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Abstract

Recently developed quasi-Bayesian (QB) methods [29] proposed a stimulating
change of paradigm in Bayesian computation by directly constructing the Bayesian
predictive distribution through recursion, removing the need for expensive compu-
tations involved in sampling the Bayesian posterior distribution. This has proved
to be data-efficient for univariate predictions, however, existing constructions for
higher dimensional densities are only possible by relying on restrictive assumptions
on the model’s multivariate structure. Here, we propose a wholly different ap-
proach to extend Quasi-Bayesian prediction to high dimensions through the use of
Sklar’s theorem, by decomposing the predictive distribution into one-dimensional
predictive marginals and a high-dimensional copula. We use the efficient recursive
QB construction for the one-dimensional marginals and model the dependence
using highly expressive vine copulas. Further, we tune hyperparameters using
robust divergences (eg. energy score) and show that our proposed Quasi-Bayesian
Vine (QB-Vine) is a fully non-parametric density estimator with an analytical form
and convergence rate independent of the dimension of the data in some situations.
Our experiments illustrate that the QB-Vine is appropriate for high dimensional
distributions (∼64), needs very few samples to train (∼200) and outperforms state-
of-the-art methods with analytical forms for density estimation and supervised
tasks by a considerable margin.

1 Introduction

The estimation of joint densities is a cornerstone of machine learning as a looking glass into the
underlying data-generating process of multivariate data. Methods that support explicit density
evaluation are crucial in probabilistic modelling, with applications in variational methods [58, 85],
Importance Sampling [2, 67], Sequential Monte Carlo [41], Markov Chain Monte Carlo (MCMC)
[92, 49] and simulation-based inference [81, 62]. A prominent example are Normalising Flows (NF)
[80, 24, 82], leveraging deep networks with invertible transformations for analytical expressions and
sampling. Despite impressive performances, they require meticulous manual hyperparameter tuning
and large amounts of data to train. Bayesian methods are another attractive approach for analytical
density modelling where the central object of interest is the predictive density, with the Dirichlet
Process Mixture Model (DPMM) [46] as the canonical nonparametric choice. Similar to kernel
density estimation, the DPMM can be interpreted as an infinite mixture of densities. It is composed
of a density called a kernel, with a fixed parametric form, and of a mixing density responsible for
assigning those parameters. The specification of this kernel and mixing density is thus important
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as they regulate the expressivity of a DPMM. However, the computation of the DPMM’s predictive
density is laborious as it relies on expensive MCMC methods scaling poorly to high-dimensions1.

Recently, [29] proposed an appealing shift in Bayesian methods through the efficient constructions of
Quasi-Bayesian (QB) sequences of predictive densities using only recursion, thereby circumventing
the need for MCMC in Bayesian inference, and inspiring an offspring of works utilising this method-
ology [28, 59, 35, 26, 99, 69, 101]. The seminal univariate Recursive Bayesian Predictive (R-BP)
[43], its multivariate (Rd-BP) extension [29] and the AutoRegressive Bayesian Predictive (AR-BP)
[35] are all QB models targeting the predictive mean of the DPMM, with an analytical recursive form
driven by bivariate copula updates. Notably, the AR-BP demonstrated superior density estimation
capabilities compared to a suite of competitors on varied supervised and unsupervised datasets, is
orders of magnitude faster than standard Bayesian methods and is data-efficient, i.e. does not require
large amounts of training data to be effective.

In multivariate QB predictives, to derive analytical expressions, it is necessary to enforce assumptions
on the DPMM kernel structure. The kernel of the Rd-BP is set to be independent across dimensions,
where this strong assumption is too constraining for more complex data. This is relaxed in the
AR-BP through an autoregressive form of the kernel, where each kernel mean is a similarity function
of previous dimensions modelled through a covariance function or a deep autoregressive network,
depending on the complexity of the data. The former relies on a fixed form that is often too simplistic
while the latter loses the appeal of a data-efficient predictive like in the Rd-BP. Here, we posit that
these assumptions, required for obtaining existing recursions, lack the flexibility to model multivariate
data accurately.

In this paper, we introduce the Quasi-Bayesian Vine (QB-Vine) as a more general approach to forming
multivariate QB recursions, utilising a copula decomposition to circumvent restrictive assumptions on
the DPMM kernel. The QB-Vine is obtained by applying Sklar’s theorem [91] to the joint predictive,
thereby dissecting it into univariate marginal predictive densities and a multivariate copula. Marginal
predictives are modelled with the data-efficient univariate R-BP while the multivariate copula is
modelled with a simplified vine copula - a highly flexible copula model suited for high dimensions.
Compared to the sequential constructions of previous work, the QB-Vine is inherently parallelizable
over dimensions instead of sequential. The main contributions of our work are as follows:

• The copula decomposition frees us from the need to assume specific kernel structures of the
DPMM, but preserves the data efficiency of QB methods while making it more effective on
high-dimensional data.

