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ABSTRACT

Quantum computing holds transformative potential, yet today’s hardware remains
small, noisy, and connectivity-limited, making efficient compilation a critical chal-
lenge. Existing compilers operate on hardware coupling graphs and introduce
SWAP operations to satisfy restricted qubit interactions, which often increases
circuit depth, execution time, and error rates. Reinforcement learning (RL) has
recently been explored for mapping and routing, but prior approaches still lead
to long execution times and degraded fidelity on real devices, limiting practical
effectiveness. We propose a hardware-aware compilation framework that inte-
grates representation learning with search. Specifically, we design a graph-biased
Transformer that jointly encodes logical and physical qubit graphs with structural
biases, and train policies via group-relative policy optimization using a blocking-
aware simulator aligned with true execution-time objectives. During inference,
the learned policy is combined with Monte Carlo tree search to refine mappings
under limited simulation budgets. Experiments demonstrate that this integrated
learning-and-search framework achieves scalable, hardware-aware compilation
with improved fidelity and efficiency across diverse circuits and architectures.

1 INTRODUCTION

Quantum computing is steadily transitioning from theoretical foundations to practical systems. The
United Nations has designated 2025 as the International Year of Quantum Science and Technol-
ogy (UNG, 2024), underscoring this global momentum. Early applications already show promise
in fields such as quantum chemistry for drug discovery (Cao et al., 2019), quantum machine learn-
ing (Stein et al., 2022; Ullah & Garcia-Zapirain, 2024; Liu et al., 2024; Stein et al., 2021; Verma
et al., 2025), high-performance quantum–classical computing (Elsharkawy et al., 2025; Mu et al.,
2022; Du et al., 2024), and privacy and security (Li et al., 2025; Abdikhakimov, 2024; Namakshenas
et al., 2024). However, today’s quantum processors are still small, noisy, and highly constrained,
making efficient compilation a central challenge.

A quantum circuit describes logical qubits and quantum gates, but hardware only supports inter-
actions between certain pairs of physical qubits. Current superconducting, such as IBM Quantum
and Rigetti Computing, expose sparse and irregular coupling graphs, where two-qubit operations
can only be executed on connected pairs. When a logical gate acts on qubits that are not adja-
cent, the compiler must insert additional SWAP operations to move qubits closer together (Li et al.,
2019; Cowtan et al., 2019). These extra gates increase circuit depth, execution time, and error rates,
which directly reduces fidelity. As such, the core tasks of compilation are twofold: (i) mapping,
the initial assignment of logical qubits to physical qubits; and (ii) routing, the dynamic insertion
of SWAP operations to enable non-adjacent interactions while minimizing overhead. In this way,
quantum compilation bridges circuits and hardware by translating logical operations into hardware-
executable instructions. Because the problem is inherently combinatorial and hardware-dependent,
a variety of heuristic approaches have been developed to address mapping and routing.

State-of-the-art compilers rely on handcrafted heuristics to guide mapping and routing. Greedy cost
functions and lookahead rules (Li et al., 2019; Cowtan et al., 2019; Qiu et al., 2025) attempt to
approximate execution cost, while search-based methods such as beam search or Monte Carlo tree
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Figure 1: Overview of the proposed framework. (a) Graph-Biased Transformer: logical graph
GL and physical graph GP are enriched with Laplacian PEs, while a geodesic/structural bias B
is injected into the attention logits. The encoder outputs embeddings for feasible partial mapping.
(b) Reinforcement learning (GRPO): the policy πθ generates candidate mappings, evaluated by a
blocking-aware simulator to obtain returns R(C, σ). Advantages A(g) guide a GRPO update with
KL regularization against a reference policy πref , after a supervised warm-start.

search (MCTS) explore alternative mappings (Sinha et al., 2022a; Zhou et al., 2022). These strate-
gies work for mid-sized circuits but suffer from two drawbacks: (1) they optimize proxy metrics
(e.g., qubit distance or gate count) instead of true hardware execution time (Cheng et al., 2024; Lao
et al., 2022); and (2) they require manual tuning for each device topology and workload (Zulehner
et al., 2018; Zhu et al., 2025b). Consequently, such methods may fail to generalize to new circuits
or hardware.

Machine learning offers an alternative by automatically extracting patterns from families of circuits
and hardware graphs. Recent works have applied reinforcement learning (RL) to propose initial
mappings (Amer et al., 2024), generate SWAP sequences (Fan et al., 2022b; Pozzi et al., 2022), or
evaluate partial mapping with graph neural networks (Sinha et al., 2022a; LeCompte et al., 2023).
These approaches show that policies trained on representative data can outperform fixed heuristics.
Yet, important gaps remain:

• Objective mismatch: many RL models optimize simple proxies (e.g., depth, distance, or
number of SWAPs) rather than realistic execution-time objectives such as makespan with
blocking-aware routing and scheduling (Cheng et al., 2024).

• Representation limits: policies often encode either the logical circuit or the hardware
graph in isolation, leaving their interaction implicit and forcing the model to infer structural
relations from weak signals (LeCompte et al., 2023; Fan et al., 2022b).

• Weak integration with planning: most approaches treat RL and search separately, miss-
ing opportunities to combine learned priors with online planning under a fixed compute
budget (Sinha et al., 2022a).

To address these gaps, we present a reinforcement learning framework for hardware-aware quan-
tum mapping that unifies representation learning and planning. The method treats mapping as a
structured prediction problem over two graphs: the logical interaction graph and the hardware cou-
pling graph. We design a graph-biased Transformer that encodes both structures with positional and
geodesic information, enabling the model to capture how logical operations can be realized on hard-
ware. The policy is trained end-to-end with feedback from a blocking-aware simulator that models
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true execution time, thereby aligning training objectives with deployment-time performance. At in-
ference, the RL policy guides Monte Carlo tree search to refine decisions under limited simulation
budget, combining the generalization power of learning with the robustness of search.

In summary, this work makes the following contributions:

• We introduce a graph-biased Transformer architecture that jointly encodes the logical cir-
cuit and the hardware coupling graph with positional and geodesic information, enabling
hardware-aware mapping and routing.

