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Abstract

We study the design of adaptive, sequential experi-
ments for unbiased average treatment effect (ATE)
estimation in the design-based potential outcomes
setting. Our goal is to develop adaptive designs
offering sublinear Neyman regret, meaning their
efficiency must approach that of the hindsight-
optimal nonadaptive design. Recent work (Dai
et al., 2023) introduced ClipOGD, the first method
achieving Õ(

√
T ) expected Neyman regret under

mild conditions. In this work, we propose adap-
tive designs with substantially stronger Neyman
regret guarantees. In particular, we modify Cli-
pOGD to obtain anytime Õ(log T ) Neyman regret
under natural boundedness assumptions. Further,
in the setting where experimental units have pre-
treatment covariates, we introduce and study a
class of contextual “multigroup” Neyman regret
guarantees: Given any set of possibly overlapping
groups based on the covariates, the adaptive de-
sign outperforms each group’s best non-adaptive
designs. In particular, we develop a contextual
adaptive design with Õ(

√
T ) anytime multigroup

Neyman regret. We empirically validate the pro-
posed designs through an array of experiments.

1. Introduction
Randomized control trials (RCTs) play a central role in a
variety of settings where causal effects need to be accurately
measured, spanning healthcare and epidemiology, policy-
making, the social sciences, econometrics, e-commerce, and
beyond. In the classic potential outcomes framework (Ney-
man, 1923; Rubin, 1974), a central estimand is the average
treatment effect (ATE) – the average individual causal effect
across experimental units. To obtain precise estimates of
the ATE, we generally seek estimators that are unbiased and
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have low variance.

In many cases, RCTs are run sequentially: Experimental
units arrive one by one, and each unit is assigned to treat-
ment or control adaptively, based on previous outcomes or
auxiliary information. The data-driven nature and flexibil-
ity of these experiments suggest that such adaptive trials
can achieve substantial efficiency gains over standard fixed
designs, as shown in domains ranging from political sci-
ence (Offer-Westort et al., 2021; Blackwell et al., 2022)
to medicine (Chow & Chang, 2008; Villar et al., 2015;
FDA, 2019). However, so far adaptive experiments have re-
ceived limited attention (Hu & Rosenberger, 2006) and have
been rarely used in practice due to concerns that adaptiv-
ity could invalidate standard statistical guarantees (van der
Laan, 2008). Indeed, classic solutions for improving es-
timator efficiency in the batch setting, such as Neyman
allocation (Neyman, 1992), can be nontrivial to extend to
the sequential setting.

Recently, a growing body of work (Hahn et al., 2011; Kato
et al., 2020; Li & Owen, 2024; Dai et al., 2023; Cook et al.,
2023) has made progress on this front by introducing multi-
stage adaptive designs that estimate the ATE via inverse-
probability weighting (IPW)-type estimators with adaptively
adjusted propensity scores. 1 Our work contributes to this
literature by developing novel adaptive sequential designs
for IPW-based ATE estimation with efficiency guarantees.
Crucially, our methods –unlike most existing work– are de-
veloped within the finite-population setting (Wager, 2024),
where the ATE is defined as a deterministic function of the
observed population rather than a superpopulation parame-
ter. This distinction ensures robustness to treatment effect
heterogeneity and temporal data drift, challenges that can
undermine conventional superpopulation-based designs.

Our Contributions We focus on the design of adaptive
RCTs to estimate the ATE as efficiently as the best-in-
hindsight IPW design from some benchmark class, up to

Georgy Noarov conducted part of this work as an intern at
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conflicting, objective than estimation efficiency (Zhang et al., 2020;
2021; Hadad et al., 2021; Xu et al., 2016; 2024).
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error terms. Specifically, we aim to minimize the Neyman
regret (Kato et al., 2020; Dai et al., 2023) – a measure
comparing the variance of our adaptive estimator to that of
the variance-minimizing nonadaptive Bernoulli trial where
units are treated with some fixed probability. Currently, to
our knowledge Dai et al. (2023)’s ClipOGD method is the
only adaptive design achieving sublinear Neyman regret
in the finite-population setting. This method guarantees
Õ(
√
T ) expected regret for any T -unit trial under moment-

bounded potential outcomes. However, two important ques-
tions arise:

I. Can we develop designs with better regret rates? Dai
et al. (2023) conjectured that Õ(

√
T ) is the minimax

Neyman rate.

II. Can we develop context-aware designs that use pre-
treatment covariates to improve efficiency?

In this work, we answer both these questions affirmatively:

Contribution I: Exponentially Improved Noncontextual
Neyman Regret Bound. We show that, under a natural
strengthening of Dai et al. (2023)’s assumptions on the
outcomes, we can modify ClipOGD to attain an anytime-
valid Neyman regret bound of Õ(log T ).2 To achieve this
speedup, we leverage the strong convexity of the Neyman
objective under our stricter lower-bounding assumption on
the outcomes, which as we show leads to near-logarithmic
regret via techniques introduced by (Hazan et al., 2007).
Moreover, it can be shown that even under the weaker out-
come lower bound assumption of Dai et al. (2023), our
adaptive design can be tweaked to have the asymptotic ef-
ficiency of (1 + ϵ)V ∗ + Õ

(
log T
T

)
for any ϵ > 0, where

V ∗ denotes the optimal nonadaptive design variance; the
interpretation is that any (1 + ϵ)-multiplicative approxima-
tion to the optimal variance can be attained at this fast rate.
We validate the greater efficiency of our proposed design
against that of ClipOGD through a suite of experiments on
synthetic and real-world data.

Contribution II: Adaptive Designs with Contextual Ney-
man Regret Guarantees. We next develop a novel adap-
tive design MGATE (Multi-Group ATE) that leverages pre-
treatment covariates to improve efficiency relative to the
non-contextual setting. In a nutshell, given an arbitrary
predefined finite collection G ⊆ 2X of contextual groups
defined by the covariates (e.g., demographics), we propose
a no G-multigroup-Neyman-regret adaptive design that ob-
tains sublinear regret simultaneously on all subsequences of

2In fact, a lower bounding construction in the very recent work
of Li et al. (2024) shows that the best possible Neyman regret
is Ω(1) even in the more relaxed superpopulation setting — and
so our method achieves a best-of-both-worlds guarantee, up to
logarithmic factors.

experimental units corresponding to the groups in G. Criti-
cally, we also allow for overlapping groups, i.e., units can
simultaneously belong to multiple groups. A key challenge
here is to balance the treatment probabilities in a way that
balances the efficiency of the ATEs estimates across groups.
Our proposed design leverages a variation of the “sleeping
experts” approach (Blum & Lykouris, 2020; Acharya et al.,
2024) used in the online learning literature (Lee et al., 2022;
Deng et al., 2024), that deals with the limited feedback and
the fact that the observed objective values do not live in
an a-priori bounded range. The method achieves Õ(

√
T )

multigroup Neyman regret. We also empirically validate its
performance.

Our multigroup guarantees can be interpreted through the
lens of group ATE (GATE) estimation (Chernozhukov et al.,
2017; Semenova & Chernozhukov, 2021; Zimmert & Lech-
ner, 2019). GATE occupies a middle ground between ATE,
which measures the average effect over the entire sequence,
and CATE (conditional ATE), which measures the ATE
conditionally on each covariate vector. Existing works on
GATE, however, are mainly focused on learning data-driven
disjoint groups to improve overall ATE estimation. In con-
trast, our objective is to simultaneously ensure efficient
GATE inference for any family of arbitrarily overlapping
groups. This is related in motivation (though distinct in
technique) to the recent work of (Kern et al., 2024) who use
“multiaccuracy” to make CATE inference robust to certain
kinds of distribution shift.

We expect that such multigroup efficiency guarantees can be
broadly useful, and hope future work will study multigroup
adaptive designs beyond the sequential finite-population
setting that we focus on in this paper.

For an additional discussion of related work, including rele-
vant independent work in the superpopulation setting, please
see Appendix A.

Organization In Section 2, we introduce our general set-
ting and objectives. In Section 3, we focus on the (vanilla)
non-contextual setting, and present and analyze our adaptive
design ClipOGDSC , which achieves near-logarithmic Ney-
man regret. We prove the main regret bound in Theorem 3.2
and demonstrate further guarantees on the adaptive design.

In Section 4, we introduce the notion of multigroup Ney-
man regret, and present our multigroup adaptive design
MGATE (Algorithm 2), which achieves Õ(

√
T ) multigroup

Neyman regret as shown in Theorem 4.2. Furthermore, in
Appendix D we provide a general multigroup design (Algo-
rithm 7) that significantly generalizes MGATE. In Section 5,
we compare the empirical performance of our adaptive de-
signs to the Dai et al. (2023) ClipOGD design on an array
of real-world and synthetic sequential experimental design
tasks.
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2. Preliminaries
Setting We work in the design-based, sequential variant of
the potential outcomes setting (Neyman, 1923; Rubin, 1974;
Imbens & Rubin, 2015). A finite number of experimental
units in the population arrive one by one at rounds t ∈ N+.
Each unit has two associated fixed potential outcomes, only
one of which can be observed: treatment outcome yt(1) ∈ R
and control outcome yt(0) ∈ R.

In the basic setting, the observed outcome is the only infor-
mation the experimenter receives about the units. A richer
setting is one where before choosing treatment or control
for unit t, the Experimenter is given access to pre-treatment
covariate xt ∈ X , where X is a feature space of arbitrary
nature (e.g. X may be a finite-dimensional vector space). In
this paper, we will study both settings: the noncontextual
setting in Section 3 and the contextual one in Section 4.

Adaptive Design In a randomized controlled trial (RCT),
the experimenter (randomly) decides whether to apply treat-
ment or control to each unit, and observes the corresponding
outcome but not the counterfactual. These randomized de-
cisions for all units constitute the experimental design. We
study adaptive experimental designs, described as follows.

T -round Adaptive Design Protocol

Potential outcomes {(yt(1), yt(0))}t∈[T ] are gener-
ated upfront (but not shown to Experimenter).
Then, sequentially for each unit t = 1 . . . T :

1. (Contextual setting only) Experimenter ob-
serves pre-treatment covariate xt ∈ X .

2. Experimenter sets treatment probability pt.

3. Experimenter flips bias-pt coin to obtain real-
ized treatment decision: Zt ∼ Bernoulli(pt).

4. Experimenter observes outcome Yt = yt(Zt).

By contrast, the standard nonadaptive (Bernoulli) trial fixes
upfront the same treatment probability pt = p for all units
t, and uses it throughout the experiment without any adjust-
ments.

