
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING THE SPARSE STRUCTURE LEARNING OF
SPIKING NEURAL NETWORKS FROM THE VIEW OF
COMPRESSION EFFICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

The human brain utilizes spikes for information transmission and dynamically
reorganizes its network structure to boost energy efficiency and cognitive capabil-
ities throughout its lifespan. Drawing inspiration from this spike-based computa-
tion, Spiking Neural Networks (SNNs) have been developed to construct event-
driven models that emulate this efficiency. Despite these advances, deep SNNs
continue to suffer from over-parameterization during training and inference, a
stark contrast to the brain’s ability to self-organize. Furthermore, existing sparse
SNNs are challenged by maintaining optimal pruning levels due to a static pruning
ratio, resulting in either under or over-pruning. In this paper, we propose a novel
two-stage dynamic structure learning approach for deep SNNs, aimed at main-
taining effective sparse training from scratch while optimizing compression effi-
ciency. The first stage evaluates the compressibility of existing sparse subnetworks
within SNNs using the PQ index, which facilitates an adaptive determination of
the rewiring ratio for synaptic connections based on data compression insights.
In the second stage, this rewiring ratio critically informs the dynamic synaptic
connection rewiring process, including both pruning and regrowth. This approach
significantly improves the exploration of sparse structures training in deep SNNs,
adapting sparsity dynamically from the point view of compression efficiency. Our
experiments demonstrate that this sparse training approach not only aligns with
the performance of current deep SNNs models but also significantly improves the
efficiency of compressing sparse SNNs. Crucially, it preserves the advantages of
initiating training with sparse models and offers a promising solution for imple-
menting Edge AI on neuromorphic hardware.

1 INTRODUCTION

Spiking Neural Networks (SNNs) have garnered increasing attention due to their event-driven prop-
erties, high spatiotemporal dynamics, and structural and learning plasticity that mimic biological
neural processing (Maass, 1997; Subbulakshmi Radhakrishnan et al., 2021; Fang et al., 2023). Un-
like traditional artificial neural networks that rely on continuous signal computation, SNNs pro-
cess information using discrete events (spike trains), aligning more closely with the energy-efficient
mechanisms observed in human neural activity. The post-synaptic neurons in SNNs receive spike
trains from pre-synaptic neurons and emit output spikes upon crossing a firing threshold (Stanojevic
et al., 2024; Zhou et al., 2023). Consequently, bio-inspired SNNs offer significant advantages in en-
ergy efficiency, making them especially suitable for neuromorphic computing applications in Edge
AI, where energy constraints are paramount (Imam & Cleland, 2020; Pei et al., 2019; Deng et al.,
2021a). Despite these inherent advantages, the deployment of increasingly deep SNNs introduces
substantial challenges, particularly over-parameterization during training and inference, leading to
excessive computational overhead and memory usage. This misalignment with the resource-efficient
requirements of edge devices calls for innovative solutions.

Current research on the sparse structure learning of deep SNNs aims to address the over-
parameterization issue. These methodologies are predominantly categorized by their computational
cost throughout the whole training process. The first one is the gradually structural sparsification ap-
proach with the non-sparse network as the initial status. For instance, the gradient reparameterization
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Figure 1: The flowchart of the proposed two-stage sparse structure learning method for SNNs.
Stage I involves the typical training process and attempts to identify an appropriate rewiring ratio
according to PQ index. Stage II conducts the dynamic sparse structure learning method based on the
rewiring ratio in stage I. The iterative learning of the above two stages is employed during the whole
training process, thereby implementing the sparse training from scratch for SNNs and enhancing
generalization ability of the sparse model.

(Chen et al., 2021; 2022) approach implements the gradually efficient sparsification for deep SNNs
with learnable pruning speed by redefining the weight parameters and threshold growing function.
Alternatively, the second category called fully sparsification methods initiate with sparse SNNs to
maintain connection sparsity throughout training, exemplified by sparse evolutionary rewiring (Shen
et al., 2023) and the lottery-ticket hypothesis (Kim et al., 2022). We advocate for the latter due to
its compatibility with hardware constraints like on-chip training. Considering the intrinsic connec-
tion between network sparsity and compressibility, the PQ index has been proven to satisfy the six
properties of an ideal sparsity measure Hurley & Rickard (2009), and employed as the indicator
of vector sparsity in the traditional artificial neural networks in (Diao et al., 2023). However, that
sparsity measure analysis ignores the unique spatial and temporal dynamics in SNNs. Therfore,
most existing fully sparse training methods for SNNs employ static pruning ratios or predetermined
sparsity levels, ignoring the analysis of spatiotemporal dynamics of SNNs and lacking the necessary
flexibility like self-reorganizing in human brain and often leading to under or over-pruning.