• Under certain assumptions on the true dependence structure within the data, we show that
the QB-Vine attains a convergence rate that is independent of the dimension.

• The above decomposition of the joint density and use of the energy score to tune hyperparam-
eters makes the QB-Vine amenable to efficient parallelisation with significant computational
gains.

Our paper is structured as follows. In Section 2 we introduce Quasi-Bayesian prediction, recapitulating
the R-BP construction. In Section 3 we formulate the Quasi-Bayesian Vine model. We provide a
succinct survey of related work in Section 4 and compare related methods to the QB-Vine in Section 5
on a range of datasets for density estimation, regression, and classification, achieving state-of-the-art
performance with our model. We conclude with a discussion in Section 6.

2 Quasi-Bayesian prediction

Notation. Let p(x) be a multivariate probability density function over X ⊆ Rd, from which we
observe i.i.d. samples DP = {xk}nk=1 ∼ p(x). Similarly, let p1(x1), . . . , pd(xd) be the marginal
densities of p(x), each over (a subset of) R with corresponding i.i.d. samples DP i = {xi

k}nk=1 ∼
pi(xi) for i = 1, . . . , d, and assumed to all be continuous. Further, let P and P 1, . . . , P d be the
respective cumulative distribution functions (cdfs) of the previously mentioned densities, in order of

1For reference, with d the dimensionality of the parameter space, Random Walk Metropolis-Hastings scales
like O(d2) [87], Metropolis-adjusted Langevin algorithm like O(d5/4) [86], and Hamiltonian Monte Carlo like
O(d4/3) [11]
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appearance. Finally, when discussing predictive densities, we will use a subscript, plain for data (e.g.
xn) and in parentheses for functions (e.g. p(n)) to indicate the predictive at step n, distinguishing
them from the superscript kept for dimension, and use bold fonts exclusively for multivariate objects.

Bayesian predictive densities as copula updates. Consider the univariate Bayesian predictive
density p(n) for a future observation x ∈ R given seen i.i.d. data x1:n ∈ Rn with a likelihood f of the
data and a posterior π(n) for the model parameters θ after n observations. By Bayes rule, we have:

p(n)(x|x1:n) =

∫
f(x|θ) · f(xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1)
.

As discovered by [43, 29, 50], multiplying and dividing by the predictive from the previous step
p(n−1), we arrive at

p(n)(x|x1:n) = p(n−1)(x|x1:n−1) ·

Joint density for x, xn︷ ︸︸ ︷∫
f(x|θ) · f(xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1)︸ ︷︷ ︸
Marginal for xn

· p(n−1)(x|x1:n−1)︸ ︷︷ ︸
Marginal for x

= p(n−1)(x|x1:n−1) · c(n)
(
P(n−1)(x), P(n−1)(xn)

)
(1)

which by Sklar’s theorem [91] identifies the involvement of copulas2 in this recursive equation for the
predictive densities. The second term on the right-hand side of (1) is seen to be a symmetric bivariate
copula density function with the property that limn→∞ c(n)(x, xn) = 1 a.s.∀x as a consequence of
the almost sure convergence of p(n) with n [29]. It can be shown that every univariate Bayesian model
can be written in this form [43], and so has a unique copula sequence characterising its predictive
updates by de Finetti’s theorem [20, 45]. The choice of the predictive sequence then corresponds to
an implicit choice of likelihood and prior [10, 33].

Marginal recursive Bayesian predictives. Due to the integration over the posterior density often
being intractable in practice, identifying the update copulas c(n) analytically is generally impossible.
Therefore, [43] propose a nonparametric density estimator termed recursive Bayesian predictive
(R-BP) as a Dirichlet Process Mixture Model (DPMM) inspired recursion emulating (1). They
derive the correct Bayesian update under a DPMM for step 1 and use it for all future steps m > 1
(derivations shown in Appendix B.3). The update copula of the R-BP is a mixture between the
independent and Gaussian copula, thereby deviating from the true (unknown) form of the Bayesian
recursion copulas for a DPMM. For an initial choice of predictive density p(0) and distribution P(0),
the obtained analytical expression for the R-BP recursion has the following predictive density

p(n)(x) = p(n−1)(x) ·
[
(1− αn) + αn · cρ(P(n−1)(x), P(n−1)(xn))

]
(2)

with cρ ∈ [0, 1] being a bivariate Gaussian copula with covariance ρ. The corresponding cdf also
admits an analytical expression as follows

P(n)(x) = (1− αn) · P(n−1)(x) + αnHρ(P(n−1)(x), P(n−1)(xn)). (3)

