate the prediction for a specific drug-cell line pair. Then we recalculate the prediction
after silencing the output of each sub-module one by one, setting weights and biases to 0. Similarly,
we silence all children subsystems for each GO. In the case of leaf nodes, we silence the corre-
sponding inputs. The RIS score expresses the importance of a term during the prediction phase and
its ability to combine the information from its children, comparing the deviations from the actual
prediction of the ablated models. The RIS is computed as follows:

sf = |pf − p| scf = |pcf − p| RIS =
scf − sf

scf + sf
(4)

where p is the effective prediction for a specific drug-cell line pair, pf and pcf is the prediction
obtained by silencing a GO subsystem and its children, respectively. RIS is the interpretation
score. For a given GO subsystem, positive RIS values correspond to a larger deviation in predictions
when silencing children compared to the father. The advantages of RIS over the score adopted in
DrugCell (RLIPP) are that: i) it can be calculated for each individual drug-cell line pair; ii) there are
multiple ways to aggregate these values, by drug or by specific cell line types.

To further investigate the model, we have inspected all the elements that compose the inputs de-
scribing the drugs. The importance score of each feature was performed using DeepLift, whose
implementation is based on the algorithm of Shrikumar et al. (Shrikumar et al., 2017) and gradient
formulation proposed by Ancona et al. (Ancona et al., 2017).

2.5 DRUG COMBINATION STRATEGIES THROUGH RELEVANT SUBSYSTEMS

By combining multiple drugs, it is possible to harness cancer’s resistance to particular anticancer
drugs, and create a more effective treatment plan. A recent effort toward understanding the com-
bined effects of drugs has been carried out by Jaaks et al. (Jaaks et al., 2022) by creating a huge
dataset of pharmaceutical synergies specific to breast, colon, and pancreatic cancer cells.
Taking into account a drug and a cell line evaluated in the combination dataset, we used the RIS
score calculated from a drug/cell-line pair. We selected the top 5 enriched GO terms along with
associated genes. From the collection of drug targets Therapeutic Target Database (Zhou et al.,
2021), we determine the drugs targeting the genes associated with the previous selection of GO
terms, marking them as potentially synergistic for that drug-cell line pair.
We then compared our predictions on the synergistic dataset, marking the right (TP) and wrong (FP)
combinations and comparing TP over FP and the ratio of synergistic drugs to non-synergistic drugs
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to understand if the former was significantly higher than the latter. We took all drug combinations
studied for a specific cell line and drug and counted how many of these combinations were synergis-
tic (S) and how many are not (NS). We applied the binomial test on TP over (TP + FP), which is the
Precision metric, with probability equal to S/(NS+S), thus accounting for the number of synergistic
combinations. The p-values for the binomial test and the enrichment scores TP/(TP+FP )

S/(NS+S) of the
above-described tests are used in the volcano plots reported in the Results section.

2.6 EXTENSION FOR DRUG SYNERGY PREDICTION

We have extended our model to see its actual efficacy in predicting synergistic effects of drug com-
binations as well. For this purpose, we exploited the concept of Siamese neural networks, which
involves the use of identical subnetworks, in this case the drug embedding branch of our model. The
final ANN concatenates the cell line and drugs embedding. In this way, the order of past drugs is
important, so we doubled the initial dataset by considering the two possible combinations of drug
pairs. In addition, the problem was set up as a binary class prediction, distinguishing the cases where
there is synergy or not. Given the presence of imbalance in the dataset, we used focal loss (Lin et al.,
2017) and the previously described weighted random sampler to counteract this phenomenon.

3 RESULTS

3.1 DATASET UNBALANCE

MOViDA is trained to predict the drug response of a cellular model (represented by its molecular
profile), measured as area under the curve (AUC). AUC combines information about the potency and
efficacy of the drug into a single measure (Fallahi-Sichani et al., 2013). A value close to 0 means
high sensitivity, a value close to 1 represents no effect of the drug, if higher than 1, the drug has the
effect of promoting cell viability. Besides the high interest in accurate predictions for drugs with high
sensitivity, the majority of drug screens present AUC values that are close to 1, therefore, presenting
a marked skewness. Figure S1a shows the distribution of the AUC values present in the dataset after
binning AUC values into 12 bins (ten bins for the interval between 0 and 1 and other two for values
greater than 1): class 0 (AUC scores in the range [0.0, 0.1]) is 80 times less populated than class 9
(scores in the range [0.9, 1.0]). To mitigate this effect, our approach considers a weighted random
sampler and a double-weighted loss (Section 2.3). Both use the weights calculated as a function
of the inverse frequencies of each class plus a smoothing term ϵ. Figure S1b shows the number of
samples for all classes: besides the raw case (no weights), different scenarios are depicted by varying
the epsilon parameter that affects the weights. The ideal scenario lies between the raw case and the
perfectly balanced dataset (with epsilon set to 0), which, on the contrary, could produce too many
sample repetitions. After parameter tuning, we chose the value of ϵ to 80 as a good compromise,
producing, on average, a four-fold repetition for the samples in a less represented class.

