

000 001 002 003 004 005 APC-RL: EXCEEDING DATA-DRIVEN BEHAVIOR PRI- 006 ORS WITH ADAPTIVE POLICY COMPOSITION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Incorporating demonstration data into reinforcement learning (RL) can greatly accelerate learning, but existing approaches often assume demonstrations are optimal and fully aligned with the target task. In practice, demonstrations are frequently sparse, suboptimal, or misaligned, which can degrade performance when these demonstrations are integrated into RL. We propose Adaptive Policy Composition (APC), a hierarchical model that adaptively composes multiple data-driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the priors, APC estimates each prior’s applicability to the target task while leveraging them for exploration. Moreover, APC either refines useful priors, or sidesteps misaligned ones when necessary to optimize downstream reward. Across diverse benchmarks, APC accelerates learning when demonstrations are aligned, remains robust under severe misalignment, and leverages suboptimal demonstrations to bootstrap exploration while avoiding performance degradation caused by overly strict adherence to suboptimal demonstrations.

1 INTRODUCTION

Demonstration data are often used to make reinforcement learning (RL) (Sutton & Barto, 2018) feasible in challenging tasks. Examples are regularizing the policy to imitate demonstrated actions (Lu et al., 2023; Zhu et al., 2018; Hester et al., 2018) and generative modeling of demonstrated actions or action sequences (Pertsch et al., 2021; Yang et al., 2022; Singh et al., 2021). However, these approaches often make implicit but crucial assumptions about demonstrations, e.g. complete coverage of the state space and optimality, which is unrealistic in many practical settings. In fact, strictly adhering to the data even when the demonstrations are suboptimal or sparse is the main reason for failure when the dataset and the online RL task are *misaligned* (i.e., in some way sub-optimal) Dong et al. (2025); Kong et al. (2024); Zhang et al. (2023). To avoid this, we should therefore only utilize demonstration data in reinforcement learning *where* and *as long as* it is pertinent for the online RL task.

In this paper, we present Adaptive Policy Composition (APC), a novel and flexible method of using demonstration data in RL, that does not rely on optimal and complete demonstrations. In APC, we decide based on online feedback *where* and *how long* to rely on the data, instead of always adhering to the demonstrations. We propose a hierarchical RL approach consisting of a *higher-level selector* that decides between *several* actors on the lower level. Importantly, there are always exactly one *prior-free* and at least one data-driven, *prior-based* actor on the lower level. Using several prior-based actors is possible and allows us to include several distinct demonstration datasets that contain various behaviors. Our prior-based actors pre-train their own behavior prior with their demonstrations while the prior-free actor learns from scratch. Unlike previous approaches (Pertsch et al., 2021; Yang et al., 2022; Singh et al., 2021), the inclusion of the prior-free actor provides APC with complete flexibility to diverge from demonstrations if necessary to optimize the online RL task, for example, when no demonstrations apply. Our approach allows the use of standard (off-policy) learning algorithms to optimize these actors.

Our contributions are threefold: (i) Algorithmic: We introduce APC, a novel compositional policy architecture that combines prior-based and prior-free actors under an adaptive selector. We further propose two key mechanisms—a reward-sharing scheme that enables data-efficient training across actors, and a parameter-free arbitrator selector that mitigates primacy bias—both of which are crucial

054 for robust and efficient performance. (ii) Empirical: We demonstrate that APC achieves strong
 055 robustness under demonstration misalignment, consistently outperforming prior methods such as
 056 PARROT and imitation learning baselines. (iii) Analytical: Through ablations, we identify the selector
 057 design and reward sharing as critical components for enabling stable and efficient exploration.
 058

059 2 BACKGROUND

061 2.1 REINFORCEMENT LEARNING

063 RL problems are formalized as Markov Decision Processes (MDPs). A MDP is a tuple $\mathcal{M} \equiv$
 064 $\langle \mathcal{S}, \mathcal{A}, r, \rho, \gamma \rangle$, where \mathcal{S} is the action space, \mathcal{A} is the state space, $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a reward function,
 065 $\rho : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ denotes the discrete-time state-transition-kernel, and $\gamma \in (0, 1]$ is a discount factor.
 066 The goal in RL is to find a policy $\pi : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ that maximizes the discounted return objective
 067

$$068 J(\pi) = \mathbb{E}_{(\tau \sim \pi)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right], \quad (1)$$

071 where $\mathbf{s}_t \in \mathcal{S}$, $\mathbf{a}_t \in \mathcal{A}$, and $(\tau \sim \pi)$ is a shorthand for denoting trajectories with actions sampled from
 072 the policy π and the state evolving according to ρ . RL algorithms optimize the objective in equation 1
 073 to identify the optimal policy $\pi^* = \max_{\pi} J(\pi)$ which inherently requires a good exploration strategy,
 074 as well as balancing the exploration versus exploitation trade-off. Uninformed exploration such as
 075 ε -greedy (Sutton & Barto, 2018) or temporally extended Brownian motion (Uhlenbeck & Ornstein,
 076 1930) appeal due to their simplicity but often fall short in complex, long-horizon, sparse-reward
 077 MDPs. Exploration based on prior knowledge, e.g., demonstrations, can be more useful in such cases,
 078 which motivates our choice of composing multiple data-driven behavior priors.

079 2.2 DATA-DRIVEN POLICY PRIORS WITH GENERATIVE LATENT SPACE MODELING

081 Generative models of demonstrated actions can implement effective data-driven priors for RL policies
 082 that learn in their latent space (Pertsch et al., 2021; Yang et al., 2022; Singh et al., 2021). In this paper,
 083 we follow the PARROT (Singh et al., 2021) approach and learn a state-conditioned Normalizing Flow
 084 (NF) (Rezende & Mohamed, 2015; Papamakarios et al., 2021) model $T(\mathbf{z}; \mathbf{s}) = \mathbf{a}$ with parameters ϕ .
 085 The NF maps latent actions $\mathbf{z} \in \mathcal{Z}$ from the base distribution $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$ to the complex, multi-modal,
 086 per-state action distribution of the demonstration dataset $\mathcal{D} = (\mathbf{s}_i, \mathbf{a}_i)_{i=1}^N$. The NF is learned with
 087 likelihood maximization and matches the dataset distribution with the generative distribution

$$088 \mathcal{L}(\phi) = -\mathbb{E}_{(\mathbf{a}, \mathbf{s}) \sim \mathcal{D}} [\log \mathcal{N}(\tilde{T}(\mathbf{a}; \mathbf{s}, \phi); \mathbf{0}, \mathbf{I}) + \log |\det J_{\tilde{T}}(\mathbf{a}; \mathbf{s})|] + \text{const.}, \quad (2)$$

090 where $\tilde{T}(\mathbf{a}; \mathbf{s}, \phi) = T^{-1}(\mathbf{a}; \mathbf{s}, \phi) = \mathbf{z}$ is the inverse NF and J is the Jacobian (from the change of
 091 variables theorem). The NF T serves as a data-driven prior for RL by learning a policy in the NF's
 092 latent space \mathcal{Z} . Specifically, a *latent policy* $\pi_{\mathbf{z}} : \mathcal{S} \times \mathcal{Z} \rightarrow [0, 1]$ outputs a latent action \mathbf{z} , which is then
 093 deterministically mapped to an MDP action $T(\mathbf{z}; \mathbf{s}) = \mathbf{a} \in \mathcal{A}$ through the NF transformation. We
 094 refer to the resulting policy distribution in the MDP action space as the *prior-based actor* $\pi_{\mathbf{a}}(\mathbf{a} \mid \mathbf{s})$.

095 RL in the latent action space \mathcal{Z} of a pre-trained NF is beneficial because it focuses learning and
 096 exploration on useful, demonstrated actions in \mathcal{A} . Moreover, NFs are multimodal and allow a simple,
 097 unimodal latent policy $\pi_{\mathbf{z}}$ to induce a multimodal distribution in the action space. Finally, unlike
 098 other latent space generative models used as data-driven priors in RL such as VAEs (Pertsch et al.,
 099 2021; Yang et al., 2022), NFs are invertible. This means that the prior-based actor, $\pi_{\mathbf{a}}(\mathbf{a} \mid \mathbf{s})$, in
 100 theory, can undo the behavior prior to learn any desired policy. However, in practice this has been
 101 found to be infeasible, as reported by Singh et al. (2021) and confirmed in our evaluation, leading to
 102 permanent influence of the behavior prior and resulting in failure under misalignment. This serves as
 103 the primary motivation for our method, which we present in the following section.

104 3 METHOD: ADAPTIVE POLICY COMPOSITION

106 Assume that we are given $n \geq 1$ demonstration datasets $\mathcal{D}^{(1)}, \mathcal{D}^{(2)}, \dots, \mathcal{D}^{(n)}$, each $\mathcal{D}^{(l)}$ consisting
 107 of state-action pairs, $(\mathbf{s}, \mathbf{a}) \in \mathcal{D}^{(l)}$, without reward signal or temporal order. APC leverages these

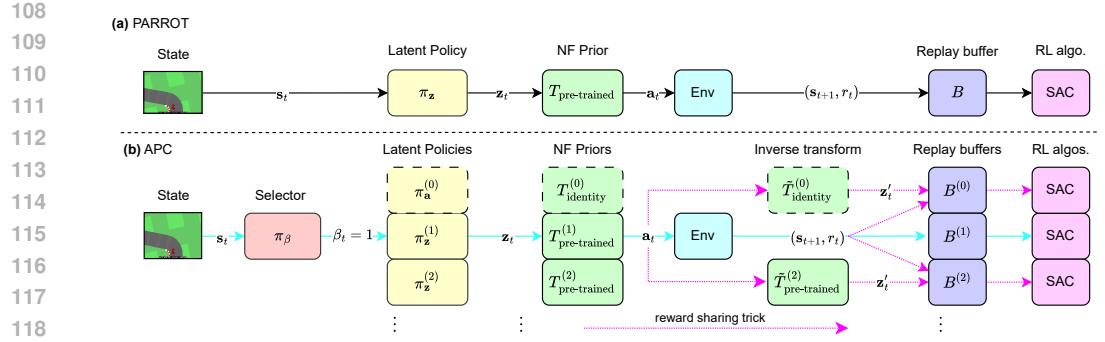


Figure 1: Architecture overview. **(a):** PARROT (Singh et al., 2021) features a single latent policy and NF prior. **(b):** Our method uses a high-level selector to compose multiple latent policies and NF priors. A prior-free actor (index (0), dashed border) learns directly in the action space. The selected latent policy and NF prior (cyan-colored arrows) are executed at time t . A reward-sharing trick (magenta-colored arrows) allows us to compute the latent coordinate z'_t corresponding to the executed action a_t , and to use the transition at time t to also update the other actors that were not selected.

demonstrations to learn an overall policy $\pi(a | s)$ by pre-training a set of prior-based actors, each based on its own dataset $\mathcal{D}^{(i)}$ (see Sec. 2.2), and then learning latent policies from reward feedback by interacting with the online RL task in *all* actors, including the prior-free actor. APC is a hierarchical reinforcement learning approach: The overall policy $\pi(a | s)$ is a composition of the lower-level actors, controlled by a high-level selector that decides which actor to execute in each state. The prior-based actors solve tasks efficiently when demonstrations are aligned but can fail to achieve optimal performance under misalignment. In comparison, the prior-free actor lacks demonstration guidance but retains full flexibility to learn from reward feedback alone. **This compositional architecture allows APC to both exploit distinct behavoir priors for efficient exploration and various aspects of the target task, while the prior-free actor can overcome limitations of the prior-based actors.**

The remainder of this section is organized as follows: Sec. 3.1 formalizes the compositional policy model, consisting of multiple prior-based actors, the prior-free actor, and the high-level selector. An overview is provided in Fig. 1. Sec. 3.2 describes the online learning procedure for the lower-level actors, and Sec. 3.3 introduces a crucial technique for robust and efficient learning with multiple NF priors. Finally, Sec. 3.4 presents the key design of our high-level selector.

3.1 COMPOSITIONAL POLICY MODEL

Our policy model composes multiple lower-level actors to efficiently solve the online RL task. The higher-level selector π_β is a conditional categorical distribution $\pi_\beta = \text{Cat}(p_0(s), p_1(s), \dots, p_n(s))$ with support $\beta \in \{0, 1, \dots, n\}$ that decides which lower-level actor to use in state s . The values $p_i(s)$ are the probabilities of selecting the i -th lower-level actor in state s , which means that $\pi_\beta(\beta = i | s) = p_i(s)$. The set of lower-level actors consists of the prior-free actor $\pi_a^{(0)}$ and n prior-based actors $\pi_a^{(l)}$, $1 \leq l \leq n$. The prior-free actor $\pi_a^{(0)}$ uses an identity flow $T^{(0)}(z; s) = z$ and the latent policy $\pi_a^{(0)} : \mathcal{S} \times \mathcal{Z} \rightarrow [0, 1]$, while each of the prior-based actors $\pi_a^{(l)}$ consists of a NF $T^{(l)}$ that is pre-trained on the demonstration dataset $\mathcal{D}^{(l)}$ as described in Sec. 2.2 and a latent policy $\pi_z^{(l)} : \mathcal{S} \times \mathcal{Z} \rightarrow [0, 1]$. To guarantee invertible flows, we also set $|\mathcal{Z}| = |\mathcal{A}|$. The overall policy's action distribution,

$$\pi(a | s) = \sum_{\beta'=0}^n \pi_\beta(\beta' | s) \underbrace{\pi_z^{(\beta')}(\tilde{T}^{(\beta')}(a; s) | s)}_{\text{likelihood of } a \text{ under } \pi_z^{(\beta')}} + \underbrace{\log |\det J_{\tilde{T}^{(\beta')}}(a; s)|}_{\text{change of variables}}, \quad (3)$$

is a mixture over lower-level actors, weighted according to the selector π_β and computed based on change of variables with the latent policies and pre-trained NFs. In equation 3 we use β' to index latent policies and NFs for notational clarity.