Here, for Φ the standard univariate Gaussian distribution,

Hρ(u, v) = Φ

(
Φ−1(u)− ρ · Φ−1(v)√

1− ρ2

)
is a conditional Gaussian copula distribution with covariance ρ treated as a hyperparameter and
where αk = (2 − 1

k )
1

k+1 is a sequence of weights converging to 0 (See supplement E of [29] for
a more detailed explanation of the weights). The computational cost is O(n2) for initialising the
recursion by computing P(k)(xk) for x1:n, and O(n) to evaluate the pdf or cdf at a point. This
univariate R-BP model has been shown in [29] (Theorem 5) to converge in total variation to a limiting
distribution P(∞) with density p(∞) termed the martingale posterior, defined in Appendix B, which
is a quasi-Bayesian object describing current uncertainty [29, 31, 50, 8, 33]. [43] shows that the

2For an introduction to copulas, see Appendix A, [25, 40].
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R-BP converges to the true density in the Kullback-Leibler distance. The recursive formulation of the
R-BP with an analytical form ensures fast updates of predictives whilst the use of copulas bypasses
the need to evaluate a normalising constant (as is the case in Newton’s algorithm, a similar recursion
for a DPMM’s predictive [75, 74]). Consequently, the R-BP is free from the reliance on MCMC to
approximate a posterior density, making it much faster than regular DPMMs. While this formulation
does not correspond to a Bayesian model, as argued by [7, 10, 29, 50], if the recursive updates
are conditionally identically distributed (as is the case for the recursion of (3)), they still exhibit
desirable Bayesian characteristics such as coherence, regularization, and asymptotic exchangeability,
motivating the Quasi-Bayesian name as used in [30].

Multivariate recursive Bayesian predictives. An extension to the multivariate case was studied by
[29] and refined by [35] for data with more complex dependence structures. The multivariate DPMM
is formulated as

f(x | G) =

∫
Θ

K(x | θ)dG(θ), with G ∼ DP (c,G0)

where K is a kernel for the observables x ∈ Rd parameterised by θ, similarly to the kernel in kernel
density estimation, and G is called the mixing distribution, upon which a Dirichlet process prior is
placed with base measure G0 and concentration parameter c > 0. To address this shortcoming, [29]
provide a copula-based recursion obtained by assuming K(x|θ) =

∏d
i=1 N (xi|θi, 1) and G0(θ) =∏d

i=1 N (θi|0, τ−1), τ > 0, meaning both the kernel and base measure are assumed independent
across dimensions, lacking the expressivity required to capture dependencies in the data. In [35], the
form of the kernel is relaxed to be autoregressive with K(x|θ) =

∏d
i=1 N (xi|θi(x1:i−1), 1) where

the kernel mean θi : Ri−1 7→ R is dependent on previous dimensions, and the base measure of [31]
is a product of Gaussian Process priors G0(θ) =

∏d
i=1 GP (θi|0, τ−1k) for k : Ri−1 ×Ri−1 7→ R a

covariance function.

Vine copulas as effective models for high dimensions. Vine copulas are a class of copulas that
provide a divide-and-conquer approach to high-dimensional modelling by decomposing the joint
copula density into d(d−1)

2 bivariate copula terms. They are considered among the best current copula
models for density estimation. The main ingredient of a vine copula decomposition is the following
identity as a consequence of Sklar’s theorem [91]:

pa|b(xa|xb) = ca,b(P a(xa), P b(xb)) · pa(xa) (4)
where a, b are subsets of dimensions from {1, . . . , d}. Vine copulas rely on a conditional factorisation
p(x1, . . . , xd) =

∏d
i=1 p

i|1:i−1(xi|x1:i−1) to which they repeatedly apply (4), thereby splitting
the joint density into the d marginal densities and d(d−1)

2 bivariate copulas called pair copulas.
The pair copulas for each i ̸= j ∈ {1, . . . , d}, take as input pairs of conditional distributions
(P i|Sij

(xi|Sij

), P j|Sij

(xj|Sij

)) where Sij ⊆ {1, . . . , d} \ {i, j} ∪ ∅ is decided by the choice of the
vine. A vine copula model thus has the form

c(P 1(x1), . . . , P d(xd)) =
∏d(d−1)/2

i̸=j
cij(P i|Sij

(xi|Sij

), P j|Sij

(xj|Sij

)|Sij). (5)

We notice, that these pair copulas start as unconditional bivariate copulas and later capture higher
orders of multivariate dependence by conditioning on the set S itself. This decomposition is valid
but only unique up to the permutation of indexes. We provide an example of a three-dimensional
vine copula decomposition and an overview in Appendix A.3, referring the reader to [17, 18] for
an introduction. In practice, we use a simplified vine copula model [70, 71] which removes the
conditional dependence of each of the copula cij on Sij . This is an approximation which reduces the
complexity of the model for dependency structure but provides significant computational gains by
reducing the size of the model space. An example simplified vine model in d = 3 is shown below:
c(P 1(x1), P 2(x2), P 3(x3)) = c12(P 1(x1), P 2(x2)) · c13(P 1(x1), P 3(x3)) · c2,3|1(P 2(x2|x1), P 3(x3|x1)).

