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ABSTRACT

To improve model generalization, model designers often restrict the features that
their models use, either implicitly or explicitly. In this work, we explore the design
space of leveraging such feature priors by viewing them as distinct perspectives
on the data. Specifically, we find that models trained with diverse sets of feature
priors have less overlapping failure modes, and can thus be combined more effec-
tively. Moreover, we demonstrate that jointly training such models on additional
(unlabeled) data allows them to correct each other’s mistakes, which, in turn, leads
to better generalization and resilience to spurious correlations.

1 INTRODUCTION

The driving force behind deep learning’s success is its ability to automatically discover predictive
features in complex high-dimensional datasets. In fact, these features can generalize beyond the
specific task at hand, thus enabling models to transfer to other (yet similar) tasks (Donahue et al.,
2014). At the same time, the set of features that the model learns has a large impact on how well
it will perform on unseen inputs, especially in the presence of distribution shift (Ponce et al., 2006;
Torralba & Efros, 2011; Sagawa et al., 2020) or spurious correlations (Heinze-Deml & Meinshausen,
2017; Beery et al., 2018; Meinshausen, 2018).

Motivated by this, recent work focuses on encouraging specific modes of behavior by preventing the
models from relying on certain features. Examples include suppressing texture features (Geirhos
et al., 2019; Wang et al., 2019), avoiding `p-non-robust features (Tsipras et al., 2019; Engstrom
et al., 2019), or utilizing different parts of the frequency spectrum (Yin et al., 2019).

At a high level, these methods can be thought of as ways of imposing a feature prior on the learning
process, so as to bias the model towards acquiring features that generalize better. This makes the
choice of the feature prior to impose a key design decision. The goal of this work is thus to explore
the underlying design space of feature priors and, specifically, to understand:

How can we effectively harness the diversity of feature priors?

OUR CONTRIBUTIONS

In this paper, we cast diverse feature priors as different perspectives on the data and study how
they can complement each other. In particular, we aim to understand whether training with distinct
priors result in models with non-overlapping failure modes and how such models can be combined
to improve generalization. This is particularly relevant in settings where the data is unreliable—
e.g, when the training data contains a spurious correlation. From this perspective, we focus our
study on two priors that arise naturally in the context of image classification, shape and texture, and
investigate the following:

Feature diversity. We demonstrate that training models with diverse feature priors results in them
making mistakes on different parts of the data distribution, even if they perform similarly in terms
of overall accuracy. Further, one can harness this diversity to build model ensembles that are more
accurate than those based on combining models which have the same feature prior.

Combining feature priors on unlabeled data. When learning from unlabeled data, the choice of
feature prior can be especially important. For strategies such as self-training, sub-optimal prediction
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rules learned from sparse labeled data can be reinforced when pseudo-labeling the unlabeled data.
We show that, in such settings, we can leverage the diversity of feature priors to address these issues.
By jointly training models with different feature priors on the unlabeled data through the framework
of co-training Blum & Mitchell (1998), we find that the models can correct each other’s mistakes to
learn prediction rules that generalize better.

Learning in the presence of spurious correlations. Finally, we want to understand whether
combining diverse priors during training, as described above, can prevent models from relying
on correlations that are spurious, i.e., correlations that do not hold on the actual distribution of
interest. To model such scenarios, we consider a setting where a spurious correlation is present in
the training data but we also have access to (unlabeled) data where this correlation does not hold. In
this setting, we find that co-training models with diverse feature priors can actually steer them away
from such correlations and thus enable them to generalize to the underlying distribution.

Overall, our findings highlight the potential of incorporating distinct feature priors into the training
process. We believe that further work along this direction will lead us to models that generalize
more reliably.

2 BACKGROUND: FEATURE PRIORS IN COMPUTER VISION

When learning from structurally complex data, such as images, relying on raw input features alone
(e.g., pixels) is not particularly useful. There has thus been a long line of work on extracting input
patterns that can be more effective for prediction. While early approaches, such as SIFT (Lowe,
1999) and HOG (Dalal & Triggs, 2005), leveraged hand-crafted features, these have been by now
largely replaced by features that are automatically learned in an end-to-end fashion (Krizhevsky,
2009; Ciregan et al., 2012; Krizhevsky et al., 2012).

Nevertheless, even when features are learned, model designers still tune their models to better suit
a particular task via changes in the architecture or training methodology. Such modifications can
be thought of as imposing feature priors, i.e., priors that bias a model towards a particular set of
features. One prominent example here are convolutional neural networks, which are biased towards
learning a hierarchy of localized features Fukushima (1980); LeCun et al. (1989). Indeed, such
a convolutional prior can be quite powerful: it is sufficient to enable many image synthesis tasks
without any training Ulyanov et al. (2017).

More recently, there has been work exploring the impact of explicitly restricting the set of fea-
tures utilized by the model. For instance, Geirhos et al. (2019) demonstrate that training models
on stylized inputs (and hence suppressing texture information) can improve model robustness to
common corruptions. In a similar vein, Wang et al. (2019) penalize the predictive power of lo-
cal features to learn shape-biased models that generalize better between image styles. A parallel
line of work focuses on training models to be robust to small, worst-case input perturbations us-
ing, for example, adversarial training Goodfellow et al. (2015); Madry et al. (2018) or randomized
smoothing (Lecuyer et al., 2019; Cohen et al., 2019). Such training biases these models away from
non-robust features (Tsipras et al., 2019; Ilyas et al., 2019; Engstrom et al., 2019), which tends to
result in them being more aligned with human perception (Tsipras et al., 2019; Kaur et al., 2019),
more resilient to certain input corruptions (Ford et al., 2019; Kireev et al., 2021), and better suited
for transfer to downstream tasks Utrera et al. (2020); Salman et al. (2020).

3 FEATURE PRIORS AS DIFFERENT PERSPECTIVES

As we discussed, the choice of feature prior can have a large effect on what features a model relies
on and, by extension, on how well it generalizes to unseen inputs. In fact, one can view such priors
as distinct perspectives on the data, capturing different information about the input. In this section,
we provide evidence to support this view; specifically, we examine a case study on a pair of feature
priors that arise naturally in the context of image classification: shape and texture.

2



Under review as a conference paper at ICLR 2022

3.1 TRAINING SHAPE- AND TEXTURE-BIASED MODELS

In order to train shape- and texture-biased models, we either pre-process the model input or modify
the model architecture as follows:

Shape-biased models. To suppress texture information in the images, we pre-process our inputs
by applying an edge detection algorithm. We consider two such canonical algorithms: the Canny al-
gorithm Ding & Goshtasby (2001) which produces a binary edge mask, and the Sobel algorithm So-
bel & Feldman (1968) which provide a softer edge detection, hence retaining some texture informa-
tion (see Figures 1b and 1c).

Texture-biased models. To prevent the model from relying on the global structure of the image,
we utilize a variant of the BagNet architecture Brendel & Bethge (2019). This architecture delib-
erately limits the receptive field of the model, thus forcing it to rely on local features (see Figure 1d).

We visualize all of these priors in Figure 1 and provide implementation details in Appendix A.

(a) Original (b) Sobel (c) Canny (d) BagNet

Figure 1: Visualizing different feature priors: (a) an image from the STL-10 dataset; (b) Sobel edge
detection; (c) Canny edge detection; (d) the limited receptive field of a BagNet.

CIFAR-10 STL-10
Standard Canny Sobel BagNet Standard Canny Sobel BagNet

Standard 0.598 0.237 0.259 0.38 0.554 0.305 0.385 0.357
Canny 0.545 0.324 0.143 0.523 0.392 0.212
Sobel 0.594 0.173 0.649 0.262
BagNet 0.655 0.486

Table 2: Correlation (Pearson coefficient) of correct predictions on the test set between different
pairs of models. The diagonal entries correspond to models trained with the same prior but from
different random initializations. While the two shape-biased models (Sobel and Canny) are more
aligned with each other, they are both quite different from the texture-biased model (BagNet).

3.2 DIVERSITY OF FEATURE-BIASED MODELS

After training models with shape and texture biases as outlined above, we evaluate whether these
models indeed capture complementary information about the input. Specifically, we train models on
a small subset (100 examples per class) of the CIFAR-10 (Krizhevsky, 2009) and STL-10 (Coates
et al., 2011) datasets, and measure the correlation between which test examples they correctly clas-
sify.

