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Abstract

Because of their success in producing realistic images, generative adversarial net-1

works (GANs) have recently been leveraged to generate labeled synthetic datasets.2

However, existing dataset generation methods do not sufficiently leverage existing3

images with high quality labels, which often limits either the practicality of the4

system or the complexity of generated labels. We propose the HandsOff framework,5

which is capable of producing an unlimited number of synthetic images and corre-6

sponding labels after being trained on a small of number of pre-existing labeled7

images. Our framework avoids the practical drawbacks of similar frameworks8

while retaining the ability to generate rich pixel-wise labels, such as segmentation9

masks. This capability is achieved by unifying the field of GAN inversion with10

synthetic dataset generation, providing a new application for GAN inversion tech-11

niques. We demonstrate the efficacy of our framework on semantic segmentation12

tasks by generating labeled image datasets, and training and evaluating the perfor-13

mance of a downstream task. Our method achieves state-of-the-art performance in14

synthetic data trained semantic segmentation on both the CelebAMask-HQ dataset15

and Car-Parts-Segmentation dataset, and produces high quality segmentations16

in both domains. In addition, our framework uses significantly fewer computa-17

tional resources than prior work, demonstrating the supremacy of our approach in18

performance, annotation, and computation.19

1 Introduction20

The strong empirical performance of modern machine learning models has been enabled, in large part,21

by vast quantities of hand labeled data. Labeling massive datasets, such as ImageNet [1], requires a22

large time and cost investment. In contrast, collecting large quantities of unlabeled data is relatively23

easy. As a result, large quantities of unlabeled data exist alongside a small number of existing labeled24

images in many domains [1–3]25

Recently, generative adversarial networks (GANs) [4–6], such as StyleGAN [7] and its variants26

[8–10], have demonstrated an ability to generate highly realistic images in numerous domains.27

Remarkably, the latent space of these networks form rich representations of images in a disentangled28

manner [11–13], which can be utilized to edit or remove complex semantic attributes in generated29

images. The ability to identify semantically meaningful parts of generated images in the latent30

space suggests that such representations could be used to generate pixel-level labels. This capability,31

coupled with GANs’ ability to generate vast troves of high quality images, could serve as the basis32

for generating synthetic image datasets.33

In this work, we propose the HandsOff dataset generating framework, which is capable of producing34

synthetic images with corresponding labels. HandsOff leverages the expressive power of the GAN35

latent space, the existence of high quality labeled images, and recent advances in the field of GAN36
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Figure 1: The HandsOff framework. GAN inversion is used to obtain training image latent codes wi, which are
then used to form hypercolumn representations S↑

i . The label generator is then trained with the hypercolumn
representations and original labels. To generate datasets, the trained label generator is used in conjunction with a
StyleGAN2 generator to produce image-label pairs.

inversion. We empirically validate the power of our framework in two domains: faces and cars.37

Furthermore, we explore directions for making the framework more computationally lightweight.38

2 Related work39

Our work is built on recent advances in GANs [4], which consist of a generator that synthesizes new40

images, and a discriminator that discerns between real and generated images. Specifically, we utilize41

the popular StyleGAN2 architecture [8], which synthesizes images by passing randomly sampled42

inputs through a series of style blocks. StyleGAN2 is known for its numerous latent spaces, such as43

the Z,W,W+, and S spaces. See [14] for a more detailed discussion.44

GAN inversion is the process of mapping a real image onto the latent space of a GAN. The myriad of45

inversion techniques range from encoder-based approaches [15–18], which utilize trained encoders46

to map images directly to the latent space, to optimization-based approaches [19, 12, 13], which47

directly optimize an image similarity based loss (e.g., LPIPS [20]) to obtain the latent code. Some48

GAN inversion methods modify aspects of the generator, such as weights or noise injection values, to49

increase image reconstruction quality. In our work, we exclusively use inversion methods that do not50

modify the generator, since the generator must remain unperturbed to generate new images from the51

original data distribution. We choose to invert images to the W+ space by learning a different latent52

vector corresponding to each of the generator’s style blocks. As noted in [14], the W+ space is more53

expressive and leads to higher quality reconstructed images. We primarily utilize encoder methods54

to invert images, and use optimization methods to refine the encoder output in settings where finer55

details are not preserved.56

Numerous approaches utilize GANs to generate synthetic datasets [21–27], typically in the zero-shot57

learning setting. We build upon DatasetGAN [28], which trains a label generator using representations58

of an image formed from the GAN latent code. However, a considerable drawback of this framework59

is that it requires manual annotation of GAN generated images. This is extremely burdensome, as60

new annotations are required for every new domain in which a user wishes to synthesize datasets.61