Our estimand of interest is the average treatment effect
(ATE), which corresponds to the difference between the
average outcomes of treatment and control units in the pop-
ulation. We provide the formal definition below.

Definition 2.1 (ATE). The average treatment effect for po-
tential outcomes {(yt(1), yt(0))}Tt=1 is:

τT =
1

T

T∑
t=1

yt(1)− yt(0).

A classical estimator of the ATE is the adaptive IPW esti-
mator (Horvitz & Thompson, 1952), which employs inverse
probability weighting. We define it next.

Definition 2.2 (Adaptive IPW Estimator). The adaptive
IPW estimator of the ATE τT is:

τ̂T =
1

T

∑
t

Yt

(
Zt

pt
− 1− Zt

1− pt

)
.

This estimator is unbiased, meaning that for any outcomes
{(yt(0), yt(1)}Tt=1 and any adaptive design (pt)

T
t=1 with all

pt ∈ (0, 1), we have E[τ̂T ] = τT . Thus, no matter what
adaptive design Experimenter employs, the induced adap-
tive IPW estimator will always be unbiased. However, the
estimator’s variance will vary based on the design, making
some designs more efficient than others.

Objective: Minimize Variance of ATE Estimator Our
main goal will be to construct adaptive designs that asymp-
totically approach the variance of the best-in-hindsight ex-
perimental design in some benchmark class. A basic class of
designs is that of nonadaptive designs, parameterized by the
choice of fixed propensity p ∈ (0, 1). Formally, we measure
the Neyman regret (Kato et al., 2020; Dai et al., 2023) of
any proposed adaptive design as the (time-rescaled) differ-
ence between its IPW estimator variance and the variance of
same estimator under the most efficient nonadaptive design.

To define Neyman regret, note (see Proposition 2.2 of Dai
et al. (2023)) that Var[τ̂T ] =

∑T
t=1 E [ft(pt)] /T

2 − kATE,
where ft(p) := yt(1)

2/p+ yt(0)
2/(1− p) is the variance

of the propensity-p IPW estimator at unit t, and kATE =∑T
t=1(yt(1) − yt(0))

2/T 2 is a design-independent term.
We are now ready to provide the formal definition.

Definition 2.3 (Neyman Regret (Kato et al., 2020; Dai et al.,
2023)). The Neyman regret of adaptive design (pt)

T
t=1 on a

potential outcomes sequence {(yt(1), yt(0))}Tt=1 is:3

RegVarT = max
p∗
T∈(0,1)

T∑
t=1

ft(pt)− ft(p
∗
T ).

Thus the variance of the IPW estimator for a design (pt)
T
t=1

differs from that of the best nonadaptive design by exactly
RegVarT /T

2, justifying the Neyman regret definition.

Our goal will be to develop adaptive designs with sublinear
expected Neyman regret: E [RegVarT ] = o(T ), or equiv-
alently with vanishing average expected Neyman regret:
E [RegVarT /T ] = o(1). We call any design that satisfies
this a no-regret design.

3“Var” stands for variance, as Neyman regret captures the
rescaled estimator variance associated with the design.
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3. Efficient Non-Contextual ATE Estimation
We now present our first contribution: An adaptive de-
sign that achieves Õ(log T ) Neyman regret under natural
assumptions on the outcomes. We begin by discussing
the Õ(

√
T )-Neyman regret design ClipOGD of Dai et al.

(2023), and then modifying it to better exploit the strongly
convex structure of the Neyman objective. Next, we discuss
further guarantees on our method’s performance.

3.1. Adaptive Design with Logarithmic Neyman Regret

Meta-Design: ClipOGD The first finite-population de-
sign that achieves sublinear Neyman regret, ClipOGD, was
introduced by Dai et al. (2023). Leveraging the fact that the
per-round Neyman objectives ft(p) are convex in p, it per-
forms a modified version of online gradient descent (OGD)
on ft to adaptively modify the treatment probabilities pt.

The complicating factor is that the gradients of ft diverge
when p is close to 0 or 1: standard OGD analyses typically
require explicit or implicit bounds on the gradients of the
objective (Hazan et al., 2016), so vanilla projected OGD on
the entire interval [0, 1] will not work without modification.
ClipOGD solves this problem by clipping the OGD iterates
{pt}t∈N+ to be within a nested family {[δt, 1− δt]}t∈N+ of
subintervals of (0, 1), which gradually expand to cover the
whole interval in the infinite time limit (i.e., limt→∞ δt = 0).
The expansion is needed to handle cases when p∗T is close
to the boundary. In view of this, we let δt = 1/h(t) for all
t ∈ N+, where h : N+ → R>0 is some strictly increasing
function with limt→∞ h(t) = ∞. We call δt the clipping
rate, h the clipping function, and refer to any adaptive de-
sign (pt)t∈N+

that satisfies 1/h(t) ≤ pt ≤ 1 − 1/h(t) for
all t as h-clipped. Algorithm 1 gives the pseudocode for
ClipOGD. Here, ΠS(x) denotes the projection of x onto
interval S ⊂ (0, 1).

Algorithm 1 ClipOGD (Dai et al., 2023)
Initialize p0 ← 0.5 and g0 ← 0
for units t = 1, 2, . . . do

Set step size ηt > 0 and clipping rate δt ∈ (0, 0.5)
Set treatment probability pt ← Π

[δt,1−δt]
(pt−1−ηt ·gt−1)

Set treatment decision Zt ∼ Bernoulli(pt)
Observe outcome Yt ← yt(Zt)

Set gradient estimate: gt ← Y 2
t

(
−Zt

p3
t
+ 1−Zt

(1−pt)3

)
end for

ClipOGD0: A Õ(
√
T ) Regret Design In their paper, Dai

et al. (2023) analyzed and provided guarantees for a specific
instantiation of ClipOGD, where ηt =

√
1/T and δt = 0.5 ·

t−1/α where α =
√
5 log T for all t = 1, . . . , T . For clarity,

we call this design ClipOGD0. Their main result proves that

ClipOGD0 has Õ(
√
T ) Neyman regret under a moment as-

sumption on the outcomes: 0 < c ≤ ( 1
T

∑T
t=1 yi(t)

2)1/2

and ( 1
T

∑T
t=1 yi(t)

4)1/4 ≤ C for i ∈ {0, 1} and some
c ≤ C. However, the learning rate of ClipOGD0 has sev-
eral drawbacks. First, it is too conservative, precluding
improvement in Neyman regret beyond Õ(

√
T ). Second,

it is horizon-dependent, making it necessary to know (or
commit to) T upfront. Finally, it is constant rather than
decreasing, so the design probabilities will jump around
(rather than gradually converge) during any given run of
ClipOGD0.

ClipOGDSC : Our Õ(log T ) Regret Design We now
present an adaptive design called ClipOGDSC that addresses
these issues: It uses the learning rate ηt ∼ 1/t that, under
Assumption 3.1, (1) achieves an exponentially improved
Neyman regret bound, (2) is anytime, i.e., does not require
advance knowledge of the time horizon T , and (3) its propen-
sities converge in L2 to the hindsight-best propensity. Our
Neyman regret bound relies on a stricter assumption than
the one made by Dai et al. (2023)’s, which we detail below.

Assumption 3.1 (Bounds on Potential Outcomes).
There exist positive constants c, C such that outcomes
{(yt(0), yt(1))}t≥1 satisfy for all time horizons T :

max
t≥1
{|yt(0)|, |yt(1)|} ≤ C,

c ≤ min
t≥1

(
yt(0)

2 + yt(1)
2
)1/2

c ≤ min
i∈{0,1}

(
1

T

T∑
t=1

yt(i)
2

)1/2

.

Next, let hinv be the inverse function of h, defined via the
identity hinv ◦ h = h ◦ hinv = Id. Our main result is the
following Neyman regret bound in terms of T , h, and hinv.

Theorem 3.2 (Stronger Neyman Regret Bound). Suppose
Assumption 3.1 is satisfied with C, c the corresponding
constants. Let h : N+ → R>0 be strictly increasing. Let
ClipOGDSC be the adaptive design that instantiates Algo-
rithm 1 with learning rate ηt = 1/(2c2t) and clipping
rate δt = 1/h(t). Then, ClipOGDSC attains the following
anytime-valid Neyman regret bound:

E[RegVarT ] = O
(
(h(T ))

5 ·log(T )+(hinv (1+C/c))
2
)
.

(1)

Since h can be chosen to grow arbitrarily slowly, we can
get: E[RegVarT ] = Õ(log T ).

The proof is contained in Appendix B. It exploits the strong
convexity of the Neyman objectives ft enabled by Assump-
tion 3.1 (hence the ‘SC’ in ClipOGDSC ), by applying
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the techniques for analyzing strongly convex gradient de-
scent (Hazan et al., 2007; Rakhlin et al., 2012).

Compared to the analysis in Dai et al. (2023), we make
explicit the dependence of the regret of ClipOGD on the
clipping rate. Note that the choice of h is flexible in the
sense that any h(t) = o(t0.2−ε) for any ε > 0 will result
in a regret bound that is sublinear in T . From a practical
standpoint, however, picking h may be a nontrivial affair,
as a slower-growing h will have a faster-growing inverse
mapping hinv. While the hinv-dependent term in the regret
bound is constant in T , it can still be large in the constants
of the problem. Intuitively, if C/c is large, the optimal
propensity p∗T may be near the boundary and convergence
may be slow. We hope future work will further explore the
‘well-conditioning’ properties of Neyman regret.

3.2. Convergence of Adaptive Treatment Probabilities

We now investigate the trajectory of treatment probabilities
(pt)t≥1 produced by ClipOGDSC. Ideally, these propensities
would converge to the optimal probabilities (p∗T )T≥1 as T
grows large. By tweaking the arguments used in establishing
our Neyman regret bounds of Theorem 3.2, we can obtain
convergence in squared means (and hence in probability).
The next claims formalize this result. In particular, we first
establish a quantitative bound on the L2 convergence of our
propensities to the benchmark ones. (See Appendix B for
the derivation.)
Lemma 3.3 (L2-Deviation from Benchmark Design). The
deviation of the design probabilities of ClipOGDSC from the
best nonadaptive design probabilities is L2-bounded for all
T as:

E
[
(pT − p∗T )

2
]
≤ −Θ

(
E[RegVarT ]

T

)
+O

(
(h(T ))2 log T

T

)
.

This implies the following L2-convergence result, subject to
an assumption on the Neyman regret of ClipOGDSC which
asks for it to not consistently outperform the optimal non-
adaptive design.