We find that pairs consisting of a shape-biased model and a texture-biased model (i.e., Canny and
BagNet, or Sobel and BagNet) indeed have the least correlated predictions—cf. Table 2. In other
words, the mistakes that these models make are more diverse than those made by identical models
trained from different random initializations. At the same time, different shape-biased models (Sobel
and Canny) are relatively well-correlated with each other, which corroborates the fact that models
trained on similar features of the input are likely to make similar mistakes.
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Model ensembles. Having shown that training models with these feature priors results in diverse
prediction rules, we examine if we can now combine them to improve our generalization. The
canonical approach for doing so is to incorporate these models into an ensemble.

We find that the diversity of models trained with different feature priors indeed directly translates
into an improved performance when combining them into an ensemble—cf. Table 3. In fact, we find
that the performance of the ensemble is tightly connected to prediction similarity of its constituents
(as measured in Table 2), i.e., more diverse ensembles tend to perform better. For instance, the best
ensemble for the STL-10 dataset is the one combining a shape-biased (Canny) and a texture-biased
model (BagNet) which were the models with the least aligned predictions.

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 52.54 ± 0.86 51.82 ± 0.86 54.02 ± 0.80
Sobel + Sobel 51.94 ± 0.84 53.69 ± 0.82 54.68 ± 0.83
BagNet + BagNet 42.22 ± 0.88 42.56 ± 0.80 43.49 ± 0.83

Different
Standard + Sobel 52.54 ± 0.83 51.94 ± 0.83 58.21 ± 0.82
Standard + BagNet 52.54 ± 0.84 42.22 ± 0.84 53.03 ± 0.81
Sobel + BagNet 51.94 ± 0.90 42.22 ± 0.84 55.14 ± 0.81

(a) CIFAR-10

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 53.73 ± 0.91 55.38 ± 0.88 57.06 ± 0.91
Canny + Canny 56.29 ± 0.96 54.99 ± 0.96 58.23 ± 0.93
BagNet + BagNet 52.04 ± 0.98 50.34 ± 0.94 53.42 ± 0.93

Different
Standard + Canny 53.73 ± 0.95 56.29 ± 0.91 60.96 ± 0.96
Standard + BagNet 53.73 ± 0.98 52.04 ± 0.90 57.17 ± 0.90
Canny + BagNet 56.29 ± 0.91 52.04 ± 0.95 61.42 ± 0.92

(b) STL-10

Table 3: Ensemble accuracy when combining models trained with a diverse set of feature priors
(models with the same prior are trained from different random initialization). Notice how models
trained with different priors lead to ensembles with better performance. Moreover, when the accu-
racy of the two base models is comparable, models that are more diverse (as measured in Table 2)
result in better ensembles. We describe the different methods of combining models in Appendix A.4
and provide the full results in Appendix B.2.

4 COMBINING DIVERSE PRIORS ON UNLABELED DATA

In the previous section, we saw that training models with different feature priors (e.g., shape- and
texture-biased models) can lead to prediction rules with less overlapping failure modes—which,
in turn, can lead to more effective model ensembles. However, ensembles only combine model
predictions post hoc and thus cannot take advantage of diversity during the training process.

In this section, we instead focus on utilizing diversity during training. Specifically, we will leverage
the diversity introduced through feature priors in the context of self-training Lee et al. (2013)—a
framework commonly used when the labeled data is insufficient to learn a well-generalizing model.
This framework utilizes unlabeled data, which are then pseudo-labeled using an existing model and
used for further training. While such methods can often improve the overall model performance,
they suffer from a significant drawback: models tend to reinforce suboptimal prediction rules even
when these rules do not generalize to the underlying distribution Arazo et al. (2020).

Our goal here is thus to leverage diverse feature priors to address this exact shortcoming. Specifi-
cally, we will jointly train models with different priors on the unlabeled data through the framework
of co-training Blum & Mitchell (1998). Since these models capture complementary information
about the input (cf. Table 2), we expect them to correct each other’s mistakes and improve their
prediction rules. As we will see in this section, this approach can indeed have a significant impact
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Figure 4: Test accuracy of pre-trained, self-trained, and co-trained models selecting the best fea-
ture prior for each (full results in Table 3, Appendix Table 13, and Table 5 respectively). Notice
how combinations of models with different feature priors consistently outperform combinations of
models with the same feature prior.

on the performance of the resulting model, outperforming ensembles that combine such models only
at evaluation time—see summary in Figure 4.

Setup. We base our analysis on the CIFAR-10 and STL-10 datasets. Specifically, we treat a small
fraction of the training set as labeled examples (100 examples per class), another fraction as our
validation set for tuning hyperparameters (10% of the total training examples), and the rest as un-
labeled data. We report our results on the standard test set of each dataset. (See Appendix A for
experimental details, and Appendix B.6 for experiments with varying levels of labeled data.)

4.1 SELF-TRAINING AND ENSEMBLES

Before outlining our method for jointly training models with multiple priors, we first describe the
standard approach to self-training a single model. At a high level, the predictions of the model on
the unlabeled data are treated as correct labels and are then used to further train the same model Lee
et al. (2013); Iscen et al. (2019); Zou et al. (2019); Xie et al. (2020). The underlying intuition
is that the classifier will predict the correct labels for that data better than chance, and thus these
pseudo-labels can be used to expand the training set.

In practice, however, these pseudo-labels tend to be noisy. Thus, a common approach is to only
use the labels to which the model assigns the highest probability Lee et al. (2013). This process is
repeated, self-training on increasingly larger fractions of the unlabeled data until all of it is used. We
refer to each such training phase as an era.

Ensembles of diverse self-trained models. Similarly to our results in Table 3, we find that en-
sembles comprised of self-trained models with diverse feature priors outperform those that use the
same prior from different random initializations (see Figure 4 for a summary and Appendix B.3
for the full results). This demonstrates that, after self-training, these models continue to capture
complementary information about the input that can be leveraged to improve performance.

4.2 CO-TRAINING MODELS WITH DIFFERENT FEATURE PRIORS

Moving beyond self-training with a single feature prior, our goal in this section is to leverage mul-
tiple feature priors by jointly training them on the unlabeled data. This idea naturally fits into the
framework of co-training: a method used to learn from unlabeled data when inputs correspond to
multiple independent sets of features Blum & Mitchell (1998).

Concretely, we first train a model for each feature prior. Then, we collect the pseudo-labels on the
unlabeled data that were assigned the highest probability for each model—including duplicates with
potentially different labels—to form a new training set which we use for further training. Similarly
to the self-training case, we repeat this process over several eras, increasing the fraction of the
unlabeled dataset used at each era. Intuitively, this iterative process allows the models to bootstrap
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off of each other’s predictions, learning correlations that they might fail to learn from the labeled data
alone. At the end of this process, we are left with two models, one for each prior, which we combine
into a single classifier by training a standard model from scratch on the combined pseudo-labels. We
provide a more detailed explanation of the methodology in Appendix A.5.

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training
Standard 52.54 ± 0.81 63.65 ± 0.78 64.02 ± 0.79
Sobel 51.94 ± 0.90 63.05 ± 0.85 64.77 ± 0.81
BagNet 42.22 ± 0.81 53.92 ± 0.84 54.21 ± 0.81

Co-training

Standard 52.54 ± 0.83 65.06 ± 0.78 65.10 ± 0.79+Standard 51.82 ± 0.79 64.93 ± 0.83
Sobel 51.94 ± 0.82 71.88 ± 0.76 74.25 ± 0.75+BagNet 42.22 ± 0.80 73.91 ± 0.73

(a) CIFAR-10

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training
Standard 53.73 ± 0.94 59.92 ± 0.93 60.52 ± 0.91
Canny 56.29 ± 0.92 58.40 ± 0.89 62.19 ± 0.91
BagNet 52.04 ± 0.92 57.80 ± 0.99 61.69 ± 0.96

Co-training

Standard 53.73 ± 0.94 58.05 ± 0.95 61.16 ± 0.94+Standard 55.38 ± 0.92 60.44 ± 0.92
Canny 56.29 ± 0.94 62.21 ± 0.93 67.33 ± 0.89+BagNet 52.04 ± 1.00 66.74 ± 0.94

(b) STL-10

Table 5: Test accuracy of self-training and co-training methods on STL-10 and CIFAR-10. For
each model, we report the original accuracy when trained only labeled data (Column 3) as well as
the accuracy after being trained on pseudo-labeled data (Column 4). (Recall that, for the case of
co-training, pseudo-labeling is performed by combining the predictions of both models.) Finally,
we report the performance of a standard model trained from scratch on the resulting pseudo-labels
(Column 5). We provide 95% confidence intervals computed via bootstrap with 5000 iterations.

