
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Feature Learning Dynamics under Grokking in a Sparse Parity Task

Javier Sanguino Bautiste JSANGUINO@ETHZ.CH
ETH, Zürich, Switzerland

Gregor Bachmann
ETH, Zürich, Switzerland

Bobby He
ETH, Zürich, Switzerland

Lorenzo Noci
ETH, Zürich, Switzerland

Thomas Hofmann
ETH, Zürich, Switzerland

Abstract
In this paper, we analyze the phenomenon of Grokking in a sparse parity task trained with Deep
Neural Networks through the lens of feature learning. In particular, we analyze the evolution of the
Neural Tangent Kernel (NTK) matrix. We show that during the initial overfitting phase, the NTK’s
eigenfunctions are not aligned with the predictive input features. On the other hand, at a later stage
the NTK’s top eigenfunctions evolve to focus on the features of interest, which corresponds to the
onset of the delayed generalization typically observed in Grokking. Our experiments can be viewed
as a mechanistic interpretation of feature learning during training through the NTK eigenfunctions’
evolution.

1. Introduction

Deep learning has garnered significant attention for its ability to effectively solve a wide range of
tasks [4, 8]. However, its theoretical understanding still lags behind the empirical success. For
example, the mechanisms behind feature learning, crucial to the practical effectiveness of these
models, remain an active area of research [1, 23].

One paradigmatic case of this is the surprising phenomenon of Grokking, which describes a
scenario where, long after fitting the training data, validation accuracy improves from chance level
to perfect generalization (see Figure 1). Notably, no hyperparameters are altered; the network is
simply trained for a longer period. Grokking was first identified by Power et al. [18] and it has
been later observed in arithmetic [2, 12, 17, 20, 22], vision and language tasks [11, 14] with vari-
ous architectures or in regression [13]. The phenomenon of grokking suggests that the networks’
internal representations (a.k.a. features) exhibit unique dynamics, enabling the observed delayed
generalization.

In this paper, we analyze the feature dynamics of networks that exhibit grokking through the
lens of the Neural Tangent Kernel (NTK) [7], and its evolution through training [5]. The NTK arises
from the linearization of the network in function space [10], making it a valuable tool for analytically
studying networks’ training dynamics. In particular, by looking at the NTK’s dynamics it is possible
to differentiate between the “lazy” learning regime [3] — where the features barely move — and

© J. Sanguino Bautiste, G. Bachmann, B. He, L. Noci & T. Hofmann.



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

0 2000 4000 6000 8000 10000
Iterations

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

 (%
)

tm ts tg

Accuracy

train
test

0 2000 4000 6000 8000 10000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

tm ts tg

Loss

train
test

Figure 1: Grokking can be identified by comparing the train and test accuracy or loss. Time points:
t0 is the initialization time, tm is the first iteration with full training accuracy, ts is the
beginning of an increase in test accuracy, and tg is the first iteration with full test accuracy.

the “rich” regime, where the NTK moves from its initial state, indicating feature evolution. The link
between grokking and learning dynamics has been recently established in Kumar et al. [9], where it
is shown that — when Grokking happens — the network transitions from lazy to rich dynamics.

In this work we confirm the transition from lazy to rich dynamics in grokking networks for a
sparse parity task. In particular, we investigate how the meaningful (i.e. generalizing) features are
encoded in the NTK matrix as training progresses. We do so by showing the emergence of structure
in the NTK’s eigenfunctions, which start encoding the task’s generalizing features when delayed
generalization happens. More generally, the tools used in this paper can be seen as a mechanistic
interpretability framework for studying feature learning during training.

2. Experimental Setup and NTK framework

In this section we will introduce the necessary background and notation used throughout this work.

2.1. Task Definition

We solve a (k, d)-sparse parity task. LetDk,d = {(xi, yi)}ni=1 be training set, where xi ∈ {0, 1}d is

a binary vector and the target yi =
(∑k

l=1 xi

)
mod2 is the parity of the first k digits (clean digits).

Notice that the remaining d − k entries (noisy digits) of xi do not contribute to yi. Further, let
X = {xi}ni=1 and Y = {yi}ni=1. Finally, let x ∈ {0, 1}d denote an arbitrary test point.

2.2. Model Definition

To solve the task, we consider an equal-width L-layer Multi-Layer Perceptron fθ(x) : Rd → R,
where θ represents the weights. The network is trained using full-batch Adam and includes L1-norm
regularization on the weights, as it helps to induce grokking in the task [17].