162 APC uses MDP actions $\mathbf{a} \in \mathcal{A}$, selector actions $\beta \in \{0, 1, \dots, n\}$ and latent actions $\mathbf{z} \in \mathcal{Z}$. Instead
 163 of sampling directly from the complex density $\pi(\mathbf{a} \mid \mathbf{s})$ in equation 3 at each time step t , we first
 164 obtain β_t from the selector π_β and then sample a latent action \mathbf{z}_t from the chosen lower-level actor's
 165 latent policy $\pi_z^{(\beta_t)}$, which we deterministically transform with the corresponding NF $T^{(\beta_t)}$ to obtain
 166 the action \mathbf{a}_t for the online RL task. Our approach to learning $\pi(\mathbf{a} \mid \mathbf{s})$ is to learn the selector and
 167 each of the latent policies separately, as detailed in the following sections.
 168

169 3.2 LOWER-LEVEL ACTOR LEARNING 170

171 As described above, our model contains $n + 1$ latent policies $\pi_z^{(i)}$ that independently interact with
 172 the online RL task when they are chosen by the higher-level selector π_β and thus observe transitions
 173 $(\mathbf{s}, \mathbf{z}, r, \mathbf{s}')$. We opt to run $n + 1$ parallel instances of Soft Actor-Critic (SAC) (Haarnoja et al.,
 174 2018), one for each of the lower-level actors, **though any other off-policy RL algorithm that supports**
 175 **continuous action spaces could be used instead**. We denote $\theta^{(i)}$ as the parameters for the latent
 176 policies and $\psi^{(i)}$ for the latent Q-functions. Each SAC optimizes an entropy-regularized RL objective
 177 and learns a unimodal Gaussian policy with so-called actor and critic updates. For more details on
 178 SAC, we refer to (Haarnoja et al., 2018). Note that the parameters $\phi^{(i)}$ of the pre-trained NFs $T^{(i)}$
 179 are not updated during online learning, only the SAC parameters change, as per Singh et al. (2021).
 180 For more implementation and model details, we refer to App. C.
 181

182 We maintain separate replay buffers $B^{(0)}, B^{(1)}, \dots, B^{(n)}$ for the $n + 1$ latent policies, which is
 183 motivated by the fact that the same latent coordinate \mathbf{z} can correspond to different MDP actions \mathbf{a}
 184 under the different. This implies that the reward r_t resulting from the latent action \mathbf{z}_t only provides
 185 a valid feedback signal for the low-level actor that generated \mathbf{a}_t . Thus, at every time step t , we
 186 fill the replay buffer $B^{(\beta_t)}$ with the transition $(\mathbf{s}_t, \mathbf{z}_t, r_t, \mathbf{s}_{t+1})$ and update the parameters $\theta^{(\beta_t)}$ and
 187 $\psi^{(\beta_t)}$ of the *selected* lower-level actor on a batch of transitions sampled from buffer $B^{(\beta_t)}$. Next,
 188 we introduce a crucial mechanism that ensures both robust and efficient learning with multiple
 189 (prior-based) lower-level actors.
 190

191 3.3 REWARD SHARING TRICK FOR BALANCED ACTOR UPDATES

192 The basic learning scheme outlined above updates only the latent policy $\pi_z^{(\beta_t)}$ of the lower-level
 193 actor selected at time step t . As the number of actors increases, this allocation of experience reduces
 194 sample efficiency: transitions are spread across multiple replay buffers, resulting in fewer updates per
 195 actor relative to the total number of environment interactions. More importantly, this setup can bias
 196 the higher-level selector: if a suboptimal prior-based actor initially outperforms, for example, the
 197 prior-free actor, the selector may overcommit to it, preventing crucial exploration of alternative actors
 198 that could potentially *later* outperform the actor that *initially* performs best.
 199

200 To address this issue, we exploit the invertibility of NFs. Any executed action \mathbf{a}_t can be mapped
 201 into the latent space of every prior-based actor via $\mathbf{z}_t^{(i)} = \tilde{T}^{(i)}(\mathbf{a}_t; \mathbf{s}_t)$, **where the same environment**
 202 **action \mathbf{a}_t gets mapped to different latent coordinates $\mathbf{z}_t^{(i)} \neq \mathbf{z}_t^{(j)}$** . This happens because different
 203 demonstration datasets $\mathcal{D}^{(i)}$ and $\mathcal{D}^{(j)}$ induce different behavior priors and, as such, different transfor-
 204 **mations $\tilde{T}^{(i)}$ and $\tilde{T}^{(j)}$** . Thus, using the inverse \tilde{T} of these learned transformations, transitions can also
 205 be constructed for all actors $i \neq \beta_t$ that were not selected at time t , and their replay buffers $B^{(i)}$ can
 206 be populated with the constructed transitions. In this variant, each replay buffer receives a transition
 207 at every step, enabling all actors to update continuously, independent of which one produced the
 208 executed action at time t . Our ablation results confirm that this feedback-sharing mechanism is
 209 essential: it not only improves sample efficiency but also prevents primacy bias – **a tendency of RL**
 210 **algorithms to “overfit early experiences that damages the rest of the learning process”** (Nikishin et al.,
 211 2022; Xu et al., 2024) – by ensuring fair learning progress for all actors.
 212

213 3.4 HIGH-LEVEL SELECTOR

214 The high-level selector π_β determines which lower-level actor to execute in each state. We adopt a
 215 **learning-free arbitrator** (Russell & Zimdars, 2003) design for implementing the selector, where the
 selection probabilities $p_l(\mathbf{s})$ are derived directly from the value estimates $V^{(l)}(\mathbf{s})$ of the lower-level

216 actors. Concretely, the probability of selecting lower-level actor l is
 217

$$218 \quad p_l(\mathbf{s}) = \frac{1}{Z} \exp\left(\frac{1}{\eta} V^{(l)}(\mathbf{s})\right), \quad Z = \sum_{i=0}^n \exp\left(\frac{1}{\eta} V^{(i)}(\mathbf{s})\right), \quad (4)$$

221 which defines a categorical distribution $\pi_\beta = \text{Cat}(p_0(\mathbf{s}), p_1(\mathbf{s}), \dots, p_n(\mathbf{s}))$, where η is a temperature
 222 parameter that controls the sharpness of the distribution. However, because our lower-level agents are
 223 implemented with SAC, which does not provide a direct value function estimate, we approximate
 224 $V^{(l)}(\mathbf{s})$ via Monte Carlo estimates of each lower-level agent's Q -function. In practice, this amounts
 225 to sampling a single latent action $\mathbf{z}^{(l)}$ from each actor l and evaluating $p_l(\mathbf{s}) = \frac{1}{Z} \exp\left(\frac{1}{\eta} Q^{(l)}(\mathbf{s}, \mathbf{z}^{(l)})\right)$,
 226 which yields an unbiased, though high-variance, estimate.
 227

228 Implementing the selector as a **learning**-free arbiter provides two advantages: First, it eliminates
 229 the computational overhead of training a separate high-level neural network policy with additional
 230 parameters and gradient updates. Second, it circumvents the instabilities of hierarchical RL that arise
 231 when jointly optimizing higher- and lower-level agents, including sensitivity to learning-rate tuning,
 232 non-stationarity of the lower-level policies, primacy bias, and exploration difficulties. Our ablation
 233 results confirm that this design substantially improves stability and performance compared to learned
 234 higher-level policies.
 235

4 EVALUATION AND ANALYSIS

237 We evaluate APC across continuous-control benchmarks to assess its robustness under demonstration
 238 misalignment and efficiency with access to demonstrations aligned with the online RL task. Our
 239 experiments address four central questions: **(i)** Can APC remain robust under severe demonstration
 240 misalignment, avoiding the performance degradation observed in prior methods? **(ii)** Can APC
 241 effectively exploit well-aligned demonstrations to accelerate learning? **(iii)** Can APC exceed the
 242 performance of suboptimal demonstrations? **(iv)** Which architectural components are critical for
 243 enabling such robust exploration?
 244

4.1 ENVIRONMENTS

246 We test APC on the environments shown in Fig. 2. All environments, including data collection
 247 procedures and experimental setups, are described in greater detail in Appendix B.
 248

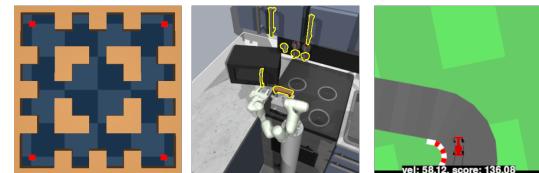
249 **Maze Navigation:** Based on the well-known
 250 D4RL benchmark Fu et al. (2020). Starting from
 251 the center, a point mass agent must reach different
 252 goal locations in a simple maze. We refer
 253 to the four goal locations as separate tasks. The
 254 state contains the agent's current position and
 255 velocity, and actions correspond to accelerations
 256 on the 2D plane.
 257

258 **Franka Kitchen:** Based on (Gupta et al., 2019),
 259 a kitchen environment where a Franka Emika
 260 Panda robot needs to solve various manipulation
 261 tasks. The state is in \mathbb{R}^{59} and contains symbolic
 262 information about the agent and the manipulat-
 263 able objects in the kitchen. Actions correspond to 9D joint velocities.
 264

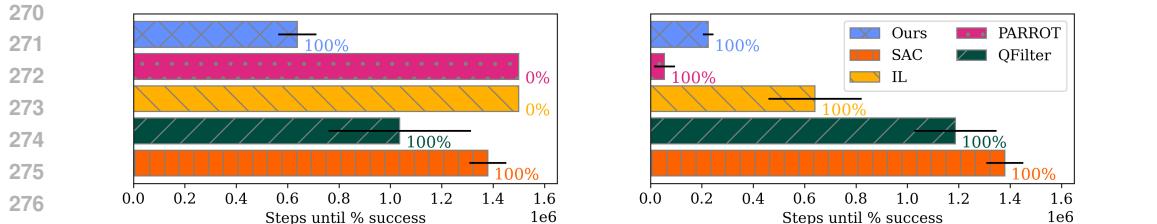
265 **Car Racing:** A top-down car racing environment from the Gymnasium suite Towers et al. (2024).
 266 The task is to drive fast laps on the racing track, and actions correspond to steering and braking or
 267 accelerating.
 268

4.2 BASELINES

269 We include the following baselines. **(SAC)** (Haarnoja et al., 2018) serves as a standard, from-scratch
 270 RL baseline for continuous action spaces. Comparing with this baseline reveals the acceleration in
 271 learning due to including (task-aligned) demonstration data and potential performance degradation
 272



273 Figure 2: Our environmental testbed, from left to
 274 right: **Maze Navigation**, the different goals are
 275 marked in red. **Franka Kitchen**, with the manipu-
 276 lation targets marked in yellow. **Car Racing**.
 277



(a) Experiment (i): Average performance on tasks with *misaligned* demonstrations, showing that PARROT and IL fail to learn, while APC solves the tasks even faster than from-scratch SAC, despite the misaligned prior.

(b) Experiment (ii): Average performance on tasks with *aligned* demonstrations, showing that PARROT solves the tasks most quickly, while APC considerably outperforms IL, QFilter, and from-scratch SAC.

Figure 3: Time to success in the PointMaze Navigation environment. Each method was executed for at most 1.5M environment steps; each experiment was repeated with three random seeds. Bars indicate the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1.5M steps if convergence was not achieved earlier (shorter bars are better). Percentage annotations denote the cross-seed average running success rate at that time (3 seeds).

due to misaligned demonstrations. Our next baseline is a simple yet powerful imitation learning (**IL**) approach Lu et al. (2023) that regularizes the policy by enforcing high likelihood for state-action pairs in the demonstration data. (**QFilter**) (Nair et al., 2018) is an extension of the IL baseline that only includes the imitation loss for (s, a) demonstration tuples that have a higher Q-value than the action sampled from the online learning policy in state s . This baseline therefore also has the ability to exclude misaligned demonstrations from negatively affecting online performance. Lastly, (**PARROT**) (Singh et al., 2021) serves to reveal the increased adaptability of our method when using NF priors.