• We design a reinforcement learning framework with group-relative policy optimization that
aligns training feedback with true hardware execution objectives such as makespan.

• We integrate learning and planning by combining the RL policy with Monte Carlo tree
search, balancing generalization from learning with the robustness of online search under
a fixed compute budget.

2 BACKGROUND

This section formalizes the hardware, circuit, and optimization models that underlie hardware-aware
mapping and routing. The presentation defines the physical noise model, the device connectivity and
resource calendars, the logical circuit and its precedence constraints, and the learning primitives that
operate on graphs and feasibility-constrained assignments, while avoiding repetition of the narrative
introduced earlier.

2.1 QUANTUM HARDWARE AND COMPILATION BASICS

Quantum processors execute circuits on a physical topology of qubits with restricted couplings.
Logical qubits in an algorithm must be mapped onto this hardware, and two-qubit operations are
only directly available between adjacent qubits. When the circuit demands interactions between
non-adjacent qubits, additional SWAP operations are inserted, which increase depth and error. The
mapping and routing problem seeks to find a mapping and schedule that minimizes these penal-
ties. We next formalize the noise model, device connectivity, and learning framework used in our
approach.

2.2 ESSENTIAL PHYSICAL QUBIT INFORMATION

Intuitively, T1 captures how long a qubit maintains its energy state, while T2 captures how long
it maintains phase coherence. These parameters determine how many operations can be exe-
cuted before the quantum state decoheres. Let H ∼= C2 denote the state space of a physi-
cal qubit. Quantum operations are represented by completely positive trace-preserving channels
E : B(H⊗n) → B(H⊗n). Two coherence parameters govern idle and driven evolution: the energy
relaxation time T1 and the dephasing time T2. A standard continuous-time approximation models
idle noise on a single qubit by the composition

Eidle(t) = Dγ(t) ◦ Φη(t), γ(t) = 1− e−t/T1 , η(t) = 1− e−t/T2 ,

where Dγ is an amplitude-damping channel and Φη is a phase-damping channel. For driven evolu-
tion, a gate g on qubits S(g) ⊆ {1, . . . , n} has duration τ(g) > 0 and an intrinsic process channel Gg
with error probability ε(g) ∈ [0, 1]. Measurement at qubit q is modeled by a positive operator-valued
measurement with assignment error εmeas(q).

Given wall-clock start times {t(o)} for operations o in a schedule, the implemented channel Ĉ is the
time-ordered product of gate channels and idle channels on each resource. Let C denote the ideal
unitary channel of the logical circuit restricted to the device gate set. A task-level success metric is
the process fidelity

Fpro(Ĉ, C) =

〈
J(Ĉ), J(C)

〉
∥J(Ĉ)∥F ∥J(C)∥F

, (1)

where J(·) is the Choi matrix and ⟨·, ·⟩ is the Frobenius inner product. When complete process
estimates are impractical, a fidelity proxy is constructed as a deterministic functional of a mapping
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and a schedule by multiplying local survival factors derived from {ε(g)}, {T1, T2}, and {τ(g)}
along the realized schedule.

Fidelity proxy used in evaluation. Given a scheduled calendar Sched(C, π) with operation inter-
vals and idles, the deterministic proxy is

Fproxy(C, π) =

( ∏
o∈Sched(C,π)

(
1− ε(o)

))
·

( ∏
q∈V

exp
(
− T idle

1 (q)
T1(q)

− T idle
2 (q)
T2(q)

))
,

where ε(o) are per-operation error probabilities and T idle
1,2 (q) are the accumulated idle times on qubit

q measured from the realized schedule.

2.3 COMPILATION OBJECTIVES

Compilation quality is evaluated with three primary metrics: (i) circuit depth (discrete time steps),
(ii) two-qubit gate count (dominant error contributors), and (iii) scheduled makespan, the predicted
execution time under a hardware-aware scheduler. Compiler wall-clock runtime is reported sepa-
rately and is not a quality metric. A fidelity proxy (Eq. 1) aggregates gate and idling errors into
a single success probability. The proposed method targets scheduled makespan directly using a
fidelity-aware scheduler–simulator, aligning training and evaluation with deployment conditions and
yielding consistent improvements under fixed compute budgets.

2.4 CHIP TOPOLOGY AND QUBIT CONNECTIVITY

IBM’s heavy-hex topology is a coupling graph in which each qubit has degree two or three. Any
valid compilation must therefore schedule entangling gates in accordance with this restricted con-
nectivity. Any quantum device is described by a coupling graph G = (V,E) whose vertices V are
physical qubits and whose edges E ⊆ {{u, v} : u, v ∈ V, u ̸= v} indicate native two-qubit interac-
tions. Each vertex v ∈ V has attributes such as single-qubit gate duration τ1(v) and error probability
ε1(v); each edge e = {u, v} ∈ E has attributes such as two-qubit gate duration τ2(e) and error prob-
ability ε2(e). Heterogeneity is permitted so that these attributes vary across V and E. Let dG(u, v)
denote shortest-path distance in G. Execution consumes resources over time. Associate with each
qubit v ∈ V a calendar K(v) ⊂ R≥0 and with each edge e ∈ E a calendar K(e) ⊂ R≥0 such that
placed operations must reserve the corresponding calendars for their durations.