Furthermore, if the labeling paradigm changes, and the original labels cannot be directly mapped62

to the new labels, then additional annotations are again required. Acquiring additional labels is63

inconvenient, especially if labels already exist. EditGAN [29], a follow-up work to DatasetGAN,64

hints that such a framework is possible. However, their focus is primarily on image editing, whereas65

the HandsOff framework fully fleshes out the idea of unifying GAN inversion and dataset generation.66

3 The HandsOff framework67

The HandsOff framework, shown in Figure 1, builds upon the DatasetGAN framework by introducing68

the ability to generate labeled synthetic data from existing labeled images. We use the term “label”69

generically to emphasize that our approach applies broadly to label types such as segmentation70

masks, keypoints, or any other pixel-level label. In our experiments, we focus on generating semantic71

segmentation masks, a widely used and particularly resource intensive annotation to collect in bulk.72
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Figure 2: Construction of hypercolumns. Each intermediate style block output is upsampled to full image
resolution and concatenated, resulting in a pixel-wise hypercolumn which can be fed into the label generator.

We utilize a frozen, pre-trained StyleGAN2 generator as the image generating backbone of the73

framework. In order to generate labels, we pass the images’ latent codes through a label generator74

that exploits the code’s unique semantic structure to efficiently generate high quality labels. Our75

framework crucially departs from DatasetGAN’s during training. Rather than generating new latent76

codes and manually annotating their corresponding images to train the label generator, we instead77

use GAN inversion to obtain the latent codes corresponding to already labeled training images.78

Specifically, assume we have Nt images X1, . . . , XNt
with corresponding labels y1, . . . , yNt

. After79

passing these images through a GAN inverter, we obtain latent codes w1, . . . , wNt
, which are used to80

form what we call the hypercolumn representations S↑
1 , . . . , S

↑
Nt

. The label generator is then trained81

on the {(S↑
i , yi)}

Nt
i=1 pairs.82

3.1 GAN inversion83

The key step in the HandsOff framework is to employ GAN inversion in a new application area:84

dataset generation. By utilizing GAN inversion in dataset generation, we no longer require manual85

annotation of GAN generated images. Instead, a small number of pre-existing labels can be used to86

generate massive synthetic datasets. By using pre-existing labels, practitioners not only avoid the87

cost of acquiring labels, but also avoid the prerequisite of maintaining annotation workstreams in88

their machine learning pipelines.89

One requirement of the HandsOff framework places on GAN inversion techniques is preserving the90

generators’ original weights. This requirement ensures that the generator produces new images from91

the data distribution of the domain of interest. In our experiments, we utilize ReStyle [16], but we92

emphasize that our framework is amenable to any GAN inverter that does not modify the generator93

weights.94

In settings where finer details are not preserved with ReStyle, we further refine the latent code95

obtained from ReStyle by solving a regularized optimization problem, similar to approaches in96

[29, 30]. Our use of optimization-based approaches is justified despite their slower inference times97

because GAN inversion is only performed once at the beginning on a small number of training images.98

In particular, let G be a frozen, pre-trained StyleGAN2 generator, X be the image to be inverted, and99

w(r) be the latent code obtained by running ReStyle on X . We refine w(r) by solving the following100

optimization problem:101

min
w

LLPIPS(X,G(w)) + λℓ2 · ∥X −G(w)∥22 + λreg · ∥w − w(r)∥22. (1)
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(a) Visualization of inverting real face images (row
1) with ReStyle. The reconstructed images (row 2)
align well semantically with the original segmen-
tation masks (row 3), as shown in row 4.

(b) Visualization of reconstruction quality before (row 2)
and after (row 3) optimization refinement. Red circles indi-
cate finer details that were improved to align better with the
original image (row 1).

Figure 3: Visualization of image reconstruction quality for faces and car domains.

Above, LLPIPS is the LPIPS loss [20] and ∥·∥2 is the ℓ2 norm. In practice, (1) is a highly non-convex102

problem and using a set number of gradient descent iterations significantly refines the latent code.103

This refinement approach generalizes beyond ReStyle – any encoder output can be refined by (1).104

3.2 Hypercolumn representation105

Within the StyleGAN2 generator, the latent code w is used to modulate convolution weights in106

intermediate style blocks, which progressively grow an input to the final output image. For a 1024107

× 1024 resolution image, there are L = 18 style blocks. We take the intermediate output of these108

style blocks, upsample them channel-wise to the resolution of the full image, then concatentate109

each upsampled intermediate output channel-wise to obtain pixel-wise hypercolumns, similar to the110

approach in [28]. We denote the hypercolumn representation of the image as S↑, with each pixel j111

now having a hypercolumn S↑[j] of dimension C. This process is shown in Figure 2.112