Co-training performance. We find that co-training with shape- and texture-based priors can sig-
nificantly improve the test accuracy of the final model compared to self-training with any of the
priors alone (Table 5). This is despite the fact that, when using self-training alone, the standard
model outperforms all other models (Column 4, Table 5). Moreover, co-training models with di-
verse priors improves upon simply combining them in an ensemble (Appendix B.3).

In Appendix B.5, we report the performance of co-training with every pair of priors. We find that
co-training with shape- and texture-based priors together (Canny + BagNet for STL-10 and Sobel
+ BagNet for CIFAR-10) outperform every other prior combination. Note that this is the case even
though, when only ensembling models with different priors (c.f Table 3 and Appendix B.3), Standard
+ Sobel is consistently the best performing pair for CIFAR-10. Overall, these results indicate that
the diversity of shape- and texture-biased models allows them to improve each other over training.

Additionally, we find that, even when training a single model on the pseudo-labels of another model,
prior diversity can still help. Specifically, we compare the performance of a standard model trained
from scratch using pseudo-labels from various self-trained models (Column 5, Table 5). In this
setting, using a self-trained shape- or texture-biased model for pseudo-labeling outperforms using a
self-trained standard model. This is despite the fact that, in isolation, the standard model has higher
accuracy than the shape- or texture-biased ones (Column 4, Table 5).
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Model alignment over co-training. To further explore the dynamics of co-training, we evaluate
how the correlation between model predictions evolves as the eras progress in Figure 6 (using the
prediction alignment measure of Table 2). We find that shape- and texture-biased models exhibit low
correlation at the start of co-training, but this correlation increases as co-training progresses. This is
in contrast to self-training each model on its own, where the correlation remains relatively low. It is
also worth noting that the correlation appears to plateau at a lower value when co-training models
with distinct feature priors as opposed to co-training two standard models.

Finally, we find that a standard model trained on the pseudo-labels of other models correlates well
with the models themselves (see Appendix B.7). Overall, these findings indicate that models trained
on each other’s pseudo-labels end up behaving more similarly.
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Figure 6: Correlation between the correct predictions of shape- and texture-biased models over
the course of co-training for STL-10 and CIFAR-10. For comparison, we also plot the correlation
between the predictions when the models induced by these priors are individually self-trained, as
well as the correlation of two standard models when co-trained together.

5 USING CO-TRAINING TO AVOID SPURIOUS CORRELATIONS

A major challenge when training models for real-world deployment is avoiding spurious correla-
tions: associations which are predictive on the training data but not valid for the actual task. Since
models are typically trained to maximize train accuracy, they are quite likely to rely on such spurious
correlations Gururangan et al. (2018); Beery et al. (2018); Geirhos et al. (2020); Xiao et al. (2020).

In this section, our goal is to leverage diverse feature priors to control the sensitivity of the training
process to such spurious correlations. Specifically, we will assume that the spurious correlation does
not hold on the unlabeled data (which is likely since unlabeled data can often be collected at a larger
scale). Without this assumption, the unlabeled contains no examples that could (potentially) con-
tradict the spurious correlation (we investigate the setting where the unlabeled data is also similarly
skewed in Appendix B.10). As we will see, if the problematic correlation is not easily captured by
one of the priors, the corresponding model generates pseudo-labels that are inconsistent with this
correlation, thus steering other models away from this correlation during co-training.

Setup. We study spurious correlations in two settings. First, we create a synthetic dataset by
tinting each image of the STL-10 labeled dataset in a class-specific way. This encourages models to
rely on the tint, as it is highly predictive on the training set. However, this prediction rule does not
generalize to the test set where this correlation is absent. Second, similar to Sagawa et al. (2020), we
consider a gender classification task based on CelebA (Liu et al., 2015) where hair color (“blond” vs.
“non-blond”) is predictive on the labeled data but not on the unlabeled and test data. While gender
and hair color are independent attributes on the unlabeled dataset, the labeled dataset consists only
of blond females and non-blond males. Similarly to the synthetic case, the labeled data encourages
a prediction rule based only on hair color. See Appendix A.1 for details.

Performance on datasets with spurious features. We find that, when trained only on the labeled
data (where the correlation is fully predictive), both the standard and BagNet models generalize
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Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 13.99 ± 0.66 17.56 ± 0.70 17.81 ± 0.74
Canny 55.95 ± 0.92 57.31 ± 0.89 57.81 ± 0.92
Sobel 55.11 ± 0.91 56.12 ± 0.92 57.16 ± 0.91
BagNet 13.10 ± 0.64 13.53 ± 0.62 14.65 ± 0.66

Co-training

Canny 55.95 ± 0.90 57.74 ± 0.90 57.85 ± 0.95+BagNet 13.10 ± 0.65 55.33 ± 0.92
Sobel 55.11 ± 0.95 57.71 ± 0.90 57.60 ± 0.94+BagNet 13.10 ± 0.62 54.61 ± 0.94

(a) Tinted STL-10

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 67.07 ± 0.58 71.57 ± 0.53 71.89 ± 0.53
Canny 80.90 ± 0.47 85.73 ± 0.40 86.55 ± 0.42
Sobel 82.94 ± 0.45 85.42 ± 0.43 84.96 ± 0.43
BagNet 69.35 ± 0.55 64.89 ± 0.59 66.15 ± 0.58

Co-training

Canny 80.90 ± 0.46 89.64 ± 0.36 91.99 ± 0.31+BagNet 69.35 ± 0.55 91.44 ± 0.33
Sobel 82.94 ± 0.44 90.64 ± 0.35 90.99 ± 0.34+BagNet 69.35 ± 0.57 88.72 ± 0.39

(b) CelebA

Table 7: Test accuracy of self-training and co-training on tinted STL-10 and CelebA, two datasets
with spurious features (table structure is identical Table 5). In both datasets, the spurious correlation
is more easily captured by the BagNet and Standard models over the shape-based ones. Neverthe-
less, when co-trained with a shaped-biased model, BagNets are able to significantly improve their
performance, indicating that they rely less on this spurious correlation. CI: 95% bootstrap.

poorly in comparison to the shape-biased models (see Table 7). This behavior is expected: the spu-
rious attribute in both datasets is color-related and hence mostly suppressed by the edge detection
algorithms used to train shape-based models. Even after self-training on the unlabeled data (where
the correlation is absent), the performance of the standard and BagNet models does not improve
significantly. Finally, simply ensembling self-trained models post hoc does not improve their per-
formance. Indeed as the texture-biased and standard models are significantly less accurate than the
shape-biased one, they end up lowering the overall accuracy of the ensemble (see Appendix B.8).

In contrast, when we co-train a texture-biased model with a shape-biased one, the texture-biased
model improves substantially. For instance, when co-trained with a Canny model, the BagNet model
improves over self-training by 42% on the tinted STL-10 dataset and 27% on the CelebA dataset.
This improvement can be attributed to the fact that the predictions of the shape-biased model are not
consistent with the spurious correlation on the unlabeled data. Hence, by being trained on pseudo-
labels from that model, the BagNet model is forced to rely on alternative, non-spurious features.

Moreover, particularly on CelebA, the shape-biased model also improves when co-trained with a
texture-biased model. This indicates that even though the texture-biased model relies on the spu-
rious correlation, it also captures non-spurious features that, through pseudo-labeling, improve the
performance of the shape-based model. In Appendix B.9, we find that these improvements are
concentrated on inputs where the spurious correlation does not hold.

6 ADDITIONAL RELATED WORK

In Section 2, we discussed the most relevant prior work on implicit or explicit feature priors. Here,
we discuss additional related work and how it connects to our approach.
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Shape-biased models. Several other methods aim to bias models towards shape-based features:
input stylization Geirhos et al. (2019); Somavarapu et al. (2020); Li et al. (2021), penalizing early
layer predictiveness Wang et al. (2019), jigsaw puzzles Carlucci et al. (2019); Asadi et al. (2019),
dropout Shi et al. (2020), or data augmentation Hermann et al. (2020). While, in our work, we
choose to suppress texture information via edge detection algorithms, any of these methods can be
substituted to generate the shape-based model for our analysis.