2.5 GRAPH NEURAL NETWORK

The GNN serves as a learned cost model: it embeds both the logical circuit graph and the hardware
coupling graph, enabling the policy to predict which assignments are more promising. Let L =
(Q,EL) denote the logical interaction graph whose vertices Q are logical qubits, with (i, j) ∈ EL

if some two-qubit gate acts on {i, j} in the logical circuit. Let AL ∈ R|Q|×|Q| and AG ∈ R|V |×|V |

be adjacency matrices of L and G. Graph-structured encodings map node and pairwise structure
to vector representations suited for structured prediction over two graphs. A spectral positional
encoding is formed by taking the first k eigenpairs (λℓ, uℓ) of a normalized Laplacian and setting

PE(i) =
[
u1(i), . . . , uk(i)

]
. (2)

Geodesic bias can be injected into attention scores by adding a distance-derived term to the pre-
softmax compatibility:

b(i, j) = α1 1{i = j} + α2 dG(i, j) + α3 AG(i, j), (3)

with learned scalars α1, α2, α3. A feasibility-aware matching head uses a mask to enforce hard
constraints during decoding. For an autoregressive factorization over logical indices t = 1, . . . , |Q|,
let At(σ<t) ⊆ V denote the set of currently feasible placements given partial assignment σ<t. The
conditional distribution is

πθ(σ | x) =
|Q|∏
t=1

exp sθ
(
qt, vt;x, σ<t

)∑
v∈At(σ<t)

exp sθ
(
qt, v;x, σ<t

) 1{vt ∈ At(σ<t)}, (4)
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where sθ is a compatibility score between a logical node and a physical node; a bi-affine parameter-
ization

sθ(i, j) = x⊤
i Wθ yj + a⊤i bj (5)

is effective for pairwise relations.

Model hyperparameters tied to symbols. Laplacian positional encodings use dimension k =
pe dim. The geodesic attention bias employs a hop-distance cap h = hop distance cap and
adjacency gating controlled by learned scalars. These correspond to the implementation choices
indicated in the experimental section: pe type = lap, pe dim = k, hop bias = true,
hop distance cap = h.

2.6 GROUP-RELATIVE POLICY OPTIMIZATION

GRPO extends standard PPO to group-related quantum circuits, stabilizing learning under the long
horizons and sparse rewards typical in quantum compilation. A policy πθ produces a distribution
over feasible assignments, and the simulator returns a task-level value for each sampled assign-
ment. Let R(σ) denote a return computed by executing routing and scheduling for mapping σ and
producing a negative makespan, a fidelity proxy, or a composite objective. The learning problem is

max
θ

Eσ∼πθ(·|x)
[
R(σ)

]
.

To control variance and bias in long-horizon, combinatorial settings, a group-relative scheme forms
advantage estimates by subtracting a group-conditioned baseline bg from sampled returns R(σ),
where the group index g encodes matched contexts such as size, topology class, or simulator budget.
The update uses a clipped surrogate

L(θ) = E
[
min

(
ρt(θ)A

(g)
t , clip

(
ρt(θ), 1− ϵ, 1 + ϵ

)
A

(g)
t

)]
, ρt(θ) =

πθ(at | st)
πθold(at | st)

,

with decoupled clipping on the policy ratio and separate normalization of returns across groups.
A reference policy πref can regularize exploration through a Kullback–Leibler divergence penalty
βKL(πθ ∥πref) while avoiding collapse to teacher forcing.

Determinism and return normalization. All reported functionals are deterministic given a fixed
random seed; when tie-breaking randomness is present, expectations are taken over that random-
ness under a fixed evaluation budget. Returns are centered and scaled per group before updates;
coefficients (α, β, γ) are selected from a compact set and fixed within each run.

3 MODEL FOR HARDWARE AWARE QUANTUM MAPPING

3.1 PROBLEM FORMULATION

We study hardware-aware compilation under sparse device connectivity. A quantum circuit induces
a logical interaction graph GL = (VL, EL), where VL are logical qubits and EL encodes two-qubit
dependencies. The target processor is a physical coupling graph GP = (VP , EP ) with |VP | ≥ |VL|,
whose edges are native two-qubit interactions. Let Rphys := VP ∪ EP denote physical resources
(qubits and couplers).
Definition 1 (Feasible mapping). A mapping is an injective map π : VL ↪→ VP . The feasible set is
Π.

Fix a deterministic compilation pipeline (routing + scheduling). Given a mapping π ∈ Π, routing
yields a compiled operation set Oπ (original two-qubit gates plus any routing-induced SWAPs).
Each operation o ∈ Oπ has duration τ(o) > 0 and requires resources R(o) ⊆ Rphys. For each
resource r, K(r) ⊆ R≥0 is the union of availability intervals. A schedule assigns start times t :
Oπ → R≥0 and is feasible if and only if:

(precedence) o ≺ o′ ⇒ t(o′) ≥ t(o) + τ(o),

(availability) [ t(o), t(o) + τ(o) ) ⊆ K(r) ∀r ∈ R(o),
(unit capacity) [ t(o), t(o) + τ(o) ) ∩ [ t(o′), t(o′) + τ(o′) ) = ∅

whenever r ∈ R(o) ∩R(o′) for some r.

5
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Figure 2: Illustration of quantum circuit mapping and routing. (a) Hardware coupling graph with
four physical qubits {Q0, Q1, Q2, Q3}. The pairs (Q0, Q3) and (Q1, Q2) are not connected. (b)
Input circuit with single-qubit gates (blue squares), CNOT gates (black–orange), and measurement
operations (gray). A SWAP gate is shown as three consecutive CNOTs. (c) Mapping and rout-
ing: logical qubits {q0, q1, q2, q3} are initially assigned to physical qubits {Q0, Q1, Q2, Q3}. Some
CNOT operations cannot be executed directly because the assigned physical qubits are not adjacent
in the hardware graph. To resolve this, SWAP gates (orange crosses) are inserted to move qubits into
positions where the required interactions become possible. In this example, Q0 and Q1 are swapped
multiple times (as indicated in the speech bubbles), enabling CNOT operations that otherwise could
not be executed under the given connectivity. The speech bubbles highlight the updated logical-to-
physical mappings after each SWAP.

Definition 2 (Makespan Objective). Under the fixed pipeline, the execution makespan for mapping
π is Cmax(π) = maxo∈Oπ

(
t(o) + τ(o)

)
.

The time-constrained mapping problem seeks a mapping π⋆ minimizing makespan under a
compilation-time budget B > 0:

π⋆ = argmin
π∈Π

Cmax(π) s.t. Tsearch(π) ≤ B,

where Tsearch(π) is the wall-clock time spent evaluating π with the fixed pipeline.

3.2 DUAL GRAPH ENCODER WITH GEODESIC BIAS

The encoder operates on the logical and physical graphs with a shared Transformer block that uses
two sources of structure: spectral positional information and a bias based on shortest–path distance.
This combination strengthens attention along pairs of nodes that are close in the graph sense.