3.2 PERFORMANCE AND COMPARISON WITH DRUGCELL

For the comparison, we used pre-trained DrugCell, downloaded from https://github.com/
idekerlab/DrugCell. The accuracy was evaluated by measuring the Spearman and Pearson
correlation between the predicted AUC values and the actual ones. To assess the issue of unbalance,
100 samples from each class were sampled, repeating this process for 1000 runs. The results show
that Pearson and Spearman correlation was 0.88 and 0.89 respectively. DrugCell model showed
good results as well, with Pearson correlation of 0.85 and Spearman correlation of 0.86 (Table S2).
We show in Figure 2b that MOViDA has a significantly lower macroaverage MSE (MSEM ) (60%,
0.02 vs. 0.05), which accounts for the class unbalance. Indeed MOViDA can make much more
accurate predictions of the AUC in classes with fewer training examples (classes between zero to
6). Those classes are the most meaningful ones as they represent cases of high sensitivity to drugs.
Whereas for classes 7-9, MOViDA behaves similarly to DrugCell. To better explain this behavior, by
recasting the regression as a classification problem in terms of prediction of AUC interval classes,
the confusion matrix in the Figures S2a and S2b show that DrugCell tends to over-estimate the
majority class. In contrast, MOViDA reaches better accuracy along the cells on the diagonal.
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Figure 2: Evaluation and comparison a) Distribution of predicted AUC compared to ground truth
classes. b) MSE calculated for each class, dashed lines correspond to macroaverage MSE.

(a) (b)

Figure 3: Explainability. a) Top 5 RIS score associated to GOs (green nodes), considering the
ALLSIL cell line and GSK1070916 drug. The whole sub-tree (blue nodes) is displayed. b) Deep
Lift drug feature interpretation of Liver tissue. The color represents the feature value for a specific
prediction. If feature values are low (blue) on the left and high (red) on the right of the violin,
AUC is directly dependent on the feature. Feature names are colored differently if they are VolSurf+
descriptors or PubChem fingerprint bits in black and gray, respectively.

The performance of MOViDA was further evaluated (Figures S3) through comparative analyses,
varying the type of drug representation used as input (Morgan Fingerprint, PubChem Fingerprint,
and VolSurf+ descriptors). Results indicated that MOViDA exhibited the lowest MSEM compared
to other models. We also evaluated MOViDA with a larger artificial neural network (ANN) for drug
embedding. We found that MOViDA with fewer parameters generalized better. Finally, MOViDA
was compared with a standard shallow network consisting of 6 linear layers with ReLU activation
functions to assess whether the trade-off between explainability and performance exists. The results
indicated that MOViDA and the shallow network performed similarly, with comparable MSEM .

3.3 THE RIS SCORE IDENTIFIES PATHWAY DEPENDENCIES IN SPECIFIC CELLULAR MODELS

We have implemented a novel interpretability score called relative improvement score (RIS), which
relates deviations from prediction by first removing a GO module and then the modules associated
with its children. This score also has the advantage of being calculated for each specific cell line-
drug prediction, so we can show which GOs are most predictive for a specific tissue (represented as
a group of cells) or drug. Among the leukemia cell lines, we selected the ALLSIL cell line highly
sensitive to GSK1070916, an ATP-competitive inhibitor of Aurora kinase, which is important during
cell division. The RIS scores associated with this prediction revealed that anion transmembrane
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transport (GO:0098656) is among the most important modules for prediction (Figure 3a). The
overexpression of ATP-binding cassette (ABC) transporters, particularly ABCG2, contributes to
reduced cytotoxicity of GSK1070916 (Wu et al., 2021). The family of these genes is responsible for
transporting substances across the cell membrane using the energy produced by ATP electrolysis.
Interestingly, ALLSIL is ABCC9 mutant which, together with ABCG2, is downregulated in this cell
line. Similarly, proteolysis (GO:0006508) has a high RIS score for this cell line-drug pair. This can
be attributed to AURKB (aurora kinase B) phosphorylating caspase-2 by mediating its proteolysis
(Lim et al., 2021). As a result, cell division is not stopped. In our case, GSK1070916 inhibits
AURKB promoting apoptosis of the cancer cell. AURKB is over-expressed in the ALLSIL cell
line. An high RIS score is also reported for the positive regulation of the reactive oxygen species
metabolic process (ROS) pathway (GO:2000379) associated with the DB cell line (lymphoma) when
administered with Dinaciclib (an inhibitor of CDK1, CDK2, CDK5 and CDK9). Interestingly, it has
been recently reported that the inhibition of CKD leads to increased mitochondrial ROS levels,
confirming this pathway’s importance in the cellular response to this exposure (Riess et al., 2021).