The number of pair copulas grows quadratically with the dimension, and the number of possible
decompositions is exponential with the dimension, leading to greedy algorithms being used for model
selection, see [21]. The flexibility and efficacy of the vine has been studied in the literature, we refer
to [17, 18, 71–73, 93] among others. In particular, when the simplified vine assumption is true, [70]
provides a dimension-independent convergence rate making simplified vine copulas greatly appealing
for high-dimensional models.
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3 Quasi-Bayesian Vine prediction

We propose the Quasi-Bayesian Vine (QB-Vine) for efficiently modelling a high-dimensional pre-
dictive density p(n) (and distribution P(n)). The efficiency is achieved by adapting Sklar’s theorem
([91], see Appendix A) to split the joint predictive into predictive marginals for each dimension and a
high-dimensional copula:
Theorem 3.1. Let P(n) be an d-dimensional predictive distribution function with continuous marginal
predictive distributions P 1

(n), P
2
(n), . . . , P

d
(n). Then there exists a copula distribution C(n) such that

for all x = (x1, x2, . . . , xd) ∈ Rd:

P(n)(x
1, . . . , xd) = C(n)(P

1
(n)(x

1), . . . , P d
(n)(x

d))

And if a probability density function is available:

p(n)(x
1, . . . , xd) = p1(n)(x

1) · . . . · pd(n)(x
d) · c(n)(P 1

(n)(x
1), . . . , P d

(n)(x
d)) (6)

where p1(n)(x
1), . . . , pd(n)(x

d) are the marginal predictive probability density functions, and c(n) :

[0, 1]d → R is the copula probability density function.

By applying the decomposition in (6) to two consecutive predictive densities p(m−1) and p(m), we
obtain a recursive update for joint predictive densities with two parts, of the form:

p(m)(x)

p(m−1)(x)
=

d∏
i=1

{ pi(m)(x
i)

pi(m−1)(x
i)

}
︸ ︷︷ ︸
Independent recursions

·
c(m)

(
P 1
(m)(x

1), . . . , P d
(m)(x

d)
)

c(m−1)

(
P 1
(m−1)(x

1), . . . , P d
(m−1)(x

d)
)

︸ ︷︷ ︸
Implicit recursion on copulas

.

This decomposition fruitfully isolates updates to marginal predictive densities from updates to their
dependence structure, allowing us to model each recursion separately; the marginal predictives follow
a univariate recursion a la (1) while the copulas are free to follow another recursive form. Particularly:

• As we are only interested in the joint predictive p(n), once marginal predictives are obtained,
we only need to fit a single copula c(n) at step n to recover the joint predictive through (6).

• Unlike [29, 35] where the recursion is done sequentially across dimensions, the QB-Vine
can recurse marginal predictives in parallel by dimension.

• The model’s dependence is not constrained by assumptions on the DPMM’s form, instead,
the QB-Vine is free to fit any copula that best matches the dependence of the data.

Marginal predictive density estimation with the R-BP. We model marginal predictive densities
pi(n)(xi) and distributions P i

(n)(xi), ∀i = 1, . . . , d independently between dimensions. We use the
univariate R-BP approach described in Section 2 to recursively obtain the analytical expression for
both. For each dimension separately, starting with an initial density pi(0) and distribution P i

(0), we
follow the updates (2) for the density and (3) for the distribution.

Simplified vine copulas for high-dimensional dependence. After estimating marginal predictives,
we model the joint density of

(
u1 := P 1

(n)(x
1), . . . , ud := P d

(n)(x
d)
)

with a multivariate copula.
We consider a highly flexible simplified vine copula, found in Equation (5), which decomposes the
joint copula density c(u1, . . . , ud) into d(d−1)

2 bivariate copulas cij of the cdfs from dimensions i
and j (possibly conditioned on additional dimensions) to capture the dependence structure of x. For
the bivariate pair-copulas cij , we use a nonparametric Kernel Density Estimator (KDE)3. Thus, each
cij becomes a two-dimensional KDE copula with the following expression:

cij(u, v) =

∑n
k=1 ϕ

(
Φ−1(u)− Φ−1(ui

k); 0, b
)
· ϕ
(
Φ−1(v)− Φ−1(vjk); 0, b

)
ϕ
(
Φ−1(u); 0, b

)
· ϕ
(
Φ−1(v); 0, b

)
where ϕ(.; 0, b) is the pdf of a normal with mean 0 and variance b, Φ−1 is the inverse standard normal
cdf. Samples {(ui

k, v
j
k)}nk=1 are easily obtained by iteratively fitting KDE pair copulas on observed

samples {(u1
k, . . . , u

d
k)}nk=1 [17].