Let L(G) denote the normalized graph Laplacian of a graph G. Let PE(i) ∈ Rk be the vector
formed by the first k nontrivial eigenvectors of L(G) evaluated at node i. Given node features xi,
the input to the encoder is

x̃i = [xi; PE(i) ]. (6)

For nodes u and v in a graph G, let dG(u, v) be the shortest–path distance measured in hops. A
learnable kernel b : N→ R maps this distance to a scalar weight. The geodesic bias is then

Buv = b
(
dG(u, v)

)
, (7)

applied independently on the logical and physical graphs. From the augmented inputs, queries, keys,
and values are computed in the standard way. The pre–softmax scores are shifted by the bias,

Sij =
q⊤
i kj√
d

+ Bij , Attn(qi,K, V ) =
∑
j

exp(Sij)∑
j′ exp(Sij′)

vj , (8)

6
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and stacked layers with residual connections and normalization yield node embeddings z
(L)
i and

z
(P )
j for the logical and physical graphs.

Lemma 3 (Kernel gating). For any score matrix X and any bias matrix B,

softmax(X+B) = RowNorm
(
softmax(X)⊙ exp(B)

)
, (9)

where ⊙ denotes the elementwise product and RowNorm normalizes each row to sum to one.

Identity equation 17 shows that the bias reweights attention by a factor exp
(
b(d)

)
, which enables a

single layer to express selectivity over hop classes. The eigenvectors of the Laplacian are defined up
to block–orthogonal transformations; learned input projections absorb this ambiguity, and the block
remains permutation equivariant.

3.3 BI AFFINE ASSIGNMENT WITH FEASIBILITY MASKING

Inter–graph matching scores are produced by a Bi Affine head acting on the encoder outputs. Let
ZL = [z

(L)
i ]i∈VL

and ZP = [z
(P )
j ]j∈VP

. Scores take the form

Aij = (z
(L)
i )⊤W z

(P )
j + αi + βj , (10)

with W ∈ Rd×d and nodewise offsets α and β. Injectivity and hardware constraints are enforced
autoregressively through a feasibility mask M ∈ {0, 1}|VL|×|VP | that rules out already assigned
physical nodes and any placements that violate device connectivity. The probability of assigning
logical node i to physical node j at step t is

p(j | i≤t, GL, GP ) =
exp
(
Aij + logMij

)∑
j′ exp

(
Aij′ + logMij′

) . (11)

This construction separates hard constraints, which are handled by the mask, from global trade–offs,
which are captured by the scores. The head operates on both graphs in a shared representation space
and can produce mappings by sampling or by greedy selection under the mask. Computational cost
is dominated by the scheduler used to evaluate completed assignments.

4 LEARNING AND SEARCH WITH SCHEDULER CONSISTENT COSTS

4.1 TRAINING OBJECTIVE AND HARDWARE AWARE REWARD

All learning signals and all reported metrics are computed with the same blocking–aware rout-
ing–scheduling pipeline. For a circuit C and a mapping π, the scheduler S returns a makespan
M(C, π), a swap count S(C, π), and a fidelity proxy F (C, π) ∈ [0, 1] obtained from the scheduled
execution. The episodic reward combines these quantities,

R(C, π) = αF (C, π) − β S(C, π) − γM(C, π), α, β, γ ≥ 0, (12)

with fixed weights within a run. The training objective is the expected reward under the policy that
generates mapping autoregressively,

max
θ

EC∼D Eπ∼πθ( · |C) [R(C, π) ], (13)

where D is the task distribution and πθ denotes the assignment policy.

Hardware resources are modeled as unit–capacity with time–varying availability and fixed gate du-
rations. The scheduler resolves routing and scheduling decisions to produce a feasible calendar that
respects precedence, availability, and unit–capacity constraints. All baselines and learned policies
are evaluated by the same S, which removes any train–test mismatch between proxy objectives and
final metrics.

In deployment, wall–clock time is limited. The budgeted variant maximizes reward subject to a
fixed budget B on search time,

max
θ

EC∼D Eπ∼πθ,B( · |C) [R(C, π) ], with Tsearch(π) ≤ B, (14)

where πθ,B denotes the mapping returned by the policy–guided search run under budget B.

7
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4.2 POLICY GUIDED MONTE CARLO TREE SEARCH

Search is performed over partial injections π1:t that map the first t logical nodes to distinct physical
nodes. At a state st, the set of feasible actions Ut consists of assignments that respect injectivity and
device constraints. Selection follows a policy–prioritized upper confidence rule,

a⋆ = argmax
a∈Ut

{
Q(st, a) + cpuct Pθ(a | st)

√
N(st)

1 +N(st, a)

}
, (15)

where Pθ is the policy prior, N are visit counts, Q are running value estimates, and cpuct > 0 controls
exploration. Expansion adds the chosen child. Rollout completes a mapping using a greedy policy
guided by Pθ under a feasibility mask. The terminal value uses the scheduler,

V (sT ) = −M(C, π), (16)

or the negative of the full reward in equation 12, and is backed up along the path with incremental
averaging.

The procedure is anytime: the best mapping found so far is returned when a fixed budget B is
exhausted. Budget parity is enforced by running each method—learned policy with search and each
baseline—under the same wall–clock budget or the same number of scheduler evaluations, and by
evaluating all candidates with the same scheduler.

Assumption 1 (Concentration of terminal values). Terminal values have bounded noise around
their means, for example sub–Gaussian tails with variance proxy σ2 induced by simulator variability.

Assumption 2 (Prior consistency). The policy prior assigns nontrivial mass to optimal or
near–optimal actions on average. There exists η ∈ (0, 1] such that E

[∑
a∈A⋆(s) Pθ(a | s)

]
≥ η,

where A⋆(s) denotes the set of optimal actions at state s and the expectation is over problem in-
stances and internal randomness.

