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ABSTRACT

Incorporating demonstration data into reinforcement learning (RL) can greatly
accelerate learning, but existing approaches often assume demonstrations are
optimal and fully aligned with the target task. In practice, demonstrations are
frequently sparse, suboptimal, or misaligned, which can degrade performance
when these demonstrations are integrated into RL. We propose Adaptive Policy
Composition (APC), a hierarchical model that adaptively composes multiple data-
driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the
priors, APC estimates each prior’s applicability to the target task while leveraging
them for exploration. Moreover, APC either refines useful priors, or sidesteps
misaligned ones when necessary to optimize downstream reward. Across diverse
benchmarks, APC accelerates learning when demonstrations are aligned, remains
robust under severe misalignment, and leverages suboptimal demonstrations to
bootstrap exploration while avoiding performance degradation caused by overly
strict adherence to suboptimal demonstrations.

1 INTRODUCTION

Demonstration data are often used to make reinforcement learning (RL) (Sutton & Bartol [2018)
feasible in challenging tasks. Examples are regularizing the policy to imitate demonstrated actions
(Lu et al., 2023;|Zhu et al.| 2018}, Hester et al.||2018)) and generative modeling of demonstrated actions
or action sequences (Pertsch et al., 2021} [Yang et al.l 2022} Singh et al.| |2021). However, these
approaches often make implicit but crucial assumptions about demonstrations, e.g. complete coverage
of the state space and optimality, which is unrealistic in many practical settings. In fact, strictly
adhering to the data even when the demonstrations are suboptimal or sparse is the main reason for
failure when the dataset and the online RL task are misaligned (i.e., in some way sub-optimal) Dong
et al.| (2025); [Kong et al.| (2024); Zhang et al.[(2023). To avoid this, we should therefore only utilize
demonstration data in reinforcement learning where and as long as it is pertinent for the online RL
task.

In this paper, we present Adaptive Policy Composition (APC), a novel and flexible method of using
demonstration data in RL, that does not rely on optimal and complete demonstrations. In APC, we
decide based on online feedback where and how long to rely on the data, instead of always adhering
to the demonstrations. We propose a hierarchical RL approach consisting of a higher-level selector
that decides between several actors on the lower level. Importantly, there are always exactly one
prior-free and at least one data-driven, prior-based actor on the lower level. Using several prior-based
actors is possible and allows us to include several distinct demonstration datasets that contain various
behaviors. Our prior-based actors pre-train their own behavior prior with their demonstrations while
the prior-free actor learns from scratch. Unlike previous approaches (Pertsch et al.l|2021; Yang et al.,
2022} [Singh et al.| 2021)), the inclusion of the prior-free actor provides APC with complete flexibility
to diverge from demonstrations if necessary to optimize the online RL task, for example, when no
demonstrations apply. Our approach allows the use of standard (off-policy) learning algorithms to
optimize these actors.

Our contributions are threefold: (i) Algorithmic: We introduce APC, a novel compositional policy
architecture that combines prior-based and prior-free actors under an adaptive selector. We further
propose two key mechanisms—a reward-sharing scheme that enables data-efficient training across
actors, and a parameter-free arbitrator selector that mitigates primacy bias—both of which are crucial
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for robust and efficient performance. (ii) Empirical: We demonstrate that APC achieves strong
robustness under demonstration misalignment, consistently outperforming prior methods such as
PARROT and imitation learning baselines. (iii) Analytical: Through ablations, we identify the selector
design and reward sharing as critical components for enabling stable and efficient exploration.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

RL problems are formalized as Markov Decision Processes (MDPs). A MDP is a tuple M =
(S, A,r, p,v), where S is the action space, A is the state space, 7 : S X A — R is a reward function,
p: S x A— S denotes the discrete-time state-transition-kernel, and v € (0, 1] is a discount factor.
The goal in RL is to find a policy 7 : S x A — [0, 1] that maximizes the discounted return objective

oo

J(m) = E(rom) l vtr(st,at)] , (1)
t=0

wheres; € S, a; € A, and (7 ~ ) is a shorthand for denoting trajectories with actions sampled form
the policy 7 and the state evolving according to p. RL algorithms optimize the objective in equation|[I]
to identify the optimal policy 7* = max, J(7) which inherently requires a good exploration strategy,
as well as balancing the exploration versus exploitation trade-off. Uninformed exploration such as
e-greedy (Sutton & Bartol [2018)) or temporally extended Brownian motion (Uhlenbeck & Ornsteinl
1930) appeal due to their simplicity but often fall short in complex, long-horizon, sparse-reward
MDPs. Exploration based on prior knowledge, e.g., demonstrations, can be more useful in such cases,
which motivates our choice of composing multiple data-driven behavior priors.

2.2 DATA-DRIVEN POLICY PRIORS WITH GENERATIVE LATENT SPACE MODELING

Generative models of demonstrated actions can implement effective data-driven priors for RL policies
that learn in their latent space (Pertsch et al., 2021} [Yang et al.,[2022; |Singh et al.|[2021])). In this paper,
we follow the PARROT (Singh et al.,[2021) approach and learn a state-conditioned Normalizing Flow
(NF) (Rezende & Mohamed, 2015}, Papamakarios et al.,2021) model T'(z; s) = a with parameters ¢.
The NF maps latent actions z € Z from the base distribution NV (z; 0, I) to the complex, multi-modal,
per-state action distribution of the demonstration dataset D = (s;,ai)i = 1. The NF is learned with
likelihood maximization and matches the dataset distribution with the generative distribution

L(¢) = —]E(ays)wp[log/\/(f(a; s, $);0,I) + log | det Js(a;s)|] + const., 2)

where T'(a;s, ¢) = T~ !(a;s, ¢) = z is the inverse NF and .J is the Jacobian (from the change of
variables theorem). The NF T serves as a data-driven prior for RL by learning a policy in the NF’s
latent space Z. Specifically, a latent policy 7, : S x Z — [0, 1] outputs a latent action z, which is then
deterministically mapped to an MDP action T'(z;s) = a € A through the NF transformation. We
refer to the resulting policy distribution in the MDP action space as the prior-based actor ma(a | s).