3For further detail on KDE-based vine copulas, see Appendices A.2, A.3 and [70, 71].
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Algorithm 1 Joint, marginal, and copula density estimation with the Quasi-Bayesian Vine
Input: train(M,N ′, d), test(N, d), [B1, . . . , Bl], V , J .

Marginals:
1: for i = 1 to d do // Dimension-wise training and evaluation, parallelised
2: repeat
3: for m = 1 to M do // average over permutations, parallelised
4: for n = 1 to N ′ do
5: • Compute vi,m

n := P i,m
(n)

(traini,mn |vi,m
1:(n−1)

) recursively using (3)

6: end for
7: end for
8: • Set P i

(N′+1)
(·) = ΣM

m=1P
i,m

(N′+1)
(·|vi,m

1:N′ )/M

9: • Compute the energy score SE(xi
1:J∥train

i) for xi
1:J ∼ P i

(N′+1)
(·), using (9)

10: • Update ρi based on SE

11: until convergence of ρi

12: for n = 1 to N ′ do
13: • Evaluate P i

(N′+1)
({traini, testi}) recursively using (3)

14: • Evaluate pi
(N′+1)

({traini, testi}) recursively using (2)

15: end for
16: end for

Copula Fitting:
1: for b = B1 to Bl do // Optimisation, parallelised
2: for v = 1 to N ′ mod(V ) do // cross-validation, parallelised
3: • Fit vine

(
P 1:d

(N′+1)
(train1:d1:V )|b

)
4: • Compute the energy score SE(b) = SE

(
u1:d
1:J∥P

1:d
(N′)(train

1:d
(V +1):N′ )

)
for u1:d

1:J ∼ vine(·|b), using (8)

5: end for
6: end for
7: • Select b∗ = argminb SE(b) for b ∈ [B1, . . . , Bl]

8: • Evaluate v(N′+1)(test) = vine(P 1:d
(N′+1)

(test)|b∗) using (5)

9: • Evaluate p(N′+1)(test) = v(N′+1)(test) ·
∏d

i=1{p
i
(N′+1)

(testi)}

Return: p(N′+1)(test), p
1:d
(N′+1)

(test), P 1:d
(N′+1)

(test), v(N′+1)(test), ρ1:d, b∗

Choice of Hyperparameters. We begin by choosing a Cauchy distribution as the initial predictive
distribution pi(0) and the corresponding density pi(0) ∀i = 1, . . . , d, with details provided in Appendix
E. The hyperparameter ρ for the R-BP recursion is assumed different for each marginal predictive (i.e.
ρd). Unlike previous R-BP works [43, 29, 35], the QB-Vine minimize the energy score to select ρd
rather than the log-score, both of which are strictly proper scoring rules (see Appendix C and [78]) and
define statistical divergences. This choice was motivated by the robustness properties of the energy
score [77]. The energy score is computed between observations and J = 100 predictive samples from
our marginal models conditional on previously observed data. As the R-BP is sensitive to the ordering
of the data, we follow [29, 35] by averaging the resulting R-BP marginal over M = 10 permutations
of the data (see [97, 22] for a discussion regarding the need of averaging over permutations).

We assume a same variance parameter b for all the KDE pair copula estimators in the simplified vine
and select it using 10-fold cross-validation, in a data-dependent manner by minimizing the energy
score between observations and J=100 copula samples. The assumption of a common bandwidth b
is motivated by mapping all pair copulas to a Gaussian space, which results in a common distance
used on the latent pair copula spaces. Another hyperparameter is the specific vine decomposition
(the grouping of dimensions in (5), see Appendix A.3) for which we use a regular vine structure [79],
selecting the best pair-copula decomposition with a modified Bayesian Information Criterion suited
for vines [72].

We include an algorithmic description for estimating the marginal density as well as the copula
with the QB-Vine in Algorithm 1, where M is the number of permutations, N ′ and N the train and
test sizes, d the dimension of the data, [B1, . . . , Bl] the copula variances considered for b, V the
cross-validation size, and J the sample size for computing the energy score.

Computational benefits of the QB-Vine. Optimising the energy score instead of the log-score,
together with the copula decomposition, provides us with some significant computational gains.
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Firstly, as the energy score is a sample-based metric, we compute it through efficient univariate
inverse probability sampling of P i

(n). Thus, we only recurse cdfs P i
(n) during training, thereby

halving the time to tune hyper-parameters compared to using the log-score which requires densities
pi(n) on top of cdfs P i

(n) in (2). Secondly, Sklar’s theorem implies the independence of marginal
densities in the QB-Vine, allowing us to model them in parallel, reducing the cost to that of a single
R-BP, i.e. constant with d. Finally, the vine hyperparameter b is selected with a grid search using
cross-validation, and parallelised across the grid and across cross-validation folds, each having the
cost of a single vine.