Proposition 1 (Regret under policy–prioritized search). Under Assumptions 1–2 and standard
smoothness and branching conditions for upper confidence bounds on trees, after N node expan-
sions the expected suboptimality of the returned makespan satisfies E[M(C, π̂N )−M(C, π⋆)] ≤

Õ
(

1
η

√
σ2

N

)
, up to logarithmic and structure–dependent constants. The policy prior increases the

sampling probability of promising subtrees by a factor proportional to η, which improves allocation
of expansions. A full proof appears in the appendix.

5 EXPERIMENTS

Setup. We implement Graph-Biased Transformers for Hardware-Aware Quantum mapping
via Reinforcement Learning Search (GRIT) in Python 3.10.12 and simulate circuits with Qiskit’s
AerSimulator under IBM-Q noise emulation. Experiments run on Ubuntu Linux with an Intel®
Xeon® Gold 6230R @ 2.10 GHz (104 logical cores) and 187 GiB RAM. For hardware-aware studies
we use Qiskit provider-level backends that emulate calibrated IBM devices—CairoV2 (27q), Prague
(33q), RochesterV2 (53q), and WashingtonV2 (127q), capturing connectivity, gate durations, and
error rates.

Benchmarks. We evaluate on three representative families: Quantum Fourier Transform (QFT), a
communication-intensive circuit sensitive to mapping and SWAP overhead Bäumer et al. (2024);
QAOA on ring graphs (qaoa ring), a standard variational workload for near-term optimiza-
tion Galda et al. (2021); and GHZ state preparation, a canonical entanglement benchmark for routing
and noise robustness Matos et al. (2021).
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CIRCUIT METHOD RANDOM (16Q) RANDOM (27Q) RANDOM (64Q) RANDOM (127Q)
SWAPS DEPTH TIME(s) SWAPS DEPTH TIME(s) SWAPS DEPTH TIME(s) SWAPS DEPTH TIME(s)

RANDOM (GREEDY) 11 24 21.31 20 43 20.01 48 90 20.15 94 182 20.50
GHZ QISKIT TRANSPILER (IBM) 11 24 30.05 20 42 30.01 46 87 30.25 96 179 31.31

GRIT 12 26 0.39 19 38 1.07 48 89 7.56 94 181 25.05
GRIT (BOOSTED) 13 27 0.71 19 42 0.57 44 88 2.72 91 176 22.94
RANDOM (GREEDY) 14 78 20.02 20 128 20.03 50 246 20.09 98 456 20.92

QAOA QISKIT TRANSPILER (IBM) 15 80 30.03 18 126 30.01 51 251 30.36 98 463 30.35
RING GRIT 12 85 0.56 20 122 1.51 42 253 10.08 94 448 35.48

GRIT (BOOSTED) 14 89 0.57 18 119 0.75 47 234 4.34 89 448 32.51
RANDOM (GREEDY) 84 295 21.77 222 606 20.22 1203 2061 22.36 4034 5506 59.14

QFT QISKIT TRANSPILER (IBM) 87 294 30.10 205 607 30.65 1167 2047 34.76 4078 5312 75.10
GRIT 85 282 2.98 214 528 3.88 1154 2126 86.51 3968 5402 >120
GRIT (BOOSTED) 88 250 3.33 211 517 4.39 1142 2136 84.01 4036 5341 >120

Table 1: Random heavy-hex (noiseless). Routing/scheduling across GHZ, QAOA-ring, and QFT
on 16/27/64/127-qubit random heavy-hex graphs. Metrics are SWAPs, depth, and wall-clock com-
pilation time (s); lower is better. GRIT variants share the same search budget as baselines; best
results are in bold.

CIRCUIT METHOD CAIROV2 (27Q) PRAGUE (33Q) ROCHESTERV2 (53Q) WASHINGTONV2 (127Q)
SWAPS DEPTH TIME(s) SWAPS DEPTH TIME(s) SWAPS DEPTH TIME(s) SWAPS DEPTH TIME(s)

RANDOM (GREEDY) 20 43 20.89 26 49 20.63 40 76 20.06 94 182 20.85
GHZ QISKIT TRANSPILER (IBM) 20 42 30.11 24 46 30.07 37 73 30.11 96 179 30.23

GRIT 18 37 2.12 20 49 3.30 30 71 10.27 96 175 64.30
GRIT (BOOSTED) 20 40 1.08 20 46 1.47 35 75 3.61 91 177 65.99
RANDOM (GREEDY) 20 128 20.03 27 132 20.04 42 196 20.12 98 456 20.89

QAOA QISKIT TRANSPILER (IBM) 18 126 30.03 24 131 30.11 39 201 30.22 98 463 31.90
RING GRIT 19 114 2.97 23 135 4.82 35 208 14.25 92 452 100.07

GRIT (BOOSTED) 19 111 1.38 23 162 1.93 33 198 5.01 89 448 85.77
RANDOM (GREEDY) 222 606 21.27 329 786 21.29 834 1556 21.49 4034 5506 63.15

QFT QISKIT TRANSPILER (IBM) 205 607 30.24 304 726 30.60 790 1591 31.86 4078 5312 72.84
GRIT 208 586 8.42 286 784 14.83 769 1537 70.67 4113 5322 >120
GRIT (BOOSTED) 205 544 8.93 307 818 14.98 769 1679 69.55 4017 4966 >120

Table 2: IBM-Q Noisy Emulator Backends. Routing/scheduling across GHZ, QAOA-ring, and
QFT on IBM quantum public backends. Metrics: SWAPs, depth, compilation time (s); lower is
better. All methods use the same compute budget; best values in bold.

Under equal search budgets, GRIT/GRIT (BOOSTED) reduce SWAPs or depth on GHZ and
QAOA-ring across random heavy-hex and IBM provider-level backends. For QFT, improvements
appear at small/medium sizes and vary by topology; at 127q the search cost dominates and GRIT
exceeds 120 s, while table entries show mixed changes in SWAPs vs. depth. Gains concentrate on
workloads with strong routing pressure (ring-structured QAOA, global GHZ). On QFT, objectives
trade off across sizes/topologies. Compile time grows with qubit count; 127q requires budget control
or additional pruning to keep search time bounded.

