
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

APC-RL: EXCEEDING DATA-DRIVEN BEHAVIOR PRI-
ORS WITH ADAPTIVE POLICY COMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Incorporating demonstration data into reinforcement learning (RL) can greatly
accelerate learning, but existing approaches often assume demonstrations are
optimal and fully aligned with the target task. In practice, demonstrations are
frequently sparse, suboptimal, or misaligned, which can degrade performance
when these demonstrations are integrated into RL. We propose Adaptive Policy
Composition (APC), a hierarchical model that adaptively composes multiple data-
driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the
priors, APC estimates each prior’s applicability to the target task while leveraging
them for exploration. Moreover, APC either refines useful priors, or sidesteps
misaligned ones when necessary to optimize downstream reward. Across diverse
benchmarks, APC accelerates learning when demonstrations are aligned, remains
robust under severe misalignment, and leverages suboptimal demonstrations to
bootstrap exploration while avoiding performance degradation caused by overly
strict adherence to suboptimal demonstrations.

1 INTRODUCTION

Demonstration data are often used to make reinforcement learning (RL) (Sutton & Barto, 2018)
feasible in challenging tasks. Examples are regularizing the policy to imitate demonstrated actions
(Lu et al., 2023; Zhu et al., 2018; Hester et al., 2018) and generative modeling of demonstrated actions
or action sequences (Pertsch et al., 2021; Yang et al., 2022; Singh et al., 2021). However, these
approaches often make implicit but crucial assumptions about demonstrations, e.g. complete coverage
of the state space and optimality, which is unrealistic in many practical settings. In fact, strictly
adhering to the data even when the demonstrations are suboptimal or sparse is the main reason for
failure when the dataset and the online RL task are misaligned (i.e., in some way sub-optimal) Dong
et al. (2025); Kong et al. (2024); Zhang et al. (2023). To avoid this, we should therefore only utilize
demonstration data in reinforcement learning where and as long as it is pertinent for the online RL
task.

In this paper, we present Adaptive Policy Composition (APC), a novel and flexible method of using
demonstration data in RL, that does not rely on optimal and complete demonstrations. In APC, we
decide based on online feedback where and how long to rely on the data, instead of always adhering
to the demonstrations. We propose a hierarchical RL approach consisting of a higher-level selector
that decides between several actors on the lower level. Importantly, there are always exactly one
prior-free and at least one data-driven, prior-based actor on the lower level. Using several prior-based
actors is possible and allows us to include several distinct demonstration datasets that contain various
behaviors. Our prior-based actors pre-train their own behavior prior with their demonstrations while
the prior-free actor learns from scratch. Unlike previous approaches (Pertsch et al., 2021; Yang et al.,
2022; Singh et al., 2021), the inclusion of the prior-free actor provides APC with complete flexibility
to diverge from demonstrations if necessary to optimize the online RL task, for example, when no
demonstrations apply. Our approach allows the use of standard (off-policy) learning algorithms to
optimize these actors.

Our contributions are threefold: (i) Algorithmic: We introduce APC, a novel compositional policy
architecture that combines prior-based and prior-free actors under an adaptive selector. We further
propose two key mechanisms—a reward-sharing scheme that enables data-efficient training across
actors, and a parameter-free arbitrator selector that mitigates primacy bias—both of which are crucial

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for robust and efficient performance. (ii) Empirical: We demonstrate that APC achieves strong
robustness under demonstration misalignment, consistently outperforming prior methods such as
PARROT and imitation learning baselines. (iii) Analytical: Through ablations, we identify the selector
design and reward sharing as critical components for enabling stable and efficient exploration.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

RL problems are formalized as Markov Decision Processes (MDPs). A MDP is a tuple M ≡
⟨S,A, r, ρ, γ⟩, where S is the action space, A is the state space, r : S ×A → R is a reward function,
ρ : S ×A → S denotes the discrete-time state-transition-kernel, and γ ∈ (0, 1] is a discount factor.
The goal in RL is to find a policy π : S ×A → [0, 1] that maximizes the discounted return objective

J(π) = E(τ∼π)

[∞∑
t=0

γtr(st,at)

]
, (1)

where st ∈ S , at ∈ A, and (τ ∼ π) is a shorthand for denoting trajectories with actions sampled form
the policy π and the state evolving according to ρ. RL algorithms optimize the objective in equation 1
to identify the optimal policy π∗ = maxπ J(π) which inherently requires a good exploration strategy,
as well as balancing the exploration versus exploitation trade-off. Uninformed exploration such as
ε-greedy (Sutton & Barto, 2018) or temporally extended Brownian motion (Uhlenbeck & Ornstein,
1930) appeal due to their simplicity but often fall short in complex, long-horizon, sparse-reward
MDPs. Exploration based on prior knowledge, e.g., demonstrations, can be more useful in such cases,
which motivates our choice of composing multiple data-driven behavior priors.

2.2 DATA-DRIVEN POLICY PRIORS WITH GENERATIVE LATENT SPACE MODELING

Generative models of demonstrated actions can implement effective data-driven priors for RL policies
that learn in their latent space (Pertsch et al., 2021; Yang et al., 2022; Singh et al., 2021). In this paper,
we follow the PARROT (Singh et al., 2021) approach and learn a state-conditioned Normalizing Flow
(NF) (Rezende & Mohamed, 2015; Papamakarios et al., 2021) model T (z; s) = a with parameters ϕ.
The NF maps latent actions z ∈ Z from the base distribution N (z;0, I) to the complex, multi-modal,
per-state action distribution of the demonstration dataset D = (si,ai)i = 1N . The NF is learned with
likelihood maximization and matches the dataset distribution with the generative distribution

L(ϕ) = −E(a,s)∼D[logN (T̃ (a; s, ϕ);0, I) + log |det JT̃ (a; s)|] + const., (2)

where T̃ (a; s, ϕ) = T−1(a; s, ϕ) = z is the inverse NF and J is the Jacobian (from the change of
variables theorem). The NF T serves as a data-driven prior for RL by learning a policy in the NF’s
latent space Z . Specifically, a latent policy πz : S×Z → [0, 1] outputs a latent action z, which is then
deterministically mapped to an MDP action T (z; s) = a ∈ A through the NF transformation. We
refer to the resulting policy distribution in the MDP action space as the prior-based actor πa(a | s).
RL in the latent action space Z of a pre-trained NF is beneficial because it focuses learning and
exploration on useful, demonstrated actions in A. Moreover, NFs are multimodal and allow a simple,
unimodal latent policy πz to induce a multimodal distribution in the action space. Finally, unlike
other latent space generative models used as data-driven priors in RL such as VAEs (Pertsch et al.,
2021; Yang et al., 2022), NFs are invertible. This means that the prior-based actor, πa(a | s), in
theory, can undo the behavior prior to learn any desired policy. However, in practice this has been
found to be infeasible, as reported by Singh et al. (2021) and confirmed in our evaluation, leading to
permanent influence of the behavior prior and resulting in failure under misalignment. This serves as
the primary motivation for our method, which we present in the following section.

3 METHOD: ADAPTIVE POLICY COMPOSITION

Assume that we are given n ≥ 1 demonstration datasets D(1),D(2), . . . ,D(n), each D(l) consisting
of state–action pairs, (s,a) ∈ D(l), without reward signal or temporal order. APC leverages these

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

State Latent Policy NF Prior

Env

Replay buffer RL algo.

State

Env SAC

Selector

Latent Policies NF Priors Inverse transform Replay buffers

SAC

SAC

RL algos.