Observing the brain’s flexible organization of large-scale functional networks, which adapt through
environmental interactions, offers a clue towards solving deep SNNs’ over-parameterization. Dur-
ing brain development, synaptic connections undergo structural plasticity, forming new synapses
and eliminating existing ones (De Vivo et al., 2017; Barnes & Finnerty, 2010; Bennett et al., 2018).
This rewiring process forms flexible network structure and promotes synaptic sparsity contributing
to the brain’s low power consumption. Therefore, emulating the brain’s structural synaptic plastic-
ity through a dynamic structure learning approach could be key to developing more flexible deep
SNN models. Meanwhile, the density of synaptic connections in the brain optimizes throughout
development, although precise control mechanisms remain unclear. Thus, we explore optimizing
the pruning ratio from a neural network compression perspective as explored in machine learning,
where data compression theory helps quantify the compressibility of a sub-network during each
connection updating iteration, thereby avoiding under or over-pruning (Neill, 2020). By combining
with the biologically plausible rewiring mechanism in human brain and neural network compres-
sion theory in machine learning, we attempt to give a solution about the sparse training method from
scratch for deep SNNs with adaptive and suitable pruning ratio setting.

In light of these above insights, this paper proposes a novel two-stage sparse structure learning
method from scratch for SNNs, utilizing the PQ index to measure appropriate compressibility. This
method not only maintains sparse training throughout the learning process but also mitigates the
issues of under-pruning and over-pruning in sparse SNNs. Our contributions are summarized as
follows:

• We introduce a pioneering two-stage dynamic structure learning framework for deep SNNs
that utilizes the PQ index to gauge and dynamically adjust structure of sparse subnetworks
according to compressibility. This novel approach tailors the rewiring ratio throughout the
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training process, providing a fine-tuned, adaptive mechanism that enhances the founda-
tional training dynamics of deep sparse SNNs.

• Our methodology extends traditional sparse training approaches for SNNs by implement-
ing a continuous, iterative learning process across two stages. In the first stage, the PQ
index informs the adjustment of synaptic connection rewiring ratios. In the second stage,
these ratios guide a dynamic rewiring strategy that includes both the pruning and regrowth
of connections. Thus the methodology optimizes the SNNs’ structural efficiency and oper-
ational effectiveness far beyond conventional static pruning techniques.

• Through extensive empirical testing, our method not only achieves competitive perfor-
mance relative to existing state-of-the-art models but also significantly enhances the ef-
ficiency of sparse training from scratch implementations for deep SNNs. This rigorous
validation demonstrates our approach’s ability to maintain essential SNNs’ network func-
tionality while reducing computational redundancy, thus achieving superior compression
of SNN architectures.

2 RELATED WORKS

Spiking Neural Networks (SNNs) have seen considerable advancements in learning algorithms that
have expanded their parameter capacity and diversified their topological structures. These networks
often incorporate established artificial neural network (ANN) architectures, including VGG11,
ResNets19, and Transformers, adapting them to the spike-based processing paradigm (Yao et al.,
2024; Hu et al., 2024). Training methodologies range from direct training with surrogate gradients
to conversion techniques that transform pretrained ANNs into SNNs. While these static-topology
SNNs have demonstrated significant efficacy in various applications, such as object detection and
natural language understanding, they primarily emphasize synaptic weight optimization (Gast et al.,
2024; Zheng et al., 2024; Ren et al., 2024). This focus tends to overlook the critical aspect of synap-
tic connectivity learning, frequently leading to parameter inefficiencies and constrained network
evolution. In contrast, SNNs designed with dynamic structures learning are engineered to concur-
rently optimize both synaptic connections and weights. This dual optimization affords enhanced
flexibility and facilitates the development of more efficient and adaptive network topologies. We
categorize the current sparse structure learning methods for SNNs into two distinct groups.