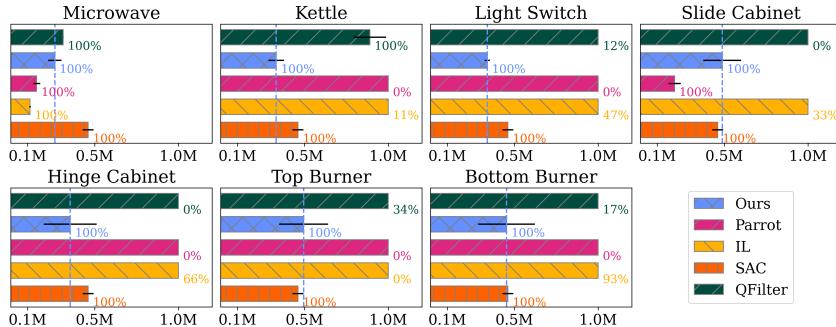
4.3 EXPERIMENTS & FINDINGS

(i) APC shows robustness under demonstration misalignment: We first evaluate robustness against demonstration misalignment in the PointMaze Navigation environment. Each method (except SAC) is provided with expert demonstrations $\mathcal{D}^{(i)}$ for one task from the four possible goals, and then evaluated on the remaining three tasks for which the demonstrations are misaligned. As shown in Fig. 3a, both PARROT and imitation learning (IL) fail to reliably solve the three tasks with the misaligned prior: after 1.5M steps their cross-seed running success rates remain at 0% and 7%, respectively. In contrast, APC reliably converges to 100% success in roughly 0.5M steps. Surprisingly, APC even outperforms from-scratch SAC despite the misaligned prior, indicating that APC can exploit misaligned priors for efficient exploration. **Imitation learning combined with the QFilter is also able to avoid complete performance degradation due to the misaligned demonstrations on the PointMaze environment, but it learns considerably slower than APC, due to relying more heavily on accurate Q-function estimates.**

We observe consistent trends in the higher-dimensional FrankaKitchen environment. End-effector trajectories sampled from pre-trained NF priors (Fig. 4a) exhibit diverse behaviors, but similarity in trajectory geometry or task semantics is not predictive of transfer success (Fig. 4b). When demonstrations are misaligned, PARROT and IL suffer severe losses in sample efficiency or fail entirely, underscoring their brittleness. APC, however, consistently solves the target task across all configurations, demonstrating strong robustness even in complex MDPs. This contrast highlights the importance of APC’s ability to bypass misaligned priors, which is essential for adaptability under demonstration misalignment. Results for additional target tasks are reported in the appendix.

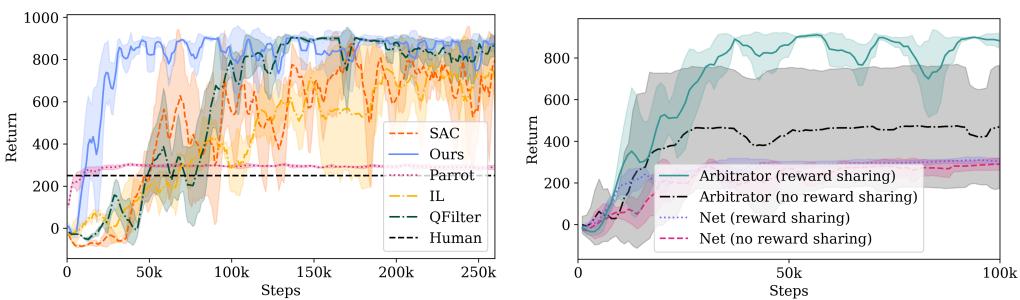
(ii) APC efficiently exploits aligned priors: We next consider the case where the demonstration prior is fully aligned with the online RL task. As expected, PARROT achieves the fastest convergence in this setting (Fig. 3, right; Fig. 4b, top left), since its behavior cloning pre-training step allows it to solve near-optimally just by random sampling in the latent space. APC, despite having access to the same near-optimal prior, must additionally learn accurate Q -function estimates for the arbiter to identify the beneficial prior, resulting in slightly slower convergence. Compared to the IL baseline, APC converges substantially faster on PointMaze and slightly slower on the FrankaKitchen environment,

324
325
326
327 (a) 3D FrankaKitchen end-effector trajectories sampled from the per-task pre-trained NF priors. The red dot
328 indicates the same starting state for each task; the trajectories have been shifted to save space.



329
330
331
332
333
334
335
336
337
338
339 (b) Time to success when using prior data from different tasks (panel titles) while optimizing the microwave task. Bars indicate the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence was not achieved earlier (shorter bars are better). Percentage annotations denote the cross-seed average running success rate at that time (3 seeds).

340
341
342
343
344 Figure 4: Results on FrankaKitchen’s microwave task, which requires opening the microwave door.
345 APC efficiently solves the task when exposed to aligned demonstrations (experiment (ii), top-left
346 panel) while remaining robust under demonstration misalignment (experiment (i), remaining panels).
347



348
349
350
351
352
353
354
355
356
357
358 Figure 5: Return curves on the car racing environment, the shaded area corresponds to one standard deviation around the mean, averaged over three seeds. **Left:** Experiment (iii) showing APC’s performance relative to our baselines. **Right:** Experiment (iv) shows the performance of multiple APC ablations.

360
361
362
363
364
365 with neither method dominating overall. Importantly, all methods strictly outperform from-scratch
366 SAC, confirming that all approaches are able to exploit the aligned demonstrations to accelerate
367 learning. These results show that APC’s increased adaptability under misalignment does not come at
368 the cost of significant sample inefficiency in the aligned setting.

369
370 **(iii) APC exceeds suboptimal demonstrations:** We further evaluate APC in the CarRacing envi-
371 ronment under a different but equally challenging form of demonstration misalignment. Instead of
372 optimal demonstrations from related tasks, we collect $\approx 30k$ transitions from a human driver on the
373 target track. This dataset \mathcal{D} is used to pre-train the NF behavior prior and is also provided to the
374 IL baseline. The left panel in Fig. 5 shows the resulting return curves. SAC, trained from scratch,
375 reaches optimal performance (≈ 900 return) after roughly 250k steps. PARROT, however, only
376 marginally improves over the mean human score, indicating that the suboptimal prior imposes a strict
377 performance ceiling. The IL baseline eventually surpasses human performance, but learning is slowed
378 considerably by the imperfect demonstrations. **QFilter also exceed the human performance and is**
379 **less strongly affected than by the sub-optimal demonstrations than IL, achieving optimal returns after**

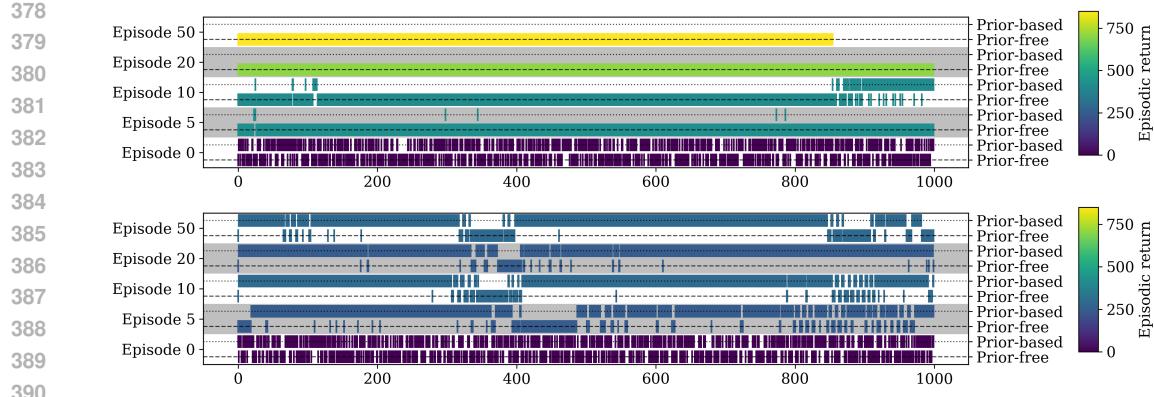


Figure 6: Qualitative visualization for experiment **(iv)** showing selector decisions on the CarRacing task. The rows in both panels correspond to selected evaluation episodes. Along each row, time steps progress from left to right, and each marker indicates whether the prior-based or prior-free actor was chosen at that step. **Top panel:** Decisions made by the parameter-free arbitrator selector with lower-level reward sharing. **Bottom panel:** Decisions made by a learned selector without reward sharing. This shows that the arbitrator selector exploits the prior-free actor to achieve high returns, while the learned selector overcommits to the prior-based actor and achieves subpar returns. An extended figure showing all ablations and more episodes can be found in App. E.

roughly 100k steps. APC achieves optimal returns in circa 30k steps, outperforming SAC and all demonstration-guided baselines. These results show that APC can exploit suboptimal priors to warm-start learning and guide exploration, while avoiding the performance ceilings that constrain existing methods. This makes APC especially valuable in practical settings where suboptimal demonstrations are readily available, while expert demonstrations might be scarce.

(iv) Arbitrator and reward sharing are crucial for exploration: To disentangle the contributions of the arbitrator selector architecture (Sec. 3.4) and the reward-sharing trick for efficient learning (Sec. 3.3), we performed an ablation study in the CarRacing environment.

We compare four variants: (i) our full method with an arbitrator selector and reward sharing, (ii) an arbitrator selector without reward sharing, (iii) a hierarchical *learned* selector with reward sharing **between the latent actors**, and (iv) a hierarchical *learned* selector without reward sharing **between the latent actors**. The learned hierarchical selector is also optimized with SAC and attempts to maximize the same environment reward as the latent actors. Its action space is discrete, parameterizing a Categorical distribution representing the choice over which lower-level actor to execute at each step t .

The corresponding return curves in the right panel of Fig. 5 show a clear separation: only our full method (i) consistently achieves optimal return. Two observations explain these results. First, replacing the arbitrator-style selector with a learned high-level policy introduces strong primacy bias. As shown in Fig. 6 (bottom), the learned selector overcommits to using the prior-based actor, as it initially achieves higher return than the randomly initialized prior-free actor. Once this bias is reinforced, the prior-free actor is rarely used and cannot quickly improve, even though it could ultimately surpass the NF prior. In contrast, the arbitrator avoids this failure mode by directly comparing value estimates across actors, without learning an additional policy.

However, second, the arbitrator alone does not suffice. Without reward sharing, transitions collected by the prior-based actor benefit only that actor, further amplifying its dominance. Using the arbitrator alongside reward sharing (Fig. 6, top) ensures that all actors are updated on every transition, enabling the prior-free actor to learn from higher-quality trajectories produced by the prior-based actor. This allows it to rapidly improve its Q -value estimates and eventually outperform the prior-based actor.

These results show that both mechanisms are critical: the arbitrator mitigates primacy bias, while reward sharing ensures fair competition through data-efficient learning. Our design combines both to achieve robust exploration and accelerated learning without premature convergence to suboptimal actors.

432 4.4 SUMMARY OF RESULTS
433

434 Across environments and settings, our experiments demonstrate three consistent findings. First, APC
435 remains robust under misaligned demonstrations, reliably solving target tasks where PARROT and IL
436 fail, and in some cases even outperforming from-scratch SAC by exploiting misaligned priors for
437 exploration. Second, APC effectively leverages aligned demonstrations: while slightly slower than
438 PARROT under perfectly aligned priors, APC consistently outperforms from-scratch SAC, showing
439 that its added flexibility does not compromise sample efficiency. Third, APC exceeds suboptimal
440 demonstrations by bootstrapping from imperfect data without imposing performance ceilings from
441 the data. Finally, our ablation studies confirm that the arbitrator-style selector and reward-sharing
442 mechanism are both necessary to prevent primacy bias and ensure fair, data-efficient competition
443 among actors. Together, these results highlight APC’s robustness, efficiency, and adaptability across
444 diverse demonstration settings.

445 5 RELATED WORK
446

447 **Normalizing Flows for RL** In addition to using pre-trained NFs as data-driven action priors,
448 NFs have also been used to replace simple unimodal Gaussian policies with richer, multimodal
449 distributions, with the reported benefit of improved exploration and sample efficiency (Ward et al.,
450 2019; Mazoure et al., 2020). In these approaches, the NF parameters are learned jointly with the
451 policy during online RL, effectively treating the flow as part of the policy network. In contrast,
452 our method keeps the NF prior fixed after pre-training it on demonstrations. NFs have also been
453 leveraged to enforce safety constraints by mapping the action space into a constraint-respecting
454 action subspace (Brahmane et al., 2023; Chen et al., 2023), similar to “invalid action masking”
455 techniques (Kalweit et al., 2020; Huang & Ontañón, 2022; Rietz et al., 2024). Our use of flows differs
456 from these works: rather than masking out forbidden actions, we bias the policy by searching in
457 the NF prior’s latent space to guide exploration towards behaviors observed in the demonstration
458 data. Using pre-trained NFs as demonstration-driven action priors was introduced by Singh et al.
459 (2021), who argue that the invertible nature of NFs allows for flexible adaptation to the online task.
460 Our results, however, show that a misaligned NF prior is hard to escape in practice, and that our
461 hierarchical design, which explicitly allows the agent to bypass misaligned priors, greatly increases
462 adaptability and robustness under distribution shift.