SAC

(b) APC

(a) PARROT

reward sharing trick

Figure 1: Architecture overview. (a): PARROT (Singh et al., 2021) features a single latent policy
and NF prior. (b): Our method uses a high-level selector to compose multiple latent policies and
NF priors. A prior-free actor (index (0), dashed border) learns directly in the action space. The
selected latent policy and NF prior (cyan-colored arrows) are executed at time t. A reward-sharing
trick (magenta-colored arrows) allows us to compute the latent coordinate z′t corresponding to the
executed action at, and to use the transition at time t to also update the other actors that were not
selected.

demonstrations to learn an overall policy π(a | s) by pre-training a set of prior-based actors, each
based on its own dataset D(i) (see Sec. 2.2), and then learning latent policies from reward feedback by
interacting with the online RL task in all actors, including the prior-free actor. APC is a hierarchical
reinforcement learning approach: The overall policy π(a | s) is a composition of the lower-level
actors, controlled by a high-level selector that decides which actor to execute in each state. The prior-
based actors solve tasks efficiently when demonstrations are aligned but can fail to achieve optimal
performance under misalignment. In comparison, the prior-free actor lacks demonstration guidance
but retains full flexibility to learn from reward feedback alone. This compositional architecture allows
APC to both exploit distinct behavoir priors for efficient exploration and various aspects of the target
task, while the prior-free actor can overcome limitations of the prior-based actors.

The remainder of this section is organized as follows: Sec. 3.1 formalizes the compositional policy
model, consisting of multiple prior-based actors, the prior-free actor, and the high-level selector. An
overview is provided in Fig. 1. Sec. 3.2 describes the online learning procedure for the lower-level
actors, and Sec. 3.3 introduces a crucial technique for robust and efficient learning with multiple NF
priors. Finally, Sec. 3.4 presents the key design of our high-level selector.

3.1 COMPOSITIONAL POLICY MODEL

Our policy model composes multiple lower-level actors to efficiently solve the online RL task. The
higher-level selector πβ is a conditional categorical distribution πβ = Cat(p0(s), p1(s), . . . , pn(s))
with support β ∈ {0, 1, . . . , n} that decides which lower-level actor to use in state s. The values pi(s)
are the probabilities of selecting the i-th lower-level actor in state s, which means that πβ(β = i |
s) = pi(s). The set of lower-level actors consists of the prior-free actor π(0)

a and n prior-based actors
π
(l)
a , 1 ≤ l ≤ n. The prior-free actor π(0)

a uses an identity flow T (0)(z; s) = z and the latent policy
π
(0)
z : S×Z → [0, 1], while each of the prior-based actors π(l)

a consists of a NF T (l) that is pre-trained
on the demonstration dataset D(l) as described in Sec. 2.2 and a latent policy π(l)

z : S × Z → [0, 1].
To guarantee invertible flows, we also set |Z| = |A|. The overall policy’s action distribution,

π(a | s) =
n∑

β′=0

πβ(β
′ | s)π(β′)

z

(
T̃ (β′),(a; s) | s

)︸ ︷︷ ︸
likelihood of a under π(β′)

z

+ log |det JT̃ (β′)(a; s)|︸ ︷︷ ︸
change of variables

, (3)

is a mixture over lower-level actors, weighted according to the selector πβ and computed based on
change of variables with the latent policies and pre-trained NFs. In equation 3 we use β′ to index
latent policies and NFs for notational clarity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

APC uses MDP actions a ∈ A, selector actions β ∈ {0, 1, . . . , n} and latent actions z ∈ Z . Instead
of sampling directly from the complex density π(a | s) in equation 3 at each time step t, we first
obtain βt from the selector πβ and then sample a latent action zt from the chosen lower-level actor’s
latent policy π(βt)

z , which we deterministically transform with the corresponding NF T (βt) to obtain
the action at for the online RL task. Our approach to learning π(a | s) is to learn the selector and
each of the latent policies separately, as detailed in the following sections.

3.2 LOWER-LEVEL ACTOR LEARNING

As described above, our model contains n+ 1 latent policies π(i)
z that independently interact with

the online RL task when they are chosen by the higher-level selector πβ and thus observe transitions
(s, z, r, s′). We opt to run n + 1 parallel instances of Soft Actor-Critic (SAC) (Haarnoja et al.,
2018), one for each of the lower-level actors, though any other off-policy RL algorithm that supports
continuous action spaces could be used instead. We denote θ(i) as the parameters for the latent
policies and ψ(i) for the latent Q-functions. Each SAC optimizes an entropy-regularized RL objective
and learns a unimodal Gaussian policy with so-called actor and critic updates. For more details on
SAC, we refer to (Haarnoja et al., 2018). Note that the parameters ϕ(i) of the pre-trained NFs T (i)

are not updated during online learning, only the SAC parameters change, as per Singh et al. (2021).
For more implementation and model details, we refer to App. C.

We maintain separate replay buffers B(0), B(1) . . . , B(n) for the n + 1 latent policies, which is
motivated by the fact that the same latent coordinate z can correspond to different MDP actions a
under the different. This implies that the reward rt resulting from the latent action zt only provides
a valid feedback signal for the low-level actor that generated at. Thus, at every time step t, we
fill the replay buffer B(βt) with the transition (st, zt, rt, st+1) and update the parameters θ(βt) and
ψ(βt) of the selected lower-level actor on a batch of transitions sampled from buffer B(βt). Next,
we introduce a crucial mechanism that ensures both robust and efficient learning with multiple
(prior-based) lower-level actors.

3.3 REWARD SHARING TRICK FOR BALANCED ACTOR UPDATES

The basic learning scheme outlined above updates only the latent policy π(βt)
z of the lower-level

actor selected at time step t. As the number of actors increases, this allocation of experience reduces
sample efficiency: transitions are spread across multiple replay buffers, resulting in fewer updates per
actor relative to the total number of environment interactions. More importantly, this setup can bias
the higher-level selector: if a suboptimal prior-based actor initially outperforms, for example, the
prior-free actor, the selector may overcommit to it, preventing crucial exploration of alternative actors
that could potentially later outperform the actor that initially performs best.

To address this issue, we exploit the invertibility of NFs. Any executed action at can be mapped
into the latent space of every prior-based actor via z

(i)
t = T̃ (i)(at; st) , where the same environment

action at gets mapped to different latent coordinates z
(i)
t ̸= z

(j)
t . This happens because different

demonstration datasets D(i) and D(j) induce different behavior priors and, as such, different transfor-
mations T̃ (i) and T̃ (j). Thus, using the inverse T̃ of these learned transformations, transitions can also
be constructed for all actors i ̸= βt that were not selected at time t, and their replay buffers B(i) can
be populated with the constructed transitions. In this variant, each replay buffer receives a transition
at every step, enabling all actors to update continuously, independent of which one produced the
executed action at time t. Our ablation results confirm that this feedback-sharing mechanism is
essential: it not only improves sample efficiency but also prevents primacy bias – a tendency of RL
algorithms to “overfit early experiences that damages the rest of the learning process” (Nikishin et al.,
2022; Xu et al., 2024) – by ensuring fair learning progress for all actors.