2.3. Neural Tangent Kernel and Feature Learning link

From a theoretical perspective, if we consider continuous updates of the parameters instead of dis-
crete updates (θt+1 ← θt − η∇θtL(X ,Y ;θt), where L(x, y;θ) is the empirical loss, the evolution
of fθ can be described with the gradient flow equation:

∂ft(X )

∂t
= ∇θfθ(X )

∣∣∣
θ=θt

∂θt
∂t

= −ηΘ̂t(X ,X )∇ft(X )L(θ) (1)

2



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

where Θ̂t is the empirical Neural Tangent Kernel. In general, Eq. 1 is hard to solve, as Θ̂t depends
on t.

If we consider f lin
t (x) := f0(x)+∇θf0(x)

∣∣∣
θ=θ0

∆t where ∆t := θt−θ0, using the MSE loss

as L(x, y;θ), the ODE in equation 1 has a closed solution (as ∇θf0(x) is now constant through
training, see Appendix 3). In particular, for an arbitrary test point x, f lin

t (x) = µt(x) + γt(x),
where

µt(x) = Θ̂0(x,X )Θ̂−1
0 (I − e−µΘ̂0t)Y (2)

γt(x) = f0(x)− Θ̂0(x,X )Θ̂−1
0 (I − e−µΘ̂0t)f0(X ) (3)

Thus, the predictive function has a closed-form solution during training. We follow Hu et al. [6] by
letting our initialization be small so the initial output is small (f0(x) ≈ 0) to simplify further the
equation. Then, f lin

t (x) = µt. We will consider this case for our next derivations.
Therefore, f lin

t (x) can be understood as kernel learning, meaning no feature learning is in-
volved. If we start training the network normally, obtain the NTK at an arbitrary checkpoint (t = T )
and then calculate the linearised predictive function at t → ∞, we will effectively freeze feature
learning from t = T . The resulting predictive function can thus be described as:

f lin
∞ (x;T ) = Θ̂T (x,X )Θ̂−1

T Y (4)

where Θ̂T is the NTK of the checkpoint from which the linearised training is induced.

2.3.1. EIGENFUNCTION DECOMPOSITION

A very common decomposition of kernel-based predictors is based on the eigenfunction framework.
Let us denote the input distribution as x ∼ pX . The eigenfunctions associated with the NTK
Θ : Rn × Rn are defined through the integral equation∫

Rd

Θ(x,x′)ϕ(x′)pX(x′)dx′ = ωϕ(x) (5)

where ϕ : Rn −→ R is the eigenfunction and ω ≥ 0 is its corresponding eigenvalue. To calculate the
eigenfunctions, we need to know the input distribution pX , which we usually don’t have access to.
Coming back to our example, let Θ̂(X ,X ) = V ΩV T with orthogonal V ∈ Rn×n and a diagonal
Ω ∈ Rn×n. We can form an estimator of the eigenfunctions for an arbitrary test point x,

ϕ̂i(x) =
1

ωi

n∑
l=1

Θ(x,xl)Vli (6)

It can be shown that this forms a consistent estimator, i.e. as the sample size n increases, it holds
that ϕ̂i −→ ϕi point-wise. Returning back to our predictive equation 16, we can now write it as a
linear combination of eigenfunctions,

f lin
t (x) =

n∑
i=1

αt
iϕ̂i(x)

The weights αi can be written as αt
i =

ωi(1−e−ηωit)
ωi

vT
i Y =: γtiv

T
i Y where vi is the i-th eigen-

vector. Therefore, αt
i measures how well aligned the i-th eigenvector is with the targets Y through-

out time.

3



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

3. Experiments

This section presents the results of an experiment conducted on a (3, 35)-sparse parity dataset for
several seeds. The rest of training details can be consulted in Appendix B. Results hold for different
choices of d in a (k, d)-sparse parity dataset, Appendix D shows them.

It is known that grokking arises when the ”right” structure emerges in the network [12, 15]. In
our case, this occurs when the network starts focusing on clean digits (see Appendix C.1 for details
on how the weights evolve), indicating that it is learning the correct features. In our experiments,
we analyze how the NTK shows the evolution of feature learning during training.

3.1. Feature learning happens late during training

As training a model until t = T and then considering a linearized version of the predictive function
stops feature learning from t = T , we can evaluate the quality of the features learned up to that
checkpoint using Equation 4. Additionally, if the NTK matrices at two different checkpoints are
similar, it suggests that the true optimization path during training closely follows the linearized
approximation, indicating that the network is close to the lazy regime. As suggested by Fort et al.
[5] and Tsilivis and Kempe [21], we use the Central Kernel Alignment (CKA) metric:

d(K1,K2) = 1− Tr(K1K
T
2 )√

Tr(K1KT
1 )Tr(K2KT

2 )

Figures 2 (c) and (d) suggest that the quality of features starts increasing after ts and therefore,
that the sudden increase in generalisation is due to the network starting to learn meaningful features.
This is confirmed in figure 2 (e), the NTK changes slightly until tm, and then enters a lazy regime
(where, in square 1, it does not change at all). As shown in square 2, after ts, the kernel starts
changing, indicating a transition from the lazy regime to a rich feature learning regime. This change
continues until a bit after tg to then stabilize, as shown in square 3.