Corollary 3.4 (L2-Convergence to Benchmark Design). As-
sume ClipOGDSC has asymptotically nonnegative Neyman
regret: lim infT→∞

E[RegVarT ]
T ≥ 0. Then, its propensities

(pt)t≥1 will converge to the benchmark nonadaptive propen-
sities (p∗T )T≥1 in squared means: E

[
(pT − p∗T )

2
]
→ 0 as

T →∞.

In the special case of sequences of potential outcomes that
are (i.i.d.) samples from a superpopulation, the regret non-
negativity holds automatically, implying that our adaptive
design will necessarily converge to the best nonadaptive
design without further assumptions.

Corollary 3.5 (Convergence in the Superpopulation Set-
ting). Suppose that the outcomes are drawn i.i.d. from a

superpopulation: (yt(0), yt(1)) ∼ D for all t ≥ 1 and
any fixed distribution D. Then, ClipOGDSC guarantees that
E
[
(pT − p∗)2

]
→ 0 at the rate Õ(log T/T ), and thus in

particular that pT → p∗ in probability.

Proof. In the superpopulation setting, any adaptive design
will have nonnegative Neyman regret: ft(p) = f(p) =

E[y(1)2]/p + E[y(0)2]/(1 − p) has the same optimum
p∗ =

(
1 + E[(yt(0))2]/E[(yt(1))2]

)−1
for all units t, so

E[RegVarT ] = E
[∑T

t=1 (f(pt)− f(p∗))
]
≥ 0.

3.3. Valid CIs for the Adaptive IPW Estimator

We now turn to the issue of endowing the IPW estimator τ̂T
induced by our adaptive design with asymptotically valid
confidence intervals (CIs). In general, the existence and
construction of valid CIs for τ̂T delicately depends on the
choice of the design. However, we will now see that a
construction of Dai et al. (2023) lends conservative CIs to
all h-clipped adaptive designs with vanishing regret.

To formalize this result, we make a standard assump-
tion: that the outcome sequences are not perfectly anti-
correlated. To state it, define “empirical second raw mo-
ments” of the two outcome populations as: ST (i)

2 :=
1
T

∑T
t=1(yt(i))

2 for i ∈ {0, 1}.
Assumption 3.6 (Correlation of Outcome Populations (Dai
et al., 2023)). For a constant cρ > 0 and all T ≥ 1, the
running correlation ρT of the sequences {(yt(0), yt(1))}t≥1

satisfies:

ρT ≥ −1 + cρ, where ρT :=
1
T

∑T
t=1 yt(1)yt(0)

ST (1)ST (0)
.

Theorem 3.7 (CIs for Clipped Adaptive Designs). Suppose
the potential outcomes satisfy Assumption 3.1 and Assump-
tion 3.6. Consider any h-clipped adaptive design (pt)t≥1

with vanishing Neyman regret: limT→∞ RegVarT = 0. Let
VB = 4

T ST (1)ST (0) be a conservative upper bound on the
hindsight-best nonadaptive variance. Then, letting (Zt)t≥1

be the treatment decisions, the estimator of Dai et al. (2023)
given by:

V̂B =
4

T

√√√√( 1

T

T∑
t=1

(yt(1))2
Zt

pt

)(
1

T

T∑
t=1

(yt(0))2
1− Zt

1− pt

)

converges to VB in probability at rate Op

(√
h(T )/T

)
.

Consequently, V̂B can be used to construct asymptotically
valid Chebyshev-type confidence intervals for the adaptive
IPW estimator τ̂T under any adaptive design satisfying the
above conditions. Specifically, for any confidence level
α ∈ (0, 1]:

lim inf
T→∞

Pr
[
τT ∈

[
τ̂T ± α−1/2

√
V̂B
]]
≥ 1− α.
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The proof for Theorem 3.7 is outlined in Appendix C.

4. Efficient Multigroup ATE Estimation
The Contextual Setting Section 3 covers non-contextual
adaptive designs that only observe outcomes. A contextual
adaptive design, however, also observes pre-treatment co-
variates xt ∈ X at the start of each round, which can help
predict potential outcomes (yt(0), yt(1)). We can leverage
this extra information to improve treatment assignments and
outcome estimation.

A Multigroup Formulation We frame the contextual set-
ting in a multigroup way. Before the experiment, we have
a finite set of context-defined groups G = {G1, G2, . . .},
each G ⊆ X , where X is the feature space. Any covariate
vector xt can belong to none, one, or more groups. The
group definition is dependent on the specifics of the task,
e.g., in a medical application the features xt could represent
a patient’s health history.

Our objective in a multigroup setting, informally, is to de-
sign an adaptive scheme that offers ATE estimation effi-
ciency guarantees (such as Neyman regret guarantees) not
only on average over the entire sequence of units but also on
each subsequence that results from conditioning on units be-
longing to a group G, simultaneously for all groups G ∈ G.

4.1. A New Metric: Multigroup Neyman Regret

We introduce multigroup Neyman regret as a strengthening
of (vanilla) Neyman regret. Specifically, given any contex-
tual group collection G, G-multigroup Neyman regret is the
maximum Neyman regret that an adaptive design achieves
over any group G in the collection. We formalize it next.

Definition 4.1 (G-Multigroup Neyman Regret). Given any
group collection G ⊆ 2X , the group-conditional Neyman
regret of an adaptive design A on any group G ∈ G is
defined as:

RegVarT (A;G)

:= E

[
max

p∗∈(0,1)

T∑
t=1

1[xt ∈ G] (ft(pt)− ft(p
∗))

]
.

The G-multigroup Neyman regret of A is then defined as its
maximum group-conditional Neyman regret over all groups
G ∈ G:

RegVarMGT (A;G) := max
G∈G

RegVarT (A;G).

4.2. Achieving Õ(
√
T ) Multigroup Neyman Regret

We now present in Algorithm 2 an adaptive design which
we call MGATE (for Multi-Group ATE) and achieves the

Õ(
√
T ) multigroup Neyman regret bound.

Algorithm 2 AMGATE : Multigroup Adaptive Design
Receive clipping function h : N+ → R>0

Receive number of groups d = |G|
Set group counts n0 ← 0d

Initialize p1 ← 0.5 · 1d // At round t,
pt = (pt,G)G∈G will contain group
propensities
Initialize w′

1 ← 1d, L0 ← 0d, q0 ← 0 //
Parameters used to update group
weights
for t = 1, 2, . . . do

Receive covariate vector xt ∈ X , determine the set of
active groups Gt = {G : xt ∈ G,G ∈ G}
Cast Gt as indicator vector at ∈ {0, 1}d (at,G =
1 ⇐⇒ G ∈ Gt). Set group counts: nt←nt−1 + at

Normalize group weights: wt,eff ← at⊙w′
t

⟨at,w′
t⟩
// Set

inactive group weights to 0
Set effective treatment probability: pt,eff ←
⟨wt,eff , pt⟩ // Aggregate group
propensities
Set treatment decision: Zt ∼ Bernoulli(pt,eff)
Receive realized outcome: Yt ← yt(Zt)
for active groups G ∈ Gt do
/* Update group propensities using
group-specific ClipOGDSC -type
update */
Set estimated Neyman gradient as:
g̃t,G ← Y 2

t

(
Zt

pt,eff
+ 1−Zt

1−pt,eff

)(
− Zt

p2
t,G

+ 1−Zt

(1−pt,G)2

)
Update pt+1,G ← Π

[δt,G,1−δt,G]
(pt,G − ηt,G · g̃t,G),

where ηt,G ← 1
2c2·nt,G

and δt,G ← 1
h(nt,G)

/* Get losses used to update group
weights */
Set estimated Neyman loss as:
ℓ̃t,G ← Y 2

t

(
Zt

pt,eff
+ 1−Zt

1−pt,eff

)(
Zt

pt,G
+ 1−Zt

1−pt,G

)
end for
for inactive groups G ̸∈ Gt do

Set pt+1,G ← pt,G and ℓ̃t,G ← 0 // Inactive
groups are not updated

end for
/* Update group weights: Higher
cumulative group losses → larger
weights */

Set surrogate loss: ℓt ← at ⊙
(
ℓ̃t − ⟨ℓ̃t, wt,eff⟩

)
Set Lt ← Lt−1 + ℓt and qt ← qt−1 + ∥ℓt∥22
Update group weights: w′

t+1 ← max
{

0d,− 1√
qt
Lt

}
end for

Additional Notation: We use ⊙ to denote elementwise
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vector multiplication, and let 1d, 0d be d-dimensional all-
ones and all-zeros vectors. Also note that the update of
w′

t+1 takes an elementwise maximum of the vectors, and
assumes that 0/0 = 0 to account for the corner case qt = 0.

Algorithm Description: Given a collection G of d groups,
in each round MGATE reads off the currently active groups
Gt ⊆ G, i.e., those groups that contain xt (G ∋ xt), and
then proceeds to determine the new treatment probabil-
ity by aggregating the “best-guess” probabilities for all
active groups G ∈ Gt determined based on the past per-
formance of those groups. To do so, MGATE maintains
group weights w′

t,G and group-specific propensities pt,G.
It comes up with a single effective treatment probability:
pt,eff ∼

∑
G∈Gt

w′
t,Gpt,G in each round by reweighing the

group specific propensities of the active groups. This ef-
fective treatment probability should simultaneously satisfy
the interests of all active groups. The treatment decision Zt

is then generated according to pt,eff . After the outcome is
revealed, MGATE updates all group weights, as well as the
propensities of groups that were active.

We can show that MGATE achieves the following multi-
group Neyman regret guarantee. We note that MGATE is
anytime valid, meaning that just like our noncontextual de-
sign ClipOGDSC , it does not require advance knowledge of
the time horizon T .

Theorem 4.2 (Guarantees for Algorithm 2). Fix any context
space X and finite group family G ⊆ 2X . Suppose4 Assump-
tion 3.1 holds with lower bound constant c > 0. Then, for
any clipping function h, the expected multigroup regret of
Algorithm 2 will be bounded as:

RegVarMGT (A;G) = O
(√
|G| · (h(T ))5 ·

√
T
)
.

4.3. Technical Overview

The full analysis of Algorithm 2 is contained in Appendix D.
It builds on several tools recently developed in the online
learning literature, which are formally introduced in Ap-
pendix D.1, and we briefly survey them here. The central
tool is the sleeping experts algorithmic framework (Blum &
Lykouris, 2020), which has recently been shown to be able
to combine the wisdom of multiple sub-learners (or experts)
into a meta-algorithm with performance on par with each
of the sub-learners. The key difference from typical online
aggregation schemes is that each sub-learner is allowed to
be inactive (asleep) on some rounds, on which it does not

4By replacing the ClipOGDSC propensity updates in MGATE
with ClipOGD0-style updates, we can straightforwardly obtain a
multigroup design which only relies on the assumptions of Dai
et al. (2023) while keeping Õ(

√
T ) multigroup Neyman regret.