3.4 HIGH-LEVEL SELECTOR

The high-level selector πβ determines which lower-level actor to execute in each state. We adopt a
learning-free arbitrator (Russell & Zimdars, 2003) design for implementing the selector, where the
selection probabilities pl(s) are derived directly from the value estimates V (l)(s) of the lower-level

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

actors. Concretely, the probability of selecting lower-level actor l is

pl(s) =
1

Z
exp

(
1
ηV

(l)(s)
)
, Z =

n∑
i=0

exp
(

1
ηV

(i)(s)
)
, (4)

which defines a categorical distribution πβ = Cat(p0(s), p1(s), . . . , pn(s)), where η is a temperature
parameter that controls the sharpness of the distribution. However, because our lower-level agents are
implemented with SAC, which does not provide a direct value function estimate, we approximate
V (l)(s) via Monte Carlo estimates of each lower-level agent’s Q-function. In practice, this amounts
to sampling a single latent action z(l) from each actor l and evaluating pl(s) = 1

Z exp(1ηQ
(l)(s, z(l))),

which yields an unbiased, though high-variance, estimate.

Implementing the selector as a learning-free arbiter provides two advantages: First, it eliminates
the computational overhead of training a separate high-level neural network policy with additional
parameters and gradient updates. Second, it circumvents the instabilities of hierarchical RL that arise
when jointly optimizing higher- and lower-level agents, including sensitivity to learning-rate tuning,
non-stationarity of the lower-level policies, primacy bias, and exploration difficulties. Our ablation
results confirm that this design substantially improves stability and performance compared to learned
higher-level policies.

4 EVALUATION AND ANALYSIS

We evaluate APC across continuous-control benchmarks to assess its robustness under demonstration
misalignment and efficiency with access to demonstrations aligned with the online RL task. Our
experiments address four central questions: (i) Can APC remain robust under severe demonstration
misalignment, avoiding the performance degradation observed in prior methods? (ii) Can APC
effectively exploit well-aligned demonstrations to accelerate learning? (iii) Can APC exceed the
performance of suboptimal demonstrations? (iv) Which architectural components are critical for
enabling such robust exploration?

4.1 ENVIRONMENTS

We test APC on the environments shown in Fig. 2. All environments, including data collection
procedures and experimental setups, are described in greater detail in Appendix B.

Figure 2: Our environmental testbed, from left to
right: Maze Navigation, the different goals are
marked in red. Franka Kitchen, with the manipu-
lation targets marked in yellow. Car Racing.

Maze Navigation: Based on the well-known
D4RL benchmark Fu et al. (2020). Starting from
the center, a point mass agent must reach differ-
ent goal locations in a simple maze. We refer
to the four goal locations as separate tasks. The
state contains the agent’s current position and
velocity, and actions correspond to accelerations
on the 2D plane.

Franka Kitchen: Based on (Gupta et al., 2019),
a kitchen environment where a Franka Emika
Panda robot needs to solve various manipulation
tasks. The state is in R59 and contains symbolic
information about the agent and the manipulat-
able objects in the kitchen. Actions correspond to 9D joint velocities.

Car Racing: A top-down car racing environment from the Gymnasium suite Towers et al. (2024).
The task is to drive fast laps on the racing track, and actions correspond to steering and braking or
accelerating.

4.2 BASELINES

We include the following baselines. (SAC) (Haarnoja et al., 2018) serves as a standard, from-scratch
RL baseline for continuous action spaces. Comparing with this baseline reveals the acceleration in
learning due to including (task-aligned) demonstration data and potential performance degradation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Experiment (i): Average performance on tasks
with misaligned demonstrations, showing that
PARROT and IL fail to learn, while APC solves the
tasks even faster than from-scratch SAC, despite
the misaligned prior.

(b) Experiment (ii): Average performance on tasks
with aligned demonstrations, showing that PAR-
ROT solves the tasks most quickly, while APC
considerably outperforms IL, QFilter, and from-
scratch SAC.

Figure 3: Time to success in the PointMaze Navigation environment. Each method was executed for at
most 1.5M environment steps; each experiment was repeated with three random seeds. Bars indicate
the step at which the cross-seed average running success rate reached 100%, or the final success
rate after 1.5M steps if convergence was not achieved earlier (shorter bars are better). Percentage
annotations denote the cross-seed average running success rate at that time (3 seeds).

due to misaligned demonstrations. Our next baseline is a simple yet powerful imitation learning (IL)
approach Lu et al. (2023) that regularizes the policy by enforcing high likelihood for state-action
pairs in the demonstration data. (QFilter) (Nair et al., 2018) is an extension of the IL baseline
that only includes the imitation loss for (s,a) demonstration tuples that have a higher Q-value than
the action sampled from the online learning policy in state s. This baselines therefore also has the
ability to exclude misaligned demonstrations from negatively affecting online performance. Lastly,
(PARROT) (Singh et al., 2021) serves to reveal the increased adaptability of our method when using
NF priors.

4.3 EXPERIMENTS & FINDINGS

(i) APC shows robustness under demonstration misalignment: We first evaluate robustness against
demonstration misalignment in the PointMaze Navigation environment. Each method (except SAC) is
provided with expert demonstrations D(i) for one task from the four possible goals, and then evaluated
on the remaining three tasks for which the demonstrations are misaligned. As shown in Fig. 3a, both
PARROT and imitation learning (IL) fail to reliably solve the three tasks with the misaligned prior:
after 1.5M steps their cross-seed running success rates remain at 0% and 7%, respectively. In contrast,
APC reliably converges to 100% success in roughly 0.5M steps. Surprisingly, APC even outperforms
from-scratch SAC despite the misaligned prior, indicating that APC can exploit misaligned priors for
efficient exploration. Imitation learning combined with the QFilter is also able to avoid complete
performance degradation due to the misaligned demonstrations on the PointMaze environment, but it
learns considerably slower than APC, due to relying more heavily on accurate Q-function estimates.

We observe consistent trends in the higher-dimensional FrankaKitchen environment. End-effector
trajectories sampled from pre-trained NF priors (Fig. 4a) exhibit diverse behaviors, but similarity
in trajectory geometry or task semantics is not predictive of transfer success (Fig. 4b). When
demonstrations are misaligned, PARROT and IL suffer severe losses in sample efficiency or fail
entirely, underscoring their brittleness. APC, however, consistently solves the target task across all
configurations, demonstrating strong robustness even in complex MDPs. This contrast highlights the
importance of APC’s ability to bypass misaligned priors, which is essential for adaptability under
demonstration misalignment. Results for additional target tasks are reported in the appendix.

(ii) APC efficiently exploits aligned priors: We next consider the case where the demonstration prior
is fully aligned with the online RL task. As expected, PARROT achieves the fastest convergence in
this setting (Fig. 3, right; Fig. 4b, top left), since its behavior cloning pre-training step allows it to solve
near-optimally just by random sampling in the latent space. APC, despite having access to the same
near-optimal prior, must additionally learn accurate Q-function estimates for the arbiter to identify
the beneficial prior, resulting in slightly slower convergence. Compared to the IL baseline, APC
converges substantially faster on PointMaze and slightly slower on the FrankaKitchen environment,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) 3D FrankaKitchen end-effector trajectories sampled from the per-task pre-trained NF priors. The red dot
indicates the same starting state for each task; the trajectories have been shifted to save space.

(b) Time to success when using prior data from different tasks (panel titles) while optimizing the microwave
task. Bars indicate the step at which the cross-seed average running success rate reached 100%, or the final
success rate after 1M steps if convergence was not achieved earlier (shorter bars are better). Percentage
annotations denote the cross-seed average running success rate at that time (3 seeds).

Figure 4: Results on FrankaKitchen’s microwave task, which requires opening the microwave door.
APC efficiently solves the task when exposed to aligned demonstrations (experiment (ii), top-left
panel) while remaining robust under demonstration misalignment (experiment (i), remaining panels).