Avoiding spurious correlations. Other methods that can prevent models from learning spurious
correlations include: learning representations that are simultaneously optimal across domains (Ar-
jovsky et al., 2019), enforcing robustness to group shifts (Sagawa et al., 2020), and utilizing multiple
data points corresponding to a single physical entity (Heinze-Deml & Meinshausen, 2017). Similar
in spirit to our work, these methods aim to learn prediction rules that are supported by multiple
views of the data. However, we do not rely on annotations or multiple sources and instead impose
feature priors through the model architecture and input preprocessing.

Pseudo-labeling. Since the initial proposal of pseudo-labeling for neural networks Lee et al.
(2013), there has been a number of more sophisticated pseudo-labeling schemes aimed at improv-
ing the accuracy and diversity of the labels Iscen et al. (2019); Augustin & Hein (2020); Xie et al.
(2020); Rizve et al. (2021); Huang et al. (2021). In our work, we focus on the simplest scheme for
self-labeling—i.e., confidence based example selection. Nevertheless, most of these schemes can be
directly incorporated into our framework to potentially improve its overall performance.

A recent line of work explores self-training by analyzing it under different assumptions on the
data (Mobahi et al., 2020; Wei et al., 2021; Allen-Zhu & Li, 2020; Kumar et al., 2020). Closest
to our work, Chen et al. (2020b) show that self-training on unlabeled data can reduce reliance on
spurious correlations under certain assumptions. In contrast, we demonstrate that by leveraging
diverse feature priors, we can avoid spurious correlations even if a model heavily relies on them.

Consistency regularization. In parallel to pseudo-labeling, consistency regularization is another
canonical technique for leveraging unlabeled data. Here, a model is trained to be invariant to a set of
input transformations. These transformations might stem from data augmentations and architecture
stochasticity Laine & Aila (2017); Berthelot et al. (2019); Chen et al. (2020a); Sohn et al. (2020);
Prabhu et al. (2021) or using adversarial examples Miyato et al. (2018).

Co-training. One line of work studies co-training from a theoretical perspective (Nigam & Ghani,
2000; Balcan et al., 2005; Goldman & Zhou, 2000). Other work aims to improve co-training by
either expanding the settings where it can be applied (Chen et al., 2011) or by improving its sta-
bility (Ma et al., 2020; Zhang & Zhou, 2011). Finally, a third line of work applies co-training to
images. Since images cannot be separated into disjoint feature sets, one would apply co-training
by training multiple models Han et al. (2018), either regularized to be diverse through adversarial
examples Qiao et al. (2018) or each trained using a different method Yang et al. (2020). Our method
is complementary to these approaches as it relies on explicit feature priors to obtain different views.

7 CONCLUSION

In this work, we explored the benefits of combining feature priors with non-overlapping failure
modes. By capturing complementary perspectives on the data, models trained with diverse fea-
ture priors can offset each others mistakes when combined through methods such as ensembles.
Moreover, in the presence of unlabeled data, we can leverage prior diversity by jointly boostrapping
models with different priors through co-training. This allows the models to correct each other during
training, thus improving pseudo-labeling and controlling for correlations that do not generalize well.

We believe that our work is only the first step in exploring the design space of creating, manipulat-
ing, and combining feature priors to improve generalization. In particular, our framework is quite
flexible and allows for a number of different design choices, such as choosing other feature priors
(cf. Sections 2 and 6), using other methods for pseudo-label selection (e.g., using uncertainty esti-
mation (Lee et al., 2018; Rizve et al., 2021)), and combining pseudo-labels via different ensembling
methods. More broadly, we believe that exploring the synthesis of explicit feature priors in new
applications is an exciting avenue for further research.
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A EXPERIMENTAL DETAILS

A.1 DATASETS

For our first set of experiments (Section 4), we focus on a canonical setting where a small portion of
the training set if labeled and we have access to a pool of unlabeled data.

STL-10. The STL-10 Coates et al. (2011) dataset contains 5,000 training and 8,000 test images
of size 96×96 from 10 classes. We designate 1,000 of the 5,000 (20%) training examples to be the
labeled training set, 500 (10%) to be the validation set, and the rest are used as unlabeled data.

CIFAR-10. The CIFAR-10 Krizhevsky (2009) dataset contains 50,000 training and 8,000 test
images of size 32×32 from 10 classes. We designate 1,000 of the 50,000 (2%) training examples to
be the labeled training set, 5000 (10%) to be the validation set, and the rest as unlabeled data.

In both cases, we report the final performance on the standard test set of that dataset. We also create
two datasets that each contain a different spurious correlation.

Tinted STL-10. We reuse the STL-10 setup described above, but we add a class-specific tint to
each image in the (labeled) training set. Specifically, we hand-pick a different color for each of the
10 classes and then add this color to each of the pixels (ensuring that each RGB channel remains
within the valid range)—see Figure 8 for examples. This tint is only present in the labeled part of
the training set, the unlabeled and test parts of the dataset are left unaltered.

(a) Original

(b) Tinted

Figure 8: Tinted STL-10 images. The tint is class-specific and thus models can learn to predict
based mostly on that tint.

Biased CelebA. We consider the task of predicting gender in the CelebA Liu et al. (2015) dataset.
In order to create a biased training set, we choose a random sample of 500 non-blond males and 500
blond females. We then use a balanced unlabeled dataset consisting of 1,000 random samples for
each of: blond males, blond females, non-blond males, and non-blond females. We use the standard
CelebA test set which consists of 12.41% blond females, 48.92% non-blond females, 0.90% blond
males, and 37.77% non-blond males. (Note that a classifier predicting purely based on hair color
with have an accuracy of 50.18% on that test set.)

All of the datasets that we use are freely available for non-commercial research purposes. Moreover,
to the best of our knowledge, they do not contain offensive content or identifiable information (other
than publicly available celebrity photos).

A.2 MODEL ARCHITECTURES AND INPUT PREPROCESSING

For both the standard model and the models trained on images processed by edge detection algo-
rithm, we use a standard model architecture—namely, VGG16 Simonyan & Zisserman (2015) with
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the addition of batch normalization Ioffe & Szegedy (2015) (often referred to as VGG16-BN). We
describe the exact edge detection process as well as the architecture of the BagNet model (texture
prior) below. We visualize these priors in Figure 10.

Canny edge detection. Given an image, we first smooth it with a 5 pixel bilateral filter Tomasi
& Manduchi (1998), with filter σ in the coordinate and color space set to 75. After smoothing, the
image is converted to gray-scale. Finally, a Canny filter Canny (1986) is applied to the image, with
hysteresis thresholds 100 and 200, to extract the edges.

Sobel edge detection. Given an image, we first upsample it to 128×128 pixels. Then we convert
it to gray-scale and apply a Gaussian blur (kernel size=5, σ = 5). The image is then passed through
a Sobel filter Sobel & Feldman (1968) with a kernel size of 3 in both the horizontal and the vertical
direction to extract the image gradients.

BagNet. For our texture-biased model, we use a slimmed down version of the BagNet architecture
from Brendel & Bethge (2019). The goal of this architecture is to limit the receptive field of the
model, hence forcing it to make predictions based on local features. The exact architecture we used
is shown in Figure 9. Intuitively, the top half of the network—i.e., the green and blue blocks—
construct features on patches of size 20×20 for 96×96 images and 10×10 for 32×32 images. The
rest of the network consists only of 1×1 convolutions and max-pooling, hence not utilizing the
image’s spatial structure.

CBR, 1x1, 128 
CBR, 5x5, 128 

rf: 5, img size: 96

CBR, 1x1, 128 
MaxPool (2) 

rf: 6, img size 48

CBR, 1x1, 256 
CBR, 3x3, 256 

rf: 10, img size 48

CBR, 1x1, 256 
Max Pool (2) 

rf: 12, img size 24

CBR, 1x1, 512 
CBR, 3x3, 512 

rf 20: img size 24

CBR, 1x1, 1024 
Max Pool (2) 

CBR, 1x1, 1024 
Max Pool (2) 

CBR, 1x1, 1024 
Max Pool (6) 

rf:20, img size 1

CBR, 1x1, 512 
CBR, 1x1, 512 
CBR, 1x1, 256 
CBR, 1x1, 128 

Linear, 10

CBR, 1x1, 256 
CBR, 5x5, 256 

rf: 5, img size: 32

CBR, 1x1, 256 
MaxPool (2) 

rf: 6, img size 16

CBR, 1x1, 512 
CBR, 3x3, 512 

rf: 10, img size 16

CBR, 1x1, 1024 
Max Pool (2) 

CBR, 1x1, 1024 
Max Pool (2) 

CBR, 1x1, 1024 
Max Pool (4) 

rf: 10, img size 1

CBR, 1x1, 512 
CBR, 1x1, 512 
CBR, 1x1, 256 
CBR, 1x1, 128 

Linear, 10

Custom BagNet20 Custom BagNet10

Figure 9: The customized BagNet architecture used for training texture-biased models. The basic
building block consists of a convolutional layer, followed by batch normalization and finally a ReLU
non-linearity (denoted collectively as CBR).
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(a) Original (b) Sobel (c) Canny (d) BagNet

Figure 10: Further visualizations of the different feature priors we introduce. For each original
image (a), we visualize the output of both edge detection algorithms—Sobel (b) and Canny (c)—as
well as the receptive field of the BagNet model.
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A.3 TRAINING SETUP

A.3.1 BASIC TRAINING

We train all our models using stochastic gradient descent (SGD) with momentum (a coefficient of
0.9) and a decaying learning rate. We add weight decay regularization with a coefficient of 10−4.
In terms of data augmentation, we apply random cropping with a padding of 4 pixels, random
horizontal flips, and a random rotation of ±2 degrees. These transformations are applied after the
edge detection processing. We train all models with a batch size of 64 for 96×96-sized images and
128 for 32×32-sized images for a total of 300 epochs. All our experiments are performed using our
internal cluster which mainly consists of NVIDIA 1080 Ti GTX GPUs.