This follows from the generality of our multigroup meta-design
presented in Appendix D, which can use a wide variety “ClipOGD-
style” updates while still obtaining Õ(

√
T ) multigroup regret.

give advice to the meta-algorithm. At a high level, to obtain
multigroup Neyman regret, we would thus like to use a sleep-
ing experts algorithm to aggregate propensities suggested by
|G| = d copies of ClipOGDSC that are respectively active
on all groups G ∈ G; the aggregated design would then per-
form comparably to each copy of ClipOGDSC on its group
G. Then, since that copy of ClipOGDSC will have no regret
on group G, neither will the aggregated design.

Challenges and Solutions Past work on sleeping experts
does not fully address the combination of difficulties present
in our setting: (1) stochastic (realized outcome) feedback
rather than full-information (both outcomes) feedback; (2)
the need to perform clipping of the iterates (propensities)
to explicitly restrict them from approaching the feasible
set’s boundary too fast; and (3) the fact that the gradient
feedback magnitude grows unboundedly as T →∞, even
with clipping.

While there are a limited number of “sleeping bandits” algo-
rithms in the literature (e.g., see Nguyen & Mehta (2024))
that address the stochastic feedback, they don’t naturally
extend to cover both of the latter two issues. Therefore,
we design from scratch a new sleeping experts algorithm
tailored to all of these challenges. It employs scale-free
updates of the group weights w′

t so as to control the loss and
gradient feedback magnitudes; we achieve this by deploying
an instance of the seminal scale-free SOLO FTRL algorithm
of Orabona & Pál (2018) and endowing it with sleeping ex-
perts regret guarantees via a recent reduction of Orabona
(2024). To clip the effective probability magnitudes, our
algorithm aggregates over the suggested per-group probabil-
ities via convex combinations rather than via sampling from
their mixture. Finally, to ensure that the per-group propen-
sity updates remain valid under stochastic gradient feedback
and despite the aggregator using a different propensity than
the suggested per-group one, MGATE uses a combination of
unbiased first-order (g̃t,G) and zeroth-order (ℓ̃t,G) per-group
feedback estimators, which depend on both pt,eff and pt,G.

A Generalized Meta-Design Our analysis in Appendix D
generalizes beyond MGATE (Algorithm 2). Indeed, our
approach more generally allows the use of any scale-free
sleeping experts algorithm to update group weights, and
any ClipOGD-style (see Appendix D.3) no-regret adaptive
designs to update the groupwise treatment probabilities.
Thus, we more generally provide a meta-design that reduces
multigroup designs to a broad class of non-contextual, no-
regret designs. This generalized meta-design is given as
Algorithm 7 in Appendix D.4, and Theorem D.6 contains
its regret bound, of which Theorem 4.2 above is a corollary.
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Figure 1. Treatment probabilities and Neyman regret of ClipOGD on Gaussian data for different noise (σ) levels. As σ increases,
ClipOGDSC converges more slowly. Its regret remains high, and the treatment probabilities do not settle within the observed time horizon
(T ≈ 50,000). The black line in the treatment probabilities indicates the Neyman optimal probability.

5. Experimental Results
We first present the results for the non-contextual setting
and then turn to the analysis of the performance for the
contextual algorithm. Our code is available at the following
link: https://github.com/amazon-science/adaptive-abtester.

5.1. Non-Contextual Experiments

Tasks We compare our method ClipOGDSC with
ClipOGD0 (Dai et al., 2023) on multiple tasks. Below,
we show two key datasets (one synthetic and one real-
world) used in our experiments, with full details in Ap-
pendix E. The first is a synthetic dataset is generated as
follows: yt(i)

iid∼ N (µi, σ
2) for t = 1, . . . , T and i = 0, 1

with µ0 = 1 and µ1 = 2. We vary σi ∈ R+ to showcase
where our method succeeds and where it struggles. The
second dataset comes from Egypt’s largest microfinance
organization (Groh & McKenzie, 2016), covering 2,961
clients. Here, the treatment is a new insurance product, and
the outcome is how much individuals invest in machinery.
Following Dai et al. (2023), we fill missing values with
Gaussian noise and resample each unit five times to increase
the population size. We also present experiments on the
ASOS Digital Experiments Dataset (Liu et al., 2021), and
on question-answering tasks for large language models, in-
cluding BigBench (Srivastava et al., 2023), in the Appendix.

Experimental Setup In our simulation, each unit is ran-
domly assigned to treatment or control using the treatment
probability from our method or ClipOGD0. We repeat this
process 10,000 times, generating many different treatment-

control paths. We then measure the Neyman regret by aver-
aging the regret across these probabilities obtained at each
time step.

Hyperparameter Choices Throughout the experiments,
we use the following hyperparameters. For our method, we
set ηt = 2/t and δt = 1/h(t), where the clipping function
is h(t) = exp

(
(log(t+ 2))1/4

)
. For ClipOGD0, we follow

Dai et al. (2023) with a constant learning rate ηt = 1/
√
T

and clipping rate δt = 0.5 · t−1/
√
5 log T .

Results We analyze three synthetic data settings where
we vary σ as {0.1, 1, 10}. As σ increases, the ratio C/c
also grows, so by Equation (1), we expect slower conver-
gence of our algorithm. We set T = 50,000. Figure 1
shows the Neyman regret across these settings, matching
our theoretical expectations: when σ = 0.1, the regret of
ClipOGDSC drops to 0 quickly, but for larger σ, the regret
remains high and converges later. The regret of ClipOGD0

instead keeps increasing with time. Nonetheless, in line
with Corollary 3.4, Figure 1 also shows that our method’s
adaptively chosen propensities ultimately converge to the
Neyman optimal probability in all three cases. By contrast,
the propensities of ClipOGD0 only converge when σ = 10,
which happens to match the initial probability of 0.5. Next,
we turn to examine the results on the microfinance data.
Figure 2 illustrates the treatment probabilities and Neyman
regret for both algorithms. On average, each design as-
signs probabilities near the Neyman probability. However,
those of ClipOGD0 exhibit higher variance compared to
ClipOGDSC. This translates into greater Neyman regret in
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Figure 2. Treatment probabilities and Neyman regret of Cli-
pOGD on microfinance data for T ≈ 15,000 rounds.
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Figure 3. Group-conditional Neyman regret of ClipOGD and
MGATE on microfinance data. MGATE produces the lowest
G-multigroup Neyman regret as desired, and in this case dominates
the non-contextual ClipOGD variants for each group, including
the noncontextual group G0 = X .

later rounds, which never converges to 0. The probabilities
assigned by our method, instead, converge to the Neyman
probability, yielding vanishing average Neyman regret.

5.2. Contextual Experiments

Here we present our contextual results using Algorithm 2
over the previously-described datasets. To standardize
the contextual groups in each experiment, we design
simple, synthetic post-hoc groups by scoring each sample
as st = 1/

(
1 + yt(0)

2

yt(1)2+ϵ

)
(the optimal Neyman sam-

pling probability for the single sample). Our groups
are computed by checking whether sample t belongs
to some predetermined quantile of the score function
G0 = X , G1 = 1

[
F−1(st) ≤ 2

3

]
, G2 = 1

[
1
3 ≤ F−1(st)

]
.

We note that these groups are overlapping and informative
since G1 is guaranteed to have lower or equal optimal
sampling probability than G2.

We stress that these groups are included for illustrative
purposes and rely on information that would be unobserv-
able in a real ATE experiment, but nonetheless showcase
the potential for high-quality contextual information for
multi-group ATE. Figure 3 shows the Neyman regret for
ClipOGD0, ClipOGDSC, and MGATE on the microfinance
dataset on each group; our MGATE method achieves the
lowest group-conditional regret out of all the methods, ef-
fectively minimizing the G-multigroup Neyman regret, and
thereby validating our theoretical results. Additional con-
textual experiments are provided in the Appendix.

6. Conclusion
In this paper, we have studied adaptive designs for unbiased
ATE estimation with finite-population guarantees. We intro-
duced a modification of the ClipOGD algorithm that prov-
ably yields vanishing Neyman regret, achieving an anytime-
valid Õ(log T ) Neyman regret, improving upon previous
Õ(
√
T ) guarantees. We also extend our framework to incor-

porate contextual information by introducing a multigroup
formulation. Our proposed multigroup adaptive design en-
sures Õ(

√
T ) regret for each predefined group, enabling

efficiency improvements for subgroup ATE estimation. Ex-
perimental results corroborate these findings.

Overall, these results suggest that adaptive experimentation
can achieve strong finite-population efficiency guarantees,
offering practical advantages for a wide range of applica-
tions. Future work could explore extensions to other experi-
mental designs and further reductions in regret rates.
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Organization
The Appendix is organized as follows.

• Appendix A contains a discussion of further related work.

• Appendix B contains proofs of our noncontextual method’s convergence.

• Appendix C discusses confidence interval guarantees for adaptive IPW estimators induced by our design.

• Appendix D presents the general multigroup adaptive design framework and proves its efficiency guarantees.

• Appendix E describes additional empirical results.

A. Additional Related Work
Some early work on adaptive designs The efficient adaptive design problem considered in this work (and in (Dai et al.,
2023) and other prior works) has its roots in problems studied, or mentioned, in the classical works of Neyman, Wald, and
Robbins. The seminal work of Wald (1992) is the historical underpinning of much of the research in sequential experimental
design, particularly on the hypothesis testing side. Our work shares the broad motivation of increasing statistical efficiency
through adaptivity, though we do not explicitly deal with some of the notions that Wald focused on such as early stopping.

As described in (Dai et al., 2023), it was Robbins (1952) who explicitly posed the open problem of constructing efficient
adaptive sampling schemes, though he stopped short of formally reasoning about precise benchmarks such as Neyman regret
that such designs must optimize; and while within the subsequent decades, adaptive designs have gained traction e.g. in the
survey sampling context Solomon & Zacks (1970), but yet again they did not explicitly optimize for efficiency metrics like
the ones we study.