Figure 5: Return curves on the car racing environment, the shaded area corresponds to one standard
deviation around the mean, averaged over three seeds. Left: Experiment (iii) showing APC’s
performance relative to our baselines. Right: Experiment (iv) shows the performance of multiple
APC ablations.

with neither method dominating overall. Importantly, all methods strictly outperform from-scratch
SAC, confirming that all approaches are able to exploit the aligned demonstrations to accelerate
learning. These results show that APC’s increased adaptability under misalignment does not come at
the cost of significant sample inefficiency in the aligned setting.

(iii) APC exceeds suboptimal demonstrations: We further evaluate APC in the CarRacing envi-
ronment under a different but equally challenging form of demonstration misalignment. Instead of
optimal demonstrations from related tasks, we collect ≈ 30k transitions from a human driver on the
target track. This dataset D is used to pre-train the NF behavior prior and is also provided to the
IL baseline. The left panel in Fig. 5 shows the resulting return curves. SAC, trained from scratch,
reaches optimal performance (≈ 900 return) after roughly 250k steps. PARROT, however, only
marginally improves over the mean human score, indicating that the suboptimal prior imposes a strict
performance ceiling. The IL baseline eventually surpasses human performance, but learning is slowed
considerably by the imperfect demonstrations. QFilter also exceed the human performance and is
less strongly affected than by the sub-optimal demonstrations than IL, achieving optimal returns after

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Qualitative visualization for experiment (iv) showing selector decisions on the CarRacing
task. The rows in both panels correspond to selected evaluation episodes. Along each row, time steps
progress from left to right, and each marker indicates whether the prior-based or prior-free actor
was chosen at that step. Top panel: Decisions made by the parameter-free arbitrator selector with
lower-level reward sharing. Bottom panel: Decisions made by a learned selector without reward
sharing. This shows that the arbitrator selector exploits the prior-free actor to achieve high returns,
while the learned selector overcommits to the prior-based actor and achieves subpar returns. An
extended figure showing all ablations and more episodes can be found in App. E.

roughly 100k steps. APC achieves optimal returns in circa 30k steps, outperforming SAC and all
demonstration-guided baselines. These results show that APC can exploit suboptimal priors to warm-
start learning and guide exploration, while avoiding the performance ceilings that constrain existing
methods. This makes APC especially valuable in practical settings where suboptimal demonstrations
are readily available, while expert demonstrations might be scarce.

(iv) Arbitrator and reward sharing are crucial for exploration: To disentangle the contributions
of the arbitrator selector architecture (Sec. 3.4) and the reward-sharing trick for efficient learning
(Sec. 3.3), we performed an ablation study in the CarRacing environment.

We compare four variants: (i) our full method with an arbitrator selector and reward sharing, (ii) an
arbitrator selector without reward sharing, (iii) a hierarchical learned selector with reward sharing
between the latent actors, and (iv) a hierarchical learned selector without reward sharing between the
latent actors. The learned hierarchical selector is also optimized with SAC and attempts to maximize
the same environment reward as the latent actors. Its action space is discrete, parameterizing a
Categorical distribution representing the choice over which lower-level actor to execute at each step t.

The corresponding return curves in the right panel of Fig. 5 show a clear separation: only our
full method (i) consistently achieves optimal return. Two observations explain these results. First,
replacing the arbitrator-style selector with a learned high-level policy introduces strong primacy
bias. As shown in Fig. 6 (bottom), the learned selector overcommits to using the prior-based actor,
as it initially achieves higher return than the randomly initialized prior-free actor. Once this bias
is reinforced, the prior-free actor is rarely used and cannot quickly improve, even though it could
ultimately surpass the NF prior. In contrast, the arbitrator avoids this failure mode by directly
comparing value estimates across actors, without learning an additional policy.

However, second, the arbitrator alone does not suffice. Without reward sharing, transitions collected
by the prior-based actor benefit only that actor, further amplifying its dominance. Using the arbitrator
alongside reward sharing (Fig. 6, top) ensures that all actors are updated on every transition, enabling
the prior-free actor to learn from higher-quality trajectories produced by the prior-based actor. This
allows it to rapidly improve its Q-value estimates and eventually outperform the prior-based actor.

These results show that both mechanisms are critical: the arbitrator mitigates primacy bias, while
reward sharing ensures fair competition through data-efficient learning. Our design combines both to
achieve robust exploration and accelerated learning without premature convergence to suboptimal
actors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 SUMMARY OF RESULTS

Across environments and settings, our experiments demonstrate three consistent findings. First, APC
remains robust under misaligned demonstrations, reliably solving target tasks where PARROT and IL
fail, and in some cases even outperforming from-scratch SAC by exploiting misaligned priors for
exploration. Second, APC effectively leverages aligned demonstrations: while slightly slower than
PARROT under perfectly aligned priors, APC consistently outperforms from-scratch SAC, showing
that its added flexibility does not compromise sample efficiency. Third, APC exceeds suboptimal
demonstrations by bootstrapping from imperfect data without imposing performance ceilings from
the data. Finally, our ablation studies confirm that the arbitrator-style selector and reward-sharing
mechanism are both necessary to prevent primacy bias and ensure fair, data-efficient competition
among actors. Together, these results highlight APC’s robustness, efficiency, and adaptability across
diverse demonstration settings.

5 RELATED WORK

Normalizing Flows for RL In addition to using pre-trained NFs as data-driven action priors,
NFs have also been used to replace simple unimodal Gaussian policies with richer, multimodal
distributions, with the reported benefit of improved exploration and sample efficiency (Ward et al.,
2019; Mazoure et al., 2020). In these approaches, the NF parameters are learned jointly with the
policy during online RL, effectively treating the flow as part of the policy network. In contrast,
our method keeps the NF prior fixed after pre-training it on demonstrations. NFs have also been
leveraged to enforce safety constraints by mapping the action space into a constraint-respecting
action subspace (Brahmanage et al., 2023; Chen et al., 2023), similar to “invalid action masking”
techniques (Kalweit et al., 2020; Huang & Ontañón, 2022; Rietz et al., 2024). Our use of flows differs
from these works: rather than masking out forbidden actions, we bias the policy by searching in
the NF prior’s latent space to guide exploration towards behaviors observed in the demonstration
data. Using pre-trained NFs as demonstration-driven action priors was introduced by Singh et al.
(2021), who argue that the invertible nature of NFs allows for flexible adaptation to the online task.
Our results, however, show that a misaligned NF prior is hard to escape in practice, and that our
hierarchical design, which explicitly allows the agent to bypass misaligned priors, greatly increases
adaptability and robustness under distribution shift.

Skill-based Hierarchical Learning A large body of work exploits hierarchical architectures to
accelerate learning by introducing temporal abstraction. In these approaches, a high-level policy
selects between discrete options or “primitives” (Sutton et al., 1999; Fox et al., 2017; Ajay et al.,
2020; Kulkarni et al., 2016), which may be obtained from demonstrations, learned through un-
supervised exploration (Eysenbach et al., 2018; Park et al., 2024; 2023), or provided as scripted
controllers (Nasiriany et al., 2022; Chitnis et al., 2020; Sharma et al., 2020). Other methods instead
construct a continuous latent embedding of skills” (Pertsch et al., 2021; Yang et al., 2022; Rana et al.,
2022), and solve downstream tasks by searching over the latent space. While these approaches show
clear gains in exploration efficiency due to temporal abstraction or capable primitives and skills, they
lack dedicated mechanisms for adapting when the primitives or skills do not suffice for solving the
task. An exception to this is MAPLE (Nasiriany et al., 2022), which also learns an online policy to
improve upon the given scripted controllers, similar to our prior-free actor. Our work differs from
these since we do not leverage temporal abstraction for exploration but instead focus on robustness
and adaptability under demonstration misalignment.