In practice, we cap the generated image resolution to 512 × 512, and downsample intermediate113

outputs from the 1024 × 1024 layers, as well as the original image. This is done for memory114

considerations when storing and training with these hypercolumn representations, as the dimension115

of each of the hypercolumns is relatively high (C = 6080 for 1024×1024 images). In Section 4.3,116

we explore using only a subset of the channels from the intermediate output in order to form the117

hypercolumn representation to alleviate these memory burdens.118

3.3 Label generator119

The label generator exploits the semantically rich latent space of the generator to efficiently produce120

high quality labels for generated images. Because the latent codes already map to semantically121

meaningful parts of generated images, complex vision models are not necessary to generate labels.122

Specifically, we utilize an ensemble of M MLPs. The MLPs operate on a pixel-level, mapping a123

pixel’s hypercolumn to a label. To generate a label for a synthetic image, we pass the hypercolumn124

formed by latent code w through the M MLPs, and aggregate the outputs to produce a lebel.125

Specifically, in the semantic segmentation setting with K parts, the MLP performs pixel-wise126

classification, mapping pixel j’s hypercolumn S↑[j] to a label k ∈ {1, . . . ,K}.127

The M MLPs are trained using a small number (∼50) of pre-existing labeled images with a cross-128

entropy loss. In Section 4.3, we explore modifications to the label generating architecture that result129

in significant performance gains. We further experiment with reducing the number of MLPs in the130

ensemble in Appendix C.131

3.4 Downstream task132

In order to benchmark the quality of our generated datasets, we quantify the downstream performance133

of models trained exclusively on our datasets. After training a network on a generated dataset, we134

evaluate its performance on a hold out test set of real images with human annotations. We refer to this135

process as the downstream task and the trained model as the downstream model. Prior to training the136
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Table 1: Experimental results in face and car domains for semantic segmentation, reported in mIOU. Moving
from 16 to 50 training images in HandsOff avoids the need to manually annotate 34 GAN generated images.
We are unable to compare against DatasetGAN in the car domain because the labeling paradigm used to train
DatasetGAN cannot be converted to the labeling paradigm in the Car-Part-Segmentation dataset.

DatasetGAN
16 train

EditGAN
16 train

EditGAN (Encoder only)
16 train HandsOff (Ours)

Faces 0.7013 0.7244 × 0.7696 (16 train)
0.7748 (50 train)

Cars N/A 0.6023 0.5368 0.6222 (16 train)
0.6591 (50 train)

downstream network, we follow the approach of [28, 31], and filter out the top 10% most uncertain137

images according to Shannon-Jenson divergence [32, 33].138

4 Experimental results139

In this section, we present qualitative results in GAN inversion, and downstream task performance in140

the car and face domains. For faces, we utilize segmentation masks from CelebAMask-HQ [3], and141

collapse the original 19 classes into 8 classes. For cars, we use the Car-Parts-Segmentation dataset142

[34], and collapse the original 19 classes into 12 classes. Details about class collapse are described in143

Appendix A.144

4.1 GAN inversion images and original segmentation mask alignment145

The underlying assumption of the HandsOff framework is that the semantic features in the recon-146

structed images align well with the segmentation masks. Should the reconstructed semantic features147

not align well, we would essentially be training the label generator with corrupted representations.148

Therefore, a crucial first step is verifying the fidelity of image reconstructions.149

In the face domain, we utilize ReStyle for GAN inversion. As seen in Figure 3a, the reconstructed150

images from the latent codes obtained by ReStyle align very well with the semantic segmentation151

masks from CelebAMask-HQ. In the car domain, we highlight the power of our latent code refinement152

scheme, presented in Equation 1. ReStyle is unable to exactly preserve smaller details, such as the153

shape of headlights or the presence of a sunroof, as shown in the first row of Figure 3b. As a result,154

we refine the ReStyle output with 500 iterations of (1). As seen in the second row of Figure 3b, the155

optimization program is able to fine-tune the mis-aligned details, highlighted in the red circles.156

4.2 Downstream task performance157

We now discuss the performance of the HandsOff framework on the downstream task. In particular,158

we generate 10000 synthetic images and segmentation masks, filter out the top 10% most uncertain159

images, and train DeepLabV3 for 20 epochs with the 9000 remaining images. Examples of generated160

images and segmentation masks for the face domain can be found in Figure 4. For HandsOff, we161

utilize M = 10 MLPs in the label generating branch and report the best performing result among the162

combinations of network layer widths experimented with later on in Section 4.3.163

Figure 4: Examples of faces and their corresponding segmentation masks generated from the HandsOff
framework trained on 50 images with non-collapsed classes. We do not perform class collapse here to highlight
the level of detail that the label generator is able to achieve.
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(a) Comparable performance is achieved with a 42%
reduction in hypercolumn dimension. This reduction
decreases the amount of memory used in training.

(b) Increasing layer widths results in relatively sizable
performance gains, with the best performance occur-
ring with intermediate layer widths of 512 and 256.