Improved Neyman Regret in the Superpopulation Setting Independently and concurrently to our work, complementary
progress has been made on the problem of (noncontextual) adaptive ATE estimation with low Neyman regret. Neopane et al.
(2024) modify ClipOGD to obtain logarithmic Neyman regret guarantees in the substantially more benign superpopulation
regime. Neopane et al. (2025), in an environment in which outcomes are generated from some joint distribution with
time-stationary means and variances, design a Neyman regret minimization algorithm based on a UCB-like optimistic policy
tracking approach, with both theoretical guarantees and strong empirical performance.

Covariate Balancing In relation to our multigroup setting, it is interesting to discuss recent progress on what is known
as covariate balancing techniques. For instance, studies such as Harshaw et al. (2024), Rao & Zhang (2024), which are
conducted in the non-adaptive setting, share with our work the objective of optimizing the estimation variance — and offer a
principled way to exploit covariates to do so, by assuming the mapping between covariates and outcomes is linear (and
trading off robustness and covariate balance). Thus, a potential future work direction can involve porting the covariate
balancing insights over to the adaptive setting, possibly leading to a new perspective on group-aware optimal-variance
adaptive designs that could complement our multigroup approach.

B. Non-Contextual Setting: Proof of Theorem 3.2 and of Lemma 3.3
B.1. Neyman Regret Analysis for ClipOGDSC : Proof of Theorem 3.2

We establish Theorem 3.2 via a sequence of claims.
Claim 1 (Optimal Probability Bounds; Lemma C.2 of Dai et al. (2023)). The optimal fixed probability p∗T for any time
horizon T satisfies, under Assumption 3.1, the following inequality, defining the constant A = 1 + C/c ≥ 2:

1

A
≤ p∗T ≤ 1− 1

A
.

Claim 2 (How Quickly Optimal Probability Enters Admissible Region). Under Assumption 3.1, let A = 1 + C/c ≥ 2.
Then, for any time horizon T , the optimal probability p∗T will satisfy:

t ≥ t∗ =⇒ p∗T ∈ [δt, 1− δt], where t∗ := hinv(A).
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Proof. With 1 in hand, we have that as soon as δt ≤ 1/A, the optimal probability p∗T (for any T ) is guaranteed to be in the
admissible interval [δt, 1 − δt]. This is equivalent to requiring h(t) ≥ A, which by definition of hinv and by the strictly
increasing nature of h is equivalent to t ≥ hinv(A).

Claim 3 (Gradient Raw Moment Bounds). Under Assumption 3.1, for every t ≥ 1 we have the following bounds in
expectation wrt. the design’s randomness:

E[|gt|] ≤ 2C2h(t)2, E[g2t ] ≤ 2C4h(t)5.

Proof. The bounds follow as shown in Lemma C.5 of Dai et al. (2023), by just expanding out the first and second raw
absolute moment of the gradient estimator defined above; we will get E[|gt|] ∼ δ−2

t (yt(1)
2 + yt(0)

2), and E[g2t ] ∼
δ−5
t (yt(1)

4 + yt(0)
4), so the statement follows from our Assumption 3.1, or from Dai et al. (2023)’s assumption on the

boundedness of the second and fourth moments of the two populations.

Claim 4 (Strong Convexity of Objective). For any round t ≥ 1, and for any p, p′ ∈ (0, 1), the objective function will satisfy:

ft(p)− ft(p
′) ≤ f ′(p) · (p− p′)− c2(p− p′)2.

Proof. To show this, it suffices to establish 2c2-strong convexity of ft(p) =
yt(0)

2

p + yt(1)
2

1−p , and we will do so by verifying

that f ′′(p) ≥ 2c2 for all p ∈ (0, 1). Indeed, note that f ′′(p) = 2
(

yt(0)
2

p3 + yt(1)
2

(1−p)3

)
≥ 2(yt(0)

2 + yt(1)
2) ≥ 2c2 since

p ∈ (0, 1) and by definition of c in Assumption 3.1.

Claim 5. For any t ≥ 1, any setting of ηt > 0, δt = 1/h(t), and for any point p∗ ∈ {p∗t }t≥1, we have in expectation over
the randomness of the design:

E[ft(pt)− ft(p
∗)] ≤

(
1

2ηt
− c2

)
E[(pt − p∗)2]− 1

2ηt
E[(pt+1 − p∗)2] + ηt · (Ch(t))5

+2 · 1[t ≤ t∗] ·
(

1

ηt · h(t)
+ (Ch(t))2

)
.

Proof. By Claim 4 applied to p = pt and p′ = p∗, we have ft(pt)− ft(p
∗) ≤ f ′(pt) · (pt − p∗)− c2(pt − p∗)2. Now, we

can bound the first term on the right-hand side as follows.

First, start with the inequality: |pt+1− p∗| ≤ |pt− ηtgt− p∗|+ δt · 1[p∗ ̸∈ [δt, 1− δt]], which follows by Lemma C.1 in Dai
et al. (2023). By Claim 2, we have that 1[p∗ ̸∈ [δt, 1− δt]] = 0 for all t ≥ t∗, implying that 1[p∗ ̸∈ [δt, 1− δt]] ≤ 1[t ≤ t∗].
Thus, we have |pt+1 − p∗| ≤ |pt − ηtgt − p∗|+ δt · 1[t ≤ t∗]. Squaring this inequality, we arrive, after rearranging terms
and using the triangle inequality, at

(pt+1 − p∗)2 ≤ (pt − p∗)2 + η2t g
2
t − 2ηtgt(pt − p∗) + 4 · 1[t ≤ t∗] · ηt · δt

(
1

ηt
+
|gt|
2

)
.

Rearranging terms once again, we get:

2ηtgt(pt − p∗) ≤ (pt − p∗)2 + η2t g
2
t − (pt+1 − p∗)2 + 4 · 1[t ≤ t∗] · ηt · δt

(
1

ηt
+
|gt|
2

)
.

Dividing this by ηt > 0, we get:

2gt(pt − p∗) ≤ 1

ηt

(
(pt − p∗)2 − (pt+1 − p∗)2

)
+ ηtg

2
t + 4 · 1[t ≤ t∗] · δt

(
1

ηt
+
|gt|
2

)
.

Noting that E[gt|Ft] = f ′
t(pt) by definition of gt, as well as using the bounds on the expected gradient moments from

Claim 3, we can take the expectation of the last inequality to obtain:

2f ′
t(pt)(pt − p∗) ≤ 1

ηt

(
(pt − p∗)2 − E[(pt+1 − p∗)2|Ft]

)
+ ηt E[g2t |Ft] + 4 · 1[t ≤ t∗] · δt

(
1

ηt
+

E[|gt||Ft]

2

)
14
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≤ 1

ηt

(
(pt − p∗)2 − E[(pt+1 − p∗)2|Ft]

)
+ ηt · 2C4h(t)5 + 4 · 1[t ≤ t∗] · δt

(
1

ηt
+ C2h(t)2

)
.

Returning to the strong convexity-induced inequality above, we thus have:

ft(pt)− ft(p
∗) ≤ f ′(pt) · (pt − p∗)− c2(pt − p∗)2

≤ 1

2ηt

(
(pt − p∗)2 − E[(pt+1 − p∗)2|Ft]

)
+ ηt · C4h(t)5

+ 2 · 1[t ≤ t∗] · δt
(

1

ηt
+ C2h(t)2

)
− c2(pt − p∗)2

=

(
1

2ηt
− c2

)
(pt − p∗)2 − 1

2ηt
E[(pt+1 − p∗)2|Ft] + ηt · C4h(t)5

+ 2 · 1[t ≤ t∗] · δt ·
(

1

ηt
+ C2h(t)2

)
.

Now, taking expectation again, now with respect to the randomness up through Ft, we obtain the statement of this claim.

Claim 6 (Convergence Bound). For any time horizon T , and any p∗ ∈ {p∗t }t≥1, we have:

T∑
t=1

E[ft(pt)− ft(p
∗)]

≤ −c2(T + 1)E[(pT+1 − p∗)2] +
C5

2c2
h(T )5(log(T + 1) + 1) + 2C2

(
1 +

C

c

)2

hinv

(
1 +

C

c

)
+ 2c2

(
hinv

(
1 +

C

c

)
+ 1

)2

.

Proof. Summing the inequality in Claim 5 from t = 1 to t = T , we obtain via telescoping sums:

T∑
t=1

E[ft(pt)− ft(p
∗)]

≤
T∑

t=1

(
1

2ηt
− c2

)
E[(pt − p∗)2]−

T∑
t=1

1

2ηt
E[(pt+1 − p∗)2] +

T∑
t=1

ηt · (Ch(t))5

+

T∑
t=1

2 · 1[t ≤ t∗] ·
(

1

ηt · h(t)
+ (Ch(t))2

)

≤
T∑

t=1

(
1

2ηt
− c2

)
E[(pt − p∗)2]−

T∑
t=1

1

2ηt
E[(pt+1 − p∗)2] +

T∑
t=1

ηt · (Ch(t))5

+ 2

t∗∑
t=1

(
1

ηt · h(t)
+ (Ch(t))2

)

≤
T∑

t=1

(
1

2ηt
− c2

)
E[(pt − p∗)2]−

T∑
t=1

1

2ηt
E[(pt+1 − p∗)2]

+ (Ch(T ))5
T∑

t=1

ηt + 2t∗ · (Ch(t∗))2 + 2

t∗∑
t=1

1

ηt · h(t)

=

(
1

2η1
− c2

)
E[(p1 − p∗)2]− 1

2ηT+1
E[(pT+1 − p∗)2]

+

T∑
t=2

(
1

2ηt
− 1

2ηt−1
− c2

)
E[(pt − p∗)2] + (Ch(T ))5

T∑
t=1

ηt + 2t∗ · (Ch(t∗))2 + 2

t∗∑
t=1

1

ηt · h(t)
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≤ −c2(T + 1)E[(pT+1 − p∗)2] +
(Ch(T ))5

2c2
(log(T + 1) + 1) + 2t∗ · (Ch(t∗))2 + 4c2

t∗∑
t=1

t

h(t)
.

Finally, recalling the definition of t∗ = hinv(A) = hinv(1 + C/c) and substituting it in, we obtain the desired claim.

Finally, with the result of Claim 6 in hand, we observe that (1) the term −c2(T + 1)E[(pT+1 − p∗)2] is nonpositive and can
thus be ignored, (2) the second term on the right hand side is asymptotically O((h(T ))2 · log T ), and (3) the third and fourth
terms on the right hand side are constant with respect to T and only a function of the constants C, c of the problem. This
gives the desired result.