Offline to Online RL A complementary line of work accelerates online RL by leveraging pre-
collected offline datasets of MDP transitions D = ⟨s,a, r, s′⟩iNi=1 (Levine et al., 2020; Xie et al.,
2021). Ball et al. (2023) balance online and offline data through joint sampling in off-policy RL. Nair
et al. (2020) pre-train a policy offline and constrain the subsequent online policy to remain close to
it. Zhang et al. (2023); Hu et al. (2024) pre-train both the policy and value function, and then refine
the value function online while using both the offline and online policies as proposal distributions.
Kong et al. (2024) adopt a similar proposal-policy scheme but periodically reset the online policy to
counteract primacy bias (Nikishin et al., 2022). While effective, these methods primarily target the
distributional shift between offline and online RL. Crucially, they also require reward-labeled data for
pre-training, whereas our approach relies only on unlabeled demonstrations to train NF priors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Learning from Demonstrations Learning from demonstration has a long history in RL. Most
approaches incorporate demonstrations through explicit imitation losses that encourage the policy to
stay close to the demonstrated behavior (Ross et al., 2011; Hester et al., 2018; Goecks et al., 2019;
Fujimoto & Gu, 2021; Lu et al., 2023; Tiapkin et al., 2024), generally assuming that demonstrations
are aligned with the target task and offer no mechanism to cope with substantially misaligned
demonstrations. Inverse RL methods infer the reward function from demonstrations and subsequently
optimize it with RL (Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 2016), but likewise
depend on demonstrations that are near-optimal. More flexible recent works attempt to account for
suboptimal or misaligned demonstrations in various ways (Nair et al., 2018; Zhao et al., 2022; Hu
et al., 2024; Dong et al., 2025; Cramer et al., 2025), but lack APC’s ability to adaptive compose
multiple distinct behavior priors with a prior-free actor.

6 LIMITATIONS AND DISCUSSIONS

An apparent shortcoming of APC lies in its high computational overhead that scales linearly with
the number of latent actors, since each actor is updated separately with SAC. While reward sharing
improves sample efficiency, maintaining multiple parallel learners increases wall-clock time and
limits scalability to larger sets of behavior priors.

Although APC is designed to remain robust under demonstration misalignment and distribution shift,
it may still fail in adversarial or contrived scenarios. If many severely misaligned priors all bias
exploration toward task-irrelevant regions of the state-space, and if the reward signal is uninformative
about this sub-optimality (for example sparse reward only upon task success), then each actor’s
Q-values might not allow the arbitrator to distinguish and avoid misaligned behaviors. In such cases,
APC may fail to discover the optimal behavior due to persistent negative exploration bias. In more
realistic settings and in practice, where priors are likely to be only partially misaligned or when dense
rewards could provide better feedback, this failure mode is unlikely.

7 FUTURE WORK

We see addressing the computational demands of APC as important future work. This could be
approached by maintaining and updating a shared, central critic, while heuristically updating only the
selected actor at time t, instead of updating all available actors at each step. This might substantially
reduce computational overhead and wall-clock time, while preserving APC’s adaptive behavior and
robustness under demonstration misalignment and distribution shift.

Another promising direction would be to allow for a mixture over all available actors, rather than
selecting a single actor at each step. Such a mixture would enable the blending of the different
behaviors encoded in different priors and might further improve exploration efficiency. Modeling
discrete behavior priors with discrete normalizing flows is another worthwhile direction.

8 CONCLUSION

This paper proposes Adaptive Policy Composition (APC), a hierarchical RL architecture that com-
poses multiple NF priors with a prior-free fallback actor under an adaptive selector. By combining a
parameter-free arbitrator with reward sharing, APC ensures data-efficient learning across all actors
and avoids primacy bias, enabling robust demonstration-guided exploration even under misalignment.
Our experiments across diverse benchmarks show that APC leverages aligned demonstrations, re-
mains robust under misalignment, and exceeds suboptimal demonstrations by using priors to bootstrap
exploration. These findings demonstrate that APC is a general approach for integrating imperfect
demonstrations into online RL without impairing performance, thereby bridging the gap between
data-driven priors and reward-driven adaptation.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. Flowpg: action-constrained policy gradient
with normalizing flows. Advances in Neural Information Processing Systems, 36:20118–20132,
2023.

Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
Advances in Neural Information Processing Systems, 36:39842–39854, 2023.

Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual manip-
ulation using learned task schemas. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1149–1155. IEEE, 2020.

Emma Cramer, Lukas Jäschke, and Sebastian Trimpe. Cheq-ing the box: Safe variable impedance
learning for robotic polishing. arXiv preprint arXiv:2501.07985, 2025.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=HkpbnH9lx.

Perry Dong, Alec M. Lessing, Annie S. Chen, and Chelsea Finn. Reinforcement learning via implicit
imitation guidance, 2025. URL https://arxiv.org/abs/2506.07505.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Vinicius G Goecks, Gregory M Gremillion, Vernon J Lawhern, John Valasek, and Nicholas R
Waytowich. Integrating behavior cloning and reinforcement learning for improved performance in
dense and sparse reward environments. arXiv preprint arXiv:1910.04281, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement learning. In
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.), 3rd Annual Conference on
Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings, vol-
ume 100 of Proceedings of Machine Learning Research, pp. 1025–1037. PMLR, 2019. URL
http://proceedings.mlr.press/v100/gupta20a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Todd Hester, Matej Vecerı́k, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z. Leibo,
and Audrunas Gruslys. Deep q-learning from demonstrations. In Sheila A. McIlraith and Kilian Q.
Weinberger (eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pp. 3223–3230. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11757.
URL https://doi.org/10.1609/aaai.v32i1.11757.

11

https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://arxiv.org/abs/2506.07505
http://proceedings.mlr.press/v100/gupta20a.html
https://doi.org/10.1609/aaai.v32i1.11757

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learning.
In Dana Kulic, Gentiane Venture, Kostas E. Bekris, and Enrique Coronado (eds.), Robotics: Science
and Systems XX, Delft, The Netherlands, July 15-19, 2024, 2024. doi: 10.15607/RSS.2024.XX.056.
URL https://doi.org/10.15607/RSS.2024.XX.056.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
algorithms. In Roman Barták, Fazel Keshtkar, and Michael Franklin (eds.), Proceedings of the
Thirty-Fifth International Florida Artificial Intelligence Research Society Conference, FLAIRS
2022, Hutchinson Island, Jensen Beach, Florida, USA, May 15-18, 2022. Florida Online Journals,
2022. doi: 10.32473/FLAIRS.V35I.130584. URL https://doi.org/10.32473/flairs.
v35i.130584.

Gabriel Kalweit, Maria Hügle, Moritz Werling, and Joschka Boedecker. Deep inverse q-learning
with constraints. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a4c42bfd5f5130ddf96e34a036c75e0a-Abstract.html.

Rui Kong, Chenyang Wu, Chen-Xiao Gao, Zongzhang Zhang, and Ming Li. Efficient and stable
offline-to-online reinforcement learning via continual policy revitalization. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South
Korea, August 3-9, 2024, pp. 4317–4325. ijcai.org, 2024. URL https://www.ijcai.org/
proceedings/2024/477.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL https://
arxiv.org/abs/2005.01643.