Gradual Sparsification of Connection Structures for SNNs. This kind of methods typically ini-
tializes the network with a non-sparse connected structure, which is iteratively optimized through-
out training, resulting in a gradually sparser connection structure. 1) Weight parameter optimization
methods. For instance, the gradient rewiring (Grad R) method is introduced in (Chen et al., 2021)
which implements sparse structure learning through redefining network connection parameters. This
method ensures that the gradient of these parameters forms an angle of less than 90° with the ac-
curate gradient. During model training, synaptic pruning and regeneration are iteratively applied,
achieving joint learning of synaptic connections and weights. Building on this, the nonlinear gradi-
ent reparameterization function that controls pruning speed through a threshold growth function is
introduced in (Chen et al., 2022), further optimizing the SNNs structure. (Shi et al., 2023) combines
unstructured weight pruning with unstructured neuron pruning to maximize the utilization of the
sparsity of neuromorphic computing, thereby enhancing energy efficiency. 2) Regularization-based
methods. (Deng et al., 2021a) incorporated gradient regularization into the loss function, achieving
synaptic connection pruning and weight quantization based on the Alternating Direction Method of
Multipliers (ADMM). Similarly, Yin et al. combined sparse spike encoding with sparse network
connections, using sparse regularization to establish models for spike data transmission and network
sparsification (Yin et al., 2021). There are also some studies to explore the connection pruning for
spiking-based Transformer structure (Liu et al., 2024). 3) Connection-relationship-determination-
based methods. The synaptic sampling method based on Bayesian learning is proposed in (Kappel
et al., 2015), modeling dendritic spine movement characteristics to achieve synaptic connection re-
construction and weight optimization. Combining unsupervised STDP rules with supervised Tem-
potron training, SNNs with connection gates is developed in (Qi et al., 2018). This approach resulted
in a sparse SNNs with improved accuracy and reduced connections on benchmark datasets. There
are also other studies to introduce the plasticity-based pruning methods for deep SNNs (Han et al.,
2024b).
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Fully Sparsification of Connection Structures for SNNs. A different strategy involves initializ-
ing the network with a sparse connection structure from the start and continually optimizing this
sparse structure throughout training. This fully sparse training approach is particularly advanta-
geous for hardware implementation in resource-constrained environments, such as on-chip training
in hardware chips. 1) Synaptic connection-rewiring-based methods. These evolutionary structure
learning methods are proposed for deep SNNs by drawing inspiration of rewiring mechainism in
human brain (Han et al., 2024a; Shen et al., 2023; Li et al., 2024). This method employs synaptic
growth and pruning rules to adaptively adjust the connection structure based on gradients, momen-
tum, or amplitude during training, maintaining a certain level of sparsity in synaptic connections
and achieving effective sparse training of SNNs. 2) Lottery-ticket-hypothesis-based methods. The
architecture search methods could also generate sparse SNNs, such as the lottery ticket hypothesis.
The Early-Time lottery ticket hypothesis method proposed in (Kim et al., 2022) demonstrates that
winning sparse sub-networks exist in deep SNNs, similar to traditional deep ANNs. Further, the
utilization-aware LTH method, which incorporates intra-layer connection regeneration and pruning
during training, addresses hardware load imbalance issues caused by unstructured pruning methods
(Yin et al., 2024).

Despite these advancements, a gap remains in the deployment of fully adaptive and efficient SNNs
architectures, particularly in resource-constrained environments such as edge computing devices.
This underscores the necessity for novel methods that not only refine the sparsity and efficiency of
these networks but also maintain adaptive learning capabilities throughout their lifecycle during the
whole training process. The need for dynamic, flexible SNN models that mirror the human brain’s
ability to reorganize and optimize its neural pathways in real-time is clear.

Our research addresses this gap by proposing a two-stage dynamic sparse structure learning ap-
proach for SNNs from scratch, leveraging the latest advances in neural network compression and
synaptic plasticity. This method promises to significantly enhance the adaptability and efficiency
of deep SNNs, positioning them as a viable solution for next-generation neuromorphic computing
applications. We believe that by integrating adaptive synaptic pruning and growth mechanisms, our
approach will set a new standard for sparse structure learning in SNNs, aligning closely with the
natural efficiencies observed in biological neural processes.

3 METHODS

The main goal of our study is to implement the fully sparse training from scratch for SNNs with
the dynamic compressibility during the training process. In detail, we first introduce the proposed
two-stage sparse learning framework for SNNs. After that, the first and second stage computations
for obtaining the right rewiring ratio and rewiring sparse networks are described, respectively.