0 2k 4k 6k 8k 10k
50%

75%

100%

Ac
cu

ra
cy

 (%
)

tm ts tg

(a)

train
test

0 2k 4k 6k 8k 10k
0

1

2

Lo
ss

(b)

train
test

0 2k 4k 6k 8k 10k
Iterations

50%

75%

100%

NT
K 

Ac
cu

ra
cy

 (%
)

(c)

train
test

0 2k 4k 6k 8k 10k
Iterations

0.5

0.6

0.7

NT
K 

Lo
ss

(d)

train
test

0 2000 4000 6000 8000 9800
Iterations

0

2000

4000

6000

8000

9800

Ite
ra

tio
ns

tm
tm

1

ts

ts

2

tg

tg

3

(e)

Kernel Distance

0.00

0.05

0.10

0.15

0.20

0.25

Figure 2: Plots (a) and (b) show the accuracy and loss throughout training while (c) and (d) show
the evolution of accuracy and loss when using Equation 4 for that checkpoints. All four
plots show the average over several seeds and their variance. Plot (e) shows the average
of CKA (over the seeds) between NTKs associated to all checkpoints. Note that the key
checkpoints are defined with (a) but (e) includes them to facilitate its interpretation.

Therefore, the rapid increase in generalization occurs when the network enters a rich feature
learning regime, this is when the training dynamics diverge from the linearized version, as stated by

4



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

Kumar et al [9]. Consequently, this experiment confirms their claims by extending the analysis to an
unconstrained setting (sparse parity task) and complements them with the study of NTK evolution
to understand feature learning throughout training.

3.2. Features are encoded in the NTK

In this section, we investigate the NTK at t0, tm, ts, tg to understand how it encodes features (refer
to Figure 1 for a definition of the time points).

To understand which eigenfunctions are essential for the classification task, we have computed
the NTK accuracy accumulating eigenfunctions progressively when calculating the predictive func-
tion i.e f lin

i (x) =
∑i

j=1 αjϕ̂j(x). Figures 3 (a) and (b) show the accumulated accuracy with
respect of the number of used eigenfunctions. It can be seen that there is an emerging structure in
the eigenfunctions as the network generalizes: the initial ones and those around 35 notably boost
accuracy. It appears that these eigenfunctions (and therefore, some part of the NTK) encode valu-
able information relevant to a sparse parity learning task. In other experiments we have observed
that changing the number of input features d also shifts the index of relevant eigenvalues to d.

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

t0

(a) Acc. Accuracy on train set

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

(b) Acc. Accuracy on test set

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

(c) Generative power of eigenfunctions

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

tm

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

ts

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

0 100 200 300 400 500
Index (i)

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

tg

0 100 200 300 400 500
Index (i)

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
Index (i)

0%
10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

Figure 3: Evolution of training and test accuracy and loss throughoutout training and of the NTK
associated to that weights checkpoint following equation 4.

5



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

To visualize the features encoded into these important eigenfunctions, we utilize saliency maps,
defined as si(X ) = 1

n

∑n
j=1∇xL(ϕ̂i(xj), yj) ∈ Rd [16, 19]. Saliency maps indicate the sensitivity

of the loss to changes in each digit for each eigenfunction. By averaging them over all training
samples, we obtain a more robust approximation, leveraging the consistent positioning of the clean
digits in every sample of X .

We have also devised a metric (generative power, g) aimed at quantifying the generalizing power
of an eigenfunction based on the proportion of its saliency map that concentrates on the clean digits:

gi =

∑
j = 1k [si(x)]

j∑d
j=1 [si(x)]

j

where [si(x)]
j is the j-th digit of si(x).

Figure 3 (c) illustrates how the eigenfunctions exhibit an emerging structure as generalization
occurs in the network. The first eigenfunctions focus on the clean digits, while the subsequent ones
consistently focus on the noisy digits (generative power close to 0%). From the d-th eigenfunction
onward, a small number of eigenfunctions again focus only on the clean digits. For a visualisation of
the raw saliency maps, check Appendix C.2. This serves an explanation as why these eigenfunctions
boost accuracy.

One last observation is that there appears to be a minimum number of eigenfunctions required
for the network to generalize effectively. Figure 4 illustrates that the number of eigenfunctions
needed for 99% accuracy on the training set decreases throughout training. As the network achieves
good generalization performance, it converges to a minimum. This suggests a critical threshold
in the number of eigenfunctions necessary for capturing the essential features of the dataset and
facilitating successful generalization by the network.