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,
Brandyn White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robustifying
imitation with reinforcement learning for challenging driving scenarios. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 7553–7560. IEEE, 2023.

Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging
exploration in off-policy algorithms via normalizing flows. In Conference on Robot Learning, pp.
430–444. PMLR, 2020.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. CoRR, abs/2006.09359, 2020. URL https://arxiv.org/
abs/2006.09359.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. In 2022 International Conference on Robotics and
Automation, ICRA 2022, Philadelphia, PA, USA, May 23-27, 2022, pp. 7477–7484. IEEE, 2022.
doi: 10.1109/ICRA46639.2022.9812140. URL https://doi.org/10.1109/ICRA46639.
2022.9812140.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.
16828–16847. PMLR, 2022.

12

https://doi.org/10.15607/RSS.2024.XX.056
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584
https://proceedings.neurips.cc/paper/2020/hash/a4c42bfd5f5130ddf96e34a036c75e0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a4c42bfd5f5130ddf96e34a036c75e0a-Abstract.html
https://www.ijcai.org/proceedings/2024/477
https://www.ijcai.org/proceedings/2024/477
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://doi.org/10.1109/ICRA46639.2022.9812140
https://doi.org/10.1109/ICRA46639.2022.9812140

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn.
Res., 22:57:1–57:64, 2021. URL https://jmlr.org/papers/v22/19-1028.html.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction. arXiv preprint arXiv:2310.08887, 2023.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
arXiv preprint arXiv:2402.15567, 2024.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
policies: Learning an adaptable skill-based action space for reinforcement learning for robotics. In
Karen Liu, Dana Kulic, and Jeffrey Ichnowski (eds.), Conference on Robot Learning, CoRL 2022,
14-18 December 2022, Auckland, New Zealand, volume 205 of Proceedings of Machine Learn-
ing Research, pp. 2095–2104. PMLR, 2022. URL https://proceedings.mlr.press/
v205/rana23a.html.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Francis R. Bach and David M. Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pp. 1530–1538. JMLR.org, 2015. URL http://proceedings.
mlr.press/v37/rezende15.html.

Finn Rietz, Erik Schaffernicht, Stefan Heinrich, and Johannes A. Stork. Prioritized soft q-
decomposition for lexicographic reinforcement learning. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=c0MyyXyGfn.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Stuart J Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In
Proceedings of the 20th international conference on machine learning (ICML-03), pp. 656–663,
2003.

Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning to compose
hierarchical object-centric controllers for robotic manipulation. arXiv preprint arXiv:2011.04627,
2020.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=Ysuv-WOFeKR.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre
Perrault, Michal Valko, and Pierre Menard. Demonstration-regularized RL. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=lF2aip4Scn.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

13

https://jmlr.org/papers/v22/19-1028.html
https://proceedings.mlr.press/v205/rana23a.html
https://proceedings.mlr.press/v205/rana23a.html
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
https://openreview.net/forum?id=c0MyyXyGfn
https://openreview.net/forum?id=Ysuv-WOFeKR
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://openreview.net/forum?id=lF2aip4Scn
https://openreview.net/forum?id=lF2aip4Scn

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical review,
36(5):823, 1930.

Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in soft-actor-
critic with normalizing flows policies. arXiv preprint arXiv:1906.02771, 2019.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo,
Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé III, Furong Huang, and
Huazhe Xu. Drm: Mastering visual reinforcement learning through dormant ratio minimization.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=MSe8YFbhUE.

Quantao Yang, Johannes A Stork, and Todor Stoyanov. Mpr-rl: Multi-prior regularized reinforcement
learning for knowledge transfer. IEEE Robotics and Automation Letters, 7(3):7652–7659, 2022.

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online re-
inforcement learning. In The Eleventh International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=-Y34L45JR6z.

Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive behavior cloning
regularization for stable offline-to-online reinforcement learning. In 30th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2022,
Bruges, Belgium, October 5-7, 2022, 2022. doi: 10.14428/ESANN/2022.ES2022-110. URL
https://doi.org/10.14428/esann/2022.ES2022-110.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei A. Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
János Kramár, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement and imitation
learning for diverse visuomotor skills. In Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard,
and Nikolay Atanasov (eds.), Robotics: Science and Systems XIV, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018. doi: 10.15607/RSS.2018.XIV.009. URL
http://www.roboticsproceedings.org/rss14/p09.html.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

A REPRODUCIBILITY STATEMENT

We are unable to share a documented, stand-alone codebase at the time of submission. We will,
however, link to our complete codebase, with reproducibility instructions, in the camera-ready version
of the manuscript.

B ENVIRONMENT DETAILS

B.1 MAZE NAVIGATION

We adopt the maze navigation environment from D4RL Fu et al. (2020); however, we customize the
maze layout as shown in Fig. 2. The agent corresponds to a simple point mass, with actions A ∈ R2

corresponding to linear force exerted on the point. The observation space S ∈ R4 contains the agent’s
current (x, y) position and velocity. The task encoding, defined by one of four distinct goal locations,
is not part of the observation and must be inferred from the reward signal. This still yields a standard,
fully observable MDP for each separate task.

The reward function is dense and defined as the exponential of the negative Euclidean distance
between the agent and the goal. To encourage short episodes, we subtract a constant penalty of −1 at

14

https://openreview.net/forum?id=MSe8YFbhUE
https://openreview.net/forum?id=MSe8YFbhUE
https://openreview.net/forum?id=-Y34L45JR6z
https://openreview.net/forum?id=-Y34L45JR6z
https://doi.org/10.14428/esann/2022.ES2022-110
http://www.roboticsproceedings.org/rss14/p09.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

each step. Episodes start from a random position near the maze center, terminate successfully when
the agent reaches within 0.5 units of the goal, and are truncated after 200 steps.

For each goal location i, we generate demonstration datasets D(1), . . . ,D(4) using extensively pre-
trained, optimal policies π(i)∗. Specifically, we collect 100 episodes per task by sampling actions
from π(i)∗ and recording the resulting (s,a) pairs. These datasets are used either to pre-train the NF
priors (one per task) or directly as input to the IL baseline, depending on the evaluation setting.

B.2 FRANKAKITCHEN

We use the FrankaKitchen environment introduced by Gupta et al. (2019), which features seven
distinct manipulation tasks: opening the microwave door, pushing the kettle onto the correct
stove burner, turning on the bottom burner by rotating the corresponding knob, turning on the
top burner by rotating the corresponding knob, flipping the light switch to the on position,
opening the sliding cabinet door, and opening the hinge cabinet door. The state space
S ∈ R59 contains symbolic features describing all manipulable objects, along with the robot’s joint
angles and velocities. The action space A ∈ R9 corresponds to joint velocity commands. The one-hot
task identity is not included in the state and must instead be inferred from the reward signal, yielding
a standard, fully observable MDP for each individual task.

To facilitate exploration and accelerate training, we replace the original sparse rewards with a dense
reward function. This modification was necessary given the high computational burden of evaluating
a combinatorial number of tasks and prior settings for multiple seeds. Let pee ∈ R3 denote the
end-effector position, computed as the midpoint of the left and right gripper fingers, and let pobj ∈ R3

denote the position of the target object for the current task. We define the end-effector distance term
as

ree = −α, ∥pee − pobj∥2, (5)
with scaling factor α = 0.5. For each task k, the environment additionally provides an achieved goal
state g

(k)
ach and a desired goal state g

(k)
des. We can thus compute a task success distance term as

rtask = −∥g(k)
ach − g

(k)
des∥2, (6)

which encourages the agent to bring the target object into its goal configuration (e.g., microwave door
fully open). Our final dense reward function is then given by

r(s,a) =

{
Rsuccess, if |rtask| ≤ ϵ,

ree + rtask, otherwise,
(7)

where Rsuccess = 100 is a large completion bonus.