3.1 THE FRAMEWORK OF THE TWO-STAGE SPARSE LEARNING METHOD

As illustrated in Fig. 1 and Algorithm 1, we design the two-stage sparse training method for SNNs
with an appropriate rewiring ratio for each iteration during the training process. The sparse weight
connections are initialized according to the Erdös–Rényi (ER) Random Graph. The ER graph could
guarantee that the synaptic connection for each neuron has the same connection probability. As-
suming there are nk and nk−1 neurons in the neighboring two layers, then the probability of weight
connection mask Mk,k−1 = 1 between two neurons in these two layers satisfies

p(Mk,k−1 = 1) =
ϵ(nk + nk−1)

nk ∗ nk−1
. (1)

where ϵ is a constant (or scaling factor) that influences the edge probability and accounts for sparsity
or connectivity scaling. Then the corresponding weight value W can be initialized by the commonly
used initialization method, such as Xavier Initialization and random normal distribution Initializa-
tion. Since then, we have been able to obtain the initialized sparse SNNs. After that, the initialized
SNNs would be trained over multiple iterations, through the iterative training of the first stage and
second stage in each iteration. It is worth noting that the SNNs would remain sparse and dynamically
search for the suitable rewiring ratio in the following training process.

In detail, the first stage involves the typical training process and attempts to identify an appropriate
rewiring ratio based on temporarily trained weights. The rewiring ratio is calculated according to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 The two-stage sparse training process of SNNs.
Input Data: xi, i = 1, 2, ..., N .
Labels of Input Data:yi, i = 1, 2, ..., N .
Parameters: The weight mask is M . The weight matrix: W . The updating iterations:
Epochfrequency.

1: for each assigned sparse layer of the SNNs do
2: Initialize the sparse weight mask of the connected layer as the Erdös–Rényi topology;
3: end for
4: Initialize trained weight parameters;
5: for each training iterations i do
6: ♢ Stage I
7: Perform standard training procedure with Wi = Mi ⊙ Wi;
8: Perform weights updates for Wi;
9: Compute the total number of model parameters di = |Mi |;

10: Compute PQ Index IWi
and the lower bound of the amount of remaining parameters ri;

11: Compute the rewiring ratio ci;
12: ♢ Stage II
13: if current training epoch % Epochfrequency == 0: then
14: for each assigned sparse layer of SNNs do
15: Remove the fraction ci of synaptic connections according to the pruning rule;
16: Regrow the fraction ci of synaptic connections according to the growing rule;
17: end for
18: end if
19: end for
20: return The sparse SNNs with W .

the PQ index, an efficient measure of the compressibility of neural network models (Diao et al.,
2023). The PQ index helps quantify the redundancy in the network, thereby informing the follow-
ing rewiring strategy. In the second stage, the dynamic sparse structure learning method based on
the rewiring method is adopted to implement the sparse training from scratch. The connections are
iteratively pruned and regrown according to the specified rewiring ratio. This iterative training ap-
proach ensures that the network continuously adapts and optimizes its structure, thereby improving
performance. The rewiring method allows for dynamic adjustment, promoting the activation and
growth of previously dormant connections, which contributes to the SNNs’ overall expressiveness
and capability.

By integrating these two stages, our method achieves efficient and effective sparse training for SNNs,
leveraging the compressibility insights gained in the first stage to guide dynamic structural adjust-
ments in the second stage. This approach not only maintains the sparsity and efficiency of the model
but also enhances its generalization ability.

3.2 COMPRESS THE SPARSE SNNS BASED ON PQ INDEX

After the sparse initialization based on ER graph, the synaptic connections between neurons would
become sparse randomly. Then in the following training process, the SNNs model would be trained
according to the two stages sparse training method.