0 2000 4000 6000 8000 10000
Iterations

100

200

300

400

500

Ei
ge

nf
un

ct
io

ns

tm ts tg

Number of eigenfunctions needed for 99% accuracy for test set

Figure 4: Minimum number of eigenfunctions to reach 99% accuracy on the test set though training.
The number seems to converge at some point of training (after tg). Note that this plot can
be seen as summary of Figure 3 (b).

This approach offers an interpretation of the mechanism driving the change of the NTK by
examining the evolution of its eigenfunctions throughout the training process. By tracking how
these eigenfunctions change, we gain insights into the network’s feature learning dynamics.

6



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

4. Conclusion

Our study sheds light on the mechanism underlying grokking in deep neural networks, in the context
of sparse parity tasks. Our findings are consistent with Kumar et al. [9], where Grokking is attributed
to the network’s transition from a lazy (close to its linearisation) to a feature learning regime. In
this context, our analysis also unveil the emergence of structured eigenfunctions, indicating the
acquisition of essential features crucial for generalization. Leveraging saliency maps and a devised
metric (the generative power), we demonstrate how these eigenfunctions evolve, with early ones
focusing on clean digits and later ones capturing noisy digits. Our findings provide insights into the
progression of training dynamics and the encoding of task-relevant information.

Overall, our research compiles several techniques to analyze the NTK throughout training,
proposing a mechanistic interpretability framework that can be used to understand the feature learn-
ing dynamics during training of Neural Network.

7



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

References

[1] Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Ballas, David Krueger, Emmanuel
Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Ben-
gio, and Simon Lacoste-Julien. A closer look at memorization in deep networks. In Proc. of
the International Conf. on Machine Learning, 2017. URL https://dl.acm.org/doi/
10.5555/3305381.3305406.

[2] Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, Eran Malach, and Cyril
Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit. In
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=8XWP2ewX-im.

[3] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-
gramming. In Advances in neural information processing systems, 2019. URL https:
//dl.acm.org/doi/abs/10.5555/3454287.3454551.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In North American Chap-
ter of the Association for Computational Linguistics, 2019. URL https://api.
semanticscholar.org/CorpusID:52967399.

[5] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani,
Daniel M Roy, and Surya Ganguli. Deep learning versus kernel learning: an em-
pirical study of loss landscape geometry and the time evolution of the neural tan-
gent kernel. In Advances in Neural Information Processing Systems, 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/file/
405075699f065e43581f27d67bb68478-Paper.pdf.

[6] Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training
on noisily labeled data with generalization guarantee. In International Conf. on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hke3gyHYwH.

[7] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[9] Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. In International Conf. on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=vt5mnLVIVo.

[10] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear

8

https://dl.acm.org/doi/10.5555/3305381.3305406
https://dl.acm.org/doi/10.5555/3305381.3305406
https://openreview.net/forum?id=8XWP2ewX-im
https://openreview.net/forum?id=8XWP2ewX-im
https://dl.acm.org/doi/abs/10.5555/3454287.3454551
https://dl.acm.org/doi/abs/10.5555/3454287.3454551
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://proceedings.neurips.cc/paper_files/paper/2020/file/405075699f065e43581f27d67bb68478-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/405075699f065e43581f27d67bb68478-Paper.pdf
https://openreview.net/forum?id=Hke3gyHYwH
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=vt5mnLVIVo


FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

models under gradient descent. Journal of Statistical Mechanics: Theory and Experiment,
2020. URL http://dx.doi.org/10.1088/1742-5468/abc62b.

[11] Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorith-
mic data. In International Conf. on Learning Representations, 2023. URL https://
openreview.net/forum?id=zDiHoIWa0q1.

[12] William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as
competition of sparse and dense subnetworks, 2023. URL https://arxiv.org/abs/
2303.11873.

[13] Jack William Miller, Charles O’Neill, and Thang D Bui. Grokking beyond neural networks:
An empirical exploration with model complexity. Transactions on Machine Learning Re-
search, 2024. URL https://openreview.net/forum?id=ux9BrxPCl8.

[14] Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Grokking of
hierarchical structure in vanilla transformers. In Proc. of the Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. URL https://aclanthology.org/2023.
acl-short.38.

[15] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In International Conf. on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

[16] Yeat Jeng Ng, Ainhize Barrainkua, and Novi Quadrianto. Understanding and addressing
spurious correlation via neural tangent kernels: A spectral bias perspective, 2024. URL
https://openreview.net/forum?id=89AOrk05uy.

[17] Adam Pearce, Asma Ghandeharioun, Nada Hussein, Nithum Thain, Martin Wattenberg, and
Lucas Dixon. Do machine learning models memorize or generalize. People+ AI Research,
2023. URL https://pair.withgoogle.com/explorables/grokking/.

[18] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets, 2022. URL https://
arxiv.org/abs/2201.02177.