B.2. Convergence of Treatment Probabilities of ClipOGDSC : Proof of Lemma 3.3

We will make use of Claim 6 from the previous subsection. Simply rearranging the terms, we obtain the following bound for
the deterministic setting:

c2(T + 1)E[(pT+1 − p∗T )
2] ≤ −

T∑
t=1

E[ft(pt)− ft(p
∗
T )] +

C2

2c2
h(T )2(log(T + 1) + 1) +O(1),

where the O(1) term hides terms in the bound that do not depend on T . Dividing through by c2 · (T + 1) and reindexing for
convenience, we obtain the desired result:

E[(pT − p∗T )
2] ≤ −Θ

(
E[RegT ]

T

)
+O

(
(h(T ))2 log T

T

)
.

C. Confidence Interval Guarantees: Proof Sketch for Theorem 3.7
Remark C.1 (Chebyshev vs. Wald Confidence Intervals). As Dai et al. (2023) point out, it appears that ClipOGD may lead to
an asymptotically normal distribution of the IPW estimator. If this were true, that would allow us to get Wald-type confidence
intervals for the IPW estimator based on the variance estimator V̂B, which would be narrower than Chebyshev-type ones.
Through some simulations, we observed that asymptotically, the z-score of the IPW estimator induced by our adaptive
scheme appears to satisfy asymptotic normality. However, below we only prove the validity of Chebyshev-type confidence
intervals, and leave Wald-type CIs to be explored in future work.

We will convince ourselves that the techniques employed in Dai et al. (2023) for proving the validity of this variance
estimator apply to a broad class of adaptive sampling schemes. Dai et al. (2023) state this result for their particular adaptive
design but mention that it may apply to other learning rate and clipping rate settings. And indeed, we find that while their
approach does depend on the adaptive design having sufficiently slowly decaying clipping rate and vanishing Neyman regret,
it is oblivious to hyperparameters such as the learning rate. Moreover, we find that the condition of having asymptotically
nonnegative Neyman regret, which Dai et al. (2023) impose on the design, is also not necessary to ensure that the variance
estimator V̂B is conservatively valid.

For easier tracking of the relevant quantities, recall the notation: ST (i) :=
√

1
T

∑T
t=1 yt(i)

2 for i ∈ {0, 1}. Following

(Dai et al., 2023), we define the quantities AT (1) = (ST (1))
2, AT (0) = (ST (0))

2, as well as the quantities ÂT (1) =
1
T

∑
t yt(1)

2 Zt

pt
, ÂT (0) = 1

T

∑
t yt(0)

2 1−Zt

1−pt
that estimate them in an unbiased way. Recalling that the variance of the

optimal nonadaptive design (i.e., the variance of the IPW estimator that uses p∗T as its fixed sampling probability on all
rounds t = 1 . . . T ) is

2

T
(1 + ρ)ST (1)ST (0) ≤ VB :=

4

T

√
AT (1)AT (0),

we can see that V̂B = 4
T

√
ÂT (1)ÂT (0) simply aims to approximate the upper bound VB on the optimal fixed-probability

sampling scheme’s variance. And given that our design has a no-regret guarantee with respect to this benchmark, V̂B thus
also asymptotically approximates the upper bound on our (and any other such) design’s induced IPW estimator variance
VT . This is the blueprint of the proof, and we will now briefly revisit the technical steps in Dai et al. (2023) that make this
blueprint argument work.
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First, Proposition D.1 of Dai et al. (2023) proves that∣∣∣E[ÂT (1)ÂT (0)]−AT (1)AT (0)
∣∣∣ ≤ C4

T
,

which by tracking the proof can be seen to not depend on the sampling scheme.

Second, by generalizing the result and steps of Proposition D.2 of Dai et al. (2023), we can bound the variance of the
(normalized version of the) estimator V̂B as:

Var(ÂT (1)ÂT (0)) ≤
C8 · h(T )

T
+

C8 · (h(T ))2

T 2
≤ 2C8 · h(T )

T
.

Thus, applying Chebyshev’s inequality to this variance bound and using the preceding in-expectation bound, we conclude
that ÂT (1)ÂT (0)→ AT (1)AT (0) in probability at the rate Op((h(T )/T )

1/2).

Now, as in the proof of Theorem 5.1 of Dai et al. (2023), we can observe that a Continuous Mapping Theorem can be

applied to this in-probability convergence result to give the implication that
√
ÂT (1)ÂT (0) →

√
AT (1)AT (0) at the

same asymptotic rate Op((h(T )/T )
1/2). Indeed, since the target random variable AT (1)AT (0) is bounded below by c2 by

Assumption 3.1, the square root transformation will be Lipschitz on the relevant range (i.e., away from zero).

Finally, to establish the validity of the Chebyshev-type confidence intervals given above, it suffices to look at the z-score
statistic ζ = τT−τ̂T√

Var(τ̂T )
and the estimated z-score statistic ζ ′ = τT−τ̂T√

V̂B
and establish that ζ stochastically dominates ζ ′.

Towards this, note as in Dai et al. (2023) that:

ζ ′ = ζ ·

(√
Var(τ̂T )

VB
·

√
T ·VB

T · V̂B

)
.

First, since the estimator τ̂T is induced by a no-regret adaptive design and since VB is an upper bound on the vari-
ance of the best fixed SRS scheme (which serves as the benchmark of the design’s regret performance), we have that
lim supT→∞

Var(τ̂T )
VB ≤ 1. Second, from what we just obtained, T · V̂B→ T ·VB in probability, which in view of T · V̂B

being lower-bounded by a constant by Assumption 3.1 implies by the Continuous Mapping Theorem that
√

T ·VB

T ·V̂B
converges

to 1 in probability. By Slutsky’s theorem, this proves the desired stochastic domination and thus implies that the proposed
confidence interval construction is asymptotically (conservatively) valid.

D. Multigroup Adaptive Design: Proofs and Details
D.1. OLO Primitives

Our multigroup design will rely on a sequence of reductions, derived with the help of some online learning machinery: a
recent reduction of Orabona (2024) and scale-free algorithms by Orabona & Pál (2018). First, we spell out the algorithmic
primitives that we will require.

Definition D.1 (OLO algorithm; OLO regret). An OLO (online linear optimization) algorithm A over domain V ⊆ Rd,
where d ≥ 1 is the dimension of the problem, sequentially receives vectors ℓt ∈ Rd, t = 1, 2, . . .. Each ℓt is interpreted as
the “gradient”, or the “loss”, that A suffers at round t.

Each round, before seeing ℓt, algorithm A outputs iterate vt ∈ V as a function of past history. The algorithm’s regret at any
time T is defined as the total loss incurred by its iterates minus the total loss of the best-in-hindsight admissible solution:

RegT (A) := max
v∈V

RegT (A; v), where RegT (A; v) =
T∑

t=1

⟨ℓt, vt − v⟩ for v ∈ V.

Definition D.2 (Sleeping Experts algorithm; SE regret). A sleeping experts (SE) algorithm A over domain V ⊆ Rd, where
d ≥ 1 is the number of “sleeping experts”, sequentially receives vectors at ∈ {0, 1}d and ℓt ∈ Rd at rounds t = 1, 2, . . ..
The vector at has the interpretation that at,i ∈ {0, 1} (for each i ∈ [d]) denotes whether expert i is “active” (1) or “inactive”
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(0) in round t. The vector ℓt has the interpretation that at any round t, for all active experts i (i.e., at,i = 1), expert i’s loss is
ℓt,i, while for all inactive experts i the loss coordinate ℓt,i is (arbitrarily) equal to 0.

Each round, after seeing at but before seeing ℓt (i.e., after seeing which experts are active but before seeing their losses), the
algorithm outputs a distribution vt ∈ ∆d as a function of past history, such that vt,i = 0 for all inactive experts (i.e., for all i
such that at,i = 0). In words, at each round the algorithm is required to output a distribution vt over the currently active
experts only.

The algorithm’s Sleeping Experts regret at any time T is defined as the upper bound, over all experts i ∈ [d], on its
performance relative to expert i over those rounds t on which i was active:

RegSET (A) := max
i∈[d]

T∑
t=1

at,i · (⟨ℓt, vt⟩ − ℓt,i).

Scale-Free OLO We will make use of a scale-free OLO algorithm (Orabona & Pál, 2018) to design a base algorithm for
our multigroup regret algorithm. The property of any such algorithm is that its regret bound does not require the norms of
the gradients ℓt to be bounded in [0, 1] for some norm (like standard OLO methods typically require).
Fact 1 (Theorem 1 of (Orabona & Pál, 2018)). Fix any norm ∥·∥ and its dual norm ∥·∥∗. Then, Algorithm 3 called SOLO
FTRL achieves, for any convex closed set V ⊆ Rd, the following regret bound to any point v ∈ V that scales with the
magnitude of the losses/gradients:

RegT (SOLO FTRL; v) ≤ (R(v) + 2.75)

√√√√ T∑
t=1

∥ℓt∥2∗ + 3.5min
{√

T − 1,diam(V )
}
max
t∈[T ]

∥ℓt∥∗ .

where diam(V ) = supv1,v2∈V ∥v1 − v2∥, and where SOLO FTRL is parameterized by an arbitrary nonnegative continuous
1-strongly-convex regularizer R : V → R.

Algorithm 3 ASOLO: SOLO FTRL (Orabona & Pál, 2018)
Receive domain V ⊆ Rd base regularizer R(w), and norm ∥·∥.
Initialize L0 ← 0d, q0 ← 0.
for t = 1, 2, . . . do

Compute new weights wt ← argmin
w∈V

{⟨Lt−1, w⟩+Rt(w)}, where Rt(w) =
√
qt−1 ·R(w).

Receive loss vector ℓt.
Set Lt ← Lt−1 + ℓt.
Set qt ← qt−1 + ∥ℓt∥2∗.

end for

D.2. Designing a Scale-Free Sleeping Experts Algorithm

Now, let us instantiate the above Fact 1 appropriately. First, set the norm for the regret bound to be the 2-norm: ∥·∥ =
∥·∥∗ = ∥·∥2. Second, set the regularizer to be R(v) := ∥v∥22 for v ∈ V , which is 1-convex with respect to the 2-norm.
Third, set the domain of the algorithm to be the non-negative orthant: V = Rd

≥0. We then arrive at the following guarantee.

Corollary D.3 (of Fact 1). With the nonnegative orthant V = Rd
≥0 as domain and the squared L2-norm as regularizer,

SOLO FTRL achieves the following scale-free regret bound for all v ∈ V :

RegT (SOLO FTRL; v) ≤
(
∥v∥22 + 6.25

)
max
t∈[T ]

∥ℓt∥2
√
T .