RL in the latent action space Z of a pre-trained NF is beneficial because it focuses learning and
exploration on useful, demonstrated actions in .A. Moreover, NFs are multimodal and allow a simple,
unimodal latent policy 7, to induce a multimodal distribution in the action space. Finally, unlike
other latent space generative models used as data-driven priors in RL such as VAEs (Pertsch et al.,
2021} Yang et al.,[2022), NFs are invertible. This means that the prior-based actor, m,(a | s), in
theory, can undo the behavior prior to learn any desired policy. However, in practice this has been
found to be infeasible, as reported by |Singh et al.|(2021)) and confirmed in our evaluation, leading to
permanent influence of the behavior prior and resulting in failure under misalignment. This serves as
the primary motivation for our method, which we present in the following section.

3 METHOD: ADAPTIVE PoLicy COMPOSITION

Assume that we are given n > 1 demonstration datasets D), D). D) each DO consisting
of state—action pairs, (s,a) € D), without reward signal or temporal order. APC leverages these
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Figure 1: Architecture overview. (a): PARROT (Singh et al., 2021) features a single latent policy
and NF prior. (b): Our method uses a high-level selector to compose multiple latent policies and
NF priors. A prior-free actor (index (0), dashed border) learns directly in the action space. The
selected latent policy and NF prior (cyan-colored arrows) are executed at time ¢. A reward-sharing
trick (magenta-colored arrows) allows us to compute the latent coordinate z} corresponding to the
executed action ay, and to use the transition at time ¢ to also update the other actors that were not
selected.

demonstrations to learn an overall policy 7(a | s) by pre-training a set of prior-based actors, each
based on its own dataset D) (see Sec. , and then learning latent policies from reward feedback by
interacting with the online RL task in all actors, including the prior-free actor. APC is a hierarchical
reinforcement learning approach: The overall policy 7(a | s) is a composition of the lower-level
actors, controlled by a high-level selector that decides which actor to execute in each state. The prior-
based actors solve tasks efficiently when demonstrations are aligned but can fail to achieve optimal
performance under misalignment. In comparison, the prior-free actor lacks demonstration guidance
but retains full flexibility to learn from reward feedback alone. This compositional architecture allows
APC to both exploit distinct behavoir priors for efficient exploration and various aspects of the target
task, while the prior-free actor can overcome limitations of the prior-based actors.

The remainder of this section is organized as follows: Sec. [3.1] formalizes the compositional policy
model, consisting of multiple prior-based actors, the prior-free actor, and the high-level selector. An
overview is provided in Fig. [T} Sec.[3.2]describes the online learning procedure for the lower-level
actors, and Sec. [3.3introduces a crucial technique for robust and efficient learning with multiple NF
priors. Finally, Sec.[3.4] presents the key design of our high-level selector.

3.1 COMPOSITIONAL POLICY MODEL

Our policy model composes multiple lower-level actors to efficiently solve the online RL task. The
higher-level selector 73 is a conditional categorical distribution 73 = Cat(po(s), p1(s), ..., pn(s))
with support 8 € {0,1,...,n} that decides which lower-level actor to use in state s. The values p;(s)

are the probabilities of selecting the i-th lower-level actor in state s, which means that 7g(5 = ¢ |

s) = pi(s). The set of lower-level actors consists of the prior-free actor 7T£1 ) and n prior-based actors

(l) , 1 <1 < n. The prior-free actor 7r§0) uses an identity flow T (z; s) = z and the latent policy

: Sx Z — [0, 1], while each of the prior-based actors " consists of a NF T(l) that is pre-trained

on the demonstration dataset D) as described in Sec. and a latent policy 7rz :Sx Z—[0,1].
To guarantee invertible flows, we also set | Z| = |.A|. The overall policy’s action dlstmbutlon,

n

m(als) = Z (B |s)m ( %) (a; s) | s) +log|det Jz s (a;s)], 3)

likelihood of a under ﬂ;B " change of variables
is a mixture over lower-level actors, weighted according to the selector 3 and computed based on
change of variables with the latent policies and pre-trained NFs. In equation [3] I we use 3’ to index
latent policies and NFs for notational clarity.
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APC uses MDP actions a € A, selector actions 3 € {0,1,...,n} and latent actions z € Z. Instead
of sampling directly from the complex density 7(a | s) in equation [3|at each time step ¢, we first

obtain /3, from the selector 3 and then sample a latent action z; from the chosen lower-level actor’s

latent policy 7r£6 t), which we deterministically transform with the corresponding NF T'(%*) to obtain

the action a; for the online RL task. Our approach to learning 7(a | s) is to learn the selector and
each of the latent policies separately, as detailed in the following sections.

3.2 LOWER-LEVEL ACTOR LEARNING

As described above, our model contains n + 1 latent policies 7Tzl) that independently interact with
the online RL task when they are chosen by the higher-level selector g and thus observe transitions
(s,z,7r,s"). We opt to run n + 1 parallel instances of Soft Actor-Critic (SAC) (Haarnoja et al.,
2018), one for each of the lower-level actors, though any other off-policy RL algorithm that supports
continuous action spaces could be used instead. We denote #() as the parameters for the latent
policies and (%) for the latent Q-functions. Each SAC optimizes an entropy-regularized RL objective
and learns a unimodal Gaussian policy with so-called actor and critic updates. For more details on
SAC, we refer to (Haarnoja et al.,|2018)). Note that the parameters ¢(i) of the pre-trained NFs ()
are not updated during online learning, only the SAC parameters change, as per |Singh et al.| (2021)).
For more implementation and model details, we refer to App. [C|

We maintain separate replay buffers B(®), B() . B for the n + 1 latent policies, which is
motivated by the fact that the same latent coordinate z can correspond to different MDP actions a
under the different. This implies that the reward r; resulting from the latent action z; only provides
a valid feedback signal for the low-level actor that generated a;. Thus, at every time step ¢, we
fill the replay buffer B(%*) with the transition (s;, z;, ¢, s;+1) and update the parameters §(°) and
B4) of the selected lower-level actor on a batch of transitions sampled from buffer B(%*), Next,
we introduce a crucial mechanism that ensures both robust and efficient learning with multiple
(prior-based) lower-level actors.