3.4 DRUG FEATURES INTERPRETABILITY

As a complementary interpretation step, we can also measure the impact of individual drug features
on the model’s predictions utilizing DeepLift score (Shrikumar et al., 2017). Figure 3b shows the 20
most important features of our model. The importance lies in the variability of the score for the var-
ious cell lines: the more it varies, the more significant it is for predictions. The most relevant feature
is the VolSurf+ descriptor METSTAB for all the cell lines. Such descriptor refers to metabolic sta-
bility (measured on human liver microsomes), mostly due to isoform 3A4 of the cytochrome P450
system. We have noticed a direct relationship between such a feature with the AUC. This means low
values for metabolic stability (thus, fast CYP3A4-mediated metabolism) for high-sensitivity drugs.
This agrees with the absorption, distribution, metabolism, and excretion (ADME) profile of many
anticancer drugs, most of which are metabolized in the liver by CYP3A4. Several features refer
to drug lipophilicity; among these, the VolSurf+ descriptors D8 and CD8 refer to highly lipophilic
regions of the molecules, and characteristics of active molecules (low AUC values).

Two features refer to molecular flexibility, namely the VolSurf+ descriptors FLEX and FLEX RB.
Given their lift values, we can argue that for most of the predictions, flexibility is inversely related to
AUC, whereas the number of rotatable bonds is directly related to AUC. Although it is uncommon to
have an opposite behavior for these two features, an attempt to generalization may be that anticancer
drugs are generally flexible but with a low number of rotatable bonds (compared to the overall
number of bonds). The VolSurf+ descriptors %FU8 and %FU10 can measure the percent of the
unionized fraction at a given pH (8 or 10). According to violin colors, the system identified a direct
relationship with AUC; in other words, many anticancer drugs have strong or weak acid groups, that
is reflected onto the significant presence of ionized species at basic pH.

3.5 DRUG COMBINATION PREDICTIONS

MOViDA predictions can be used to uncover potential drug synergies. Given the interpretation
scores for specific drug-cell line pairs, we select genes involved in GO terms with highest scores and
prioritize as potential combinations the drugs targeting these genes (Methods 2.5), reported in Sup-
plementary Material. Volcano plot in Figure 4a shows cell line-drug pairs for which the candidate
molecules are enriched for experimentally validated synergistic drugs. For example, the synergy
predictions associated with the breast cancer cell line JIMT1 and the drug MK-2206, a highly se-
lective inhibitor of Akt1/2/3among, has among the top 5 scoring GO categories the GO:0007169
(transmembrane receptor protein tyrosine kinase signaling pathway) and the GO:0007584 (response
to nutrient). Our model selects Lapatinib, PD173074, Axitinib, Linsitinib, Sapitinib, and OSI-027 as
potential candidates for combination therapy with MK-2206. They are all tyrosine kinase inhibitors
involved in tumor cell growth. The association between these drugs and MK-2206 is well docu-
mented in the literature, as many tyrosine kinases are part of the PI3 kinase-AKT cascade, affecting
mTOR activity (Lara et al., 2015). Another relevant combination consists of Navitoclax and Vorino-
stat associated with the MDAMB231 cell line. The latter is an HDAC inhibitor, which decreases
the expression of BCL2 family proteins, as described by (Duan et al., 2005). Since Navitoclax is
an inhibitor of this anti-apoptotic protein family, it has been shown that its efficacy, combined with
Vorinostat, can induce apoptosis in cancer cells (Nakajima et al., 2016).