In the first stage, we train the sparse SNNs and compute the appropriate rewiring ratio according to
PQ index Ip,q(W ) (we simplified it as I(W ) in the detailed derivation in the supplementary materi-
als). Here is the derivation of the sparsity measure Ip,q(W ) = 1− d

1
q−

1
p · ∥W∥p

∥W∥q
for spiking neural

networks (SNNs), incorporating the formula update and focusing on scaling invariance, sensitivity
to sparsity reduction, and cloning invariance, combined with spatiotemporal dynamics and sparsity
in SNNs. In detail, the scaling invariance in SNNs corresponds to: (1) Independence of weight scal-
ing: If the weight matrix W is scaled (e.g., multiplied by a constant), its sparsity structure remains
unchanged, and so should Ip,q(W ). (2) Independence of temporal scaling: Changes in spike magni-
tudes (the activation value) should not affect the sparsity measure, ensuring the measure accurately
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reflects temporal dynamics. We give detailed derivation in SNNs, it ensures that Ip,q(W ) remains
unaffected when all weights are scaled proportionally (e.g., multiplying W by a constant α > 0).
The scaling weight magnitudes or activation value intensity does not change the network sparsity.
Meanwhile, we analyze that Ip,q(W ) keeps sensitivity to spatial and temporal sparsity in SNNs, that
is, the distribution of weights or spike activations (firing rates). When it changes weight distribution
with more nonzero weights, leading to a reduction in Ip,q(W ) corresponds to sparsity decreasing.
When temporal sparsity decreases (more neurons firing at the same time), the distribution becomes
denser, which directly affects the ratio ∥W∥p/∥W∥q , leading to a decrease in Ip,q(W ). In addition,
we demonstrate that the sparsity measure Ip,q(W ) should remain invariant when the weight matrix
is cloned in spatial and temporal dimensions. This ensures that cloning or repeating the matrix does
not affect the sparsity measure.

In detail, the PQ index for the non-zero vector Wi ∈ Rd with any 0 < p < q is computed by:

Ip,q(Wi) = 1− d
1
q−

1
p (∥ Wi ∥p − ∥ Wi ∥q), (2)

where ∥ Wi ∥p equals to (
∑d

j=1 | wj |p)1/p, in which wj , j = 1...d is the non-zero element in Wi.
Then the lower bound of the retaining number of model parameter Wi can be obtained by:

ri = di(1 + αr)
−q/(q−p)[1− Ip,q(Wi)]

pq/(q−p), (3)

where di = |Mi|. Then the pruned ratio with better compressibility is computed by:

ci = ⌊di ·min(γ(1− ri
di
), β)⌋/NWi

, (4)

in which the γ and β are the scaling factor and maximum rewiring ratio, respectively. In detail,
the hyperparameter of γ is used to scale the rewiring ratio according to PQ index. The bigger γ
would obtain the higher rewiring ratio. We follow the settings in (Diao et al., 2023) to set γ = 1
and β = 0.9 to prevent the model are over-pruned seriously. NWi is the total number of parameters
in Wi. Assume r is the indices set of Wi with the largest weight magnitude. Then αr denotes
the smallest value satisfying

∑
j /∈Mr

i
|wj |p ≤ αr

∑
j∈Mr

i
|wj |p. The big αr implies the model

parameters are redundant and would result in a higher rewiring ratio. Thus we set the αr to be
0.001 in the experiments to slow down the pruning speed and improve the stability of sparse model
training. We give an example in Fig. 2 (a).

Since then, the right rewiring ratio for weight parameters in sparse SNNs has been figured out to
improve compressibility and prevent sparse SNNs from either over-pruning too much or under-
pruning.

During the training process in each iteration, before the above spasity measurement process, we
need to update the weight matrix according to the learning algorithm in our model. In this paper, we
adopt the iterative Leaky Integrate-and-Fire (LIF) neuron model in SNNs to enhance information
integration and temporal representation (Wu et al., 2019). The membrane potential u(t) of postsy-
naptic neuron is updated based on the membrane potential at t − 1 and the integrated presynaptic
neuron input:

u(t) = τu(t− 1) + (Mi ⊙Wi)x(t), (5)
where τ is the leaky factor set to 0.5, and x(t) represents the spike inputs. When u(t) exceeds the
firing threshold of Vth, the neuron fires a spike, and u(t) is set to be 0. Consequently, the neuron
output and the membrane updating are given by:

a(t+ 1) = Θ(u(t+ 1)− Vth), (6)

u(t+ 1) = u(t+ 1)(1− a(t+ 1)), (7)
To ensure that the output signal at each time step approximates the target distribution, we utilize the
temporal efficient training loss function as in (Deng et al., 2021b):

LTET =
1

T

T∑
t=1

LCE [O(t), y], (8)

where T denotes the time steps and LCE is the cross-entropy loss function. Then the masked weights
are updated according to the gradient descent rule with surrogate gradient function.
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3.3 THE CONNECTION REWIRING OF DYNAMIC SPARSE STRUCTURE LEARNING