3.3 REWARD SHARING TRICK FOR BALANCED ACTOR UPDATES

The basic learning scheme outlined above updates only the latent policy W;ﬁ *) of the lower-level
actor selected at time step t. As the number of actors increases, this allocation of experience reduces
sample efficiency: transitions are spread across multiple replay buffers, resulting in fewer updates per
actor relative to the total number of environment interactions. More importantly, this setup can bias
the higher-level selector: if a suboptimal prior-based actor initially outperforms, for example, the
prior-free actor, the selector may overcommit to it, preventing crucial exploration of alternative actors
that could potentially /ater outperform the actor that initially performs best.

To address this issue, we exploit the invertibility of NFs. Any executed action a; can be mapped
into the latent space of every prior-based actor via zgl) = T (a,;s,) , where the same environment
action a; gets mapped to different latent coordinates zil) #* zij ). This happens because different
demonstration datasets D9 and D) induce different behavior priors and, as such, different transfor-
mations 7' and T, Thus, using the inverse T of these learned transformations, transitions can also
be constructed for all actors i # j3; that were not selected at time ¢, and their replay buffers B(*) can
be populated with the constructed transitions. In this variant, each replay buffer receives a transition
at every step, enabling all actors to update continuously, independent of which one produced the
executed action at time ¢. Our ablation results confirm that this feedback-sharing mechanism is
essential: it not only improves sample efficiency but also prevents primacy bias — a tendency of RL
algorithms to “overfit early experiences that damages the rest of the learning process” (Nikishin et al.|
20225 Xu et al., [2024)) — by ensuring fair learning progress for all actors.

3.4 HIGH-LEVEL SELECTOR

The high-level selector 75 determines which lower-level actor to execute in each state. We adopt a
learning-free arbitrator (Russell & Zimdars, 2003)) design for implementing the selector, where the
selection probabilities p; (s) are derived directly from the value estimates V() (s) of the lower-level
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actors. Concretely, the probability of selecting lower-level actor [ is

1 i )
pi(s) = 7 exp(%V(l)(s)) , Z= Zexp(%v(’)(s)) , 4
=0
which defines a categorical distribution g = Cat(po(s), p1(s), ..., pn(s)), where n is a temperature

parameter that controls the sharpness of the distribution. However, because our lower-level agents are
implemented with SAC, which does not provide a direct value function estimate, we approximate
V() (s) via Monte Carlo estimates of each lower-level agent’s Q-function. In practice, this amounts
to sampling a single latent action z(!) from each actor [ and evaluating p;(s) = + exp(%Q(l) (s,zM)),

which yields an unbiased, though high-variance, estimate.

Implementing the selector as a learning-free arbiter provides two advantages: First, it eliminates
the computational overhead of training a separate high-level neural network policy with additional
parameters and gradient updates. Second, it circumvents the instabilities of hierarchical RL that arise
when jointly optimizing higher- and lower-level agents, including sensitivity to learning-rate tuning,
non-stationarity of the lower-level policies, primacy bias, and exploration difficulties. Our ablation
results confirm that this design substantially improves stability and performance compared to learned
higher-level policies.

4 EVALUATION AND ANALYSIS

We evaluate APC across continuous-control benchmarks to assess its robustness under demonstration
misalignment and efficiency with access to demonstrations aligned with the online RL task. Our
experiments address four central questions: (i) Can APC remain robust under severe demonstration
misalignment, avoiding the performance degradation observed in prior methods? (ii) Can APC
effectively exploit well-aligned demonstrations to accelerate learning? (iii) Can APC exceed the
performance of suboptimal demonstrations? (iv) Which architectural components are critical for
enabling such robust exploration?

4.1 ENVIRONMENTS

We test APC on the environments shown in Fig.[2] All environments, including data collection
procedures and experimental setups, are described in greater detail in Appendix [B]

Maze Navigation: Based on the well-known
D4RL benchmark [Fu et al.|(2020). Starting from
the center, a point mass agent must reach differ-
ent goal locations in a simple maze. We refer
to the four goal locations as separate tasks. The
state contains the agent’s current position and
velocity, and actions correspond to accelerations
on the 2D plane.

Franka Kitchen: Based on (Gupta et al.}2019),
a kitchen environment where a Franka Emika
Panda robot needs to solve various manipulation
tasks. The state is in R%Y and contains symbolic
information about the agent and the manipulat-
able objects in the kitchen. Actions correspond to 9D joint velocities.

Figure 2: Our environmental testbed, from left to
right: Maze Navigation, the different goals are
marked in red. Franka Kitchen, with the manipu-
lation targets marked in yellow. Car Racing.

Car Racing: A top-down car racing environment from the Gymnasium suite Towers et al.| (2024).
The task is to drive fast laps on the racing track, and actions correspond to steering and braking or
accelerating.

4.2 BASELINES

We include the following baselines. (SAC) (Haarnoja et al., 2018)) serves as a standard, from-scratch
RL baseline for continuous action spaces. Comparing with this baseline reveals the acceleration in
learning due to including (task-aligned) demonstration data and potential performance degradation
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Figure 3: Time to success in the PointMaze Navigation environment. Each method was executed for at
most 1.5M environment steps; each experiment was repeated with three random seeds. Bars indicate
the step at which the cross-seed average running success rate reached 100%, or the final success
rate after 1.5M steps if convergence was not achieved earlier (shorter bars are better). Percentage
annotations denote the cross-seed average running success rate at that time (3 seeds).

due to misaligned demonstrations. Our next baseline is a simple yet powerful imitation learning (IL)
approach (2023) that regularizes the policy by enforcing high likelihood for state-action
pairs in the demonstration data. (QFilter) is an extension of the IL baseline
that only includes the imitation loss for (s, a) demonstration tuples that have a higher Q-value than
the action sampled from the online learning policy in state s. This baselines therefore also has the
ability to exclude misaligned demonstrations from negatively affecting online performance. Lastly,
(PARROT) serves to reveal the increased adaptability of our method when using
NF priors.