6 CONCLUSION

This work presents a hardware-aware qubit mapping method that combines a graph-biased Trans-
former with Laplacian positional encodings, a bi-affine masked matching head, and policy-guided
MCTS at inference. Training and evaluation are coupled to a blocking-aware routing–scheduling
pipeline, aligning optimization with scheduled makespan, swap count, and a deterministic fidelity
proxy. Under matched compute budgets, the approach consistently improves scheduling-aware met-
rics over standard transpiler baselines while retaining an anytime search property.

Ethics Statement The study does not involve human subjects or sensitive data. Increased search
budgets can raise energy use, and improved compilation may accelerate dual-use applications. Dis-
closing compute, favoring carbon-aware execution, and enabling transparent benchmarking can mit-
igate these concerns.

Reproducibility Statement Reproduction requires releasing code for the model, scheduler, and
search; exact hyperparameters and seeds; explicit budget definitions and hardware details; and the
full benchmark suite of circuits and device graphs. To further support the reproducibility of our
results, we will release our experiment code upon acceptance, enabling other researchers to replicate
and expand on our work.
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Gabriel Matos, Sonika Johri, and Zlatko Papić. Quantifying the efficiency of state preparation
via quantum variational eigensolvers. PRX Quantum, 2:010309, Jan 2021. doi: 10.1103/
PRXQuantum.2.010309. URL https://link.aps.org/doi/10.1103/PRXQuantum.
2.010309.

Wenrui Mu, Ying Mao, Long Cheng, Qingle Wang, Weiwen Jiang, and Pin-Yu Chen. Iterative
qubits management for quantum index searching in a hybrid system. In 2022 IEEE International
Performance, Computing, and Communications Conference (IPCCC), pp. 283–289. IEEE, 2022.

Danyal Namakshenas, Abbas Yazdinejad, Ali Dehghantanha, and Gautam Srivastava. Federated
quantum-based privacy-preserving threat detection model for consumer internet of things. IEEE
Transactions on Consumer Electronics, 70(3):5829–5838, 2024.

Feng Pan, Hanfeng Gu, Lvlin Kuang, Bing Liu, and Pan Zhang. Efficient quantum circuit simulation
by tensor network methods on modern gpus, 2024. URL https://arxiv.org/abs/2310.
03978.

Matteo G Pozzi, Steven J Herbert, Akash Sengupta, and Robert D Mullins. Using reinforcement
learning to perform qubit routing in quantum compilers. ACM Transactions on Quantum Com-
puting, 3(2):1–25, 2022.

Cheng Qiu, Pengcheng Zhu, and Lihua Wei. A beam search framework for quantum circuit mapping.
Entropy, 27(3):232, 2025.

Animesh Sinha, Utkarsh Azad, and Harjinder Singh. Qubit routing using graph neural network
aided monte carlo tree search. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 9935–9943, 2022a.

Animesh Sinha, Utkarsh Azad, and Harjinder Singh. Qubit routing using graph neural network
aided monte carlo tree search, 2022b. URL https://arxiv.org/abs/2104.01992.

Samuel A Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Bo Fang, and Shuai
Xu. Qugan: A quantum state fidelity based generative adversarial network. In 2021 IEEE inter-
national conference on quantum computing and engineering (QCE), pp. 71–81. IEEE, 2021.

Samuel A Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Shuai Xu, and Caiwen
Ding. Quclassi: A hybrid deep neural network architecture based on quantum state fidelity.
Proceedings of Machine Learning and Systems, 4:251–264, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ubaid Ullah and Begonya Garcia-Zapirain. Quantum machine learning revolution in healthcare:
a systematic review of emerging perspectives and applications. IEEE Access, 12:11423–11450,
2024.

Vandana Rani Verma, Dinesh Kumar Nishad, Vishnu Sharma, Vinay Kumar Singh, Anshul Verma,
and Dharti Raj Shah. Quantum machine learning for lyapunov-stabilized computation offloading
in next-generation mec networks. Scientific Reports, 15(1):405, 2025.

Xiangzhen Zhou, Yuan Feng, and Sanjiang Li. Quantum circuit transformation: A monte carlo tree
search framework. ACM Trans. Des. Autom. Electron. Syst., 27(6), June 2022. ISSN 1084-4309.
doi: 10.1145/3514239. URL https://doi.org/10.1145/3514239.

Chenghong Zhu, Xian Wu, Zhaohui Yang, Jingbo Wang, Anbang Wu, Shenggen Zheng, and Xin
Wang. Quantum compiler design for qubit mapping and routing: A cross-architectural survey
of superconducting, trapped-ion, and neutral atom systems. arXiv preprint arXiv:2505.16891,
2025a. URL https://arxiv.org/abs/2505.16891.

Chenghong Zhu, Xian Wu, Zhaohui Yang, Jingbo Wang, Anbang Wu, Shenggen Zheng, and Xin
Wang. Quantum compiler design for qubit mapping and routing: A cross-architectural survey of
superconducting, trapped-ion, and neutral atom systems, 2025b. URL https://arxiv.org/
abs/2505.16891.

Alwin Zulehner, Alexandru Paler, and Robert Wille. Efficient mapping of quantum circuits to the
ibm qx architectures. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 1135–1138, 2018. doi: 10.23919/DATE.2018.8342181.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 HEURISTIC-BASED COMPILATION

Early compilers addressed the qubit mapping and routing problem with heuristic scoring and search.
SABRE Li et al. (2019) introduced a dynamic lookahead heuristic to minimize additional SWAPs
while balancing circuit depth. Cowtan et al. Cowtan et al. (2019) formulated the problem as search
over possible mapping, using best-first and beam search to explore routing alternatives. Other strate-
gies decouple placement and scheduling phases to maintain tractability Zulehner et al. (2018). These
methods scale to mid-sized circuits but rely on proxy objectives—such as qubit distance or SWAP
count, that require careful tuning for each device and often fail to capture runtime congestion ef-
fects. Recent surveys highlight these trade-offs between heuristic efficiency and accuracy Zhu et al.
(2025a).