[19] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. Computing Research
Repository (CoRR), abs/1312.6034, 2013. URL https://api.semanticscholar.
org/CorpusID:1450294.

[20] Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman. Grokking group multiplication
with cosets. In Proc. of the International Conf. on Machine Learning, 2024. URL https:
//openreview.net/pdf?id=hcQfTsVnBo.

[21] Nikolaos Tsilivis and Julia Kempe. What can the neural tangent kernel tell us about adversarial
robustness? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=KBUgVv8z7OA.

9

http://dx.doi.org/10.1088/1742-5468/abc62b
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://arxiv.org/abs/2303.11873
https://arxiv.org/abs/2303.11873
https://openreview.net/forum?id=ux9BrxPCl8
https://aclanthology.org/2023.acl-short.38
https://aclanthology.org/2023.acl-short.38
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=89AOrk05uy
https://pair.withgoogle.com/explorables/grokking/
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://api.semanticscholar.org/CorpusID:1450294
https://api.semanticscholar.org/CorpusID:1450294
https://openreview.net/pdf?id=hcQfTsVnBo
https://openreview.net/pdf?id=hcQfTsVnBo
https://openreview.net/forum?id=KBUgVv8z7OA
https://openreview.net/forum?id=KBUgVv8z7OA


FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

[22] Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and
grokking in ReLU networks for XOR cluster data. In International Conf. on Learning Repre-
sentations, 2024. URL https://openreview.net/pdf?id=BxHgpC6FNv.

[23] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning (still) requires rethinking generalization. Commun. ACM, 64(3):107–115,
feb 2021. URL https://doi.org/10.1145/3446776.

10

https://openreview.net/pdf?id=BxHgpC6FNv
https://doi.org/10.1145/3446776


FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

Appendix A. Definitions and extension of mathematical derivations

This appendix extends the definitions and elaborates on the mathematical derivations used in the
main text. We first introduce the dataset and model that we use. Later derive its Neural Tangent
Kernel (NTK) equations.

A.1. Dataset

In a sparse parity task, the goal is to calculate the parity of k digits within a d-bit number, where
k ≤ d. It has been demonstrated that gradient-based methods do not perform well on learning
parities. Most works take the approach of making favorable assumptions on the input distribution.
Nevertheless, we intentionally follow the paper on the example of [2] to not simplify the problem.
Let us introduce first the term (d, S)-parity function to later define the dataset we use throughout
the experiments.

Definition 1 (d, S)-parity function
For an natural number d and for a subset 1 S ⊆ [d], let fS(x) be the (d, S)-parity function,

fS : {0, 1}d → {0, 1} that takes a d-digit binary number x and checks if the number of ones in the
index of the digits of S is odd. That is,

fS(x) =

(∑
i∈S

xi

)
mod 2 (7)

where xi is the i-th digit of x.

Without loss of generality, in this work, we study the parity in the firsts k digits of the problem.
Therefore, S = {1, 2, . . . , k} (k ∈ N, k ≤ d). We can then define the (d, k)-parity function
fk : {0, 1}d → {0, 1} as:

fk(x) =

(
k∑

i=1

xi

)
mod 2 (8)

Definition 2 Sparse parity Dataset
Let a Sparse parity Dataset D(d,k) = {(xi, yi)

B} of n training samples and ntest test samples
(B = n + ntest) be a dataset where xi is drawn from Unif({0, 1}d) and yi = fk(xi). We denote
X = [x1, . . . ,xn] ∈ Rn×d as the matrix of all training data and Y = [y1, . . . , yn] ∈ Rd the vector
of all training labels. X is any subset of test data (including the full test data).

1. We consider [d] to be the superset of sets of less or equal than d elements containing some natural numbers from 1 to
d without repetition.

11



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

A.2. Model

To solve the task we train a Neural Network (NN), we consider a L-layer MLP with the form
fθ(x) : Rd → R that can be define recursively by:

fθ(x) = z(L) =
1
√
mL

θ(L)x(L−1)

z(l) =
1
√
ml

θ(l)x(l−1) −−→ x(l) = σ
(
z(l)
)

where θ = {θ(l), ∀l = 1, . . . , n} are the trainable weights. θ(l) = [θ
(l)
1 , . . . ,θ

(l)
ml ] ∈ Rml×ml−1

for l = 1, . . . , L−1 are the weights of the hidden layers and θ(L) = [θ
(L)
1 , . . . , θ

(L)
mL ] ∈ RmL are the

weights of the classification layer, all initialized as θ(l)ij ∼ N (0, σinit). σ(x) is the ReLU function.
We assume that ml = m,∀l and we can consider m0 = d.