4.3 EXPERIMENTS & FINDINGS

(i) APC shows robustness under demonstration misalignment: We first evaluate robustness against
demonstration misalignment in the PointMaze Navigation environment. Each method (except SAC) is
provided with expert demonstrations D) for one task from the four possible goals, and then evaluated
on the remaining three tasks for which the demonstrations are misaligned. As shown in Fig.[3a] both
PARROT and imitation learning (IL) fail to reliably solve the three tasks with the misaligned prior:
after 1.5M steps their cross-seed running success rates remain at 0% and 7%, respectively. In contrast,
APC reliably converges to 100% success in roughly 0.5M steps. Surprisingly, APC even outperforms
from-scratch SAC despite the misaligned prior, indicating that APC can exploit misaligned priors for
efficient exploration. Imitation learning combined with the QFilter is also able to avoid complete
performance degradation due to the misaligned demonstrations on the PointMaze environment, but it
learns considerably slower than APC, due to relying more heavily on accurate Q-function estimates.

‘We observe consistent trends in the higher-dimensional FrankaKitchen environment. End-effector
trajectories sampled from pre-trained NF priors (Fig. [#a)) exhibit diverse behaviors, but similarity
in trajectory geometry or task semantics is not predictive of transfer success (Fig. 4b). When
demonstrations are misaligned, PARROT and IL suffer severe losses in sample efficiency or fail
entirely, underscoring their brittleness. APC, however, consistently solves the target task across all
configurations, demonstrating strong robustness even in complex MDPs. This contrast highlights the
importance of APC’s ability to bypass misaligned priors, which is essential for adaptability under
demonstration misalignment. Results for additional target tasks are reported in the appendix.

(ii) APC efficiently exploits aligned priors: We next consider the case where the demonstration prior
is fully aligned with the online RL task. As expected, PARROT achieves the fastest convergence in
this setting (Fig. [3] right; Fig.[4b] top left), since its behavior cloning pre-training step allows it to solve
near-optimally just by random sampling in the latent space. APC, despite having access to the same
near-optimal prior, must additionally learn accurate (Q-function estimates for the arbiter to identify
the beneficial prior, resulting in slightly slower convergence. Compared to the IL baseline, APC
converges substantially faster on PointMaze and slightly slower on the FrankaKitchen environment,
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(a) 3D FrankaKitchen end-effector trajectories sampled from the per-task pre-trained NF priors. The red dot
indicates the same starting state for each task; the trajectories have been shifted to save space.
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success rate after 1M steps if convergence was not achieved earlier (shorter bars are better). Percentage
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Figure 4: Results on FrankaKitchen’s microwave task, which requires opening the microwave door.
APC efficiently solves the task when exposed to aligned demonstrations (experiment (ii), top-left
panel) while remaining robust under demonstration misalignment (experiment (i), remaining panels).
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Figure 5: Return curves on the car racing environment, the shaded area corresponds to one standard
deviation around the mean, averaged over three seeds. Left: Experiment (iii) showing APC’s
performance relative to our baselines. Right: Experiment (iv) shows the performance of multiple
APC ablations.

with neither method dominating overall. Importantly, all methods strictly outperform from-scratch
SAC, confirming that all approaches are able to exploit the aligned demonstrations to accelerate
learning. These results show that APC’s increased adaptability under misalignment does not come at
the cost of significant sample inefficiency in the aligned setting.

(iii) APC exceeds suboptimal demonstrations: We further evaluate APC in the CarRacing envi-
ronment under a different but equally challenging form of demonstration misalignment. Instead of
optimal demonstrations from related tasks, we collect ~ 30k transitions from a human driver on the
target track. This dataset D is used to pre-train the NF behavior prior and is also provided to the
IL baseline. The left panel in Fig. [5] shows the resulting return curves. SAC, trained from scratch,
reaches optimal performance (= 900 return) after roughly 250k steps. PARROT, however, only
marginally improves over the mean human score, indicating that the suboptimal prior imposes a strict
performance ceiling. The IL baseline eventually surpasses human performance, but learning is slowed
considerably by the imperfect demonstrations. QFilter also exceed the human performance and is
less strongly affected than by the sub-optimal demonstrations than IL, achieving optimal returns after
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Figure 6: Qualitative visualization for experiment (iv) showing selector decisions on the CarRacing
task. The rows in both panels correspond to selected evaluation episodes. Along each row, time steps
progress from left to right, and each marker indicates whether the prior-based or prior-free actor
was chosen at that step. Top panel: Decisions made by the parameter-free arbitrator selector with
lower-level reward sharing. Bottom panel: Decisions made by a learned selector without reward
sharing. This shows that the arbitrator selector exploits the prior-free actor to achieve high returns,
while the learned selector overcommits to the prior-based actor and achieves subpar returns. An
extended figure showing all ablations and more episodes can be found in App.

roughly 100k steps. APC achieves optimal returns in circa 30k steps, outperforming SAC and all
demonstration-guided baselines. These results show that APC can exploit suboptimal priors to warm-
start learning and guide exploration, while avoiding the performance ceilings that constrain existing
methods. This makes APC especially valuable in practical settings where suboptimal demonstrations
are readily available, while expert demonstrations might be scarce.

(iv) Arbitrator and reward sharing are crucial for exploration: To disentangle the contributions
of the arbitrator selector architecture (Sec. [3.4) and the reward-sharing trick for efficient learning
(Sec.3.3)), we performed an ablation study in the CarRacing environment.

We compare four variants: (i) our full method with an arbitrator selector and reward sharing, (ii) an
arbitrator selector without reward sharing, (iii) a hierarchical learned selector with reward sharing
between the latent actors, and (iv) a hierarchical learned selector without reward sharing between the
latent actors. The learned hierarchical selector is also optimized with SAC and attempts to maximize
the same environment reward as the latent actors. Its action space is discrete, parameterizing a
Categorical distribution representing the choice over which lower-level actor to execute at each step ¢.

The corresponding return curves in the right panel of Fig. [5] show a clear separation: only our
full method (i) consistently achieves optimal return. Two observations explain these results. First,
replacing the arbitrator-style selector with a learned high-level policy introduces strong primacy
bias. As shown in Fig. [6| (bottom), the learned selector overcommits to using the prior-based actor,
as it initially achieves higher return than the randomly initialized prior-free actor. Once this bias
is reinforced, the prior-free actor is rarely used and cannot quickly improve, even though it could
ultimately surpass the NF prior. In contrast, the arbitrator avoids this failure mode by directly
comparing value estimates across actors, without learning an additional policy.