The instantiation of SOLO FTRL for these specific choices is given in Algorithm 4.

We note that the update for wt in Algorithm 4 is the solution to the original argmax problem in Algorithm 3, with the
nonnegative orthant as domain and the rescaled L2-norm as regularizer.
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Algorithm 4 ASOLO: Instantiation for scale-free sleeping experts

1: Initialize L0 ← 0d, q0 ← 0.
2: for t = 1, 2, . . . do
3: Set weights wt ← max

{
0d,− 1√

qt−1
Lt−1

}
(coordinate-wise maximum).

4: Receive loss vector ℓt ∈ Rd
≥0.

5: Set Lt ← Lt−1 + ℓt.
6: Set qt ← qt−1 + ∥ℓt∥22.
7: end for

Scale-Free Sleeping Experts Now, we will turn this just obtained scale-free OLO regret guarantee into a scale-free
sleeping experts regret guarantee. We will utilize a recent black-box reduction mechanism of Orabona (2024), which
proceeds as follows.
Fact 2 (Sleeping Experts to OLO Reduction (Orabona, 2024)). Consider a sleeping experts setting with d experts. Define
any base OLO algorithm A with nonnegative orthant V = Rd

≥0 as the domain. Then Algorithm 5, which we refer to as
AOLO→SE , constructs a sequence v1, v2, . . . of distributions over active experts that attains the following sleeping experts
regret bound:

RegSET (AOLO→SE) = max
v∈SB(Rd)

RegT

(
A
({

ℓ̃t

}
t∈[T ]

)
; v

)
.

Here, SB(Rd) as the collection of the d standard basis (unit) vectors of Rd; and the vectors {ℓ̃t}t∈[T ], defined in Algorithm 5,

are surrogate loss vectors. Note that these surrogate losses satisfy
∥∥∥ℓ̃t∥∥∥

∞
≤ 2 ∥ℓt∥∞ relative to the original losses {ℓt}t∈[T ].

Algorithm 5 AOLO→SE : Sleeping Experts to OLO Reduction (Orabona, 2024)
Initialize any base OLO algorithm A with nonnegative orthant V = Rd

≥0 as domain.
for t = 1, 2, . . . do

Get unscaled prediction wt ∈ Rd
≥0 from A.

Receive indicator vector describing which experts are active: at ∈ {0, 1}d.
Construct distribution vt ∈ ∆d as: vt,i =

at,iwt,i

⟨at,wt⟩ for i ∈ [d].
Receive loss vector ℓt ∈ Rd.
Construct surrogate loss vector ℓ̃t as ℓ̃t,i = at,i(ℓt,i − ⟨ℓt, vt⟩) for i ∈ [d], and send it to A.

end for

To obtain sleeping experts regret bounds scaling with the norm of the losses, we can implement this reduction with the
scale-free Algorithm 4 at its base. Formally, we have the following statement.

Theorem D.4 (Scale-Free Sleeping Experts Algorithm). Consider a sleeping experts setting with d experts. Initialize
Algorithm 5 using Algorithm 4 (an instance of SOLO FTRL with settings described in Corollary D.3) as its base OLO
subroutine. Call the resulting sleeping experts algorithm ASOLO SE, with the pseudocode given in Algorithm 6. Then, SOLO
SE obtains the following sleeping experts regret bound on any sequence of losses {ℓt}t∈[T ]:

RegSET

(
ASOLO SE

(
{ℓt}t∈[T ]

))
≤ 15max

t∈[T ]
∥ℓt∥∞

√
dT .

D.3. First-Order Neyman Regret Minimization

We now formalize (and generalize) how the ClipOGD design operates. This formalization will define the scope of
noncontextual adaptive designs that can be used to estimate group propensities for all groups in our multigroup design.

Definition D.5 (First-order Neyman Regret Minimization). Recall the Neyman objectives: ft(p) =
yt(1)

2

p + yt(0)
2

1−p for
p ∈ (0, 1), t ≥ 1, where .{(yt(1), yt(0))}t≥1 are the potential outcomes.

A first-order Neyman regret minimization algorithm AATE follows the following protocol for sequential ATE estimation: At
each round t = 1, 2, . . ., AATE decides on a treatment probability pt ∈ (1/h(t), 1 − 1/h(t)), where h : N+ → R>0 is a
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Algorithm 6 ASOLO SE: Sleeping Experts Algorithm
1: Initialize ASOLO, an instance of Algorithm 4.
2: for t = 1, 2, . . . do
3: Receive unscaled weights wt ∈ Rd

≥0 from ASOLO.
4: Receive indicator vector describing which experts are active: at ∈ {0, 1}d.
5: Set rescaled weights vt ∈ ∆d as: vt,i =

at,iwt,i

⟨at,wt⟩ for i ∈ [d].
6: Receive loss vector ℓt ∈ Rd.
7: Set surrogate loss vector ℓ̃t as ℓ̃t,i = at,i(ℓt,i − ⟨ℓt, vt⟩) for i ∈ [d].
8: Send ℓ̃t to ASOLO.
9: end for

strictly increasing clipping function. After that, AATE receives first-order feedback g̃t from the environment, which is a
random variable that satisfies the following properties: (1) It is adapted to the natural filtration {Ft}t≥1 of the process, i.e.,
the distribution of g̃t is determined by all prior history up to and including determining pt; (2) It is an unbiased estimator of
f ′
t(pt), in that E[g̃t|Ft−1] = f ′

t(pt) = −
yt(1)

2

p2
t

+ yt(0)
2

(1−pt)2
.

It is easy to observe that Algorithm 1 conforms to Definition D.5. Algorithm 1 is written as requiring direct access to the
selected outcome Yt, but this outcome is only used to compute the unbiased gradient estimator f ′

t(pt).

D.4. Multigroup-Adaptive Design via Sleeping Experts

We are now ready to present a context-aware algorithm for online ATE estimation. It uses scale-free sleeping experts as
derived above, as well first-order Neyman regret minimization algorithms as base learners. The following theorem states
its most general guarantees (as well as the specific instantiation that gives MGATE). The proof is presented in the next
subsection.

Theorem D.6 (Guarantees for Algorithm 7). Consider any first-order Neyman regret minimization algorithm AATE and
any scale-free sleeping experts algorithm ASE. Fix any context space X and any finite group family G ⊆ 2X . If the base
learners for all G ∈ G are copies of AATE, Algorithm 7’s expected multigroup regret will be bounded for all G ∈ G as:

E [RegVarT (A;G)] ≤ E [RegSET (ASE)] + E [RegVarT (AATE(G))] .

Moreover, Algorithm 7 is anytime, as it does not require advance knowledge of the time horizon T .

Instantiate Algorithm 7 using h-clipped ClipOGDSC as the base ATE algorithm, for some strictly increasing h, and use
ASOLO SE (Algorithm 6) as the scale-free SE algorithm. Then, we obtain the MGATE design (Algorithm 2) that simultaneously
offers the following guarantees for all G ∈ G:

E [RegVarT (A;G)] = O
(√
|G| · (h(T ))5 ·

√
T
)
.

D.5. Proof of Theorem D.6

First, note that with the Neyman objective defined, as always, via ft(p) =
yt(1)

2

p + yt(0)
2

1−p for p ∈ (0, 1), we have for any
group G ∈ G:

RegVarT (A;G) =

T∑
t=1

1[xt ∈ G]
(
ft(pt,eff)− ft(p

∗
T,G)

)
=

T∑
t=1

1[xt ∈ G]

(
ft

( ∑
G′∈Gt

wt,G′ · pt,G′

)
− ft(p

∗
T,G)

)

≤
T∑

t=1

1[xt ∈ G]

( ∑
G′∈Gt

wt,G′ · ft (pt,G′)− ft(p
∗
T,G)

)
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Algorithm 7 General Multigroup Adaptive Design
Input: First-order Neyman regret minimization algorithm AATE.
Input: Scale-free Sleeping Experts algorithm ASE.
Input: Feature space X , group family G ⊆ 2X .
Initialize |G| copies of AATE: {AATE(G)}G∈G .
for t = 1, 2, . . . do

Get context xt ∈ X , let Gt = {G ∈ G : xt ∈ G}.
for active groups G ∈ Gt do

Get group-specific advice pt,G from AATE(G).
end for
Get weights {wt,G}G∈Gt of active groups from ASE.
Set treatment probability: pt,eff ←

∑
G∈Gt

wt,G · pt,G.
Set treatment decision: Zt ∼ Bernoulli(pt,eff).
Observe realized outcome: Yt ← yt(Zt).
for active groups G ∈ Gt do

Set estimated loss of AATE(G) as: ℓ̃t,G ← Y 2
t

(
Zt

pt,eff
+ 1−Zt

1−pt,eff

)(
Zt

pt,G
+ 1−Zt

1−pt,G

)
.

Set estimated gradient of AATE(G) as: g̃t,G ← Y 2
t

(
Zt

pt,eff
+ 1−Zt

1−pt,eff

)(
− Zt

p2
t,G

+ 1−Zt

(1−pt,G)2

)
.

Send estimated gradient g̃t,G back to AATE(G).
end for
Send estimated losses {ℓ̃t,G}G∈Gt back to ASE.

end for

=

T∑
t=1

1[xt ∈ G]

( ∑
G′∈Gt

wt,G′ · ft (pt,G′)− ft(pt,G)

)
︸ ︷︷ ︸

Term 1: Sleeping Experts Regret of Aggregation Scheme

+

T∑
t=1

1[xt ∈ G]
(
ft(pt,G)− ft(p

∗
T,G)

)
︸ ︷︷ ︸

Term 2: ATE Neyman regret on Group G

.

Here, p∗T,G denotes the best-in-hindsight static treatment allocation probability on the set of rounds up to round T that
correspond to group G. The inequality holds by convexity of the objective ft.

What we just did is partition the multigroup regret expression into two terms. The expectation of the second term is bounded
by the expected regret of the group-specific ATE Neyman regret minimization algorithm: E[Term 2] ≤ E [RegVarT (AATE)].
The first term will be bounded by the sleeping experts regret of the aggregation algorithm.