7



Under review at the MLDD workshop, ICLR 2023

(a)

AU565 Navitoclax
HCC1954 MK−1775

HCC2157 Axitinib
HPAC 5−FluorouracilHUPT3 Lapatinib

JIMT1 MK−2206

KP2 Crizotinib

MDAMB231 Vorinostat

0.0

0.5

1.0

1.5

2.0

−0.5 0.0 0.5 1.0
Enrichment score

P−
va

lu
e

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC curve

False positive rate
(1−specificity)

Tr
u

e
 p

o
si

tiv
e

 r
a

te
(s

e
n

si
tiv

ity
)

AUC = 0.86

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision−recall curve

Recall
(sensitivity)

P
re

ci
si

o
n

(p
o

si
tiv

e
 p

re
d

ic
tiv

e
 v

a
lu

e
)

AUCPR = 0.55

Figure 4: Evaluation of Drug synergy prediction. a) Enrichment scores against the p-values of
binomial, testing the Precision of the model, using as the probability the percentage of synergistic
combination. The green points correspond to drug-cell lines pairs that have a significant number
of positive drug candidates. b) AUC scores were calculated for ROC and PR curves, which are
graphical evaluations of binary classification model performance. PR shows precision vs recall,
while ROC plots TPR (recall) vs FPR.

MOViDA was initially developed as a regressor for predicting drug sensitivity in cancer cells. How-
ever, in order to better support the discovery of new and effective cancer therapies, the model has
been extended to classify drug synergy as well. To evaluate the performance of the extended model,
we used two commonly used metrics in machine learning: area under the Receiver Operating Char-
acteristics (ROC) and Precision-Recall (PR) Curves. The results showed that MOViDA was able
to achieve a ROC of 0.86 and PR of 0.55 (Figure 4b), which indicates high accuracy in classifying
drug synergy despite the unbalanced nature and small size of our dataset, which is often a challenge
in drug discovery research.

4 CONCLUSION

In this manuscript, we presented MOViDA, a biologically inspired neural network architecture for
the prediction of drug sensitivity of cellular models of cancer. The assessment of anti-cancer drugs
and the identification of potential synergistic effects can be ideally assessed by using patient-derived
cell lines (Liu et al., 2016). However, this process requires substantial time, and there is no guarantee
of efficiency. The use of machine learning (ML) to exploit the variety of screening data already
available, together with the knowledge of the molecular features of cellular models, can help to
accelerate the process of drug prioritization for experimental validation (Dezső & Ceccarelli, 2020)
and candidate combination therapies (Jaaks et al., 2022). The adoption of a biologically informed
architecture has three main advantages: a) it allows to uncover the role of specific pathways in
response to drug stimuli; b) it improves the trust in predictions, especially among non-ML experts
and c) the efficient parameterization of our model can simplify the learning process rather than
use arbitrarily overparameterized, architectures for prediction, simplifying interpretability. Most
drug sensitivity prediction models only use gene expression data (Chen et al., 2021), however, the
effect of single nucleotide mutations, DNA methylation and DNA copy number variation on drug
sensitivity should also be considered. Here we have presented a visible neural with an improved
accuracy level due to the use of multiple omics platforms and the better handling of unbalance of
data. We also have developed an interpretability score that has the advantage of producing a value
for every cell line-drug pair and, therefore, can be summarized in terms of cellular models derived
from the same tissue/cancer subtype or at the level of individual drugs. We have shown that our
score produces meaningful results that can be the subject of experimental follow-up. We have also
introduced a set of features that can be directly related to behavior or chemical groups. We confirmed
the importance of chemical features such as LogP, FLEX as well as %FU(4-10) also observed in the
inhibition of glycoprotein (Broccatelli et al., 2011).

8



Under review at the MLDD workshop, ICLR 2023

REFERENCES

Pubchem substructure fingerprint description. https://ftp.ncbi.nlm.nih.gov/
pubchem/specifications/pubchem_fingerprints.pdf, 2021.
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A KEY POINTS

• The adoption of a biologically informed architecture allows to uncover the role of specific
pathways in response to drug stimuli and it improves the trust in predictions.

• Machine learning methods aimed at predicting sensitivity to drugs should take in account
the unbalanced nature of large-scale drug screening datasets.

• Molecular drug features and multi-omics embedding can significantly improve the accuracy
of sensitivity predictions.

B AVAILABILITY AND IMPLEMENTATION

MOViDA is implemented in Python using PyTorch library and freely available for download at
https://github.com/Luigi-Ferraro/MOViDA.
RIS score and drug features are archived on Zenodo https://doi.org/10.5281/zenodo.7406327

C COMPETING INTERESTS

No competing interest is declared.