However, second, the arbitrator alone does not suffice. Without reward sharing, transitions collected
by the prior-based actor benefit only that actor, further amplifying its dominance. Using the arbitrator
alongside reward sharing (Fig.[6] top) ensures that all actors are updated on every transition, enabling
the prior-free actor to learn from higher-quality trajectories produced by the prior-based actor. This
allows it to rapidly improve its (J-value estimates and eventually outperform the prior-based actor.

These results show that both mechanisms are critical: the arbitrator mitigates primacy bias, while
reward sharing ensures fair competition through data-efficient learning. Our design combines both to
achieve robust exploration and accelerated learning without premature convergence to suboptimal
actors.



Under review as a conference paper at ICLR 2026

4.4 SUMMARY OF RESULTS

Across environments and settings, our experiments demonstrate three consistent findings. First, APC
remains robust under misaligned demonstrations, reliably solving target tasks where PARROT and IL
fail, and in some cases even outperforming from-scratch SAC by exploiting misaligned priors for
exploration. Second, APC effectively leverages aligned demonstrations: while slightly slower than
PARROT under perfectly aligned priors, APC consistently outperforms from-scratch SAC, showing
that its added flexibility does not compromise sample efficiency. Third, APC exceeds suboptimal
demonstrations by bootstrapping from imperfect data without imposing performance ceilings from
the data. Finally, our ablation studies confirm that the arbitrator-style selector and reward-sharing
mechanism are both necessary to prevent primacy bias and ensure fair, data-efficient competition
among actors. Together, these results highlight APC’s robustness, efficiency, and adaptability across
diverse demonstration settings.

5 RELATED WORK

Normalizing Flows for RL In addition to using pre-trained NFs as data-driven action priors,
NFs have also been used to replace simple unimodal Gaussian policies with richer, multimodal
distributions, with the reported benefit of improved exploration and sample efficiency (Ward et al.,
2019; Mazoure et al., [2020). In these approaches, the NF parameters are learned jointly with the
policy during online RL, effectively treating the flow as part of the policy network. In contrast,
our method keeps the NF prior fixed after pre-training it on demonstrations. NFs have also been
leveraged to enforce safety constraints by mapping the action space into a constraint-respecting
action subspace (Brahmanage et al.| 2023 Chen et al.l [2023), similar to “invalid action masking”
techniques (Kalweit et al., 2020; Huang & Ontanon, 2022; |Rietz et al.,2024). Our use of flows differs
from these works: rather than masking out forbidden actions, we bias the policy by searching in
the NF prior’s latent space to guide exploration towards behaviors observed in the demonstration
data. Using pre-trained NFs as demonstration-driven action priors was introduced by |Singh et al.
(2021)), who argue that the invertible nature of NFs allows for flexible adaptation to the online task.
Our results, however, show that a misaligned NF prior is hard to escape in practice, and that our
hierarchical design, which explicitly allows the agent to bypass misaligned priors, greatly increases
adaptability and robustness under distribution shift.

Skill-based Hierarchical Learning A large body of work exploits hierarchical architectures to
accelerate learning by introducing temporal abstraction. In these approaches, a high-level policy
selects between discrete options or “primitives” (Sutton et al., [1999; [Fox et al., 2017; |Ajay et al.}
2020; Kulkarni et al., 2016), which may be obtained from demonstrations, learned through un-
supervised exploration (Eysenbach et al.| [2018; |Park et al.| 2024} 2023)), or provided as scripted
controllers (Nasiriany et al., 2022; (Chitnis et al.,[2020; |Sharma et al.| [2020). Other methods instead
construct a continuous latent embedding of skills” (Pertsch et al., 2021} |Yang et al., 2022; |Rana et al.,
2022), and solve downstream tasks by searching over the latent space. While these approaches show
clear gains in exploration efficiency due to temporal abstraction or capable primitives and skills, they
lack dedicated mechanisms for adapting when the primitives or skills do not suffice for solving the
task. An exception to this is MAPLE (Nasiriany et al.| 2022}, which also learns an online policy to
improve upon the given scripted controllers, similar to our prior-free actor. Our work differs from
these since we do not leverage temporal abstraction for exploration but instead focus on robustness
and adaptability under demonstration misalignment.

Offline to Online RL. A complementary line of work accelerates online RL by leveraging pre-

collected offline datasets of MDP transitions D = (s,a,r,s’ )lfvzl (Levine et al., 2020; Xie et al.,
2021])). Ball et al.|(2023)) balance online and offline data through joint sampling in off-policy RL. Nair
et al.|(2020) pre-train a policy offline and constrain the subsequent online policy to remain close to
it. [Zhang et al.| (2023)); Hu et al.|(2024) pre-train both the policy and value function, and then refine
the value function online while using both the offline and online policies as proposal distributions.
Kong et al.|(2024) adopt a similar proposal-policy scheme but periodically reset the online policy to
counteract primacy bias (Nikishin et al., 2022)). While effective, these methods primarily target the
distributional shift between offline and online RL. Crucially, they also require reward-labeled data for
pre-training, whereas our approach relies only on unlabeled demonstrations to train NF priors.
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Learning from Demonstrations Learning from demonstration has a long history in RL. Most
approaches incorporate demonstrations through explicit imitation losses that encourage the policy to
stay close to the demonstrated behavior (Ross et al] [Hester et al.} 2018}, [Goecks et al} 2019
Fujimoto & Gul 2021} [Cu et al} 2023}, [Tiapkin et al.}[2024)), generally assuming that demonstrations
are aligned with the target task and offer no mechanism to cope with substantially misaligned
demonstrations. Inverse RL methods infer the reward function from demonstrations and subsequently

optimize it with RL (Abbeel & Ng| 2004}, [Ziebart et al} 2008 [Ho & Ermon)| [2016)), but likewise

depend on demonstrations that are near-optimal. More flexible recent works attempt to account for

suboptimal or misaligned demonstrations in various ways (Nair et al.,[2018};[Zhao et al.| 2022}
et all 2024} [Dong et al 2025} [Cramer et al 2025)), but lack APC’s ability to adaptive compose

multiple distinct behavior priors with a prior-free actor.