A.2 LEARNING-BASED COMPILATION

Machine learning has been applied to leverage structural regularities across circuits and hardware.
Reinforcement learning has been used to optimize initial qubit placements Attisara & Kumar (2025),
to recommend SWAP operations inside heuristic routing loops Fan et al. (2022a), and to guide
search with graph neural networks (GNNs) that score partial mapping Sinha et al. (2022b). These
studies show that policies trained across circuit families can outperform fixed heuristics on subsets of
workloads. However, most approaches continue to optimize proxy objectives like distance or depth
rather than execution-time makespan, represent logical and physical graphs separately rather than
jointly, and often omit decision-time planning. Hybrid systems that combine learning with search,
such as MCTS guided by GNN evaluators Sinha et al. (2022b), illustrate the benefits of integration
but remain underexplored.

A.3 DISTRIBUTED COMPILATION

As quantum processors evolve toward modular architectures, distributed compilation has emerged
as a key strategy to extend the scale of executable circuits. In these systems, multiple chips are
interconnected via couplers that enable non-local entanglement but introduce additional noise and
latency. Recent studies have proposed compiler infrastructures that partition circuits across chips
and manage inter-chip communication in a fidelity-aware manner. For example, Du et al. Pan et al.
(2024) demonstrated distributed execution frameworks that integrate GPU-accelerated simulators
with noise-aware scheduling. Du et al. Du et al. (2025) further introduced scalable compiler support
for multi-chip topologies, highlighting the importance of hardware-aware partitioning and coupler
selection. These works illustrate that effective distributed compilation requires co-optimizing qubit
placement, interconnect routing, and scheduling under heterogeneous hardware constraints. Our
approach complements this line of research by focusing on intra-chip mapping and routing, while
remaining compatible with distributed execution settings where multi-chip connectivity is available.

B MODEL TRAINING

Let GL = (VL, EL) be the logical interaction graph and GP = (VP , EP ) the device coupling
graph. A partial layout at step t is a partial injective mapping ϕt : VL ⇀ VP . The policy πθ

defines a distribution over feasible assignments at = (v, u) with feasibility enforced by a mask
Maskt ∈ {0,−∞} derived from hardware constraints and occupied physical nodes. Decoding
terminates when all logical nodes are assigned. A scheduler Sched maps a complete layout ϕ to
scheduled makespan Cmk, swap count Cswp, and a fidelity proxy Fid. The episodic reward is

R(ϕ) = αFid(ϕ)− β Cswp(ϕ)− γ Cmk(ϕ),

with (α, β, γ) = (1.0, 0.2, 0.2) unless noted. Contextualized embeddings hL(v),hP (u) ∈ Rd are
produced by a transformer with Laplacian positional encodings and hop-distance bias. A bi-affine
score svu = hL(v)

⊤WhP (u)+a⊤[hL(v);hP (u)]+b is computed and the policy over assignments
is

πθ

(
(v, u) | st

)
= softmax(v,u)

(
svu +Maskt(v, u)

)
.
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Training maximizes an entropy-regularized and KL-penalized clipped objective. With rt = πθ(at |
st)/πθold(at | st) and standardized advantages Ât, the surrogate is

J̃ (θ) = E
[
min

(
rtÂt, clip(rt, 1− ϵ↓, 1 + ϵ↑)Ât

)]
+ λentE[H(πθ)]− βKLE[KL(πθ∥πref)],

with (ϵ↓, ϵ↑) = (0.1, 0.2), λent = 5 × 10−3, and βKL = 2 × 10−2. Groups of G = 16 candidate
layouts are generated per circuit; returns are standardized within each group and used as per-episode
advantages for all steps without a learned value function. Optimization uses AdamW with learning
rate 1×10−4; an optional warm start uses supervised training with learning rate 3×10−4. Inference
couples the policy with a budgeted Monte Carlo Tree Search that treats πθ as a prior; selection
applies Qi + cpuctPi

√
N/(1 + Ni) where Qi is the mean return, Pi is the policy prior, Ni is the

visit count of child i, and N is the parent visit count; expansion samples feasible assignments from
the masked policy subject to a cap; rollouts complete the layout with the policy; backups update
visit counts and means. Unless stated, cpuct = 1.5, nsim = 256, τ = 1.0, kroot = 3, krerank = 3,
per-node expansion cap = 4, and the wall-clock budget is enforced at the scheduler boundary. This
setup maps graphs to masked decisions, masked decisions to layouts, and layouts to scalar returns
that update πθ while keeping the evaluation budget fixed.

Algorithm 1 GRPO Training for Masked Bi-Affine Layout Policy

Require: logical graph GL, physical graph GP , scheduler Sched, (α, β, γ) = (1.0, 0.2, 0.2),
(ϵ↓, ϵ↑) = (0.1, 0.2), λent = 5×10−3, βKL = 2×10−2, AdamW LR 1×10−4, group size G = 16
initialize πθ and (optionally) frozen πref

for outer iteration = 1, . . . , T do
sample a minibatch of circuit–topology pairs
for each instance i in the minibatch do

for g = 1, . . . , G do
decode a complete layout ϕ(g)

i with masked πθold

(Cmk, Cswp,Fid)← Sched(ϕ
(g)
i )

R
(g)
i ← αFid− β Cswp − γ Cmk

end for
standardize {R(g)

i }Gg=1 to {R̃(g)
i }Gg=1; set Â(g)

i ← R̃
(g)
i

end for
form surrogate using rt =

πθ(at|st)
πθold

(at|st)

J̃ (θ) = E
[
min

(
rtÂt, clip(rt, 1− ϵ↓, 1 + ϵ↑)Ât

)]
+ λentE[H(πθ)]− βKLE[KL(πθ∥πref)]

update θ ← θ + η∇θJ̃ (θ) with AdamW
optionally refresh πref

end for

C PROOF OF THEOREMS

Lemma 3: [Kernel gating] For any score matrix X and any bias matrix B,

softmax(X+B) = RowNorm
(
softmax(X)⊙ exp(B)

)
, (17)

where ⊙ denotes the elementwise product and RowNorm normalizes each row to sum to one.