The network is trained using full-batch gradient descent. With a slight abuse of notation (θt′ =
θ
∣∣∣
t=t′

and ft′ its corresponding function), the weight update rule in each iteration is2

θt+1 ← θt − η∇θtL(X ,Y ;θt) (9)

where L(x, y;θ) is the empirical loss, defined as

L(θ) = L(x, y;θ) = 1

m

m∑
i=1

l(fθ(xi), yi) + λ1∥θ∥1 + λ2∥θ∥2 (10)

A.3. Neural Tangent Kernel

From a theoretical point of view, if instead of having discrete updates of the parameters like in
equation 9, we consider a continuous update, the evolution of the weights of the NN can be described
using the gradient flow differential equation.

∂θt
∂t

= −η∇θL(θ)
∣∣∣
θ=θt

= −η
(
∇θfθ(X )

∣∣∣
θ=θt

)T

∇ft(X )L(θ)
(11)

Then,

∂ft(X )

∂t
= ∇θfθ(X )

∣∣∣
θ=θt

∂θt
∂t

= −η∇θfθ(X )
∣∣∣
θ=θt

(
∇θfθ(X )

∣∣∣
θ=θt

)T

∇ft(X )L(θ)

= −ηΘ̂t(X ,X )∇ft(X )L(θ)

(12)

2. We have experimented with slight variations of the optimizer update rule, including a momentum term and using the
Adam optimizer. However, we have chosen not to include the specific formulas here, as they are not essential to our
main objectives.

12



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

where Θ̂t is the empirical Neural Tangent Kernel

Definition 3 Empirical Neural Tangent Kernel of the training data (e-NTK) The e-NTK (Θ̂t ∈
Rn×n) is the inner product of the gradients evaluated at x1 and x2, where the network is fixed at
θ = θt

Θ̂t(x1,x2) := ∇θfθ(x1)
∣∣∣
θ=θt

(
∇θfθ(x2)

∣∣∣
θ=θt

)T

Equation 12 is difficult to solve, as Θ̂t depends on t. Nevertheless, there is two approximations
that simplify the calculations. In this work, we focus on considering a linearised version of the
network but equation 12 can be also solved considering the network to be infinitely wide (m→∞).

A.3.1. LINEARISED NETWORK

Let us consider the first-order Taylor approximation of the predictive function of the Neural Net-
work:

f lin
t (x) := f0(x) +∇θf0(x)

∣∣∣
θ=θ0

∆t

where ∆t := θt − θ0. Then, equations 11 and 12 get simplified to:

∂∆t

∂t
= −η∇θf0(X )∇f lin

t (X )L(θ) (13)

∂f lin
t (X )
∂t

= −ηΘ̂0(X ,X )∇f lin
t (X )L(θ) (14)

As ∇θf0(x) (and therefore Θ̂0) is constant through training, using the MSE loss, the ODE has
a closed-form solution:

f lin
t (X ) = (I − e−µΘ̂0t)Y + e−µΘ̂0tf0(X ) (15)

considering Θ̂0 = Θ̂0(X ,X ).
For an arbitrary test point x, doing the same theoretical elaboration, f lin

t (x) = µt(x) + γt(x),
where

µt(x) = Θ̂0(x,X )Θ̂−1
0 (I − e−µΘ̂0t)Y (16)

γt(x) = f0(x)− Θ̂0(x,X )Θ̂−1
0 (I − e−µΘ̂0t)f0(X ) (17)

Note that then, the evolution of the neural network through training has also closed-form solu-
tion and in the end of training (t→∞) the predictive function is

f lin
∞ (x) = Θ̂0(x,X )Θ̂−1

0 (Y − f0(X )) + f0(x) (18)

From here, similar to Hu et al. [6], we will consider the case when we initialise the parameters
of the network so f0(x) ≈ 0 (σinit is small). Therefore:

13



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

f lin
t (x) = µt(x) = Θ̂0(x,X )Θ̂−1

0 (I − e−µΘ̂0t)Y (19)

f lin
∞ (x) = Θ̂0(x,X )Θ̂−1

0 Y (20)

Note that this equations have the form of a Kernel Learning algorithm with the transformation
of the inputs given by the Neural Tangent Kernel. Therefore, a linearised Neural Network has no
feature learning involved in model. Consequently, this is a useful tool for theoretically studying NN
training dynamics but also takes away much of the power of NN.

14



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

Appendix B. Experiment details

In this section, we outline the details of the experiments for reproducibility of the results. Grokking
appears consistently for a sparse parity task, the choice of training hyperparameters was based on a
purely time basis, so grokking would appear soon during training.

We use a sparse parity dataset D(d,k) = {(xi, yi)
B} with 500 training samples and 500 test

samples. xi is chosen so samples are not repeated in any of the B = 1000 samples: xi ̸= xj ∀i ̸= j.
k = 3 is fixed and d = 10 is variable. In the main text, only results using k = 3 and d = 30 are
shown but other results can be checked in D .