Hyperparameter tuning. To ensure a fair comparison across feature priors, we selected the hy-
perparameters for each dataset-prior pair separately, using the held-out validation set (separate from
the final test used for reporting performance). Specifically, we performed a grid search choosing the
learning rate (LR) from [0.1, 0.05, 0.02, 0.01, 0.005], the number of epochs between each learning
rate drop (K) from [50, 100, 300] and the factor with which the learning rate is multiplied (γ) from
[0.5, 1]. The parameters chosen are shown in Table 11. We found that all models achieved near-
optimal performance strictly within the range of each hyperparameters. Thus, we did not consider a
wider grid.

Dataset Prior LR γ K

STL-10

Standard 0.01 0.5 100
Canny 0.01 0.5 100
Sobel 0.005 0.5 100
BagNet 0.05 0.5 100

CIFAR-10

Standard 0.01 0.5 100
Canny 0.01 0.5 100
Sobel 0.01 0.5 100
BagNet 0.01 0.1 100

CelebA

Standard 0.005 0.5 50
Canny 0.005 0.1 100
Sobel 0.01 0.5 50
BagNet 0.02 0.5 100

Table 11: Hyperparameters chosen through grid search for each dataset-prior pair (we used the
STL-10 hyperparameters for the tinted STL-10 dataset). LR corresponds to the learning rate, γ to
the factor used to decay the learning rate at each drop, and K to the train epochs between each
learning rate drop.

A.4 ENSEMBLES

In order to leverage prior diversity, we ensemble models trained with (potentially) different priors.
We use the following ensembles:

1. Take Max: Predict based on the model assigning the highest probability on this example.

2. Average: Average the (softmax) output probabilities of the models, predict the class as-
signed the highest probability.

3. Rank: Each model ranks all test examples based on the probability assigned to their pre-
dicted labels. Then, for each example, we predict using the model which has a lower rank
on this example.

We then report the maximum of these ensemble methods in Table 3.
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A.5 SELF-TRAINING AND CO-TRAINING SCHEMES

In the setting that we are focusing on, we are provided with a labeled dataset X and an unlabeled
dataset U, where typically there is much more unlabeled data (|U| � |X|). We are then choosing a
set of (one or more) feature priors each of which corresponds to a different way of training a model
(e.g., using edge detection preprocessing).

General methodology. We start by training each of these models on the labeled dataset. Then, we
combine the predictions of these models to produce pseudo-labels for the unlabeled dataset. Finally,
we choose a fraction of the unlabeled data and train the models on that set using the produced
pseudo-labels (in additional to the original labeled set X). This process is repeated using increasing
fractions of the unlabeled dataset until, eventually, models are trained on its entirety. We refer to
each such phase as an era. We include an additional 5% of the unlabeled data per era, resulting
in a total of 20 eras. During each era, we use the training process described in Appendix A.3.1
without re-initializing the models (warm start). After completing this process, we train a standard
model from scratch using both the labeled set and resulting pseudo-labels. The methodology used
for choosing and combining pseudo-labels is described below for each scheme.

Self-training. Since we are only training one model, we only need to decide how to choose the
pseudo-labels to use for each era. We do this in the simplest way: at ear t, we pick the subset
Ut ⊆ U of examples that are assigned the highest probability on their predicted label. We attempt to
produce a class-balanced training set by applying this process separately on each class (as predicted
by the model). The pseudocode for the method is provided in Algorithm 1.

Algorithm 1: Self-training
Parameters: Number of eras T . Fraction added per era k.
Input : Labeled data X with n classes, unlabeled data U, model trained on X.
for era t ∈ 1...T do

forward-pass U through the model to create pseudo-labels
Ut = []
for each class c do

Select the kt|U|
n most confident examples from U predicted by the model as class c

Add those examples to Ut with class c
Re-train (warm start) the model on X ∪Ut until convergence

Train a standard model from scratch on X ∪UT.
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Standard co-training. Here, we train multiple models (in our experiments two) based on a com-
mon pool of pseudo-labeled examples in each era. In each era t, each model labels the unlabeled
dataset U. Then, for each class, we alternate between models, adding the next most confident exam-
ple predicted as that class for that model to Ut, until we reach a fixed number of unique examples
have been added for that class (5% of the size of the unlabeled dataset per era). Note that this process
allows both conflicts and duplicates: if multiple models are confident about a specific example, that
example may be added more than once (potentially with a different label each time). Finally, we
train each model (without re-initializing) on X∪Ut. The pseudocode for this method can be found
in Algorithm 2.

Algorithm 2: Standard Co-Training
Parameters: Number of eras T . Fraction added per era k.
Input : Labeled data X with n classes, unlabeled data U, models trained on X.
for era t ∈ 1...T do

forward-pass U through each model to create pseudo-labels
Ut = []
for each class c do

U
(c)
t = []

while the number of unique examples in U
(c)
t < kt|U|

n do
for each model m do

Add the next most confident example predicted by m as class c to U
(c)
t

Add U
(c)
t to Ut

Re-train (warm start) each model on X ∪Ut until convergence
Train a standard model from scratch on X ∪UT.

20



Under review as a conference paper at ICLR 2022

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENT ORGANIZATION

We now provide the full experimental results used to create the plots in the main body as well as
additional analysis. Specifically, in Appendix B.2 and B.3 we present the performance of individual
ensemble schemes for pre-trained and self-trained models respectively. Then, in Appendix B.5 we
present the performance of co-training for each combination of feature priors. In Appendix B.7 we
analyse the effect that co-training has on model similarity after training. Finally, in Appendix B.8 we
evaluate model ensembles on datasets with spurious correlations and in Appendix B.9 we breakdown
the performance of co-training on the skewed CelebA dataset according to different input attributes.

B.2 FULL PRE-TRAINED ENSEMBLE RESULTS

In Table 3, we reported the best ensemble method for each pair of models trained with different
priors on the labeled data. In Table 12, we report the full results over the individual ensembles.

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 52.54 ± 0.85 51.82 ± 0.85 53.98 ± 0.83 54.02 ± 0.85 53.98 ± 0.83 54.02 ± 0.82
Sobel + Sobel 51.94 ± 0.88 53.69 ± 0.86 54.62 ± 0.83 54.68 ± 0.86 54.61 ± 0.85 54.68 ± 0.83
Canny + Canny 45.48 ± 0.84 44.19 ± 0.88 46.46 ± 0.82 46.48 ± 0.86 46.70 ± 0.83 46.70 ± 0.79
BagNet + BagNet 42.22 ± 0.80 42.56 ± 0.83 43.32 ± 0.82 43.49 ± 0.82 43.33 ± 0.85 43.49 ± 0.84
Standard + Sobel 52.54 ± 0.79 51.94 ± 0.82 58.14 ± 0.82 58.21 ± 0.88 58.12 ± 0.82 58.21 ± 0.90
Standard + Canny 52.54 ± 0.87 45.48 ± 0.81 55.18 ± 0.82 55.49 ± 0.83 54.41 ± 0.81 55.49 ± 0.83
Standard + BagNet 52.54 ± 0.85 42.22 ± 0.80 52.89 ± 0.84 53.03 ± 0.89 50.69 ± 0.81 53.03 ± 0.85
Sobel + Canny 51.94 ± 0.82 45.48 ± 0.85 53.81 ± 0.84 53.95 ± 0.80 53.18 ± 0.91 53.95 ± 0.85
Sobel + BagNet 51.94 ± 0.86 42.22 ± 0.82 54.42 ± 0.84 55.14 ± 0.83 53.50 ± 0.82 55.14 ± 0.84
Canny + BagNet 45.48 ± 0.78 42.22 ± 0.79 49.95 ± 0.84 50.57 ± 0.82 49.64 ± 0.81 50.57 ± 0.84