After the above stage obtains the appropriate rewiring ratio, the connection rewiring method is fol-
lowed to improve the stability and generalization ability of the sparse SNNs, instead of pruning the
weights with the smallest magnitudes directly. The connection rewiring method is motivated by the
synaptic rewiring mechanism in the human brain. The synaptic rewiring in the brain, covering the
processes of synaptic pruning (elimination) and synaptic growth (formation), plays a vital role in
neural development, learning, memory, and overall cognitive function. This dynamic remodeling
of synaptic connections promotes the brain’s adaptability and efficiency in processing information.
Meanwhile, the effectiveness of the rewiring operation has been demonstrated in earlier works for
the structure learning of SNNs. Therefore, we employ the dynamic connection rewiring process
to implement the sparse training of SNNs models from scratch, thus improving the stability and
generalization ability of the sparse SNNs.

The connection rewiring method could implement the effective and fast training by the iterative
training of pruning and regrowing connections, avoiding the introduction of additional parameters
that could increase memory usage. The pruning rule ensures the elimination of less significant
connections in SNNs, reducing computational complexity while preserving the core structure of the
network. We rank the weights magnitude according to their absolute values in sparse SNNs trained
at the first stage, and prune the weight connections with the rewiring ratio of ci in the above section.
However, the only operation of pruning may destroy the stable convergence of sparse SNNs and
restrict the network’s expressive capacity. To fully leverage the information processing capacity of
the original large SNNs without any pruning, it is crucial that all connections are activated during
training. Consequently, the growth rule is employed to promote the regeneration of connections
that have not been activated for a significant period of time. Different pruning and regrow rules
adapt to the proposed two-stage sparse structure learning framework. For simplify, we adopt the
momentum-based growing rule, to prioritize the regeneration of synaptic connections according
to the momentum of the parameters. This approach ensures that connections showing significant
momentum, and thus potential importance, are prioritized for regrowth.

In detail, after obtained the suitable rewiring ratio in the first stage, we could then use this ratio ci to
guide the training in the second stage. Assuming the standard training procedure for sparse SNNs
is followed by freezing the masked weights as Wi = Mi ⊙ Wi, where the mask Mi is obtained
according to the pruning and regrowing principle as mentioned above. After obtaining the updated
Wi, we begin to compute the rewiring ratio again as described in the first stage. Therefore, through
the iterative process between the first and second stage, our model can improve the efficiency of
sparse training SNNs from scratch with the adaptive rewiring ratio.

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed two-stage sparse structure learning
method for SNNs. We conduct experiments on the CIFAR10, CIFAR100, and DVS-CIFAR10
datasets, including both ablation studies and comparative experiments. The experiments environ-
ments are NVIDIA-4090 GPU computation devices based on PYTORCH framework.

4.1 ANALYSIS ON THE DYNAMIC SPARSE TRAINING DURING TRAINING PROCESS

The performances of the proposed two-stage dynamic sparse training of SNNs are validated on two
different rewiring scopes, including neuron-wise rewiring and layer-wise rewiring. The neuron-wise
rewiring would adopt the connection rewiring each neuron of model parameters, which would prune
and regrow d ·p connected weight parameters for each neuron, and the rewiring ratio of each neuron
is computed by the PQ index respectively. While the layer-wise one conducts weight parameter
rewiring for each layer separately.

Effectiveness in the layer-wise rewiring scope. The accuracy and connection density of the pro-
posed two-stage sparse training method for SNNs are illustrated in Fig. 3. The initial connection
density is set to be 0.5, which means that there are only half of the connections to be activated when
initialization. Meanwhile, the connections in our model remain sparse, ranging from 0.5 to 0.11 dur-
ing the whole training process. In addition, as the number of iterations in the sparse training process

7
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Figure 2: An example for training process of our method (a). The performance of the proposed
two-stage sparse training method for SNNs, on CIFAR10 (b) and CIFAR100 (c) datasets, in the
neuron-wise pruning scope. The bar chart represents the accuracy achieved by the proposed two-
stage sparse training method. The solid line reflects the density of synaptic connections in the SNNs
model.
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Figure 3: The performance of the proposed two-stage sparse training method for SNNs, on CIFAR10
(a) and CIFAR100 (b) datasets, in the layer-wise pruning scope. The bar chart represents the accu-
racy achieved by the proposed method. The solid line reflects the density of synaptic connections in
the SNNs model. The dashed line is the trend analysis of accuracy using a two-period moving av-
erage. This diagram depicts the correlation between the density of the model and the enhancements
in performance achieved using our two-stage sparse structure learning technique.