The network used to solve the task has depth L = 2 and width m = 64. No bias term is used
in neither of the layers. The weights are initialized following a normal distribution with σinit = 1

(θ(l)ij ∼ N (0, 1)).
The optimizer used was full-batch Adam with learning rate µ = 0.03 and (β1, β2) = (0.9, 0.999)

over a binary cross-entropy loss with a l1-regularisation term over the weights of λ1 = 10−3.

15



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

Appendix C. Complementary results

This section offers complementary results to the ones shown in the main text for a (3, 35)−sparse
parity dataset with the experiment setup described in B.

C.1. Emergence of the structure in the weights of the network

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Weights of hidden layer in t0

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Weights of hidden layer in tm

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Weights of hidden layer in ts

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Weights of hidden layer in tg

3

2

1

0

1

2

3

6

4

2

0

2

4

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

30

20

10

0

10

20

30

Figure 5: Evolution of the weights of the first layer of a 2-layer MLP. Each image represents
W (1) ∈ Rm×d for different time steps of training. The weights progressively focus
on the first three digits (clean digits).

As it can be seen, generalisation happens because the networks starts focusing on the clean
digits. Nevertheless, during the memorisation period (t = [tm, ts]) this structure does not seem to
arise. It is noteworthy that the scale of the weights increases from t0 to tm. This increase in scale
contributes to the rise in the loss function during the memorization phase. Moreover, the logits of
the function also scale up due to this weight scaling.

16



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

C.2. Visualization of generative power

In this section, we show the saliency maps used to calculate the generative power metric.

0 5 10 15 20 25 30
Index (i)

0

10

20

30

40

Di
gi

tt0

0 5 10 15 20 25 30
Index (i)

0

10

20

30

40

Di
gi

ttm

0 5 10 15 20 25 30
Index (i)

0

10

20

30

40

Di
gi

tts

0 5 10 15 20 25 30
Index (i)

0

10

20

30

40

Di
gi

ttg

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Normalized saliency map of the first 50 eigenfunctions with respect to the loss function
si(X ) = 1

n

∑n
j=1∇xL(ϕ̂i(xj), yj). Rows indicate the index of the eigenfunction (i).

Highest value of each row is mapped to 1 and lowest to 0, the rest are interpolated.

As it can be also devised with the generative power metric (see Figure 3), the first eigenfunctions
concetrate their saliency map only in the first 3 digits (clean digits) as training progresses. The
following 32 eigenfunctions focus only on the noisy digits. And around the 35 eigenfunction, they
focus again only on the clean digits.

17



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

Appendix D. Results for other choices of d

D.1. 3 clean digits and 30 noisy

0 2k 4k 6k 8k 10k
50%

75%

100%

Ac
cu

ra
cy

 (%
)

tm ts tg

(a)

train
test

0 2k 4k 6k 8k 10k
0

1

2

Lo
ss

(b)

train
test

0 2k 4k 6k 8k 10k
Iterations

50%

75%

100%

NT
K 

Ac
cu

ra
cy

 (%
)

(c)

train
test

0 2k 4k 6k 8k 10k
Iterations

0.6

0.8

NT
K 

Lo
ss

(d)

train
test

0 2000 4000 6000 8000 9800
Iterations

0

2000

4000

6000

8000

9800

Ite
ra

tio
ns

tm
tm

1
ts

ts

2

tg

tg

3

(e)

Kernel Distance

0.00

0.05

0.10

0.15

0.20

Figure 7: Training metrics and NTK evolution through training for a (3, 30)-sparse parity dataset.
The rest of the experimental set-up is identical to what was described in B.

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

t0

(a) Acc. Accuracy on train set

0 100 200 300 400 500

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

(b) Acc. Accuracy on test set

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)
(c) Generative power of eigenfunctions

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

tm

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

ts

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

0 100 200 300 400 500
Index (i)

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

tg

0 100 200 300 400 500
Index (i)

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
Index (i)

0%
10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

Figure 8: Accumulative accuracy and generative power of each eigenfunction for a (3, 30)-sparse
parity dataset. The rest of the experimental set-up is identical to what was described in B.

18



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

0 5 10 15 20 25
Index (i)

0

10

20

30

40

Di
gi

tt0

0 5 10 15 20 25
Index (i)

0

10

20

30

40

Di
gi

ttm

0 5 10 15 20 25
Index (i)

0

10

20

30

40

Di
gi

tts

0 5 10 15 20 25
Index (i)

0

10

20

30

40

Di
gi

ttg

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Accumulative accuracy and generative power for each for a (3, 30)-sparse parity dataset.
The rest of the set-up is identical to what was described in B.