463 **Skill-based Hierarchical Learning** A large body of work exploits hierarchical architectures to
464 accelerate learning by introducing temporal abstraction. In these approaches, a high-level policy
465 selects between discrete options or “primitives” (Sutton et al., 1999; Fox et al., 2017; Ajay et al.,
466 2020; Kulkarni et al., 2016), which may be obtained from demonstrations, learned through un-
467 supervised exploration (Eysenbach et al., 2018; Park et al., 2024; 2023), or provided as scripted
468 controllers (Nasiriany et al., 2022; Chitnis et al., 2020; Sharma et al., 2020). Other methods instead
469 construct a continuous latent embedding of skills” (Pertsch et al., 2021; Yang et al., 2022; Rana et al.,
470 2022), and solve downstream tasks by searching over the latent space. While these approaches show
471 clear gains in exploration efficiency due to temporal abstraction or capable primitives and skills, they
472 lack dedicated mechanisms for adapting when the primitives or skills do not suffice for solving the
473 task. An exception to this is MAPLE (Nasiriany et al., 2022), which also learns an online policy to
474 improve upon the given scripted controllers, similar to our prior-free actor. Our work differs from
475 these since we do not leverage temporal abstraction for exploration but instead focus on robustness
476 and adaptability under demonstration misalignment.

477 **Offline to Online RL** A complementary line of work accelerates online RL by leveraging pre-
478 collected offline datasets of MDP transitions $\mathcal{D} = \langle \mathbf{s}, \mathbf{a}, r, \mathbf{s}' \rangle_{i=1}^N$ (Levine et al., 2020; Xie et al.,
479 2021). Ball et al. (2023) balance online and offline data through joint sampling in off-policy RL. Nair
480 et al. (2020) pre-train a policy offline and constrain the subsequent online policy to remain close to
481 it. Zhang et al. (2023); Hu et al. (2024) pre-train both the policy and value function, and then refine
482 the value function online while using both the offline and online policies as proposal distributions.
483 Kong et al. (2024) adopt a similar proposal-policy scheme but periodically reset the online policy to
484 counteract primacy bias (Nikishin et al., 2022). While effective, these methods primarily target the
485 distributional shift between offline and online RL. Crucially, they also require reward-labeled data for
pre-training, whereas our approach relies only on unlabeled demonstrations to train NF priors.

486 **Learning from Demonstrations** Learning from demonstration has a long history in RL. Most
 487 approaches incorporate demonstrations through explicit imitation losses that encourage the policy to
 488 stay close to the demonstrated behavior (Ross et al., 2011; Hester et al., 2018; Goecks et al., 2019;
 489 Fujimoto & Gu, 2021; Lu et al., 2023; Tiapkin et al., 2024), generally assuming that demonstrations
 490 are aligned with the target task and offer no mechanism to cope with substantially misaligned
 491 demonstrations. Inverse RL methods infer the reward function from demonstrations and subsequently
 492 optimize it with RL (Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 2016), but likewise
 493 depend on demonstrations that are near-optimal. More flexible recent works attempt to account for
 494 suboptimal or misaligned demonstrations in various ways (Nair et al., 2018; Zhao et al., 2022; Hu
 495 et al., 2024; Dong et al., 2025; Cramer et al., 2025), but lack APC’s ability to adaptive compose
 496 multiple distinct behavior priors with a prior-free actor.

497 6 LIMITATIONS AND DISCUSSIONS

500 An apparent shortcoming of APC lies in its high computational overhead that scales linearly with
 501 the number of latent actors, since each actor is updated separately with SAC. While reward sharing
 502 improves sample efficiency, maintaining multiple parallel learners increases wall-clock time and
 503 limits scalability to larger sets of behavior priors.

504 Although APC is designed to remain robust under demonstration misalignment and distribution shift,
 505 it may still fail in adversarial or contrived scenarios. If many severely misaligned priors all bias
 506 exploration toward task-*irrelevant* regions of the state-space, and if the reward signal is uninformative
 507 about this sub-optimality (for example sparse reward only upon task success), then each actor’s
 508 Q-values might not allow the arbitrator to distinguish and avoid misaligned behaviors. In such cases,
 509 APC may fail to discover the optimal behavior due to persistent negative exploration bias. In more
 510 realistic settings and in practice, where priors are likely to be only partially misaligned or when dense
 511 rewards could provide better feedback, this failure mode is unlikely.

513 7 FUTURE WORK

515 We see addressing the computational demands of APC as important future work. This could be
 516 approached by maintaining and updating a shared, central critic, while heuristically updating only the
 517 *selected* actor at time t , instead of updating all available actors at each step. This might substantially
 518 reduce computational overhead and wall-clock time, while preserving APC’s adaptive behavior and
 519 robustness under demonstration misalignment and distribution shift.

520 Another promising direction would be to allow for a mixture over all available actors, rather than
 521 selecting a single actor at each step. Such a mixture would enable the blending of the different
 522 behaviors encoded in different priors and might further improve exploration efficiency. Modeling
 523 discrete behavior priors with discrete normalizing flows is another worthwhile direction.

525 8 CONCLUSION

527 This paper proposes Adaptive Policy Composition (APC), a hierarchical RL architecture that
 528 composes multiple NF priors with a prior-free fallback actor under an adaptive selector. By combining a
 529 parameter-free arbitrator with reward sharing, APC ensures data-efficient learning across all actors
 530 and avoids primacy bias, enabling robust demonstration-guided exploration even under misalignment.
 531 Our experiments across diverse benchmarks show that APC leverages aligned demonstrations, re-
 532 mains robust under misalignment, and exceeds suboptimal demonstrations by using priors to bootstrap
 533 exploration. These findings demonstrate that APC is a general approach for integrating imperfect
 534 demonstrations into online RL *without* impairing performance, thereby bridging the gap between
 535 data-driven priors and reward-driven adaptation.

536 REFERENCES

537 Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
 538 *Proceedings of the twenty-first international conference on Machine learning*, pp. 1, 2004.

540 Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
 541 discovery for accelerating offline reinforcement learning. *arXiv preprint arXiv:2010.13611*, 2020.
 542

543 Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
 544 with offline data. In *International Conference on Machine Learning*, pp. 1577–1594. PMLR, 2023.
 545

546 Janaka Brahmane, Jiajing Ling, and Akshat Kumar. Flowpg: action-constrained policy gradient
 547 with normalizing flows. *Advances in Neural Information Processing Systems*, 36:20118–20132,
 548 2023.
 549

550 Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
 551 Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
 552 *Advances in Neural Information Processing Systems*, 36:39842–39854, 2023.
 553

554 Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual manip-
 555 ulation using learned task schemas. In *2020 IEEE International Conference on Robotics and*
 556 *Automation (ICRA)*, pp. 1149–1155. IEEE, 2020.
 557

558 Emma Cramer, Lukas Jäschke, and Sebastian Trimpe. Cheq-ing the box: Safe variable impedance
 559 learning for robotic polishing. *arXiv preprint arXiv:2501.07985*, 2025.
 560

561 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In *5th*
 562 *International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26,*
 563 *2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=HkpbnH91x>.
 564

565 Perry Dong, Alec M. Lessing, Annie S. Chen, and Chelsea Finn. Reinforcement learning via implicit
 566 imitation guidance, 2025. URL <https://arxiv.org/abs/2506.07505>.
 567

568 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
 569 Learning skills without a reward function. *arXiv preprint arXiv:1802.06070*, 2018.
 570

571 Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
 572 *arXiv preprint arXiv:1703.08294*, 2017.
 573

574 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 575 data-driven reinforcement learning, 2020.
 576

577 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 578 *Advances in neural information processing systems*, 34:20132–20145, 2021.
 579

580 Vinicius G Goecks, Gregory M Gremillion, Vernon J Lawhern, John Valasek, and Nicholas R
 581 Waytowich. Integrating behavior cloning and reinforcement learning for improved performance in
 582 dense and sparse reward environments. *arXiv preprint arXiv:1910.04281*, 2019.
 583

584 Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
 585 policy learning: Solving long-horizon tasks via imitation and reinforcement learning. In Leslie Pack Kaelbling,
 586 Danica Kragic, and Komei Sugiura (eds.), *3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings*, volume 100 of *Proceedings of Machine Learning Research*, pp. 1025–1037. PMLR, 2019. URL
 587 <http://proceedings.mlr.press/v100/gupta20a.html>.
 588

589 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 590 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference*
 591 *on machine learning*, pp. 1861–1870. Pmlr, 2018.
 592

593 Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
 594 John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z. Leibo,
 595 and Audrunas Gruslys. Deep q-learning from demonstrations. In Sheila A. McIlraith and Kilian Q.
 596 Weinberger (eds.), *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence*,
 597 *(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI*
 598 *Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,*
 599 *USA, February 2-7, 2018*, pp. 3223–3230. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11757.
 600 URL <https://doi.org/10.1609/aaai.v32i1.11757>.

594 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural*
 595 *information processing systems*, 29, 2016.

596

597 Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learning.
 598 In Dana Kulic, Gentiane Venture, Kostas E. Bekris, and Enrique Coronado (eds.), *Robotics: Science*
 599 *and Systems XX, Delft, The Netherlands, July 15-19, 2024*, 2024. doi: 10.15607/RSS.2024.XX.056.
 600 URL <https://doi.org/10.15607/RSS.2024.XX.056>.

601

602 Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
 603 algorithms. In Roman Barták, Fazel Keshtkar, and Michael Franklin (eds.), *Proceedings of the*
 604 *Thirty-Fifth International Florida Artificial Intelligence Research Society Conference, FLAIRS*
 605 *2022, Hutchinson Island, Jensen Beach, Florida, USA, May 15-18, 2022*. Florida Online Journals,
 606 2022. doi: 10.32473/FLAIRS.V35I.130584. URL <https://doi.org/10.32473/flairs.v35i.130584>.

607

608 Gabriel Kalweit, Maria Hügle, Moritz Werling, and Joschka Boedecker. Deep inverse q-learning
 609 with constraints. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
 610 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual*
 611 *Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,*
 612 *2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/a4c42bfd5f5130ddf96e34a036c75e0a-Abstract.html>.

613

614 Rui Kong, Chenyang Wu, Chen-Xiao Gao, Zongzhang Zhang, and Ming Li. Efficient and stable
 615 offline-to-online reinforcement learning via continual policy revitalization. In *Proceedings of the*
 616 *Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South*
 617 *Korea, August 3-9, 2024*, pp. 4317–4325. [ijcai.org](https://www.ijcai.org/proceedings/2024/477), 2024. URL <https://www.ijcai.org/proceedings/2024/477>.

618

619 Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
 620 reinforcement learning: Integrating temporal abstraction and intrinsic motivation. *Advances in*
 621 *neural information processing systems*, 29, 2016.

622

623 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 624 review, and perspectives on open problems. *CoRR*, abs/2005.01643, 2020. URL <https://arxiv.org/abs/2005.01643>.

625

626 Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,
 627 Brandyn White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robustifying
 628 imitation with reinforcement learning for challenging driving scenarios. In *2023 IEEE/RSJ*
 629 *International Conference on Intelligent Robots and Systems (IROS)*, pp. 7553–7560. IEEE, 2023.

630

631 Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging
 632 exploration in off-policy algorithms via normalizing flows. In *Conference on Robot Learning*, pp.
 633 430–444. PMLR, 2020.

634

635 Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
 636 coming exploration in reinforcement learning with demonstrations. In *2018 IEEE international*
 637 *conference on robotics and automation (ICRA)*, pp. 6292–6299. IEEE, 2018.

638

639 Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
 640 learning with offline datasets. *CoRR*, abs/2006.09359, 2020. URL <https://arxiv.org/abs/2006.09359>.

641

642 Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
 643 primitives for diverse manipulation tasks. In *2022 International Conference on Robotics and*
 644 *Automation, ICRA 2022, Philadelphia, PA, USA, May 23-27, 2022*, pp. 7477–7484. IEEE, 2022.
 645 doi: 10.1109/ICRA46639.2022.9812140. URL <https://doi.org/10.1109/ICRA46639.2022.9812140>.

646

647 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
 648 primacy bias in deep reinforcement learning. In *International conference on machine learning*, pp.
 649 16828–16847. PMLR, 2022.

648 George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
 649 Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *J. Mach. Learn.
 650 Res.*, 22:57:1–57:64, 2021. URL <https://jmlr.org/papers/v22/19-1028.html>.
 651

652 Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
 653 abstraction. *arXiv preprint arXiv:2310.08887*, 2023.

654 Seohong Park, Tobias Krieman, and Sergey Levine. Foundation policies with hilbert representations.
 655 *arXiv preprint arXiv:2402.15567*, 2024.

656 Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
 657 skill priors. In *Conference on robot learning*, pp. 188–204. PMLR, 2021.