6 LIMITATIONS AND DISCUSSIONS

An apparent shortcoming of APC lies in its high computational overhead that scales linearly with
the number of latent actors, since each actor is updated separately with SAC. While reward sharing
improves sample efficiency, maintaining multiple parallel learners increases wall-clock time and
limits scalability to larger sets of behavior priors.

Although APC is designed to remain robust under demonstration misalignment and distribution shift,
it may still fail in adversarial or contrived scenarios. If many severely misaligned priors all bias
exploration toward task-irrelevant regions of the state-space, and if the reward signal is uninformative
about this sub-optimality (for example sparse reward only upon task success), then each actor’s
Q-values might not allow the arbitrator to distinguish and avoid misaligned behaviors. In such cases,
APC may fail to discover the optimal behavior due to persistent negative exploration bias. In more
realistic settings and in practice, where priors are likely to be only partially misaligned or when dense
rewards could provide better feedback, this failure mode is unlikely.

7 FUTURE WORK

We see addressing the computational demands of APC as important future work. This could be
approached by maintaining and updating a shared, central critic, while heuristically updating only the
selected actor at time ¢, instead of updating all available actors at each step. This might substantially
reduce computational overhead and wall-clock time, while preserving APC’s adaptive behavior and
robustness under demonstration misalignment and distribution shift.

Another promising direction would be to allow for a mixture over all available actors, rather than
selecting a single actor at each step. Such a mixture would enable the blending of the different
behaviors encoded in different priors and might further improve exploration efficiency. Modeling
discrete behavior priors with discrete normalizing flows is another worthwhile direction.

8 CONCLUSION

This paper proposes Adaptive Policy Composition (APC), a hierarchical RL architecture that com-
poses multiple NF priors with a prior-free fallback actor under an adaptive selector. By combining a
parameter-free arbitrator with reward sharing, APC ensures data-efficient learning across all actors
and avoids primacy bias, enabling robust demonstration-guided exploration even under misalignment.
Our experiments across diverse benchmarks show that APC leverages aligned demonstrations, re-
mains robust under misalignment, and exceeds suboptimal demonstrations by using priors to bootstrap
exploration. These findings demonstrate that APC is a general approach for integrating imperfect
demonstrations into online RL without impairing performance, thereby bridging the gap between
data-driven priors and reward-driven adaptation.
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A REPRODUCIBILITY STATEMENT

We are unable to share a documented, stand-alone codebase at the time of submission. We will,
however, link to our complete codebase, with reproducibility instructions, in the camera-ready version
of the manuscript.

B ENVIRONMENT DETAILS

B.1 MAZE NAVIGATION

We adopt the maze navigation environment from D4RL [Fu et al.| (2020); however, we customize the
maze layout as shown in Fig.[2| The agent corresponds to a simple point mass, with actions A € R?
corresponding to linear force exerted on the point. The observation space S € R* contains the agent’s
current (x,y) position and velocity. The task encoding, defined by one of four distinct goal locations,
is not part of the observation and must be inferred from the reward signal. This still yields a standard,
fully observable MDP for each separate task.

The reward function is dense and defined as the exponential of the negative Euclidean distance
between the agent and the goal. To encourage short episodes, we subtract a constant penalty of —1 at

14


https://openreview.net/forum?id=MSe8YFbhUE
https://openreview.net/forum?id=MSe8YFbhUE
https://openreview.net/forum?id=-Y34L45JR6z
https://openreview.net/forum?id=-Y34L45JR6z
https://doi.org/10.14428/esann/2022.ES2022-110
http://www.roboticsproceedings.org/rss14/p09.html

Under review as a conference paper at ICLR 2026

each step. Episodes start from a random position near the maze center, terminate successfully when
the agent reaches within 0.5 units of the goal, and are truncated after 200 steps.

For each goal location 7, we generate demonstration datasets D), ... D™ using extensively pre-
trained, optimal policies 7("*. Specifically, we collect 100 episodes per task by sampling actions
from 7(V* and recording the resulting (s, a) pairs. These datasets are used either to pre-train the NF
priors (one per task) or directly as input to the IL baseline, depending on the evaluation setting.

B.2 FRANKAKITCHEN

We use the FrankaKitchen environment introduced by (Gupta et al.| (2019), which features seven
distinct manipulation tasks: opening the microwave door, pushing the kett 1e onto the correct
stove burner, turning on the bottom burner by rotating the corresponding knob, turning on the
top burner by rotating the corresponding knob, flipping the 1ight switch to the on position,
opening the s1iding cabinet door, and opening the hinge cabinet door. The state space
S € R contains symbolic features describing all manipulable objects, along with the robot’s joint
angles and velocities. The action space A € RY corresponds to joint velocity commands. The one-hot
task identity is not included in the state and must instead be inferred from the reward signal, yielding
a standard, fully observable MDP for each individual task.

To facilitate exploration and accelerate training, we replace the original sparse rewards with a dense
reward function. This modification was necessary given the high computational burden of evaluating
a combinatorial number of tasks and prior settings for multiple seeds. Let p.. € R? denote the
end-effector position, computed as the midpoint of the left and right gripper fingers, and let pop; € R?
denote the position of the target object for the current task. We define the end-effector distance term
as

Tee = —Q, ||pee - pobj||27 ©)
with scaling factor o = 0.5. For each task k, the environment additionally provides an achieved goal

state ggzl)l and a desired goal state géﬁi. We can thus compute a task success distance term as

k k
Piaskc = ~ 85 — Buesll2: ©)
which encourages the agent to bring the target object into its goal configuration (e.g., microwave door
fully open). Our final dense reward function is then given by

Rsuccessa if ‘Ttask| S €,
r(s,a) = (N

Tee + T'task, Otherwise,
where Rgyccess = 100 is a large completion bonus.

For each of the seven tasks 7, we construct demonstration datasets D) ... D(7) using extensively
pre-trained, optimal policies 7(Y*. Each dataset consists of 100 episodes collected by executing 7 (9)*
and recording the resulting (s, a) pairs. These datasets are either used to pre-train task-specific NF
priors or passed directly to the IL baseline, depending on the evaluation setting.

Due to the high computational demands of running all methods with multiple seeds on the combina-
torial number of task—prior settings, we were only able to evaluate a randomly chosen subset of tasks
before the submission deadline. We plan to provide results for the full benchmark during the rebuttal
and include them in the camera-ready version.