For each of the seven tasks i, we construct demonstration datasets D(1), . . . ,D(7) using extensively
pre-trained, optimal policies π(i)∗. Each dataset consists of 100 episodes collected by executing π(i)∗

and recording the resulting (s,a) pairs. These datasets are either used to pre-train task-specific NF
priors or passed directly to the IL baseline, depending on the evaluation setting.

Due to the high computational demands of running all methods with multiple seeds on the combina-
torial number of task–prior settings, we were only able to evaluate a randomly chosen subset of tasks
before the submission deadline. We plan to provide results for the full benchmark during the rebuttal
and include them in the camera-ready version.

B.3 CARRACING

We use the CarRacing environment from the Gymnasium suite Towers et al. (2024), which requires
driving fast laps on a top-down race track. The simulated planar car follows simplified vehicle
dynamics that include skidding and varying friction across terrain types (asphalt vs. grass). The
continuous action space is A ∈ R3, corresponding to steering, acceleration, and braking. While the
original environment provides pixel observations, we extract a symbolic representation directly from
the simulator.

The symbolic observation space captures the vehicle’s relative position, orientation, and motion with
respect to the track. At each timestep, the agent is exposed to the following symbols:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Track-edge distances: signed distances to the left and right road boundaries, (dleft, dright).
• Heading error: orientation difference ∆θ between the car’s heading and the tangent of the

nearest track centerline, wrapped to [−π, π].
• Velocities: forward and lateral velocity components in the car’s local frame, (vfwd, vside),

and the angular velocity ω.
• Lookahead waypoints: relative positions of the next L = 5 centerline waypoints in the car’s

local coordinate frame, {(xj , yj)}Lj=1.

Formally, the observation vector is

s =
[
dleft, dright, ∆θ, vfwd, vside, ω, x1, y1, . . . , xL, yL

]
∈ R6+2L, (8)

which yields S ∈ R16 for L = 5. Episodes begin with the car at rest at a fixed position centered
on the track, and we enforce deterministic resets such that the track layout remains identical across
episodes.

We use the environment’s unmodified reward function: each step incurs a penalty of −0.1, and the
agent receives a reward of +1000/M , where M is the number of track-tiles visited during the current
episode.

This environment contains only a single task – driving efficiently on the fixed track. We collect a
demonstration dataset D(1) by recording 10 trajectories from a human driver, with an average return
of approximately 250. This dataset is used either to pre-train the NF prior or directly as input to the
IL baseline.

C TRAINING AND MODEL DETAILS

C.1 SAC

Our main learning algorithm is Soft Actor-Critic (SAC) Haarnoja et al. (2018). We follow the
standard learning procedure described in Haarnoja et al. (2018) without modification, and use largely
the same hyperparameters across environments (Tab. 1), with minor adjustments to the discount factor
and Polyak target coefficient to stabilize training, particularly in the CarRacing environment with its
high-magnitude rewards. SAC is employed in all of our experiments: (i) as a from-scratch baseline,
(ii) to implement the IL baseline, and (iii) to train the latent policies of the lower-level actors within
APC and PARROT. To make for a fair and consistent comparison, the same SAC hyperparameters
are used for all methods in each experiment.

C.2 NORMALIZING FLOW BEHAVIOR PRIOR

We implement the NF prior using a conditional version of the real NVP architecture (Dinh et al.,
2017), which is composed of multiple affine coupling layers. Each affine coupling layer splits the
input x ∈ RD into two parts and computes the output y by applying a scale-and-shift transformation
to one part, conditioned on the other:

y[1:d] = x[1:d], y[d+1:D] = x[d+1:D] ⊙ exp
(
v(x[1:d], s)

)
+ q(x[1:d], s), (9)

where v and q are neural networks that additionally take the state s as input, to learn different
transformations in different states. Concretely, we implement v and q as fully connected MLPs, with
hyperparameters summarized in Tab. 2. To increase expressivity, we interleave each affine coupling
layer with a parameter-free flip transformation layer that reverses the order of the input dimensions.

Pre-training. Each NF prior is pre-trained on a demonstration dataset D using maximum-likelihood
estimation (Eq. 2). To improve stability, particularly in settings with low-variance or near-unimodal
action distributions, we add two regularization terms: (i) an inverse-consistency penalty encouraging
nearby actions in real space to map to similar latent codes, and (ii) a forward-smoothness penalty
encouraging local smoothness in the mapping from latent to real actions. The overall loss for training
the NF prior is

L(ϕ) = −E(a,s)∼D

[
logN

(
T̃ϕ(a; s);0, I

)
+ log

∣∣det JT̃ϕ
(a; s)

∣∣+ λic Lic + λfs Lfs,
]

(10)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 1: SAC hyperparameters used across environments.

Hyperparameter PointMaze FrankaKitchen CarRacing
Number of parallel environments 10 10 1
Replay buffer size 1× 106 1× 106 1× 106

Discount factor γ 0.99 0.995 0.995
Polyak target coefficient τ 0.01 0.01 0.005
Batch size 256 256 256
Learning starts 1× 103 1× 103 1× 103

Policy learning rate 3× 10−4 3× 10−4 3× 10−4

Q-function learning rate 1× 10−3 1× 10−3 1× 10−3

Entropy coefficient α 0.1 0.1 0.005
Entropy autotune False False False
Actor network type Fully-connected Fully-connected Fully-connected
Actor hidden layer widths [512, 256] [512, 256] [512, 256]
Actor optimizer Adam Adam Adam
Actor activation function tanh tanh tanh
Critic network type Fully-connected Fully-connected Fully-connected
Critic hidden layer widths [512, 256] [512, 256] [512, 256]
Critic optimizer Adam Adam Adam
Critic activation function tanh tanh tanh

where

Lic = Ea,s,ϵa

[
∥T̃ϕ(a+ ϵa; s)− T̃ϕ(a; s)∥22

∥ϵa∥22 + ε

]
, (11)

Lfs = Ea,s,δz

[
∥Tϕ(z+ δz; s)− Tϕ(z; s)∥22

∥δz∥22 + ε

]
, (12)

where ϵa and δz are noise vectors sampled from zero-centered Gaussians with standard deviation
0.01, and ε is a small term for numerical stability. λic and λfs control the strength of the respective
penalties.

Online usage. During the online RL phase, the NF priors are used only for inference: a latent action
zt sampled from a latent policy is transformed into an environment action at = T (zt; st). Optionally,
via the feedback-sharing mechanism (Sec. 3.3), the inverse mapping T̃ is applied to compute latent
codes for other actors’ policies. Importantly, the latent policies never backpropagate through the NF
prior. From their perspective, the NF is simply part of the environment and affects the transition and
reward dynamics.

For additional background on real NVPs and their use as behavior priors in RL, we refer to Dinh et al.
(2017); Singh et al. (2021).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Normalizing Flow (NF) prior hyperparameters used across environments.