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 53.73 ± 0.86 55.38 ± 1.00 56.95 ± 0.94 57.06 ± 0.91 56.94 ± 0.97 57.06 ± 0.91
Sobel + Sobel 55.49 ± 0.94 55.64 ± 0.98 56.71 ± 0.92 56.83 ± 0.90 56.66 ± 0.89 56.83 ± 0.94
Canny + Canny 56.29 ± 0.92 54.99 ± 0.96 58.04 ± 0.94 58.23 ± 0.94 57.95 ± 0.89 58.23 ± 0.93
BagNet + BagNet 52.04 ± 0.92 50.34 ± 0.90 53.40 ± 0.98 53.42 ± 0.91 53.29 ± 0.96 53.42 ± 0.98
Standard + Sobel 53.73 ± 0.94 55.49 ± 0.95 59.01 ± 0.90 59.08 ± 0.91 58.94 ± 0.96 59.08 ± 0.95
Standard + Canny 53.73 ± 1.00 56.29 ± 0.94 60.90 ± 0.94 60.96 ± 0.94 60.85 ± 0.87 60.96 ± 0.94
Standard + BagNet 53.73 ± 0.95 52.04 ± 0.90 56.99 ± 0.94 57.17 ± 0.92 57.04 ± 0.91 57.17 ± 0.94
Sobel + Canny 55.49 ± 0.91 56.29 ± 0.94 59.92 ± 0.95 60.02 ± 0.97 59.77 ± 0.91 60.02 ± 0.91
Sobel + BagNet 55.49 ± 0.94 52.04 ± 0.95 59.17 ± 0.94 59.76 ± 0.96 59.08 ± 0.89 59.76 ± 0.87
Canny + BagNet 56.29 ± 0.96 52.04 ± 0.95 61.09 ± 0.92 61.42 ± 0.94 60.68 ± 0.92 61.42 ± 0.93

(b) Ensemble Baselines for STL-10

Table 12: Full results for ensembles of pre-trained models.
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B.3 ENSEMBLING SELF-TRAINED MODELS

In Table 13, we report the best ensemble method for pairs of self-trained models with different
priors. In Table 14, we report the full results over the individual ensembles. We find that, similar
to the ensembles of models trained on the labeled data, models with diverse priors gain more from
ensembling. However, co-training models with diverse priors together still outperforms ensembling
self-trained models.

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 59.92 ± 0.95 59.34 ± 0.88 62.25 ± 0.93
Canny + Canny 58.40 ± 0.94 57.69 ± 0.94 60.38 ± 0.92
BagNet + BagNet 57.80 ± 0.96 58.11 ± 0.85 60.52 ± 0.90

Different
Standard + Canny 59.92 ± 0.90 58.40 ± 0.95 64.44 ± 0.90
Standard + BagNet 59.92 ± 0.94 57.80 ± 0.96 63.19 ± 0.87
Canny + BagNet 58.40 ± 0.94 57.80 ± 0.96 64.80 ± 0.91

(a) STL-10

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 63.65 ± 0.81 61.95 ± 0.82 64.85 ± 0.79
Sobel + Sobel 63.05 ± 0.81 66.01 ± 0.80 66.25 ± 0.82
BagNet + BagNet 53.92 ± 0.82 52.90 ± 0.91 55.00 ± 0.83

Different
Standard + Sobel 63.65 ± 0.81 63.05 ± 0.83 67.52 ± 0.77
Standard + BagNet 63.65 ± 0.81 53.92 ± 0.88 64.10 ± 0.79
Sobel + BagNet 63.05 ± 0.83 53.92 ± 0.89 65.68 ± 0.79

(b) CIFAR-10

Table 13: Ensemble performance when combining self-trained models with Standard, Canny, Sobel,
and BagNet priors. When two models of the same prior are ensembled, the models are trained with
different random initializations.
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Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 63.65 ± 0.81 61.95 ± 0.87 64.84 ± 0.77 64.85 ± 0.76 64.83 ± 0.83 64.85 ± 0.79
Sobel + Sobel 63.05 ± 0.87 66.01 ± 0.82 66.19 ± 0.81 66.25 ± 0.79 66.17 ± 0.81 66.25 ± 0.83
BagNet + BagNet 53.92 ± 0.87 52.90 ± 0.83 54.86 ± 0.87 55.00 ± 0.83 54.87 ± 0.82 55.00 ± 0.87
Standard + Sobel 63.65 ± 0.79 63.05 ± 0.80 67.42 ± 0.79 67.52 ± 0.79 67.38 ± 0.79 67.52 ± 0.77
Standard + Canny 63.65 ± 0.90 51.82 ± 0.88 63.70 ± 0.81 63.91 ± 0.81 63.02 ± 0.83 63.91 ± 0.82
Standard + BagNet 63.65 ± 0.81 53.92 ± 0.82 64.05 ± 0.85 64.10 ± 0.79 62.69 ± 0.80 64.10 ± 0.86
Sobel + Canny 63.05 ± 0.81 51.82 ± 0.80 61.43 ± 0.80 61.42 ± 0.80 60.66 ± 0.81 61.43 ± 0.83
Sobel + BagNet 63.05 ± 0.78 53.92 ± 0.83 65.45 ± 0.85 65.68 ± 0.82 64.65 ± 0.80 65.68 ± 0.82
Canny + BagNet 51.82 ± 0.81 53.92 ± 0.79 59.60 ± 0.81 59.79 ± 0.83 60.24 ± 0.82 60.24 ± 0.81

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 59.92 ± 0.92 59.34 ± 0.99 62.18 ± 0.92 62.25 ± 0.96 62.16 ± 0.88 62.25 ± 0.94
Canny + Canny 58.40 ± 0.95 57.69 ± 0.89 60.30 ± 0.95 60.36 ± 0.92 60.38 ± 0.91 60.38 ± 0.95
BagNet + BagNet 57.80 ± 0.89 58.11 ± 0.94 60.42 ± 0.90 60.46 ± 0.98 60.52 ± 0.93 60.52 ± 0.90
Standard + Sobel 59.92 ± 0.92 57.86 ± 0.91 62.49 ± 0.89 62.69 ± 0.91 62.66 ± 0.89 62.69 ± 0.94
Standard + Canny 59.92 ± 0.94 58.40 ± 0.95 64.29 ± 0.95 64.44 ± 0.89 64.34 ± 0.95 64.44 ± 0.95
Standard + BagNet 59.92 ± 0.89 57.80 ± 0.97 63.01 ± 0.93 63.10 ± 0.89 63.19 ± 0.88 63.19 ± 0.88
Sobel + Canny 57.86 ± 0.91 58.40 ± 0.93 62.20 ± 0.92 62.14 ± 0.92 62.22 ± 0.90 62.22 ± 0.91
Sobel + BagNet 57.86 ± 0.95 57.80 ± 0.95 62.24 ± 0.94 62.58 ± 0.90 63.52 ± 0.91 63.52 ± 0.88
Canny + BagNet 58.40 ± 0.93 57.80 ± 0.95 64.38 ± 0.89 64.64 ± 0.92 64.80 ± 0.90 64.80 ± 0.92

(b) Ensemble Baselines for STL-10

Table 14: Full results for ensembles of self-trained models.
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B.4 STACKED ENSEMBLING

Here we consider an ensembling technique that leverages a validation set. We implement stacking
(also called blending) Töscher et al. (2009); Sill et al. (2009), which takes in the outputs of the
member models as input, and then trains a second model to produce the final layer. Here, we take
the logits of each model in the ensemble, and train the secondary model using logistic regression on
the validation set for the dataset. We report accuracies of the ensemble on the test set below. We
again find that prior diversity is important for the performance of the ensemble.