658 Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
 659 policies: Learning an adaptable skill-based action space for reinforcement learning for robotics. In
 660 Karen Liu, Dana Kulic, and Jeffrey Ichnowski (eds.), *Conference on Robot Learning, CoRL 2022,
 661 14-18 December 2022, Auckland, New Zealand*, volume 205 of *Proceedings of Machine Learn-
 662 ing Research*, pp. 2095–2104. PMLR, 2022. URL <https://proceedings.mlr.press/v205/rana23a.html>.
 663

664 Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
 665 Francis R. Bach and David M. Blei (eds.), *Proceedings of the 32nd International Conference on
 666 Machine Learning, ICML 2015, Lille, France, 6-11 July 2015*, volume 37 of *JMLR Workshop
 667 and Conference Proceedings*, pp. 1530–1538. JMLR.org, 2015. URL <http://proceedings.mlr.press/v37/rezende15.html>.
 668

669 Finn Rietz, Erik Schaffernicht, Stefan Heinrich, and Johannes A. Stork. Prioritized soft q-
 670 decomposition for lexicographic reinforcement learning. In *The Twelfth International Conference
 671 on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
 672 URL <https://openreview.net/forum?id=c0MyyXyGfn>.
 673

674 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
 675 prediction to no-regret online learning. In *Proceedings of the fourteenth international conference
 676 on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference Proceedings,
 677 2011.

678 Stuart J Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In
 679 *Proceedings of the 20th international conference on machine learning (ICML-03)*, pp. 656–663,
 680 2003.

681 Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning to compose
 682 hierarchical object-centric controllers for robotic manipulation. *arXiv preprint arXiv:2011.04627*,
 683 2020.

684 Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
 685 Data-driven behavioral priors for reinforcement learning. In *9th International Conference on
 686 Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
 687 2021. URL <https://openreview.net/forum?id=Ysuv-WOFeKR>.
 688

689 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
 690 second edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.
 691

692 Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
 693 for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2):181–211, 1999.

694 Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre
 695 Perrault, Michal Valko, and Pierre Menard. Demonstration-regularized RL. In *The Twelfth
 696 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=1F2aip4Scn>.
 697

698 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 699 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 700 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.
 701

702 George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. *Physical review*,
 703 36(5):823, 1930.

704

705 Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in soft-actor-
 706 critic with normalizing flows policies. *arXiv preprint arXiv:1906.02771*, 2019.

707

708 Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
 709 ing sample-efficient offline and online reinforcement learning. *Advances in neural information*
 710 *processing systems*, 34:27395–27407, 2021.

711

712 Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo,
 713 Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé III, Furong Huang, and
 714 Huazhe Xu. Drm: Mastering visual reinforcement learning through dormant ratio minimization.
 715 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=MSe8YFbhUE>.

716

717 Quantao Yang, Johannes A Stork, and Todor Stoyanov. Mpr-rl: Multi-prior regularized reinforcement
 718 learning for knowledge transfer. *IEEE Robotics and Automation Letters*, 7(3):7652–7659, 2022.

719

720 Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online re-
 721 enforcement learning. In *The Eleventh International Conference on Learning Representa-
 722 tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=-Y34L45JR6z>.

723

724 Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive behavior cloning
 725 regularization for stable offline-to-online reinforcement learning. In *30th European Symposium*
 726 *on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2022,*
 727 *Bruges, Belgium, October 5-7, 2022*, 2022. doi: 10.14428/ESANN/2022.ES2022-110. URL
 728 <https://doi.org/10.14428/esann/2022.ES2022-110>.

729

730 Yuke Zhu, Ziyu Wang, Josh Merel, Andrei A. Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
 731 János Kramár, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement and imitation
 732 learning for diverse visuomotor skills. In Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard,
 733 and Nikolay Atanasov (eds.), *Robotics: Science and Systems XIV, Carnegie Mellon University,*
 734 *Pittsburgh, Pennsylvania, USA, June 26-30, 2018*, 2018. doi: 10.15607/RSS.2018.XIV.009. URL
 735 <http://www.roboticsproceedings.org/rss14/p09.html>.

736

737 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
 738 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

A REPRODUCIBILITY STATEMENT

We are unable to share a documented, stand-alone codebase at the time of submission. We will, however, link to our complete codebase, with reproducibility instructions, in the camera-ready version of the manuscript.

B ENVIRONMENT DETAILS

B.1 MAZE NAVIGATION

We adopt the maze navigation environment from D4RL Fu et al. (2020); however, we customize the maze layout as shown in Fig. 2. The agent corresponds to a simple point mass, with actions $\mathcal{A} \in \mathbb{R}^2$ corresponding to linear force exerted on the point. The observation space $\mathcal{S} \in \mathbb{R}^4$ contains the agent’s current (x, y) position and velocity. The task encoding, defined by one of four distinct goal locations, is not part of the observation and must be inferred from the reward signal. This still yields a standard, fully observable MDP for each separate task.

The reward function is dense and defined as the exponential of the negative Euclidean distance between the agent and the goal. To encourage short episodes, we subtract a constant penalty of -1 at

each step. Episodes start from a random position near the maze center, terminate successfully when the agent reaches within 0.5 units of the goal, and are truncated after 200 steps.

For each goal location i , we generate demonstration datasets $\mathcal{D}^{(1)}, \dots, \mathcal{D}^{(4)}$ using extensively pre-trained, optimal policies $\pi^{(i)*}$. Specifically, we collect 100 episodes per task by sampling actions from $\pi^{(i)*}$ and recording the resulting (\mathbf{s}, \mathbf{a}) pairs. These datasets are used either to pre-train the NF priors (one per task) or directly as input to the IL baseline, depending on the evaluation setting.

B.2 FRANKAKITCHEN

We use the FrankaKitchen environment introduced by Gupta et al. (2019), which features seven distinct manipulation tasks: opening the microwave door, pushing the kettle onto the correct stove burner, turning on the bottom burner by rotating the corresponding knob, turning on the top burner by rotating the corresponding knob, flipping the light switch to the on position, opening the sliding cabinet door, and opening the hinge cabinet door. The state space $\mathcal{S} \in \mathbb{R}^{59}$ contains symbolic features describing all manipulable objects, along with the robot’s joint angles and velocities. The action space $\mathcal{A} \in \mathbb{R}^9$ corresponds to joint velocity commands. The one-hot task identity is not included in the state and must instead be inferred from the reward signal, yielding a standard, fully observable MDP for each individual task.

To facilitate exploration and accelerate training, we replace the original sparse rewards with a dense reward function. This modification was necessary given the high computational burden of evaluating a combinatorial number of tasks and prior settings for multiple seeds. Let $\mathbf{p}_{\text{ee}} \in \mathbb{R}^3$ denote the end-effector position, computed as the midpoint of the left and right gripper fingers, and let $\mathbf{p}_{\text{obj}} \in \mathbb{R}^3$ denote the position of the target object for the current task. We define the end-effector distance term as

$$r_{\text{ee}} = -\alpha, \|\mathbf{p}_{\text{ee}} - \mathbf{p}_{\text{obj}}\|_2, \quad (5)$$

with scaling factor $\alpha = 0.5$. For each task k , the environment additionally provides an achieved goal state $\mathbf{g}_{\text{ach}}^{(k)}$ and a desired goal state $\mathbf{g}_{\text{des}}^{(k)}$. We can thus compute a task success distance term as

$$r_{\text{task}} = -\|\mathbf{g}_{\text{ach}}^{(k)} - \mathbf{g}_{\text{des}}^{(k)}\|_2, \quad (6)$$

which encourages the agent to bring the target object into its goal configuration (e.g., microwave door fully open). Our final dense reward function is then given by

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} R_{\text{success}}, & \text{if } |r_{\text{task}}| \leq \epsilon, \\ r_{\text{ee}} + r_{\text{task}}, & \text{otherwise,} \end{cases} \quad (7)$$

where $R_{\text{success}} = 100$ is a large completion bonus.

For each of the seven tasks i , we construct demonstration datasets $\mathcal{D}^{(1)}, \dots, \mathcal{D}^{(7)}$ using extensively pre-trained, optimal policies $\pi^{(i)*}$. Each dataset consists of 100 episodes collected by executing $\pi^{(i)*}$ and recording the resulting (\mathbf{s}, \mathbf{a}) pairs. These datasets are either used to pre-train task-specific NF priors or passed directly to the IL baseline, depending on the evaluation setting.

Due to the high computational demands of running all methods with multiple seeds on the combinatorial number of task–prior settings, we were only able to evaluate a randomly chosen subset of tasks before the submission deadline. We plan to provide results for the full benchmark during the rebuttal and include them in the camera-ready version.

B.3 CARRACING

We use the CarRacing environment from the Gymnasium suite Towers et al. (2024), which requires driving fast laps on a top-down race track. The simulated planar car follows simplified vehicle dynamics that include skidding and varying friction across terrain types (asphalt vs. grass). The continuous action space is $\mathcal{A} \in \mathbb{R}^3$, corresponding to steering, acceleration, and braking. While the original environment provides pixel observations, we extract a symbolic representation directly from the simulator.

The symbolic observation space captures the vehicle’s relative position, orientation, and motion with respect to the track. At each timestep, the agent is exposed to the following symbols:

- Track-edge distances: signed distances to the left and right road boundaries, $(d_{\text{left}}, d_{\text{right}})$.
- Heading error: orientation difference $\Delta\theta$ between the car’s heading and the tangent of the nearest track centerline, wrapped to $[-\pi, \pi]$.
- Velocities: forward and lateral velocity components in the car’s local frame, $(v_{\text{fwd}}, v_{\text{side}})$, and the angular velocity ω .
- Lookahead waypoints: relative positions of the next $L = 5$ centerline waypoints in the car’s local coordinate frame, $\{(x_j, y_j)\}_{j=1}^L$.

Formally, the observation vector is

$$\mathbf{s} = [d_{\text{left}}, d_{\text{right}}, \Delta\theta, v_{\text{fwd}}, v_{\text{side}}, \omega, x_1, y_1, \dots, x_L, y_L] \in \mathbb{R}^{6+2L}, \quad (8)$$

which yields $\mathcal{S} \in \mathbb{R}^{16}$ for $L = 5$. Episodes begin with the car at rest at a fixed position centered on the track, and we enforce deterministic resets such that the track layout remains identical across episodes.

We use the environment’s unmodified reward function: each step incurs a penalty of -0.1 , and the agent receives a reward of $+1000/M$, where M is the number of track-tiles visited during the current episode.

This environment contains only a single task – driving efficiently on the fixed track. We collect a demonstration dataset $\mathcal{D}^{(1)}$ by recording 10 trajectories from a human driver, with an average return of approximately 250. This dataset is used either to pre-train the NF prior or directly as input to the IL baseline.

C TRAINING AND MODEL DETAILS

C.1 SAC

Our main learning algorithm is Soft Actor-Critic (SAC) Haarnoja et al. (2018). We follow the standard learning procedure described in Haarnoja et al. (2018) without modification, and use largely the same hyperparameters across environments (Tab. 1), with minor adjustments to the discount factor and Polyak target coefficient to stabilize training, particularly in the CarRacing environment with its high-magnitude rewards. SAC is employed in all of our experiments: (i) as a from-scratch baseline, (ii) to implement the IL baseline, and (iii) to train the latent policies of the lower-level actors within APC and PARROT. To make for a fair and consistent comparison, the same SAC hyperparameters are used for all methods in each experiment.

C.2 NORMALIZING FLOW BEHAVIOR PRIOR

We implement the NF prior using a conditional version of the real NVP architecture (Dinh et al., 2017), which is composed of multiple affine coupling layers. Each affine coupling layer splits the input $\mathbf{x} \in \mathbb{R}^D$ into two parts and computes the output \mathbf{y} by applying a scale-and-shift transformation to one part, conditioned on the other:

$$\mathbf{y}_{[1:d]} = \mathbf{x}_{[1:d]}, \quad \mathbf{y}_{[d+1:D]} = \mathbf{x}_{[d+1:D]} \odot \exp(v(\mathbf{x}_{[1:d]}, \mathbf{s})) + q(\mathbf{x}_{[1:d]}, \mathbf{s}), \quad (9)$$

where v and q are neural networks that additionally take the state \mathbf{s} as input, to learn different transformations in different states. Concretely, we implement v and q as fully connected MLPs, with hyperparameters summarized in Tab. 2. To increase expressivity, we interleave each affine coupling layer with a parameter-free flip transformation layer that reverses the order of the input dimensions.

Pre-training. Each NF prior is pre-trained on a demonstration dataset \mathcal{D} using maximum-likelihood estimation (Eq. 2). To improve stability, particularly in settings with low-variance or near-unimodal action distributions, we add two regularization terms: (i) an inverse-consistency penalty encouraging nearby actions in real space to map to similar latent codes, and (ii) a forward-smoothness penalty encouraging local smoothness in the mapping from latent to real actions. The overall loss for training the NF prior is

$$\mathcal{L}(\phi) = -\mathbb{E}_{(\mathbf{a}, \mathbf{s}) \sim \mathcal{D}} \left[\log \mathcal{N}(\tilde{T}_\phi(\mathbf{a}; \mathbf{s}); \mathbf{0}, \mathbf{I}) + \log |\det J_{\tilde{T}_\phi}(\mathbf{a}; \mathbf{s})| + \lambda_{\text{ic}} \mathcal{L}_{\text{ic}} + \lambda_{\text{fs}} \mathcal{L}_{\text{fs}}, \right] \quad (10)$$

Table 1: SAC hyperparameters used across environments.