Properties of the Quasi-Bayesian Vine. To quantify the approximation of the QB-Vine, we provide
the following stochastic boundedness [12] result for univariate R-BP distributions with respect to
the limiting martingale posterior P(∞) (see [29] and Appendix B). We note P(∞) is the univariate
martingale posterior of the R-BP. The multivariate martingale posterior of the QB-Vine is not used in
our results, but we discuss its properties, including a martingale condition, in Appendix B.2.

Lemma 3.2. (R-BP predictive distribution convergence) The error of the distribution function
P(n)(x) in (3) is stochastically bounded with

sup
x∈X

∣∣P(∞)(x)− P(n)(x)
∣∣ = Op

(
n−1/2

)
.

Appendix D.1 gives a proof. In comparison to univariate KDE with a mean-square optimal bandwidth
bn = O(n−1/5), which converges at a rate Oa.s.(n

−2/5
√

ln(n)), the marginal R-BP has a better
rate with sample size. In what follows, we assume that the true copula is a simplified vine of which
we know the decomposition (a standard assumption in the vine copula literature [70, 18, 93]). We
strengthen marginal guarantees with the theory on vine copulas to obtain the following convergence
result for the estimate of the copula density. In the statement of the theorem, we consider marginal
distributions {P i

(∞)}
d
i=1 and {P i

(n)}
d
i=1 are implicitly applied to x for respective copulas.

Theorem 3.3. (Convergence of Quasi-Bayesian Vine) Let c(∞)(u) be the copula of {P i
(∞)(x

i)}di=1

and let c(n)(u) be the copula of {P i
(n)(x

i)}di=1. Assuming that both copulas are simplified vine
copulas with the same permutation of indexes in the decomposition of (5), the estimation error is
stochastically bounded ∀x ∈ Rd with

|c(∞)(x)− c(n)(x)| = Op(n
−r)

where n−r is the convergence rate of the KDE pair-copula.

We provide a proof in Appendix D.2. For a bivariate KDE pair-copula estimator with optimal
bandwidth bn = O

(
n−1/6

)
, we obtain n−r = n−1/3 [70]. From [95], we note the optimal

convergence rate of a nonparametric estimator is n−q/(2q+q) where q is the number of times the
estimator is differentiable. Therefore, as d increases, we expect large benefits from using a vine copula
decomposition for the QB-Vine. When the simplifying assumption does not hold, the simplified vine
copula converges to a partial vine approximation of the true copula, as defined in [93]. Together, these
two results guarantee accurate samples from the QB-Vine by inverse probability sampling arguments.
By Theorem 3.3, the copula c(n) ensures samples u = (u1, . . . , ud) on the [0, 1]d hypercube have
a dependence structure representative of the data. Then, marginal distributions {pi(n)}

d
i=1 recover

dependent samples x ∈ Rd by evaluating the inverse of the distribution at ui dimension-wise.

Adapting the QB-Vine for Regression/classification tasks. Our framework can accommodate
regression and classification tasks in addition to density estimation by rewriting the conditional
density as following:

p(y|x) = p(y,x)

p(x)
=

py(y) ·
∏d

i=1

{
pi(xi)

}
· c(y, x1, . . . , xd)∏d

i=1

{
pi(xi)

}
· c(x1, . . . , xd)

=
c(y, x1, . . . , xd) · py(y)

c(x1, . . . , xd)
. (7)

The estimation of (7) is comprised of estimating the d + 1 marginals for y, x1, . . . , xd and the
two copulas c(y,x) and c(x). We specify separate ρ across marginal densities as well as separate
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bandwidths b for the two copulas, to be estimated as in Algorithm 1. We note that for a copula
decomposition to be unique, we require that the marginals involved be continuous. This assumption
is violated in the classification for binary outcomes y. As such, we make use of an approximation
that transforms y to a continuous scale by setting negative examples to −10, and positive examples to
10 and adds standard Gaussian noise to all examples, breaking ties on a distribution scale (a common
approach taken in similar contexts [55, 61, 44]). The rationale behind this approximation is that by
setting the two classes far apart on a marginal scale, we ensure no overlaps occur, thereby maintaining
a clear cut-off between the classes on the distribution scale. Indeed, the separating boundary between
the classes on a distribution scale will be the percentile q = T0

T1+T0
where T0 and T1 are the

numbers of negative and positive samples, respectively, in the training set. Consequently, we create
different clusters in the copula [0, 1]d hypercube according to the separation on the distributional
scale, facilitating the identification of patterns in the data. We note that other approaches exist in the
literature [14, 15, 18] for classification with copulas which our framework can be extended to.