Pre-trained Self-trained

Feature Priors Model 1 Model 2
Stacked

Ensemble
Model 1 Model 2

Stacked
Ensemble

Standard + Standard 52.54 ± 0.85 51.82 ± 0.85 54.13 ± 0.88 63.65 ± 0.81 61.95 ± 0.82 65.13 ± 0.82
Sobel + Sobel 51.94 ± 0.88 53.69 ± 0.86 54.46 ± 0.92 63.05 ± 0.81 66.01 ± 0.80 66.35 ± 0.80
BagNet + BagNet 42.22 ± 0.80 42.56 ± 0.83 44.28 ± 0.83 53.92 ± 0.82 52.90 ± 0.91 54.94 ± 0.84
Standard + Sobel 52.54 ± 0.79 51.94 ± 0.82 57.42 ± 0.84 63.65 ± 0.81 63.05 ± 0.83 67.01 ± 0.79
Standard + BagNet 52.54 ± 0.85 42.22 ± 0.80 53.65 ± 0.85 63.65 ± 0.81 53.92 ± 0.88 64.61 ± 0.81
Sobel + BagNet 51.94 ± 0.86 42.22 ± 0.82 55.75 ± 0.83 63.05 ± 0.83 53.92 ± 0.89 65.67 ± 0.82

Table 15: Performance of ensembling pre-trained and self-trained models with stacked ensembling
on CIFAR-10

Pre-trained Self-trained

Feature Priors Model 1 Model 2
Stacked

Ensemble
Model 1 Model 2

Stacked
Ensemble

Standard + Standard 53.73 ± 0.86 55.38 ± 1.00 56.01 ± 0.94 59.92 ± 0.95 59.34 ± 0.88 60.54 ± 0.91
Canny + Canny 56.29 ± 0.92 54.99 ± 0.96 57.70 ± 0.90 58.40 ± 0.94 57.69 ± 0.94 59.23 ± 0.99
BagNet + BagNet 52.04 ± 0.92 50.34 ± 0.90 52.35 ± 0.97 57.80 ± 0.96 58.11 ± 0.85 59.48 ± 0.98
Standard + Canny 53.73 ± 1.00 56.29 ± 0.94 59.24 ± 0.88 59.92 ± 0.90 58.40 ± 0.95 63.42 ± 0.89
Standard + BagNet 53.73 ± 0.95 52.04 ± 0.90 56.03 ± 0.98 59.92 ± 0.94 57.80 ± 0.96 62.59 ± 0.91
Canny + BagNet 56.29 ± 0.96 52.04 ± 0.95 59.98 ± 0.91 58.40 ± 0.94 57.80 ± 0.96 63.22 ± 0.94

Table 16: Performance of ensembling pre-trained and self-trained models with stacked ensembling
on STL-10
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B.5 SELF-TRAINING AND CO-TRAINING ON STL-10 AND CIFAR-10

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 52.54 ± 0.86 63.65 ± 0.76 64.02 ± 0.82
Canny 45.48 ± 0.90 51.82 ± 0.82 55.59 ± 0.80
Sobel 51.94 ± 0.88 63.05 ± 0.84 64.77 ± 0.80
BagNet 42.22 ± 0.82 53.92 ± 0.89 54.21 ± 0.85

Co-training

Standard 52.54 ± 0.91 65.06 ± 0.76 65.10 ± 0.84+Standard 51.82 ± 0.86 64.93 ± 0.80
Canny 45.48 ± 0.85 51.15 ± 0.79 55.74 ± 0.80+Canny 44.19 ± 0.82 51.65 ± 0.81
Sobel 51.94 ± 0.86 67.18 ± 0.80 68.47 ± 0.74+Sobel 53.69 ± 0.89 67.35 ± 0.77
Canny 45.48 ± 0.79 58.66 ± 0.81 65.34 ± 0.81+Sobel 51.94 ± 0.80 64.87 ± 0.79
Canny 45.48 ± 0.85 59.19 ± 0.85 67.59 ± 0.74+BagNet 42.22 ± 0.85 67.92 ± 0.79
Sobel 51.94 ± 0.81 71.88 ± 0.73 74.25 ± 0.74+BagNet 42.22 ± 0.82 73.91 ± 0.71
BagNet 42.22 ± 0.79 55.94 ± 0.83 56.05 ± 0.77+BagNet 42.56 ± 0.86 55.26 ± 0.88
Canny 45.48 ± 0.85 59.23 ± 0.81 67.21 ± 0.77+Standard 52.54 ± 0.87 66.92 ± 0.82
Sobel 51.94 ± 0.83 71.44 ± 0.76 73.83 ± 0.76+Standard 52.54 ± 0.85 73.59 ± 0.72
Standard 52.54 ± 0.88 66.67 ± 0.83 66.77 ± 0.75+BagNet 42.22 ± 0.80 67.12 ± 0.75

Table 17: Performance of self-training and co-training on CIFAR-10 for each prior combination.
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Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 53.73 ± 0.95 59.92 ± 0.91 60.52 ± 0.94
Canny 56.29 ± 0.96 58.40 ± 0.91 62.19 ± 0.92
Sobel 55.49 ± 0.96 57.86 ± 0.98 60.92 ± 0.89
BagNet 52.04 ± 0.96 57.80 ± 0.99 61.69 ± 0.95

Co-training

Standard 53.73 ± 0.95 58.05 ± 0.92 61.16 ± 0.95+Standard 55.38 ± 0.96 60.44 ± 0.95
Canny 56.29 ± 0.92 60.22 ± 0.91 63.24 ± 0.92+Canny 54.99 ± 0.94 59.56 ± 0.94
Sobel 55.49 ± 0.96 58.93 ± 0.91 60.68 ± 0.94+Sobel 55.64 ± 0.95 59.23 ± 0.90
Canny 56.29 ± 0.95 62.40 ± 0.99 65.53 ± 0.84+Sobel 55.49 ± 0.92 64.11 ± 0.91
Canny 56.29 ± 0.92 62.21 ± 0.89 67.33 ± 0.88+BagNet 52.04 ± 0.94 66.74 ± 0.87
Sobel 55.49 ± 0.92 62.72 ± 0.94 65.79 ± 0.94+BagNet 52.04 ± 1.00 65.44 ± 0.91
BagNet 52.04 ± 0.89 59.85 ± 0.89 60.84 ± 0.95+BagNet 50.34 ± 0.91 60.16 ± 0.89
Canny 56.29 ± 0.94 62.16 ± 0.92 65.67 ± 0.93+Standard 53.73 ± 0.92 64.22 ± 0.91
Sobel 55.49 ± 0.95 61.15 ± 0.89 63.08 ± 0.91+Standard 53.73 ± 0.92 61.74 ± 0.93
Standard 53.73 ± 0.94 61.99 ± 0.88 62.34 ± 0.89+BagNet 52.04 ± 0.91 62.31 ± 1.00

Table 18: Performance of self-training and co-training on STL-10 for each prior combination.
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B.6 CO-TRAINING WITH VARYING AMOUNTS OF LABELED DATA.

In Table 19, we study how the efficacy of combining diverse priors through cotraining changes as
the number of labeled examples increase for STL-10. As one might expect, when labeled data is
sparse, the feature priors learned by the models alone are relatively brittle: thus, leveraging diverse
priors against each other on unlabeled data improves generalization. As the number of labeled
examples increases, the models with single feature priors learn more reliable prediction rules that
can already generalize, so the additional benefit of combining feature priors diminishes. However,
even in settings with plentiful data, combining diverse feature priors can aid generalization if there
is a spurious correlation in the labeled data (see Section 5.)

Number of Labeled Examples Standard + Standard Canny + BagNet

1000 61.16 ± 0.94 67.33 ± 0.89
2000 68.24 ± 1.12 72.76 ± 1.08
3000 74.88 ± 0.97 75.76 ± 1.04
4000 78.85 ± 0.99 77.44 ± 1.00

Table 19: Performance of co-training approaches with different amounts of training data for STL-10.
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B.7 CORRELATION BETWEEN THE INDIVIDUAL FEATURE-BIASED MODELS AND THE FINAL
STANDARD MODEL

CIFAR-10 STL-10
Method Prior Before After Before After

Self-training

Standard 0.598 0.813 0.554 0.728
Canny 0.237 0.622 0.305 0.519
Sobel 0.259 0.76 0.385 0.621
BagNet 0.38 0.752 0.357 0.516

Co-training

Canny 0.237 0.595 0.305 0.496
+BagNet 0.38 0.664 0.357 0.538
Sobel 0.259 0.719 0.385 0.581
+BagNet 0.38 0.716 0.357 0.554

Table 20: Similarity between models before and after training on pseudo-labeled data. Our measure
of similarity is the (Pearson) correlation between which test examples are correctly predicted by
each model. In Columns 3 and 5 we report that notion of similarity between the pre-trained feature-
biased models and the pre-trained standard model (the numbers are reproduced from Table 2). Then,
in columns 4 and 6 we report the similarity between the feature-biased models at the end of self-
or co-training and the standard model trained on their (potentially combined) pseudo-labels. We
observe that through this process of training a standard model on the pseudo-labels of different
feature-biased models, the former behaves more similar to the latter.