Hyperparameter	PointMaze	FrankaKitchen	CarRacing
Number of parallel environments	10	10	1
Replay buffer size	1×10^6	1×10^6	1×10^6
Discount factor γ	0.99	0.995	0.995
Polyak target coefficient τ	0.01	0.01	0.005
Batch size	256	256	256
Learning starts	1×10^3	1×10^3	1×10^3
Policy learning rate	3×10^{-4}	3×10^{-4}	3×10^{-4}
Q-function learning rate	1×10^{-3}	1×10^{-3}	1×10^{-3}
Entropy coefficient α	0.1	0.1	0.005
Entropy autotune	False	False	False
Actor network type	Fully-connected	Fully-connected	Fully-connected
Actor hidden layer widths	[512, 256]	[512, 256]	[512, 256]
Actor optimizer	Adam	Adam	Adam
Actor activation function	tanh	tanh	tanh
Critic network type	Fully-connected	Fully-connected	Fully-connected
Critic hidden layer widths	[512, 256]	[512, 256]	[512, 256]
Critic optimizer	Adam	Adam	Adam
Critic activation function	tanh	tanh	tanh

where

$$\mathcal{L}_{\text{ic}} = \mathbb{E}_{\mathbf{a}, \mathbf{s}, \epsilon_a} \left[\frac{\|\tilde{T}_\phi(\mathbf{a} + \epsilon_a; \mathbf{s}) - \tilde{T}_\phi(\mathbf{a}; \mathbf{s})\|_2^2}{\|\epsilon_a\|_2^2 + \varepsilon} \right], \quad (11)$$

$$\mathcal{L}_{\text{fs}} = \mathbb{E}_{\mathbf{a}, \mathbf{s}, \delta_z} \left[\frac{\|T_\phi(\mathbf{z} + \delta_z; \mathbf{s}) - T_\phi(\mathbf{z}; \mathbf{s})\|_2^2}{\|\delta_z\|_2^2 + \varepsilon} \right], \quad (12)$$

where ϵ_a and δ_z are noise vectors sampled from zero-centered Gaussians with standard deviation 0.01, and ε is a small term for numerical stability. λ_{ic} and λ_{fs} control the strength of the respective penalties.

Online usage. During the online RL phase, the NF priors are used only for inference: a latent action \mathbf{z}_t sampled from a latent policy is transformed into an environment action $\mathbf{a}_t = T(\mathbf{z}_t; \mathbf{s}_t)$. Optionally, via the feedback-sharing mechanism (Sec. 3.3), the inverse mapping \tilde{T} is applied to compute latent codes for other actors' policies. Importantly, the latent policies never backpropagate through the NF prior. From their perspective, the NF is simply part of the environment and affects the transition and reward dynamics.

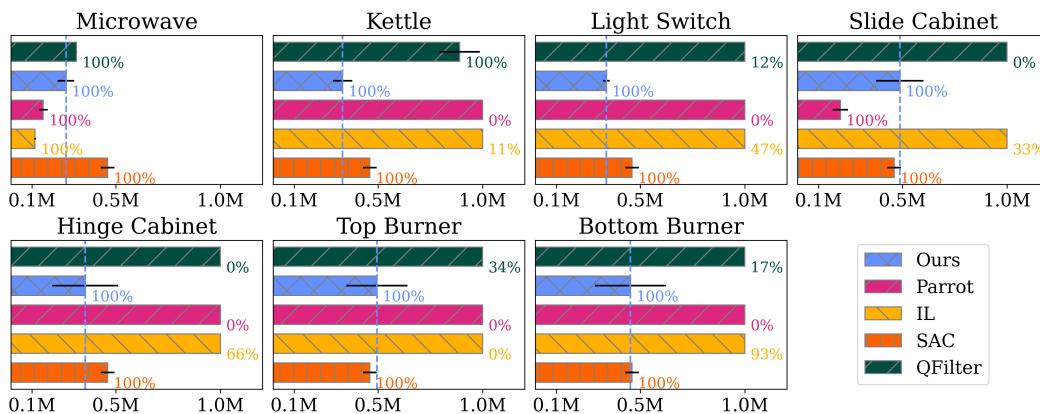
For additional background on real NVPs and their use as behavior priors in RL, we refer to Dinh et al. (2017); Singh et al. (2021).

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938

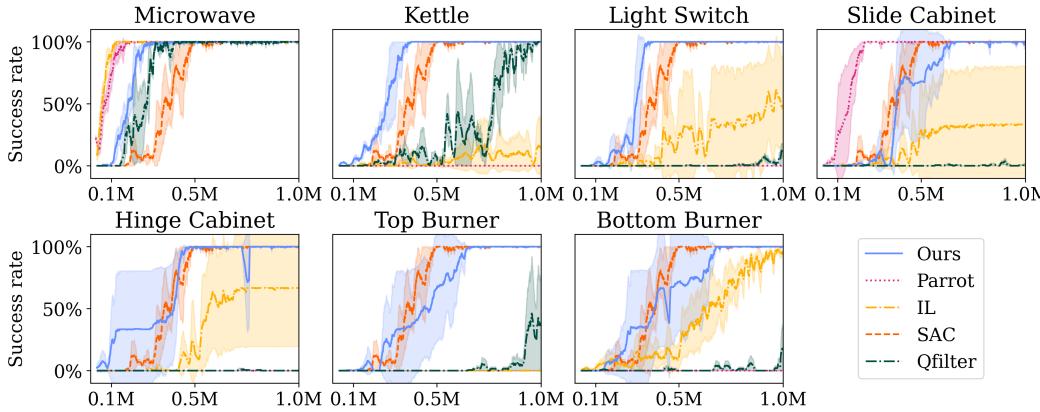
Table 2: Normalizing Flow (NF) prior hyperparameters used across environments.

Hyperparameter	PointMaze	FrankaKitchen	CarRacing
Number of coupling layers	10	10	10
Hidden layer widths of q, v	[256]	[256]	[256]
Activation function	ReLU	ReLU	ReLU
Base distribution covariance	0.2	0.2	0.2
Learning rate	1×10^{-4}	1×10^{-4}	1×10^{-4}
Batch size	64	64	1024
Number of training epochs	100	100	100
Gradient clipping norm	1.0	1.0	1.0
Inverse-consistency penalty λ_{ic}	1×10^{-3}	1×10^{-3}	1×10^{-3}
Forward-smoothness penalty λ_{fs}	1×10^{-3}	1×10^{-3}	1×10^{-3}
Optimizer	Adam	Adam	Adam

952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

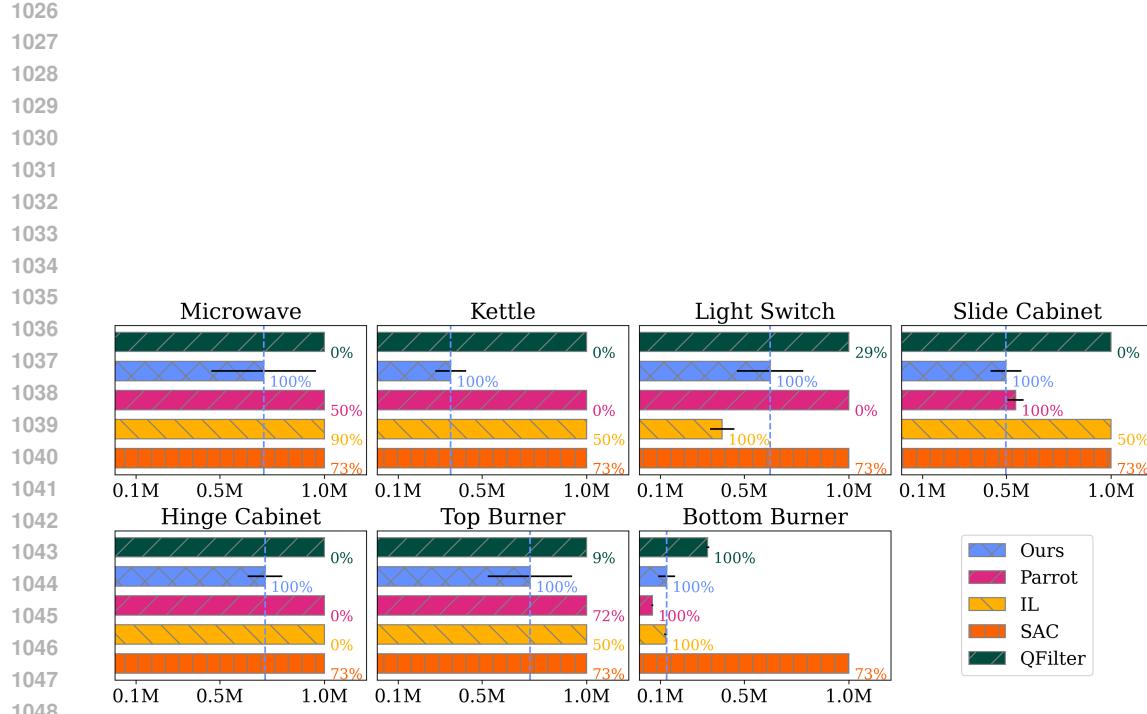
972 D ADDITIONAL FRANKAKITCHEN RESULTS
973
974

988 (a) Replica of Fig. 4b. Time to success when using prior data \mathcal{D}_j from different tasks (panel titles). Bars indicate the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1M
989 steps if convergence was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed
990 success rate at that time (3 seeds). Dashed vertical lines indicate the convergence time of APC.
991

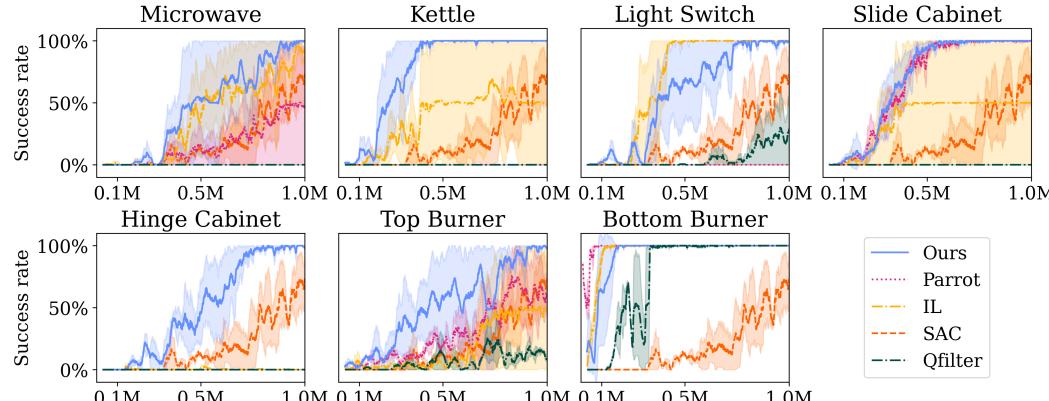


1005 (b) Success rate over time corresponding to the above bar plot, using prior data from different tasks (panel titles).
1006 The shaded area corresponds to one standard deviation across three random seeds.
1007

1008 Figure 7: Results on FrankaKitchen’s microwave task, which requires opening the microwave
1009 door.
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