Proof. Let softmax act rowwise and let RowNorm(Y ) denote rowwise normalization,(
RowNorm(Y )

)
ij

= Yij

/∑
k Yik, whenever row sums are positive. Fix a row index i and write

xj := Xij and bj := Bij . Then(
softmax(X+B)

)
ij
=

exj+bj∑
k e

xk+bk
=

exjebj∑
k e

xkebk
.

On the other hand,(
RowNorm

(
softmax(X)⊙eB

))
ij
=

(
softmax(X)

)
ij
ebj∑

k

(
softmax(X)

)
ik
ebk

=

exj∑
ℓ e

xℓ
ebj∑

k
exk∑
ℓ e

xℓ
ebk

=
exjebj∑
k e

xkebk
.
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The two expressions coincide for every i and j, which proves the identity. The required row sums
are strictly positive whenever each row of X+B contains at least one finite entry.

Proposition 1: [Regret under policy–prioritized search]

Under Assumptions 1–2, a finite branching factor, and a finite decision depth, after N node expan-
sions the expected suboptimality of the returned makespan satisfies

E[M(C, π̂N )−M(C, π⋆)] ≤ Õ

(
1

η

√
σ2

N

)
,

up to logarithmic and structure–dependent constants.

Proof. Let the search tree have maximum branching factor b <∞ and depth D <∞. For a node s,
let A(s) be its feasible actions, and write A⋆(s) ⊆ A(s) for actions that lie on at least one optimal
root–to–leaf path (that is, actions that can still reach π⋆). Let N(s) denote the number of visits
to s and N(s, a) the number of selections of action a at s. Values are backed up by incremental
averaging of terminal evaluations, and terminal evaluations are sub–Gaussian with variance proxy
σ2 (Assumption 1). Selection at s uses

a⋆(s) = arg max
a∈A(s)

{
Q(s, a) + cpuct Pθ(a | s)

√
N(s)

1 +N(s, a)

}
,

where Pθ(· | s) is the policy prior and cpuct > 0 is fixed.

Step 1: Allocation lower bound into the optimal set at each node. Fix a node s with optimal set
A⋆(s) and any suboptimal action a /∈ A⋆(s). Let ∆(s, a) := V ⋆(s) − Q⋆(s, a) be the value gap
at s between an optimal action value V ⋆(s) and the value of action a under optimal continuation.
Standard UCB arguments with sub–Gaussian noise imply that a suboptimal action can be selected
only while its optimism bonus exceeds its gap; once

cpuct Pθ(a | s)
√

N(s)

1 +N(s, a)
≲ ∆(s, a),

the selection rule prefers optimal actions unless empirical averages fluctuate. By sub–Gaussian
concentration (Hoeffding for sub–Gaussian variables), the number of such fluctuations up to visit
count n is at most O(log n) in expectation. Hence, for each a /∈ A⋆(s),

E
[
N(s, a)

]
≲

c2puct Pθ(a | s)2

∆(s, a)2
log n + O(1).

Summing over the at most b− |A⋆(s)| suboptimal actions yields∑
a/∈A⋆(s)

E
[
N(s, a)

]
≲ Ks log n, Ks :=

∑
a/∈A⋆(s)

c2puct Pθ(a | s)2

∆(s, a)2
+ O(b).

Therefore the cumulative expected number of selections allocated to the optimal set at s after n visits
obeys

E

 ∑
a∈A⋆(s)

N(s, a)

 ≥ n − Ks log n.

By Assumption 2 (prior consistency), the total prior mass on A⋆(s) satisfies

E

 ∑
a∈A⋆(s)

Pθ(a | s)

 ≥ η.

Combining these two statements and using that the exploration term scales linearly with Pθ(a | s)
yields an allocation lower bound per optimal child:

E
[
N(s, a)

]
≳ η

n

|A⋆(s)|
− Ks log n, a ∈ A⋆(s). (18)
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The implicit constant depends on cpuct but not on n.

Step 2: Allocation along one optimal path. Consider any fixed optimal root–to–leaf path of depth
D. Applying equation 18 inductively from the root to depth D − 1 shows that the expected number
of terminal evaluations that lie on this path is at least

E[Mopt] ≳
( η

b⋆

)D−1

N − K̃ logN,

where b⋆ ≤ b bounds the number of optimal children per node and K̃ absorbs the sum of node–wise
Ks terms and depth. Since D and b⋆ are structural constants of the decision problem, there is a
constant cpath > 0 such that

E[Mopt] ≥ cpath η N − K̃ logN. (19)

Thus, up to logarithmic losses, a linear fraction Ω(ηN) of terminal evaluations concentrate on an
optimal path.

Step 3: Concentration of the root value estimate. Terminal values are sub–Gaussian with variance
proxy σ2 (Assumption 1). Let V̄opt be the empirical mean terminal value along the optimal path
rollouts used in the current best estimate at the root. Sub–Gaussian concentration yields

P
(∣∣V̄opt − V ⋆

∣∣ ≥ ε
)
≤ 2 exp

(
−Mopt ε

2

2σ2

)
.

Taking expectations and using equation 19 implies the bound

E
[∣∣V̄opt − V ⋆

∣∣] ≲
σ√
ηN
Õ(1),

where Õ(1) hides polylogarithmic factors in N and structural constants depending on (b,D).

Backups are averages of terminal values along sampled completions. Since value propagation is
unbiased under averaging and the depth is finite, the deviation of the root estimate Qroot from V ⋆ is
controlled by the same order:

E[|Qroot − V ⋆|] ≲
σ√
ηN
Õ(1).

Step 4: From value error to makespan regret. Let π̂N denote the mapping returned when the
budget is exhausted. The selection of π̂N is greedy with respect to Qroot up to the final re–ranking
and therefore its value differs from V ⋆ by at most the root estimation error plus lower–order selection
fluctuations already accounted for in Step 1. Since V = −M , the expected makespan regret equals
the expected value error:

E[M(C, π̂N )−M(C, π⋆)] = E[V ⋆ − V (π̂N )] ≲
σ√
ηN
Õ(1).

This concludes the proof.
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