4 Related Work

Our method shares similarities with existing work on QB predictive density estimation with analytical
forms. The pivotal works of [75, 74] and the ensuing Predictive Recursion (PR) [37, 65, 66, 97, 63,
36, 64] propose a recursive solution to the same problem but are restrained to low dimensional settings
due to the numerical integration of a normalising constant over a space scaling with d. A sequential
importance sampling strategy for PR is proposed in [23] termed as PRticle Filter. The R-BP of [43]
and the multivariate extensions in [29, 35] also have a recursive form driven by bivariate copula
updates. In the multivariate case, imposing assumptions on the kernel structure leads to a conditional
factorisation of the joint predictive which recovers bivariate copula updates. In [35], an autoregressive
Bayesian predictive (AR-BP) is used, where the dependence is captured by dimension-wise similarity
functions modelled with kernels or deep autoregressive networks. The former relies on assumptions
that might be too simplistic to capture complex data while the latter loses the appeal of a data-efficient
predictive like in the R-BP. The Quasi-Bayesian Vine retains the advantages of the bivariate copula-
based recursion for marginal predictives and circumvents the need for assumptions on the DPMM
kernel. We achieve this via approximating the high-dimensional dependency through a simplified
vine copula which is highly flexible and does not use a deep network to preserve data-efficiency, all
the while maintaining an analytical expression. A relevant benchmark are the NFs of [80, 24] with
analytical densities with a state-of-the-art performance across data types and tasks.

5 Experiments

In this section, we compare our QB-Vine model against competing methods supporting density
evaluation with a closed-form expression. Further details on the experiments are included in Appendix
E. Code is included at https://github.com/Huk-David/QB-Vine.

Density estimation. We evaluate the QB-Vine on density estimation benchmark UCI datasets
[4] with small sample sizes ranging from 89 to 506 and dimensionality varying from 12 to 30,
adding results for the QB-Vine and PRticle Filter to the experiments of [35]. We report the log
predictive score LPS= 1

ntest

∑ntest

k=1 − ln
(
p(ntrain)(xk)

)
on a held-out test dataset of size ntest

comprised of half the samples with the other half used for training, averaging results over five runs
with random partitions each time. We compare the QB-Vine against the following models: Kernel
Density Estimation [83], DPMM [84] with a diagonal (Diag) and full (Full) covariance matrix for
each mixture component, MAF [80], RQ-NSF [24] as well as the closely related PRticle Filter [23],
R-BP [29] and AR-BP [35]. For the last two Bayesian predictive models, we add a subscript d to
indicate that the ρ hyperparameter possibly differs across dimensions, and the net suffix indicates
a network-based selection of ρ for dimensions. We observe in Table 1 that our QB-Vine method
comfortably outperforms all competitors as the dimension increases, while getting close to the
performance of the best alternative Bayesian predictive models for the lower dimensional WINE
dataset. Our method’s relative performance increases with the dimension of the data, particularly
achieving a much smaller LPS for IONO - the dataset with the largest dimensions and a relatively
small sample size. We accredit this performance to the copula decomposition as that is our main
distinguishing factor from the other Bayesian predictive models.
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Table 1: Average log predictive score (lower is better) with error bars corresponding to two standard
deviations over five runs for density estimation on datasets analysed by [35]. We note that as
dimension increases, the QB-Vine outperforms all benchmarks.

WINE BREAST PARKIN IONO BOSTON
n/d 89/12 97/14 97/16 175/30 506/13

KDE 13.69±0.00 10.45±0.24 12.83±0.27 32.06±0.00 8.34±0.00

DPMM (Diag) 17.46±0.60 16.26±0.71 22.28±0.66 35.30±1.28 7.64±0.09

DPMM (Full) 32.88±0.82 26.67±1.32 39.95±1.56 86.18±10.22 9.45±0.43

MAF 39.60±1.41 10.13±0.40 11.76±0.45 140.09±4.03 56.01±27.74

RQ-NSF 38.34±0.63 26.41±0.57 31.26±0.31 54.49±0.65 −2.20±0.11

PRticle Filter 23.89,±0.93 25.98±1.06 34.79±3.95 79.22±9.87 27.18±3.12

R-BP 13.57±0.04 7.45±0.02 9.15±0.04 21.15±0.04 4.56±0.04

Rd-BP 13.32±0.01 6.12±0.05 7.52±0.05 19.82±0.08 −13.50±0.59

AR-BP 13.45±0.05 6.18±0.05 8.29±0.11 17.16±0.25 −0.45±0.77

ARd-BP 13.22±0.04 6.11±0.04 7.21±0.12 16.48±0.26 −14.75±0.89

ARnet-BP 14.41±0.11 6.87±0.23 8.29±0.17 15.32±0.35 −5.71±0.62

QB-Vine 13.76±0.13 4.67±0.31 4.93±0.20 −16.08±2.12 −31.04±1.02
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Figure 1: Density estimation on the Digits data
(n = 1797, d = 64) with reduced training sizes for
the QB-Vine against other models fitted on the full
training set. The QB-Vine achieves competitive
performance for training sizes as little as n = 50
and outperforms all competitors once n > 200.