D AUTHOR CONTRIBUTIONS STATEMENT

L.F. and M.C. conceived the study, L.F. developed the code and generated the results, G.S., L.C.
and E.C. analysed the results, L.F., E.C. and M.C. wrote the manuscript, all authors reviewed the
manuscript.

E ACKNOWLEDGMENTS

We thank Associazione Italiana per la Ricerca sul Cancro for the support. We thank Molecular
Discovery Ltd. for supplying the VolSurf+ software (https://www.moldiscovery.com/
software/vsplus).

11

https://www.sciencedirect.com/science/article/pii/S0753332221000081
https://www.sciencedirect.com/science/article/pii/S0753332221000081
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gkab953
https://doi.org/10.1093/nar/gkab953
https://github.com/Luigi-Ferraro/MOViDA
https://doi.org/10.5281/zenodo.7406327
https://www.moldiscovery.com/software/vsplus
https://www.moldiscovery.com/software/vsplus


Under review at the MLDD workshop, ICLR 2023

(a)

1468
2334

4262
7264

12273
18704

29325
50490

81031
118206

48144

9182

1e+01

1e+03

1e+05

0 1 2 3 4 5 6 7 8 9 10 11
Classes

N
um

be
r 

of
 s

am
pl

es

Histogram of scores

(b)

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10 11
Classes

N
um

be
r 

of
 s

am
pl

es
 fo

r 
ea

ch
 e

po
ch

ε

0

20

40

60

80

No weights

Figure S1: Data Unbalancing review. a) BarPlot distribution of AUCs divided in 12 classes, show-
ing high data skewness, with very few examples for classes corresponding to high drug sensitivity
(low AUC values). b) Probability to pick up a sample of a specific class by varying ϵ parameter. It
is computed as wi ∗ si normalized.
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Figure S2: Evaluation and comparison Confusion matrices of DrugCell and MOViDA respec-
tively, the percentage of each box is calculated based on the numerosity of the reference score class
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Figure S3: Evaluation and comparison MSE computed for each class with dashed line corre-
spondind to the macroaverage MSE. Comparison of MOViDA: a) varying drug input (Morgan fin-
gerprint, VolSurf+, PubChem fingerprint; b) with a larger ANN for drug embedding with 4 linear
layers of 512, 128, 32, 8 nodes respectively; c) with a shallow network, composed of six layers and
ReLU as activation functions.
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Table S1: Illustration of VolSurf+ descriptors

VolSurf+ descriptors Description

Size and shape descriptors Molecular volume, surface, rugosity, globularity (how much
the molecule is spheroidal), flexibility parameters

Hydrophilic regions descriptors Molecular hydrophilic volumes, Capacity factors (ratio of
hydrophilic surface over the total molecular surface)

Hydrophobic regions descriptors

Molecular hydrophobic volumes, Capacity factors (ratio
of hydrophobic surface over the total molecular surface),
the difference between the maximum conformational hy-
drophobic volumes and the hydrophobic volumes

INTEraction enerGY (INTEGY)
moments

Unbalance between the center of mass of a molecule and the
barycentre of its hydrophilic or hydrophobic regions

Descriptors of H-bond
donor/acceptor regions

The molecular envelope generating attractive H-donor or H-
bond acceptor interactions

Mixed descriptors

Hydrophilic-Lipophilic balance (ratio between hydrophilic
and hydrophobic regions), Amphiphilic moment, Criti-
cal packing parameter (ratio between the hydrophilic and
lipophilic part of a molecule), average molecular polariz-
ability,, dispersion of chemical in water fluid, Molecular
Weight, Log P 1octanol/water, Log P cyclohexane/water,
Log D, Polar and Hydrophobic Surface Areas

Charge State descriptors Number of Charged Centers, Available Uncharged Species,
% unionised species

3D pharmacophoric descriptors
(TOPP)

Dry, H-bond donor, H-bond acceptor and mixed Dry, H-
bond donor and acceptor 3D triplets pharmacophoric areas

ADME model descriptors

Intrinsic solubility, Solubility at various pH, Solubility pro-
filing coefficients (distinguish compounds that present sim-
ilar solubility but different pH-depended profile or vice-
versa), CACO2 permeability, Skin permeability, % of pro-
tein binding, Volume of Distribution, High Throughput
Screening Flag

Table S2: Comparison between MOViDA and DrugCell using: macroaverage MSE (MMSE), Pear-
son correlation and Spearman correlation

Model MMSE Pearson Spearman

MOViDA 0.02 0.88 0.89
DrugCell 0.05 0.85 0.86
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