B.8 ENSEMBLES FOR SPURIOUS DATASETS

In Table 21 (full table in Table 22), we ensemble the self-trained priors for the Tinted STL-10 dataset
and the CelebA dataset as in Section 5. Both of these datasets have a spurious correlation base on
color, which results in a weak Standard and BagNet model. As a result, the ensembles with the
Standard or BagNet models do not perform well on the test set. However, in Section 7, we find that
co-training in this setting allows the BagNet model to improve when jointly trained with a shape
model, thus boosting the final performance.

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 17.56 ± 0.73 57.31 ± 0.96 44.31 ± 0.90
Standard + Sobel 17.56 ± 0.71 56.12 ± 0.90 46.06 ± 0.95
Standard + BagNet 17.56 ± 0.73 13.53 ± 0.66 16.64 ± 0.66
Canny + BagNet 57.31 ± 0.96 13.53 ± 0.64 48.30 ± 0.89
Sobel + BagNet 56.12 ± 0.91 13.53 ± 0.69 49.05 ± 0.98

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 71.57 ± 0.53 85.73 ± 0.40 84.05 ± 0.42
Standard + Sobel 71.57 ± 0.55 85.42 ± 0.43 82.10 ± 0.45
Standard + BagNet 71.57 ± 0.53 64.89 ± 0.56 69.66 ± 0.55
Canny + BagNet 85.73 ± 0.42 64.89 ± 0.56 84.06 ± 0.45
Sobel + BagNet 85.42 ± 0.43 64.89 ± 0.57 82.89 ± 0.44

(b) CelebA

Table 21: Performance of ensembles consisting of models trained with different priors.
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Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny 17.56 ± 0.70 57.31 ± 0.95 44.31 ± 0.98 43.48 ± 0.94 42.12 ± 0.95 44.31 ± 0.94
Standard + Sobel 17.56 ± 0.66 56.12 ± 0.98 46.06 ± 0.94 44.71 ± 0.91 39.39 ± 0.95 46.06 ± 0.99
Standard + BagNet 17.56 ± 0.71 13.53 ± 0.64 16.59 ± 0.69 16.64 ± 0.71 16.14 ± 0.74 16.64 ± 0.66
Canny + BagNet 57.31 ± 0.91 13.53 ± 0.62 48.09 ± 0.96 48.30 ± 1.01 39.92 ± 0.92 48.30 ± 0.95
Sobel + BagNet 56.12 ± 0.94 13.53 ± 0.64 49.00 ± 0.95 49.05 ± 0.95 37.67 ± 0.91 49.05 ± 0.93

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny 71.57 ± 0.53 85.73 ± 0.43 83.96 ± 0.44 84.05 ± 0.43 84.00 ± 0.46 84.05 ± 0.43
Standard + Sobel 71.57 ± 0.57 85.42 ± 0.41 82.06 ± 0.45 82.10 ± 0.45 78.01 ± 0.51 82.10 ± 0.49
Standard + BagNet 71.57 ± 0.56 64.89 ± 0.56 69.66 ± 0.54 69.66 ± 0.54 68.01 ± 0.58 69.66 ± 0.54
Canny + BagNet 85.73 ± 0.42 64.89 ± 0.57 84.06 ± 0.44 84.06 ± 0.45 72.79 ± 0.51 84.06 ± 0.44
Sobel + BagNet 85.42 ± 0.39 64.89 ± 0.55 82.89 ± 0.46 82.89 ± 0.46 71.65 ± 0.57 82.89 ± 0.43

(b) CelebA

Table 22: Performance of individual ensembles on datasets with spurious correlations.
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B.9 BREAKDOWN OF TEST ACCURACY FOR CO-TRAINING ON CELEBA

Method Prior(s)
Female
Blond

(N=2480)

Female
Not Blond
(N=9767)

Male
Blond

(N=180)

Male
Not Blond
(N=7535)

Self-training

Standard 97.78 ± 0.52 47.06 ± 0.83 55.56 ± 6.11 95.94 ± 0.37
Canny 94.44 ± 0.81 77.27 ± 0.69 78.33 ± 5.00 96.19 ± 0.36
Sobel 95.97 ± 0.60 73.43 ± 0.78 70.56 ± 5.56 96.63 ± 0.37

BagNet 97.26 ± 0.60 35.44 ± 0.80 41.67 ± 6.67 96.30 ± 0.40

Co-training
Canny

+BagNet 96.94 ± 0.56 86.69 ± 0.56 79.44 ± 5.00 97.53 ± 0.31

Sobel
+BagNet 96.81 ± 0.56 84.41 ± 0.63 79.44 ± 5.00 97.89 ± 0.29

Table 23: Accuracy of predicting gender on different subpopulations of the CelebA dataset. We
show the accuracy of standard models trained on the pseudo-labels produced by different self- or
co-training schemes. Recall that in the training set all females are blond and all males are non-blond
(while the unlabeled dataset is balanced). It is thus interesting to consider where this correlation is
reversed. We observe that, in these cases, both the standard and BagNet models perform quite poorly,
even after being self-trained on the unlabeled dataset where this correlation is absent. At the same
time, co-training steers the models away from this correlation, resulting in improved performance.
95% confidence intervals computed via bootstrap are shown.
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B.10 WHAT IF THE UNLABELED DATA ALSO CONTAINED THE SPURIOUS CORRELATION?

In Section 5, we assume that the unlabeled data does not contain the spurious correlation present
in the labeled data. This is often the case when unlabeled data can be collected through a more
diverse process than labeled data (for example, by scraping the web large scales or by passively
collecting data during deployment). This assumption is important: in order to successfully steer
models away from the spurious correlation during co-training, the process needs to surface examples
which contradict the spurious correlation. However, if the unlabeled data is also heavily skewed,
such examples might be rare or non-existent.

What happens if the unlabeled data is as heavily skewed as the labeled data? We return the setting
of a spurious association between hair color and gender in CelebA. However, unlike in Section 5,
we use an unlabeled dataset that also perfectly correlates hair color and gender – it contains 2000
non-blond males and 2000 blond females. The unlabeled data thus has the same distribution as the
labeled data, and contains no examples that reject the spurious correlation (blond males or non-blond
females).

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training
Standard 67.07 ± 0.57 73.32 ± 0.55 69.13 ± 0.58
Canny 80.90 ± 0.49 80.47 ± 0.48 76.61 ± 0.52
BagNet 69.35 ± 0.55 69.21 ± 0.53 71.34 ± 0.54

Co-training Canny 80.90 ± 0.49 82.17 ± 0.47 78.53 ± 0.49+BagNet 69.35 ± 0.55 76.52 ± 0.50

Table 24: Performance of Self-Training and Co-Training techniques when the unlabeled data also
contains a complete skew toward hair color (as in the labeled data). 95% confidence intervals com-
puted via bootstrap are shown.

Self-Training: Since the unlabeled data follows the spurious correlation between hair color and
gender, the standard and BagNet models almost perfectly pseudo-label the unlabeled data. Thus,
they are simply increasing the number of examples in the training dataset but maintaining the same
overall distribution. Self-training thus does not change the accuracy for models with these priors
significantly. In contrast, in the setting in Section 5, there were examples in the unlabeled data
which did not align with the spurious correlation (blond males and non-blond females). Since they
relied mostly on hair color, the standard and BagNet models actively mislabeled these examples (i.e,
by labeling a blond male as female). Training on these erroneous pseudo-labels actively suppressed
any features that were not hair color, causing the standard and Bagnet models to perform worse after
self-training.

Co-Training: In contrast, when performing co-training with the Canny and BagNet priors, the
Canny model (which cannot detect hair color) will make mistakes on the unlabeled dataset. These
mistakes help are inconsistent with a reliance on hair color: due to this regularization, the BagNet’s
accuracy improves from 69.35% to 76.52%. Overall, though the gain is not as significant as the
setting with a balanced unlabeled dataset, the Canny + BagNet co-trained model can mitigate the
pitfalls of the BagNet’s reliance on hair color and outperform even the canny self-trained model.
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