increases, the proposed two-stage sparse training method generates a relatively suitable rewiring ra-
tio in the first stage, gradually reducing the synaptic connection density in SNNs. It is notable that
the proposed model achieves its peak accuracy of 92.38% and 70.3% during the fourth iteration with
a connection density of 30% on the CIFAR10 and CIFAR100 datasets, respectively. The peak ac-
curacy is even higher than that (about 92.2% on the CIFAR10 dataset) of densely connected SNNs.
This improvement can be attributed to the connection rewiring, which introduces a more activated
parameter space and enhances the performance of sparse training by exploring extensive parameters
throughout the sparse training process.

Simultaneously, the overall accuracy of the sparse SNNs exhibits a fluctuating trend. In the initial
iterations, our model’s stage I produces appropriate levels of sparsity, which decreases the density
of synaptic connections in the sparse SNNs while improving accuracy. However, as the iterations
continue and the model becomes more compressed, the performance starts to decline moderately
due to increased sparsity. At a crucial point, when the model achieves its highest level of accuracy
during the fourth iteration with a connection density of 30% for CIFAR10 dataset, additional pruning
results in a collapse when important parameters are eliminated, leading to considerable performance
decrease.

Effectiveness in the neuron-wise rewiring scope. We also verify the performance of our proposed
two-stage sparse straining method in the neuron-wise scope. As illustrated in Fig. 2, we analyze the
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accuracy and the corresponding density within four iterations, for these four iterations have shown
the main trend change as in the situation of layer-wise scope. As shown in Fig. 2, the proposed
model exhibits similar accuracy oscillation phenomena in the CIFAR10 dataset when using layer-
wise sparse structure training, akin to the neuron-wise approach. The proposed model achieves an
accuracy of 92.48% at the second iteration with a connection density of only 41%. However, in the
neuron-based scenario on the CIFAR100 dataset, no similar oscillation phenomena are observed.
This could be due to the initial high sparsity, which may have led to the pruning of some critical
synaptic connections. Thus, the remaining connections could not be insufficiently trained, resulting
in decreased performance as the connection densities reduce.
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Figure 4: The ablation experiments of our proposed two-stage sparse training method for SNNs. (a)
The accuracy comparison between the gradually sparse training and sparse training from scratch.
(b) The connection density comparison between the gradually sparse training and sparse training
from scratch.

The above phenomena are consistent with the proposed model’s behavior. The pruning process ini-
tially removes redundant parameters. This results in a decrease in the sparsity of model parameters,
leading to an improvement in performance due to regularization effects. As the model is compressed
more, some critical parameters are pruned when the model reaches convergence, resulting in an in-
crease in sparsity and a slight decrease in performance. Eventually, as the model begins to collapse,
all weakened parameters are removed, leaving only the essential parameters needed to sustain per-
formance. Consequently, the level of sparsity decreases dramatically, leading to a noticeable decline
in performance.

Ablation study on the sparse training from scratch. To evaluate the effectiveness of sparse train-
ing for the proposed two-stage sparse structure learning method, we conduct the ablation study by
comparing the performance with gradually sparse training and sparse training from scratch. As illus-
trated in Fig. 4, the performance of the sparse training from scratch (Remaining Sparse) outperforms
that of the gradually sparse training from the initial fully non-sparse connections. The reason lies
in that the manner of the sparse training from scratch explores a similar thorough parameter space
to the non-sparse model and masks some noises caused by the redundancy parameters. Besides, the
proposed model for sparse training from scratch demonstrates superior network connection sparsity
than the gradually sparse training model at the same number of iterations. This allows the sparse
training from scratch model to more quickly identify the optimal rewiring rate and achieve better per-
formance. Additionally, the sparse training from scratch model is more hardware-friendly than the
gradually sparse training model, making it more suitable for sparse training in hardware-constrained
environments especially on-chip learning.