19



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

0 5 10 15 20 25

0

10

20

30

40

50

60

Weights of hidden layer in t0

0 5 10 15 20 25

0

10

20

30

40

50

60

Weights of hidden layer in tm

0 5 10 15 20 25

0

10

20

30

40

50

60

Weights of hidden layer in ts

0 5 10 15 20 25

0

10

20

30

40

50

60

Weights of hidden layer in tg

3

2

1

0

1

2

3

8

6

4

2

0

2

4

6

15

10

5

0

5

10

15

40

30

20

10

0

10

20

30

Figure 10: Evolution of the weights of the hidden layer for a (3, 30)-sparse parity dataset. The rest
of the set-up is identical to what was described in B.

0 2000 4000 6000 8000 10000
Iterations

0

100

200

300

400

500

Ei
ge

nf
un

ct
io

ns

tm ts tg

Number of eigenfunctions needed for 99% accuracy for test set

Figure 11: Eigenfunctions needed to reach 99% accuracy through training for a (3, 30)-sparse par-
ity dataset. The rest of the set-up is identical to what was described in B.

D.2. 3 clean digits and 40 noisy

20



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

0 2k 4k 6k 8k 10k
50%

75%

100%

Ac
cu

ra
cy

 (%
)

tm ts tg

(a)

train
test

0 2k 4k 6k 8k 10k
0

1

2

Lo
ss

(b)

train
test

0 2k 4k 6k 8k 10k
Iterations

50%

75%

100%

NT
K 

Ac
cu

ra
cy

 (%
)

(c)

train
test

0 2k 4k 6k 8k 10k
Iterations

0.5

0.6

0.7

NT
K 

Lo
ss

(d)

train
test

0 2000 4000 6000 8000 9800
Iterations

0

2000

4000

6000

8000

9800

Ite
ra

tio
ns

tm
tm

1

ts

ts

2

tg

tg

3

(e)

Kernel Distance

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 12: Training metrics and NTK evolution through training for a (3, 40)-sparse parity dataset.
The rest of the experimental set-up is identical to what was described in B.

0 100 200 300 400 500

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

t0

(a) Acc. Accuracy on train set

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

(b) Acc. Accuracy on test set

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

(c) Generative power of eigenfunctions

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

tm

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

0 100 200 300 400 500

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

ts

0 100 200 300 400 500
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
0%

10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

0 100 200 300 400 500
Index (i)

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

tg

0 100 200 300 400 500
Index (i)

50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
Index (i)

0%
10%
20%
30%
40%
50%

Ge
n.

 p
ow

er
 (%

)

Figure 13: Accumulative accuracy and generative power of each eigenfunction for a (3, 40)-sparse
parity dataset. The rest of the experimental set-up is identical to what was described in
B.

21



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

0 5 10 15 20 25 30 35
Index (i)

0

10

20

30

40

Di
gi

tt0

0 5 10 15 20 25 30 35
Index (i)

0

10

20

30

40

Di
gi

ttm

0 5 10 15 20 25 30 35
Index (i)

0

10

20

30

40

Di
gi

tts

0 5 10 15 20 25 30 35
Index (i)

0

10

20

30

40

Di
gi

ttg

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: Accumulative accuracy and generative power for each for a (3, 40)-sparse parity dataset.
The rest of the set-up is identical to what was described in B.

22



FEATURE LEARNING DYNAMICS UNDER GROKKING IN A SPARSE PARITY TASK

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

Weights of hidden layer in t0

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

Weights of hidden layer in tm

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

Weights of hidden layer in ts

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

Weights of hidden layer in tg

3

2

1

0

1

2

3

6

4

2

0

2

4

6

20

15

10

5

0

5

10

30

20

10

0

10

20

Figure 15: Evolution of the weights of the hidden layer for a (3, 40)-sparse parity dataset. The rest
of the set-up is identical to what was described in B.

0 2000 4000 6000 8000 10000
Iterations

100

200

300

400

500

Ei
ge

nf
un

ct
io

ns

tm ts tg

Number of eigenfunctions needed for 99% accuracy for test set

Figure 16: Eigenfunctions needed to reach 99% accuracy through training for a (3, 40)-sparse par-
ity dataset. The rest of the set-up is identical to what was described in B.

23


	Introduction
	Experimental Setup and NTK framework
	Task Definition
	Model Definition
	Neural Tangent Kernel and Feature Learning link
	Eigenfunction Decomposition


	Experiments
	Feature learning happens late during training
	Features are encoded in the NTK

	Conclusion
	Definitions and extension of mathematical derivations
	Dataset
	Model
	Neural Tangent Kernel
	Linearised Network


	Experiment details
	Complementary results
	Emergence of the structure in the weights of the network
	Visualization of generative power

	Results for other choices of d
	3 clean digits and 30 noisy
	3 clean digits and 40 noisy