Figure 5: Framework ablations for hypercolumn dimension (left) and layer widths (right).

For faces, we split the 30000 images in CelebAMask-HQ into 3 sets: 50 images for training the label164

generator, 450 images for validation, and 29500 images for testing. For cars, we retain the original165

train (400 images) and test (100 images) splits from the Car-Parts-Segmentation dataset, using 20166

images from the test set for validation. For both domains, we report mIOU of the downstream network167

when trained on images generated from the HandsOff, DatasetGAN, and EditGAN frameworks.168

As seen in Table 1, we achieve state-of-the-art performance in synthetic data trained semantic169

segmentation in both the face and car domains. In particular, for faces, we highlight that increasing170

the number of training examples from 16 to 50 results in a sizable performance increase. Within the171

DatasetGAN framework, this would require manual annotation of 34 more images, a step that is not172

required in the HandsOff framework. Note that we are unable to test the performance of EditGAN173

(Encoder only) because the pre-trained EditGAN encoder weights were not publicly released.174

In the car domain, the optimization based refinement of the ReStyle output results in a sizable175

performance increase, highlighting the importance of strong alignment of reconstructed images with176

the original segmentation masks. Furthermore, we are unable to run the DatasetGAN framework177

with the Car-Part-Segmentation labels, because the original labeling paradigm used in training the178

DatasetGAN framework in the car domain cannot be converted to the Car-Part-Segmentation labeling179

paradigm. This highlights a key drawback of DatasetGAN, as discussed in Section 2.180

4.3 Practical modifications to HandsOff181

We first experiment with keeping only a subset of the channels from the style block intermediate182

outputs from the lower resolution layers. In the StyleGAN2 generator, the first 10 style block outputs183

(which range from 4×4 to 128×128 resolutions) each contain 512 channels, comprising 5120 of the184

6080 total channels. We quantify the effect of keeping zero or the first 64, 128, and 256 channels on185

the downstream task performance in the face domain. As shown in Figure 5a, while utilizing only186

higher resolution layers degrades performance considerably, we can remove 256 of the 512 channels187

for the first 10 style blocks with very minimal loss in performance. This results in a hypercolumn188

dimension 3520, which is a 42% reduction compared to the original dimension of 6080.189

Finally, we investigate whether network layer widths impact downstream performance. The original190

DatasetGAN framework utilizes 3-layer MLPs with intermediate dimensions of 128 and 32. We191

explore 7 additional combinations of layer widths, as highlighted in Figure 5b. Generally, downstream192

performance increases with increasing network widths.193

5 Discussion194

We present the HandsOff framework, which is capable of producing high quality labeled synthetic195

datasets without requiring further annotation of images. We achieve state-of-the-art performance on196

downstream tasks in this setting, and experiment with ways of making the framework more practical197

from an implementation standpoint. While we focus primarily on generating semantic segmentation198

datasets, nothing in this framework precludes generation of continuous pixel-wise labels, such as199

depth maps which we plan to explore in future work.200
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Figure 6: Examples of generated images with poor labels. These often contain components not seen
in the training data (hats, multiple humans, children), suggesting that the distribution of parts in the
training data has a noticeable impact on the generated labels.

Figure 7: Downstream performance seems fairly robust to the number of MLPs in the label generator. Using
fewer MLPs results in a decrease in time needed to train the framework.

A Dataset details300

In our experiments, we collapse the original labels in each dataset in a smaller number of labeled301

parts. For CelebAMask-HQ dataset, we remove any distinction between left/right in a number of302

parts (e.g., ears, eyes, eyebrows). Furthermore, we form one mouth part consisting of upper/lower303

lips and mouth. Finally, we collapse all accessories and clothing into background.304

For the Car-Parts-Segmentation dataset, we remove any distinction between left/right and front/back305

for parts such as doors, lights, bumpers, and mirrors. We also merge trunks and tailgates to be the306

same class.307

B Examples of failure cases of generated images and labels308

In this section, we highlight failure cases of generated labeled images. These images typically include309

components not included in the training data, such as humans with hats/hoods, multiple humans, and310

babies. Exploration of how including more edge cases in the training data affects generated label311

quality is an interesting direction of future work.312

C Number of MLPs ablation313

Because training an ensemble of classifiers is timely, we experiment with utilizing fewer MLPs. We314

train the 10 MLPs, then from the 10 trained MLPs, we use 1, 3, 5, 7, and 10 MLPs to generate labels.315

As seen in Figure 7, using only 1 network results in a performance drop, but using anywhere from 3316

to 7 MLPs results in performance meeting or even exceeding the performance of using all 10 MLPs.317

This implies that there is diminishing returns in using more MLPs, in that simply using any M > 1318

achieves (or even surpasses) the robustness benefits of using 10 MLPs.319
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