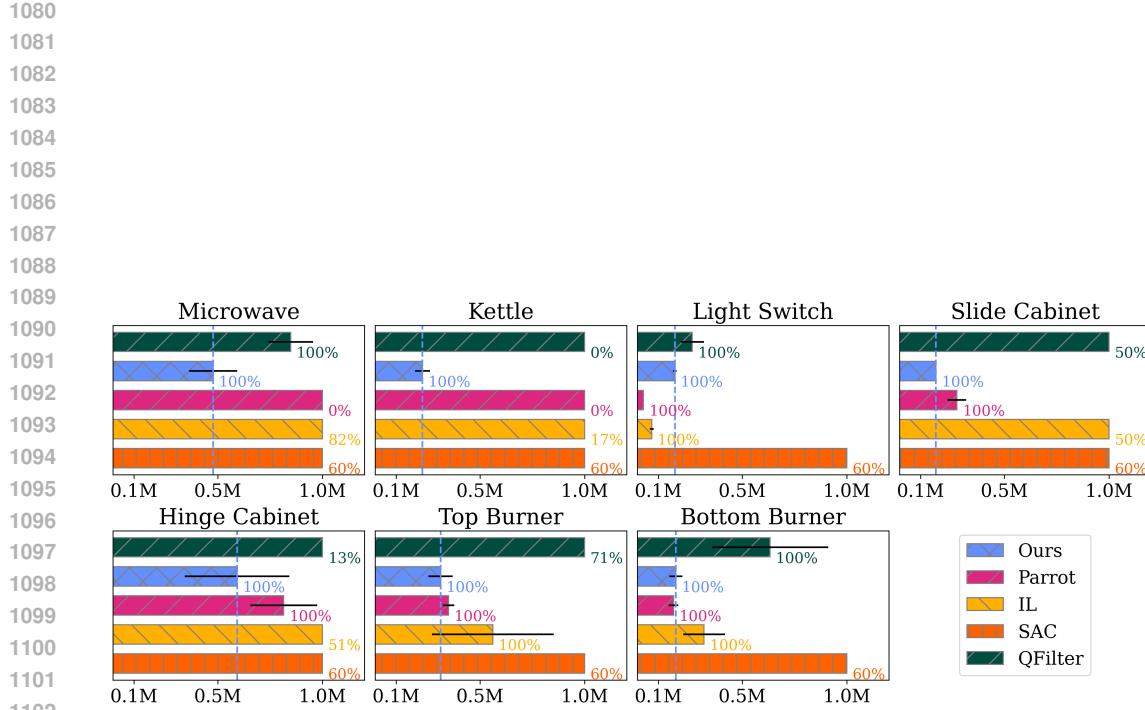
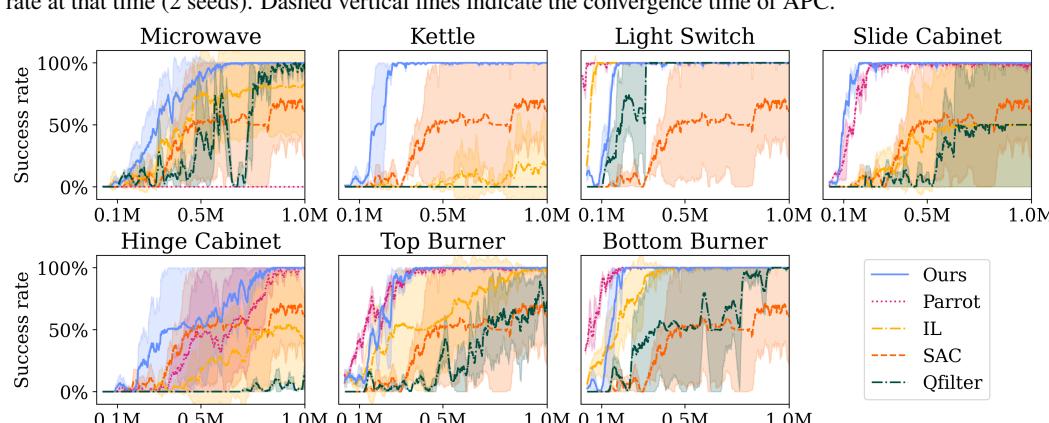


(a) Time to success when using prior data \mathcal{D}_j from different tasks (panel titles). Bars indicate the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.



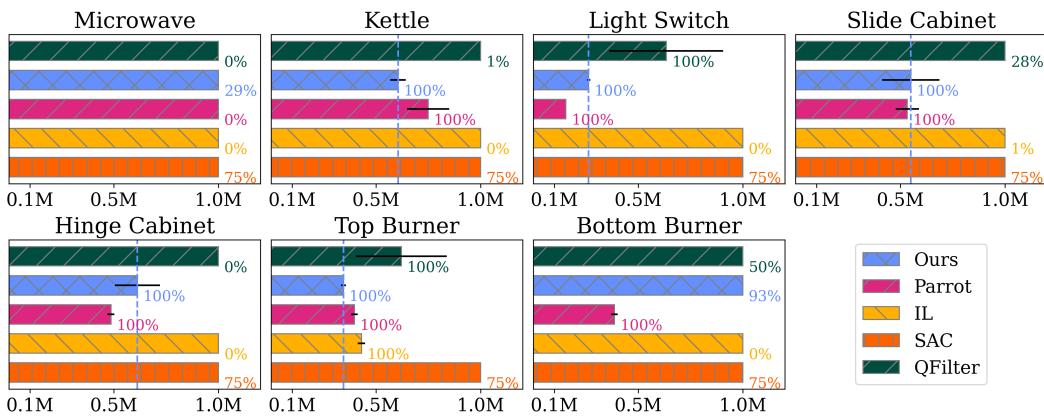
(b) Success rate over time corresponding to the above bar plot, using prior data from different tasks (panel titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 8: Results on FrankaKitchen's bottom burner task, which requires turning the knob to turn on one of the bottom-row stove burners.

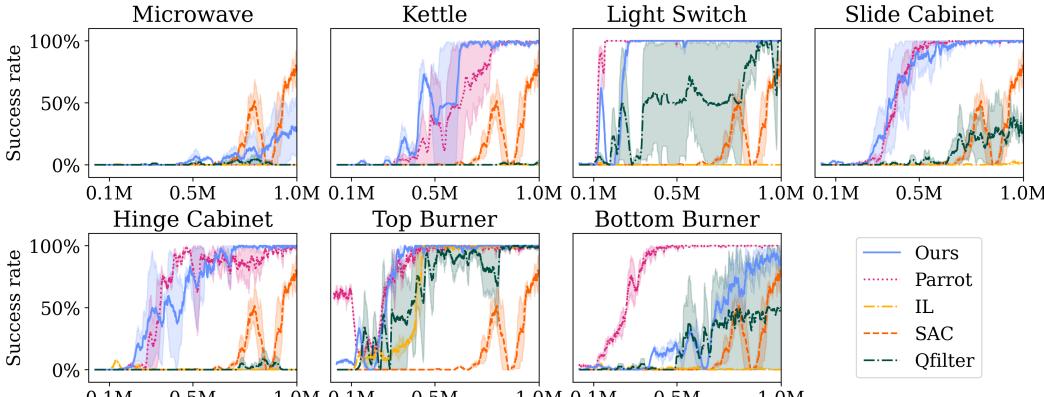


1123
1124
Figure 9: Results on FrankaKitchen’s light switch task, which requires flipping the light switch up.
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

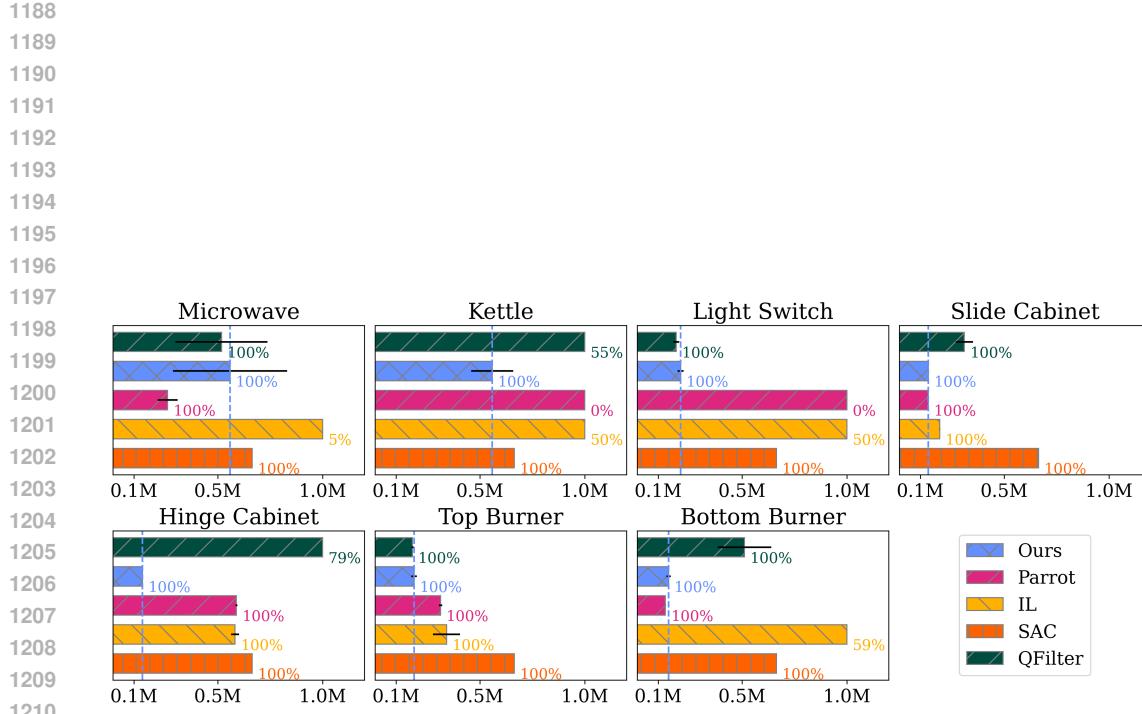


(a) Time to success when using prior data \mathcal{D}_j from different tasks (panel titles). Bars indicate the step at which the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.

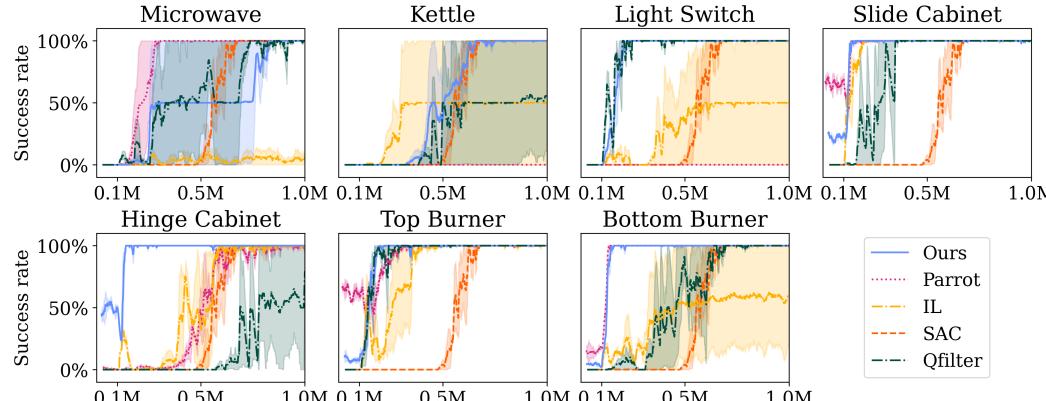


(b) Success rate over time corresponding to the above bar plot, using prior data \mathcal{D}_j from different tasks (panel titles). The shaded area corresponds to one standard deviation across two random seeds.

Figure 10: Results on FrankaKitchen’s top burner task, which requires turning the know to turn on one of the top-row stove burners.