Hyperparameter PointMaze FrankaKitchen CarRacing
Number of coupling layers 10 10 10
Hidden layer widths of q, v [256] [256] [256]
Activation function ReLU ReLU ReLU
Base distribution covariance 0.2 0.2 0.2
Learning rate 1× 10−4 1× 10−4 1× 10−4

Batch size 64 64 1024
Number of training epochs 100 100 100
Gradient clipping norm 1.0 1.0 1.0
Inverse-consistency penalty λic 1× 10−3 1× 10−3 1× 10−3

Forward-smoothness penalty λfs 1× 10−3 1× 10−3 1× 10−3

Optimizer Adam Adam Adam

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ADDITIONAL FRANKAKITCHEN RESULTS

(a) Replica of Fig. 4b. Time to success when using prior data Dj from different tasks (panel titles). Bars indicate
the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1M
steps if convergence was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed
average running success rate at that time (3 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data from different tasks (panel titles).
The shaded area corresponds to one standard deviation across three random seeds.

Figure 7: Results on FrankaKitchen’s microwave task, which requires opening the microwave
door.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Time to success when using prior data Dj from different tasks (panel titles). Bars indicate the step at which
the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data from different tasks (panel titles).
The shaded area corresponds to one standard deviation across two random seeds.

Figure 8: Results on FrankaKitchen’s bottom burner task, which requires turning the knob to
turn on one of the bottom-row stove burners.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Time to success when using prior data Dj from different tasks (panel titles). Bars indicate the step at which
the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data Dj from different tasks (panel
titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 9: Results on FrankaKitchen’s light switch task, which requires flipping the light switch
up.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Time to success when using prior data Dj from different tasks (panel titles). Bars indicate the step at which
the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data Dj from different tasks (panel
titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 10: Results on FrankaKitchen’s top burner task, which requires turning the know to turn
on one of the top-row stove burners.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Time to success when using prior data Dj from different tasks (panel titles). Bars indicate the step at which
the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data Dj from different tasks (panel
titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 11: Results on FrankaKitchen’s slide cabinet task, which requires sliding open the
top-right cabinet door.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Time to success when using prior data Dj from different tasks (panel titles). Bars indicate the step at which
the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data Dj from different tasks (panel
titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 12: Results on FrankaKitchen’s hinge cabinet task, which requires opening the top-left
“hinge” type cabinet door. Due to the difficulty of the task, all methods fails at solving the task when
not using an aligned prior.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Time to success when using prior data Dj from different tasks (panel titles). Bars indicate the step at which
the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

(b) Success rate over time corresponding to the above bar plot, using prior data Dj from different tasks (panel
titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 13: Results on FrankaKitchen’s kettle task, which requires sliding the kettle onto the stove
burner.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E ADDITIONAL ABLATION RESULTS

(a) Arbitrator selector, with reward sharing.

(b) Arbitrator selector, no reward sharing.

(c) Learning hierarchical selector, with reward sharing.

(d) Learning hierarchical selector, no reward sharing.

Figure 14: Complete selector-action plot from the ablation study on the car racing environment,
extension of Fig. 6.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 15: SAC vs APC’s time until 100% cross-seed success, when using different numbers of
behavior priors, on the PointMaze environment. The x-error bars indicates the variance over
five seeds and the different tasks. APC’s “(partially) aligned” variant here means that APC’s set of
priors includes the behavior prior for the current target task (but also n− 1 misaligned ones), while
the “fully misaligned” variant means that the set of priors consists solely of misaligned priors for
other tasks. The beneficial exploration bias due to the aligned prior is weakened by the increasing
number of misaligned priors, which explains the increase in time until success when using more
priors. Nevertheless, as long as APC has access to the aligned prior, it performs better or on par with
SAC, highlighting its ability to avoid negative exploration bias from misaligned priors.

F ADDITIONAL POINTMAZE RESULTS

F.1 NUMBER OF PRIORS

We also study the effect of the number of misaligned priors on APC. For this, we run APC on the
PointMaze environment with access to one, two, three, or all four behavior priors for the four goal
locations. As before, we separately consider the performance when the set of priors is (partially)
aligned, meaning it contains a behavior prior that is optimal for the current task, or fully misaligned,
when the set of priors only contains behavior priors for other tasks.

For this analysis, we use a slightly denser reward for the PointMaze reward by replacing the
standard exponent of the negative Euclidean distance reward with the negative Euclidean distance
directly. The exponent of the negative Euclidean is uninformative, evaluating to 0 almost everywhere,
except very close to the goal, effectively creating a sparse reward setting. In such settings, the effect
of misaligned priors is amplified, since there is (almost) no feedback for learning about the negative
influence of misaligned priors, allowing them to continuously bias the exploration in a negative
fashion. Using the negative Euclidean distance directly yields more informative gradients throughout
the maze, which allows us to better analyze how APC behaves as the number of priors increases.

The results are shown in Figure 15. As can be seen, with an increasing number of priors, the
beneficial exploration bias from the aligned behavior prior is weakened. This happens because
initially, before the Q-functions contain meaningful estimates, the misaligned behavior priors can
(negatively) influence exploration by biasing the agents towards wrong goal locations. However, once
the per-actor Q-functions correctly reflect lower values for the misaligned priors, they receive less
weight under the arbitrator and their impact diminishes, allowing APC to exploit the aligned prior or
prior-free actor.

Furthermore, we find that APC, when given a set of fully misaligned priors, performs slightly worse
than from-scratch SAC, due to the misaligned priors biasing exploration negatively, until their Q-
values reflect low utility. However, this represents a contrived adversarial setting that we include in
this analysis for pedagogical reasons and completeness, but note that it is very unlikely in practice.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 16: Arbitrator sensitivity analysis with respect to the Boltzmann temperature η. The arbitrator
is largely insensitive towards the temperature, however, robustness in the misaligned prior case
deteriorates with very high temperature T = 100.

F.2 ARBITRATOR TEMPERATURE SENSITIVITY

We evaluate the sensitivity of the arbitrator to its temperature coefficient η. Recall that the arbitrator
selects among actors using a Boltzmann categorical distribution πβ = Cat(p0(s), . . . , pn(s)), with
selection probabilities

pl(s) =
1

Z
exp

(
1
ηV

(l)(s)
)
, Z =

n∑
i=0

exp
(

1
ηV

(i)(s)
)
. (13)

The temperature η regulates how strongly value differences influence the selection: small η yields a
more peaked distribution, while large η biases the distribution towards uniform. Figure 16 reports
running success rates for temperatures on a logarithmic grid, T ∈ 0.01, 0.1, . . . , 100, evaluated on
the PointMaze environment and using a single prior.

Overall, the arbitrator is mostly insensitive to the temperature choice. The only notable degradation
appears for large temperatures and when given a misaligned prior, which is expected: In this setting,
value differences between the misaligned prior-based actor and the prior-free actor remain too small
relative to the temperature, leading the arbitrator to sample both nearly uniformly and preventing
effective filtering of the misaligned prior.

A practical heuristic for choosing η could be based on the reward scale: low reward magnitudes
(and therefore small value differences) could be amplified with a smaller η, whereas high reward
magnitudes might benefit form using a larger η, to counteract large value differences between even
similar behaviors.

28

	Introduction
	Background
	Reinforcement Learning
	Data-driven policy priors with generative latent space modeling

	Method: Adaptive Policy Composition
	Compositional policy model
	Lower-level actor learning
	Reward sharing trick for balanced actor updates
	High-level selector

	Evaluation and Analysis
	Environments
	Baselines
	Experiments & Findings
	Summary of results

	Related Work
	Limitations and Discussions
	Future Work
	Conclusion
	Reproducibility statement
	Environment details
	Maze Navigation
	FrankaKitchen
	CarRacing

	Training and model details
	SAC
	Normalizing Flow Behavior Prior

	Additional FrankaKitchen results
	Additional ablation results
	Additional PointMaze results
	Number of priors
	Arbitrator temperature sensitivity