4.2 PERFORMANCE COMPARISON TO OTHER METHODS

We compare the performance of the proposed two-stage sparse structure learning method for SNNs
with other current state-of-the-art SNNs: ADMM (Deng et al., 2021a), Grad R (Chen et al., 2021),
ESLSNN (Shen et al., 2023) and STDS (Chen et al., 2022), UPR (Shi et al., 2023).

As shown in Tab. 1, the proposed two-stage sparse structure training method achieves competi-
tive performance among the various methods while retaining the advantage of sparse training from
scratch. Notably, compared to fully non-sparse models, our sparse training model can even improve
performance while maintaining a certain level of sparsity through dynamic iteration and searching
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Table 1: Performance comparison of the proposed two-stage sparse stucture learning approach for
SNNs with other models.

Dataset Pruning
Method Architecture T Top-1

Acc.(%)
Acc.

Loss(%)
Conn.
(%)

Param.
(M)

SOPS
(M)

CIFAR10

ADMM 7 Conv, 2 FC 8 90.19 -0.13 25.03 15.54 -
Grad R 6 Conv, 2 FC 8 92.54 -0.30 36.72 10.43 -

ESLSNN ResNet19 2 91.09 -1.7 50 6.3 180.56
STDS 6 Conv, 2 FC 8 92.49 -0.35 11.33 1.71 147.22
UPR 6 Conv, 2 FC 8 92.05 -0.79 1.16 9.56 16.47

This
work

ResNet19
Neuron-wise 2 92.48

92.1
+1.18
+0.8

40.58
26.63

5.12
3.36

158.35
121.49

ResNet19
Layer-wise 2 92.38

91.99
+0.11
-0.28

29.72
17.91

3.7
2.26

133.26
110.65

CIFAR100
ESLSNN ResNet19 2 73.48 -0.99 50 6.32 186.25

UPR SEW ResNet18 4 70.45
69.41

-3.71
-4.75

3.60
2.48 - 9.60

6.79
This
work

ResNet19
Layer-wise 2 70.3 +1.07 29.48 3.73 140.27

DVS-
CIFAR10 ESLSNN VGGSNN 10 78.3 -0.28 10 0.92 129.64

STDS VGGSNN 10 79.8 -2.6 4.67 0.24 38.85

UPR VGGSNN 10 78.3
81.0

-0.5
-1.4

0.77
4.46

1.81
2.5

6.75
31.86

This
work

VGGSNN
Layer-wise 10 78.4 +0.08 30 2.76 189.02

for an appropriate rewiring ratio. For example, on the CIFAR10 dataset, the model trained using our
proposed method under the neuron-wise scope improves performance by approximately 1% com-
pared to the fully non-sparse model while maintaining a sparsity of 30% to 40%. On the CIFAR100
dataset, the performance of SNNs model with our two-stage sparse training method is also improved
1.07% compared to the non-sparse model with only 29.48% connection. It is worth noting that the
proposed two-stage training method proceeds sparse training from scratch and maintains sparse
training during the whole training process. These results demonstrate that our proposed model helps
the original fully non-sparse model mask redundant parameters and enhance the generalization capa-
bility of the sparse model during iterative training by continuously finding the appropriate rewiring
ratio.

5 CONCLUSION

To summarize, this study has introduced a novel two-stage dynamic structure learning method tai-
lored for Spiking Neural Networks (SNNs) that effectively addresses the challenges of fixed pruning
ratios and the limitations of static sparse training methods prevalent in current models. In the first
stage of our strategy, we employ the PQ index to evaluate the compressibility of sparse subnetworks.
This enables us to make informed adjustments to the rewiring ratios of synaptic connections. This
adaptive technique enables the model to circumvent the drawbacks of insufficient pruning or ex-
cessive pruning. In the second stage, the predetermined rewiring ratios guide the dynamic synaptic
connection rewiring, incorporating both pruning and regrowth strategies. This approach not only im-
proves the compression efficiency of sparse SNNs but also boosts their performance. The iterative
learning process implemented across both stages ensures continuous improvement and adaptation
of the sparse network structure throughout the training phase. The experimental results validate that
the proposed dynamic structure learning greatly improves the compression efficiency of SNNs. Ad-
ditionally, it either matches or exceeds the performance benchmarks set by current models in certain
circumstances. Crucially, this strategy maintains the benefits of sparse training from the scratch,
which is particularly advantageous in settings with restricted hardware resources, like neuromorphic
hardware on Edge AI.
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