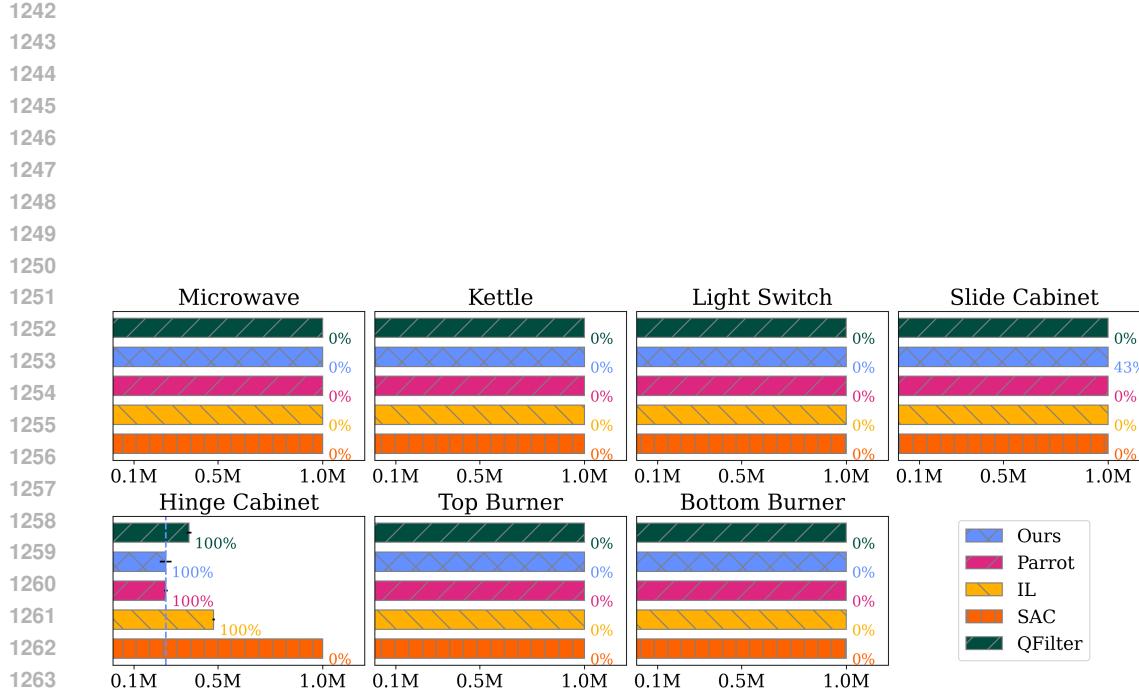


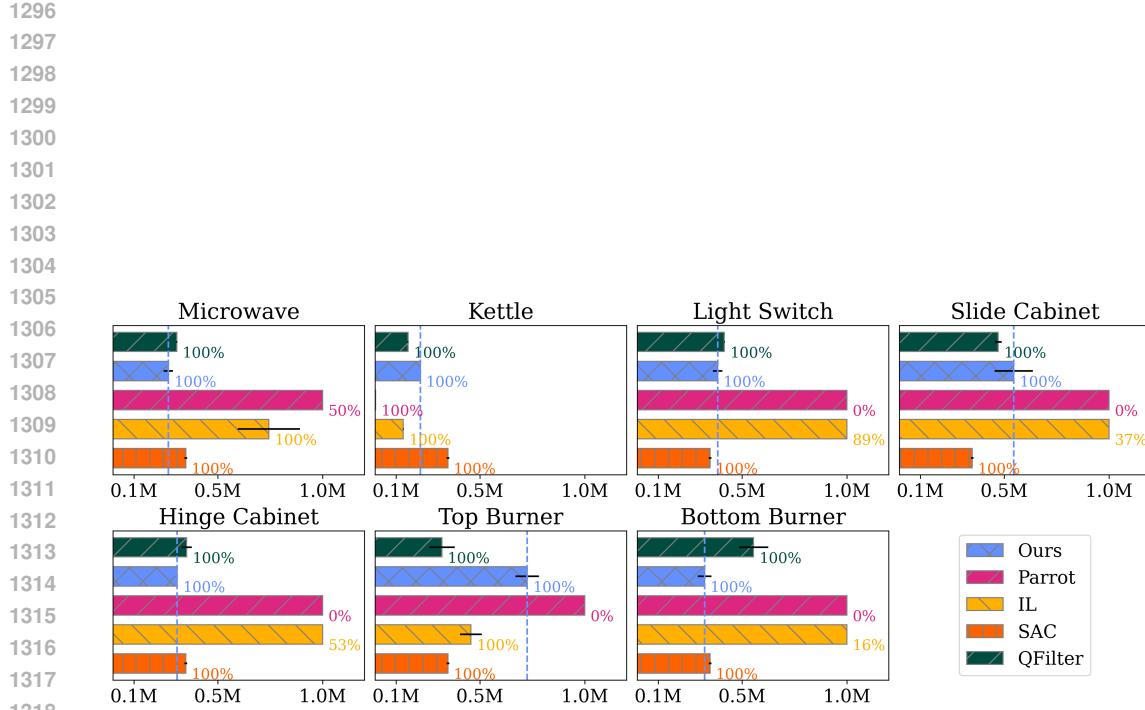
1211 (a) Time to success when using prior data \mathcal{D}_j from different tasks (panel titles). Bars indicate the step at which
1212 the cross-seed average running success rate reached 100%, or the final success rate after 1M steps if convergence
1213 was not achieved earlier (shorter is better). Percentage annotations denote the cross-seed average running success
1214 rate at that time (2 seeds). Dashed vertical lines indicate the convergence time of APC.



1228 (b) Success rate over time corresponding to the above bar plot, using prior data \mathcal{D}_j from different tasks (panel titles). The shaded area corresponds to one standard deviation across two random seeds.

1231 Figure 11: Results on FrankaKitchen’s slide cabinet task, which requires sliding open the
1232 top-right cabinet door.





E ADDITIONAL ABLATION RESULTS

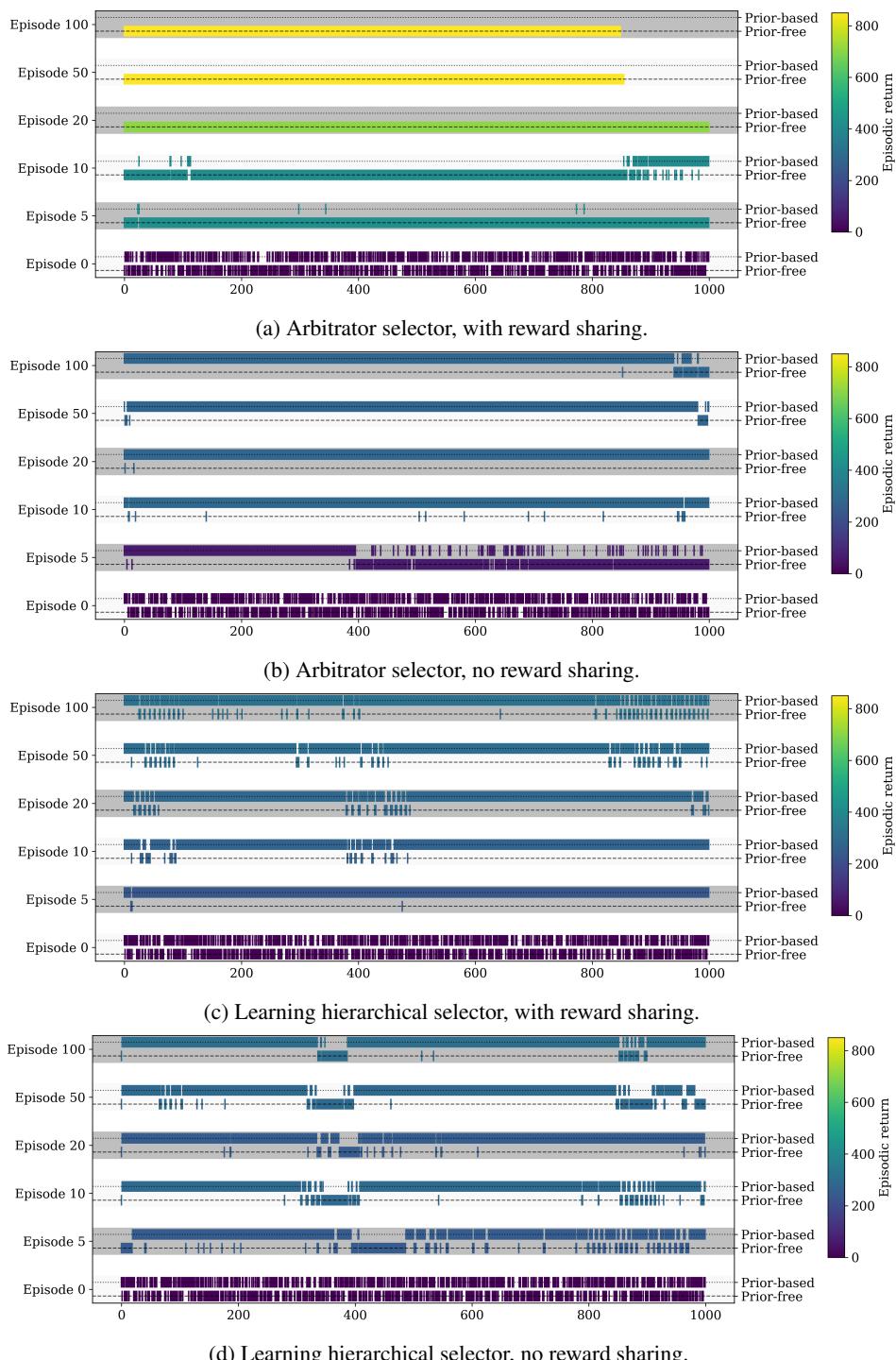


Figure 14: Complete selector-action plot from the ablation study on the car racing environment, extension of Fig. 6.

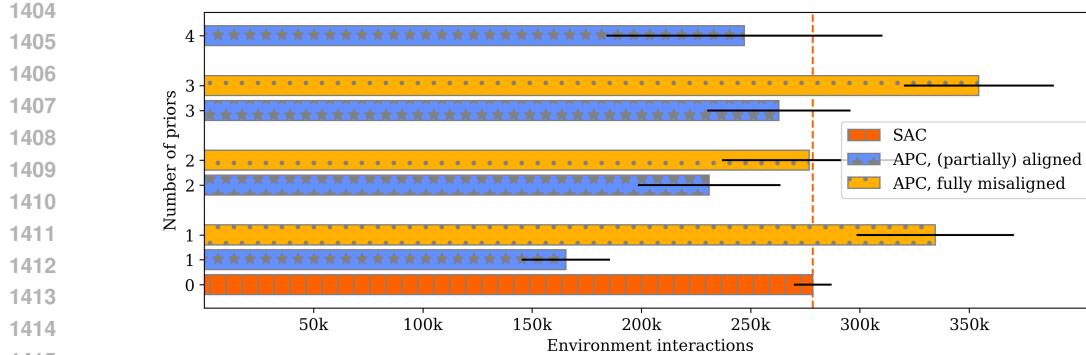


Figure 15: SAC vs APC’s time until 100% cross-seed success, when using different numbers of behavior priors, on the PointMaze environment. The x -error bars indicates the variance over five seeds and the different tasks. APC’s “(partially) aligned” variant here means that APC’s set of priors includes the behavior prior for the current target task (but also $n - 1$ misaligned ones), while the “fully misaligned” variant means that the set of priors consists solely of *misaligned* priors for other tasks. The beneficial exploration bias due to the *aligned* prior is weakened by the increasing number of misaligned priors, which explains the increase in time until success when using more priors. Nevertheless, as long as APC has access to the aligned prior, it performs better or on par with SAC, highlighting its ability to avoid negative exploration bias from misaligned priors.

F ADDITIONAL POINTMAZE RESULTS

F.1 NUMBER OF PRIORS

We also study the effect of the number of misaligned priors on APC. For this, we run APC on the PointMaze environment with access to one, two, three, or all four behavior priors for the four goal locations. As before, we separately consider the performance when the set of priors is (partially) aligned, meaning it contains a behavior prior that is optimal for the current task, or fully misaligned, when the set of priors only contains behavior priors for other tasks.

For this analysis, we use a slightly denser reward for the PointMaze reward by replacing the standard exponent of the negative Euclidean distance reward with the negative Euclidean distance directly. The exponent of the negative Euclidean is uninformative, evaluating to 0 almost everywhere, except very close to the goal, effectively creating a sparse reward setting. In such settings, the effect of misaligned priors is amplified, since there is (almost) no feedback for learning about the negative influence of misaligned priors, allowing them to continuously bias the exploration in a negative fashion. Using the negative Euclidean distance directly yields more informative gradients throughout the maze, which allows us to better analyze how APC behaves as the number of priors increases.

The results are shown in Figure 15. As can be seen, with an increasing number of priors, the beneficial exploration bias from the aligned behavior prior is weakened. This happens because initially, before the Q-functions contain meaningful estimates, the misaligned behavior priors can (negatively) influence exploration by biasing the agents towards wrong goal locations. However, once the per-actor Q-functions correctly reflect lower values for the misaligned priors, they receive less weight under the arbitrator and their impact diminishes, allowing APC to exploit the aligned prior or prior-free actor.

Furthermore, we find that APC, when given a set of *fully* misaligned priors, performs slightly worse than from-scratch SAC, due to the misaligned priors biasing exploration negatively, until their Q-values reflect low utility. However, this represents a contrived adversarial setting that we include in this analysis for pedagogical reasons and completeness, but note that it is very unlikely in practice.

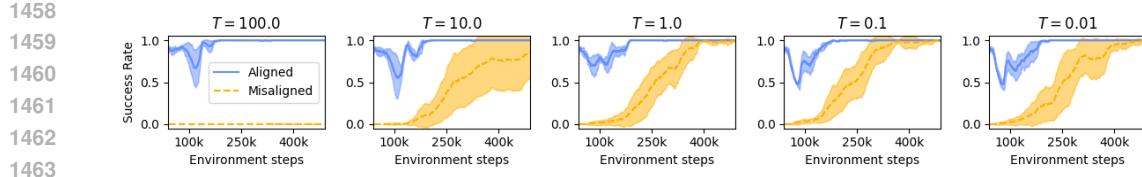


Figure 16: Arbitrator sensitivity analysis with respect to the Boltzmann temperature η . The arbitrator is largely insensitive towards the temperature coefficient η . Recall that the arbitrator selects among actors using a Boltzmann categorical distribution $\pi_\beta = \text{Cat}(p_0(\mathbf{s}), \dots, p_n(\mathbf{s}))$, with selection probabilities

$$p_l(\mathbf{s}) = \frac{1}{Z} \exp\left(\frac{1}{\eta} V^{(l)}(\mathbf{s})\right), \quad Z = \sum_{i=0}^n \exp\left(\frac{1}{\eta} V^{(i)}(\mathbf{s})\right). \quad (13)$$

The temperature η regulates how strongly value differences influence the selection: small η yields a more peaked distribution, while large η biases the distribution towards uniform. Figure 16 reports running success rates for temperatures on a logarithmic grid, $T \in \{0.01, 0.1, \dots, 100\}$, evaluated on the PointMaze environment and using a single prior.

Overall, the arbitrator is mostly insensitive to the temperature choice. The only notable degradation appears for large temperatures and when given a misaligned prior, which is expected: In this setting, value differences between the misaligned prior-based actor and the prior-free actor remain too small relative to the temperature, leading the arbitrator to sample both nearly uniformly and preventing effective filtering of the misaligned prior.

A practical heuristic for choosing η could be based on the reward scale: low reward magnitudes (and therefore small value differences) could be amplified with a smaller η , whereas high reward magnitudes might benefit from using a larger η , to counteract large value differences between even similar behaviors.

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511