To continue the analysis, we first collect the properties of the estimated outcomes, losses, and gradients. Namely, we have
for any round t and for any group G ∈ Gt:

• E
[
ℓ̃t,G

∣∣∣ {Zτ}t−1
1

]
= pt,eff · (yt(1))

2

pt,eff ·pt,G
+ (1− pt,eff) · (yt(0))

2

(1−pt,eff )·(1−pt,G) = ft(pt,G);

•
∥∥∥ℓ̃t∥∥∥

∞
= maxG∈Gt

∣∣∣ℓ̃t,G∣∣∣ ≤ maxG∈Gt max
{

(yt(1))
2

pt,eff ·pt,G
, (yt(0))

2

(1−pt,eff )·(1−pt,G)

}
≤ C2h(t)2;

• E
[
g̃t,G

∣∣∣ {Zτ}t−1
1

]
= (1− pt,eff) · (yt(0))

2

(1−pt,eff )·(1−pt,G)2 − pt,eff · (yt(1))
2

pt,eff ·p2
t,G

= f ′
t(pt,G);

• E
[
|g̃t,G|

∣∣∣ {Zτ}t−1
1

]
= (1− pt,eff) · (yt(0))

2

(1−pt,eff )·(1−pt,G)2 + pt,eff · (yt(1))
2

pt,eff ·p2
t,G
≤ 2C2h(t)2;

• E
[
g̃2t,G

∣∣∣ {Zτ}t−1
1

]
= (1− pt,eff) ·

(
(yt(0))

2

(1−pt,eff )·(1−pt,G)2

)2
+ pt,eff ·

(
(yt(1))

2

pt,eff ·p2
t,G

)2
≤ 2C4h(t)5.
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The last calculation holds owing to the fact that at any round t, the aggregated probability pt,eff is a convex combination of
the probabilities pt,G for all G ∈ Gt. Indeed that implies

min {pt,eff , (1− pt,eff)} ≥ min
G∈Gt

{pt,G, (1− pt,G)} ≥ 1/h(t),

leading to the bound max{1/pt,eff , 1/ (1− pt,eff)} ≤ h(t).

By the first of these properties, we can bound the expectation of Term 1 as follows:

E[Term 1] = E

[
T∑

t=1

1[xt ∈ G]

( ∑
G′∈Gt

wt,G′ · ft (pt,G′)− ft (pt,G)

)]

= E

[
T∑

t=1

1[xt ∈ G]

( ∑
G′∈Gt

wt,G′ · E
[
ℓ̃t,G′

∣∣∣ {Zτ}t−1
1

]
− E

[
ℓ̃t,G

∣∣∣ {Zτ}t−1
1

])]

= E

[
T∑

t=1

1[xt ∈ G] · E

[ ∑
G′∈Gt

wt,G′ · ℓ̃t,G′ − ℓ̃t,G

∣∣∣ {Zτ}t−1
1

]]

= E

[
T∑

t=1

1[xt ∈ G] · E
[
⟨wt, ℓ̃t⟩ − ℓ̃t,G

∣∣∣ {Zτ}t−1
1

]]

=

T∑
t=1

1[xt ∈ G] · E
[
E
[
⟨wt, ℓ̃t⟩ − ℓ̃t,G

∣∣∣ {Zτ}t−1
1

]]
= E

[
T∑

t=1

1[xt ∈ G]
(
⟨wt, ℓ̃t⟩ − ℓ̃t,G

)]
≤ E [RegSET (ASE)] .

Thus, in combination with the above we indeed have:

E [RegVarMGT (A;G)] ≤ E [RegSET (ASE)] + E [RegVarT (AATE)] .

We are now going to instantiate this regret bound with the following concrete choices. ASE will be instantiated as the
scale-free sleeping experts Algorithm 6. For each copy of the first-order ATE Neyman regret minimization method, we
will use the modification of ClipOGDSC which uses, instead of its originally specified gradient estimator gt, the gradient
estimator g̃t specified in our multigroup Algorithm 7.

Our specific choice of ASE thus leads, by Theorem D.4 with our above bound on
∥∥∥ℓ̃t∥∥∥

∞
plugged in, to the following bound:

E [RegSET (ASE)] ≤ 15max
t∈[T ]

∥ℓt∥∞
√
dT ≤ 15C2

√
|G| · (h(T ))2T 1/2.

Now we update the regret bound of ClipOGDSC to use g̃t instead of gt at each round t. From the analysis of Claim 5 and
Claim 6 in the proof of Theorem 3.2, we can distill the following inequality holding for any unbiased gradient estimators
{g̃t}t≥1 and for the optimal p∗:

E[RegVarT (AATE)] =

T∑
t=1

E[ft(pt)− ft(p
∗)] ≤

T∑
t=1

ηt · E[g̃2t |Ft−1] + 2

t∗∑
t=1

(
1

ηt · h(t)
+ E[|g̃t||Ft−1]

)
.

So it suffices to bound the first and second absolute raw moment of g̃t in terms of the overlap function h in order to
obtain concrete regret bounds. From the facts established above, we have at any time horizon T of the multigroup
algorithm: E

[
g̃2t,G

∣∣∣ {Zτ}t−1
1

]
≤ 2C4h(t)4h(T ), and E

[
|g̃t,G|

∣∣∣ {Zτ}t−1
1

]
≤ 2C2h(t)h(T ). Plugging this in and recalling

the learning rate setting ηt =
1

2c2t , we obtain:

E[RegVarT (AATE)] ≤
(Ch(T ))5

2c2
(log(T + 1) + 1) + 2t∗ · C2h(t∗)h(T ) + 4c2

t∗∑
t=1

t

h(t)
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≤ (Ch(T ))5

2c2
(log(T + 1) + 1) + 2C2

(
1 +

C

c

)
hinv

(
1 +

C

c

)
· h(T ) + 2c2

(
hinv

(
1 +

C

c

)
+ 1

)2

= O
(
(h(T ))5 log T

)
.

Thus, asymptotically in T this modification of ClipOGDSC obtains the same rate. The only difference is non-asymptotic; we
now acquire an additional term that depends on T in a low-order way: 2C2(1 +C/c)hinv(1 +C/c) · h(T ), which formerly
had an additional factor of (1 +C/c) instead of h(T ). Even though this term is lower-order in T , but nonetheless it merits a
mention, as here h(T ) coexists with the inverse clipping rate mapping, hinv, being evaluated at a “critical point” 1 + C/c.
Since the inverse mapping hinv will grow fast when h grows slowly, this term can practically speaking become influential
in the regret bound if the problem is not well-conditioned (if C/c is very large). Thus, in practice this term may merit a
tradeoff in choosing h to not be too slowly-growing.

To conclude the proof, note by collecting the above two bounds that:

E [RegVarMGT (A;G)] ≤ E [RegSET (ASE)] + E [RegVarT (AATE)]

≤ 15C2
√
|G| · (h(T ))2T 1/2 +O

(
(h(T ))5 log T

)
≤ O

(√
|G| · (h(T ))5 ·

√
T
)

E. Additional Experimental Results
In this section, we present experiments on additional real-world dataset. We list them below along with their descriptions.
We then turn to the description of the results.

E.1. Task and Dataset Descriptions

Large Language Model Benchmarking We test our methods on (a subset of) large language model (LLM) benchmarking
data that was examined by Fogliato et al. (2024), and includes BigBench (Srivastava et al., 2023), MedMCQA (Pal et al.,
2022), XCOPA (Ponti et al., 2020), HellaSwag (Zellers et al., 2019), MMLU (Hoffmann et al., 2022), and XNLI (Conneau
et al., 2018). Multiple LLMs are compared on these datasets, with each model producing a vector of logits for each data
point. These logits are turned into probability vectors. Since each task is supervised, we know the correct answers. We
select two models—Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) (treatment) and Google Gemma-2b (Team et al., 2024)
(control)—and build two parallel outcome sequences using the model accuracies. More specifically, for each data point, the
model’s chosen answer is the class with the highest predicted probability, and we define accuracy as 1 if this chosen class
matches the correct answer and 0 otherwise.

ASOS Digital Dataset We use the sequential experiments dataset from Liu et al. (2021), gathered by ASOS.com between
2019 and 2020. It has 24,153 rows from 78 online controlled experiments. Each row represents a group of users who arrived
during a certain time span and shows the average treatment and control outcomes for those users. Across all experiments,
there are 99 different treatments and one control. The dataset tracks 4 consistent metrics; each row focuses on one of these
metrics. This structure naturally creates 4 subsets of rows (each with about 6,000 rows). We treat each subset as a separate
dataset and feed each of these 4 pairs of treatment and control outcome sequences into ClipOGDSC and ClipOGD0. This
setup keeps outcome definitions consistent within each subset, while mixing different experiments and thus providing a
varied environment for evaluating sequential ATE estimation methods.

E.2. Experimental Results

E.2.1. LLM BENCHMARKING

Figure 4 shows the experimental results across these six tasks (BigBench–MC, HellaSwag, MedMCQA, MMLU, XCOPA,
XNLI). The top row shows that the treatment probabilities of ClipOGD0 (orange) fluctuate more, while the treatment
probabilities of ClipOGDSC (blue) settle closer to a stable value. Although our algorithm’s assigned probabilities may
initially jump around more because of the more aggressive clipping rate, they also stabilize more quickly. The second
row shows the variances and tells a similar story: the variance ClipOGDSC is smaller and decreases faster compared to
that of ClipOGD0. As seen in the bottom row, the Neyman regret of ClipOGD0 stays away from zero, whereas the regret
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of ClipOGDSC shrinks toward zero or remains lower throughout. This pattern suggests that ClipOGDSC converges to the
Neyman-optimal probabilities with less fluctuation and lower regret than ClipOGD0.
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Figure 4. Treatment probabilities, variance of the ATE, and Neyman regret of ClipOGD on LLM benchmarking data. The solid
black line in the treatment probabilities indicates the Neyman optimal probability.

Additionally, we show the per-group Neyman regret of MGATE and ClipOGD in the contextual experiments.
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Figure 5. Group-conditional Neyman regret of ClipOGD and MGATE on the LLM Benchmarking data.

25



Stronger Neyman Regret Guarantees for Adaptive Experimental Design

E.2.2. ASOS DIGITAL DATASET

Figure 6 shows the Neyman regret on this dataset. Across all four metrics, ClipOGDSC (blue) steadily reduces Neyman regret,
whereas ClipOGD0 (orange) remains higher or grows over time. Although the regret levels vary by metric, ClipOGDSC

consistently converges closer to the Neyman-optimal probabilities as shown by the shrinking regret.
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Figure 6. Neyman regret of ClipOGD on the ASOS Digital Dataset.
Additionally, we show the per-group Neyman regret of MGATE and ClipOGD in the contextual experiments. Here we
observe that MGATE and ClipOGDSC attain close to optimal Neyman regret guarantees on all groups.
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Figure 7. Group-conditional Neyman regret of ClipOGD and AMGATE on the ASOS Digital Dataset.
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