B.3 CARRACING

We use the CarRacing environment from the Gymnasium suite Towers et al.|(2024])), which requires
driving fast laps on a top-down race track. The simulated planar car follows simplified vehicle
dynamics that include skidding and varying friction across terrain types (asphalt vs. grass). The
continuous action space is A € R3, corresponding to steering, acceleration, and braking. While the
original environment provides pixel observations, we extract a symbolic representation directly from
the simulator.

The symbolic observation space captures the vehicle’s relative position, orientation, and motion with
respect to the track. At each timestep, the agent is exposed to the following symbols:
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* Track-edge distances: signed distances to the left and right road boundaries, (dictt, dright)-

* Heading error: orientation difference A# between the car’s heading and the tangent of the
nearest track centerline, wrapped to [—, 7].

* Velocities: forward and lateral velocity components in the car’s local frame, (vVtwd, Uside )
and the angular velocity w.

* Lookahead waypoints: relative positions of the next L. = 5 centerline waypoints in the car’s
local coordinate frame, {(z;, yj)}]Lzl.
Formally, the observation vector is
2L
s = [diete, dright, AY, Vewd, Vside» W, T1, Y1, .-, 2L, yL | € ROT2E, )]

which yields S € R!6 for L = 5. Episodes begin with the car at rest at a fixed position centered
on the track, and we enforce deterministic resets such that the track layout remains identical across
episodes.

We use the environment’s unmodified reward function: each step incurs a penalty of —0.1, and the
agent receives a reward of +1000/M, where M is the number of track-tiles visited during the current
episode.

This environment contains only a single task — driving efficiently on the fixed track. We collect a
demonstration dataset D(!) by recording 10 trajectories from a human driver, with an average return
of approximately 250. This dataset is used either to pre-train the NF prior or directly as input to the
IL baseline.

C TRAINING AND MODEL DETAILS

C.1 SAC

Our main learning algorithm is Soft Actor-Critic (SAC) [Haarnoja et al.| (2018)). We follow the
standard learning procedure described in Haarnoja et al.|(2018)) without modification, and use largely
the same hyperparameters across environments (Tab. [I), with minor adjustments to the discount factor
and Polyak target coefficient to stabilize training, particularly in the CarRacing environment with its
high-magnitude rewards. SAC is employed in all of our experiments: (i) as a from-scratch baseline,
(i) to implement the IL baseline, and (iii) to train the latent policies of the lower-level actors within
APC and PARROT. To make for a fair and consistent comparison, the same SAC hyperparameters
are used for all methods in each experiment.

C.2 NORMALIZING FLOW BEHAVIOR PRIOR

We implement the NF prior using a conditional version of the real NVP architecture (Dinh et al.,
2017), which is composed of multiple affine coupling layers. Each affine coupling layer splits the
input x € R into two parts and computes the output y by applying a scale-and-shift transformation
to one part, conditioned on the other:

Yitd = X[1:d)> Yid+1:0] = X[a+1:0] @ exp (v(X[1.4):8)) + ¢(X[1:a5,8), )

where v and ¢ are neural networks that additionally take the state s as input, to learn different
transformations in different states. Concretely, we implement v and ¢ as fully connected MLPs, with
hyperparameters summarized in Tab.[2| To increase expressivity, we interleave each affine coupling
layer with a parameter-free flip transformation layer that reverses the order of the input dimensions.

Pre-training. Each NF prior is pre-trained on a demonstration dataset D using maximum-likelihood
estimation (Eq. [2). To improve stability, particularly in settings with low-variance or near-unimodal
action distributions, we add two regularization terms: (i) an inverse-consistency penalty encouraging
nearby actions in real space to map to similar latent codes, and (ii) a forward-smoothness penalty
encouraging local smoothness in the mapping from latent to real actions. The overall loss for training
the NF prior is

L(¢) = —E@as)~p [log/\/(ﬂ)(a; s); 0, I) + log ’ det JT~¢ (a; s)| + Aie Lic + s Ls, (10)
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Table 1: SAC hyperparameters used across environments.

Hyperparameter PointMaze FrankaKitchen CarRacing
Number of parallel environments 10 10 1
Replay buffer size 1 x 10° 1 x 10° 1 x 10°
Discount factor ~y 0.99 0.995 0.995
Polyak target coefficient T 0.01 0.01 0.005
Batch size 256 256 256
Learning starts 1x 103 1x103 1x103
Policy learning rate 3x 1074 3x 107 3x 1074
Q-function learning rate 1x1073 1x1073 1x1073
Entropy coefficient o 0.1 0.1 0.005
Entropy autotune False False False
Actor network type Fully-connected Fully-connected Fully-connected
Actor hidden layer widths [512, 256] [512, 256] [512, 256]
Actor optimizer Adam Adam Adam
Actor activation function tanh tanh tanh
Critic network type Fully-connected Fully-connected Fully-connected
Critic hidden layer widths [512, 256] [512, 256] [512, 256]
Critic optimizer Adam Adam Adam
Critic activation function tanh tanh tanh
where ~ ~
o= Fane, ||T¢(a+ea;8)2—T¢(a;S)H§ ’ (an
"~ l€alls +¢
1T4(z + 6258) — T (2; S)IIE}
Lis=Eas , 12
8 = "

where ea and dz are noise vectors sampled from zero-centered Gaussians with standard deviation
0.01, and ¢ is a small term for numerical stability. Aic and Afs control the strength of the respective
penalties.

Online usage. During the online RL phase, the NF priors are used only for inference: a latent action
z; sampled from a latent policy is transformed into an environment action a; = T'(z;; s;). Optionally,
via the feedback-sharing mechanism (Sec. , the inverse mapping T is applied to compute latent
codes for other actors’ policies. Importantly, the latent policies never backpropagate through the NF
prior. From their perspective, the NF is simply part of the environment and affects the transition and
reward dynamics.

For additional background on real NVPs and their use as behavior priors in RL, we refer to[Dinh et al.
(2017); |Singh et al.|(2021).
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Table 2: Normalizing Flow (NF) prior hyperparameters used across environments.

Hyperparameter PointMaze FrankaKitchen CarRacing
Number of coupling layers 10 10 10
Hidden layer widths of ¢, v [256] [256] [256]
Activation function RelLU RelLU RelLU
Base distribution covariance 0.2 0.2 0.2
Learning rate 1x1074 1x1074 1x1074
Batch size 64 64 1024
Number of training epochs 100 100 100
Gradient clipping norm 1.0 1.0 1.0
Inverse-consistency penalty \;. 1x1073 1x1073 1x1073
Forward-smoothness penalty \¢g 1 x 1073 1x1073 1x1073
Optimizer Adam Adam Adam

18



Under review as a conference paper at ICLR 2026
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(a) Replica of Fig. @ Time to success when using prior data D; from different tasks (panel titles). Bars indicate
the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1M
steps if convergence was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed
average running success rate at that time (3 seeds). Dashed vertical lines indicate the convergence time of APC.
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(b) Success rate over time corresponding to the above bar plot, using prior data from different tasks (panel titles).
The shaded area corresponds to one standard deviation across three random seeds.

Figure 7: Results on FrankaKitchen’s microwave task, which requires opening the microwave
door.
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the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.
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(b) Success rate over time corresponding to the above bar plot, using prior data from different tasks (panel titles).
The shaded area corresponds to one standard deviation across two random seeds.

Figure 8: Results on FrankaKitchen’s bottom burner task, which requires turning the knob to
turn on one of the bottom-row stove burners.
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(b) Success rate over time corresponding to the above bar plot, using prior data D; from different tasks (panel
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Figure 9: Results on FrankaKitchen’s 1ight switch task, which requires flipping the light switch
up.
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Figure 10: Results on FrankaKitchen’s top burner task, which requires turning the know to turn
on one of the top-row stove burners.
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Figure 11: Results on FrankaKitchen’s slide cabinet task, which requires sliding open the

top-right cabinet door.
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Figure 12: Results on FrankaKitchen’s hinge cabinet task, which requires opening the top-left
“hinge” type cabinet door. Due to the difficulty of the task, all methods fails at solving the task when
not using an aligned prior.
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Figure 13: Results on FrankaKitchen’s ket t 1e task, which requires sliding the kettle onto the stove

burner.
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Figure 15: SAC vs APC’s time until 100% cross-seed success, when using different numbers of
behavior priors, on the PointMaze environment. The z-error bars indicates the variance over
five seeds and the different tasks. APC’s “(partially) aligned” variant here means that APC’s set of
priors includes the behavior prior for the current target task (but also n — 1 misaligned ones), while
the “fully misaligned” variant means that the set of priors consists solely of misaligned priors for
other tasks. The beneficial exploration bias due to the aligned prior is weakened by the increasing
number of misaligned priors, which explains the increase in time until success when using more
priors. Nevertheless, as long as APC has access to the aligned prior, it performs better or on par with
SAC, highlighting its ability to avoid negative exploration bias from misaligned priors.

F ADDITIONAL POINTMAZE RESULTS

F.1 NUMBER OF PRIORS

We also study the effect of the number of misaligned priors on APC. For this, we run APC on the
PointMaze environment with access to one, two, three, or all four behavior priors for the four goal
locations. As before, we separately consider the performance when the set of priors is (partially)
aligned, meaning it contains a behavior prior that is optimal for the current task, or fully misaligned,
when the set of priors only contains behavior priors for other tasks.

For this analysis, we use a slightly denser reward for the PointMaze reward by replacing the
standard exponent of the negative Euclidean distance reward with the negative Euclidean distance
directly. The exponent of the negative Euclidean is uninformative, evaluating to 0 almost everywhere,
except very close to the goal, effectively creating a sparse reward setting. In such settings, the effect
of misaligned priors is amplified, since there is (almost) no feedback for learning about the negative
influence of misaligned priors, allowing them to continuously bias the exploration in a negative
fashion. Using the negative Euclidean distance directly yields more informative gradients throughout
the maze, which allows us to better analyze how APC behaves as the number of priors increases.

The results are shown in Figure [I3] As can be seen, with an increasing number of priors, the
beneficial exploration bias from the aligned behavior prior is weakened. This happens because
initially, before the Q-functions contain meaningful estimates, the misaligned behavior priors can
(negatively) influence exploration by biasing the agents towards wrong goal locations. However, once
the per-actor Q-functions correctly reflect lower values for the misaligned priors, they receive less
weight under the arbitrator and their impact diminishes, allowing APC to exploit the aligned prior or
prior-free actor.

Furthermore, we find that APC, when given a set of fully misaligned priors, performs slightly worse
than from-scratch SAC, due to the misaligned priors biasing exploration negatively, until their Q-
values reflect low utility. However, this represents a contrived adversarial setting that we include in
this analysis for pedagogical reasons and completeness, but note that it is very unlikely in practice.
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Figure 16: Arbitrator sensitivity analysis with respect to the Boltzmann temperature 7. The arbitrator
is largely insensitive towards the temperature, however, robustness in the misaligned prior case
deteriorates with very high temperature 7" = 100.

F.2 ARBITRATOR TEMPERATURE SENSITIVITY

We evaluate the sensitivity of the arbitrator to its temperature coefficient 7. Recall that the arbitrator
selects among actors using a Boltzmann categorical distribution w3 = Cat(po(s), . . ., pn(s)), with
selection probabilities

pi(s) = %exp (%V(l)(s)> , 7 = Zexp <%V(i) (s)) . (13)
i=0

The temperature 7) regulates how strongly value differences influence the selection: small 7 yields a
more peaked distribution, while large 7 biases the distribution towards uniform. Figure[T6]reports
running success rates for temperatures on a logarithmic grid, 7" € 0.01,0.1, ..., 100, evaluated on
the PointMaze environment and using a single prior.

Overall, the arbitrator is mostly insensitive to the temperature choice. The only notable degradation
appears for large temperatures and when given a misaligned prior, which is expected: In this setting,
value differences between the misaligned prior-based actor and the prior-free actor remain too small
relative to the temperature, leading the arbitrator to sample both nearly uniformly and preventing
effective filtering of the misaligned prior.

A practical heuristic for choosing 1 could be based on the reward scale: low reward magnitudes
(and therefore small value differences) could be amplified with a smaller 7, whereas high reward
magnitudes might benefit form using a larger 7, to counteract large value differences between even
similar behaviors.
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