High-dimensional image dataset. We fur-
ther evaluate the QB-Vine on the digits dataset
(n =1797, d=64) as a high-dimensional exam-
ple with a relatively low sample size. The high
contrast between n and d makes the problem
suited for assessing the data efficiency and con-
vergence of the QB-Vine. We compare with
the two NF models as their high model capacity
is a good fit for image data, as well as all the
Bayesian predictive methods of Section 5, from
the study of [35]. We report the average LPS
in bits per dimension (bpd) with standard errors
over fifteen runs with random partitions, using
half the sample size to train models and the other
half to evaluate the LPS. Additionally, we report
the average LPS of the QB-Vine, obtained in
the same way except for the training set size be-
ing reduced (to 30, 50, 100, 200, 300, 400, 500).
Figure 1 depicts the QB-Vine’s performance for
different-sized training sets. When trained on
the full training set, the QB-Vine outperforms all competitors by a considerable margin. Furthermore,
our method is competitive with as little as 50 training samples and outperforms all benchmarks past a
training size of 200, demonstrating its data-efficiency and convergence speed. A complete numerical
table is reported in Appendix E.

Regression and classification. We further demonstrate our method’s effectiveness on super-
vised learning tasks, with three datasets for regression and two datasets for classification, adding
to the study of [35]. For classification, we transform the binary values to continuous ones
to preserve copula assumptions, as detailed in Section 3. We report the conditional LPS =

1
ntest

∑ntest

k=1 − ln
(
p(ntrain)(yk|xk)

)
over a test set of size ntest made up of half the samples with

the conditional estimator trained on the other half of the data. We compare our model against a Gaus-
sian Process [100], a linear Bayesian model (Linear) [68], a one-hidden-layer multilayer perceptron
(MLP), as well the R-BP and AR-BP variants for supervised tasks [29, 35]. The QB-Vine outperforms
competing methods on all datasets except CONCR. We believe the lower performance on CONCR
is due to the high number of samples relative to the dimension, preventing our approach from fully
exploiting the vine copula decomposition. Once again, the performance of the QB-Vine more clearly
exceeds that of competitors as dimensions increase. The QB-Vine has higher standard errors than
other methods (except MLP), which we posit is the consequence of our conditional estimator in
Section 3 being defined as a ratio, inflating the variation in the LPS. However, we highlight that an
overly precise inference is more misleading/dangerous than an overly uncertain one.
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Table 2: Average LPS (lower is better) with error bars corresponding to two standard deviations
over five runs for supervised tasks analysed by [35]. The QB-Vine performs favourably against
benchmarks, with relative performance improving as samples per dimension decrease.

Regression Classification
BOSTON CONCR DIAB IONO PARKIN

n/d 506/13 1,030/8 442/10 351/33 195/22

Linear 0.87±0.03 0.99±0.01 1.07±0.01 0.33±0.01 0.38±0.01

GP 0.42±0.08 0.36±0.02 1.06±0.02 0.30±0.02 0.42±0.02

MLP 1.42±1.01 2.01±0.98 3.32±4.05 0.26±0.05 0.31±0.02

R-BP 0.76±0.09 0.87±0.03 1.05±0.03 0.26±0.01 0.37±0.01

Rd-BP 0.40±0.03 0.42±0.00 1.00±0.02 0.34±0.02 0.27±0.03

AR-BP 0.52±0.13 0.42±0.01 1.06±0.02 0.21±0.02 0.29±0.02

ARd-BP 0.37±0.10 0.39±0.01 0.99±0.02 0.20±0.02 0.28±0.03

ARnet-BP 0.45±0.11 −0.03±0.00 1.41±0.07 0.24±0.04 0.26±0.04

QB-Vine −0.81±1.26 0.54±0.34 0.87±0.20 −1.85±1.16 −0.76±0.28

Scalability of the QB-Vine: In Appendix E.1, we assess the scalability of the QB-Vine, on large
data sizes and dimensions, by fitting Gaussian mixture models with 20 random means and non-
isotropic covariance in dimensions d = 50 to d = 600 with n = 10000 train and test sets. We
compare our model to an RQ-NSF, reporting the LPS as well as the maximum mean discrepancy and
the reverse Kullback–Leibler divergence to assess sample quality, showing superior performance.

6 Discussion

We introduced the Quasi-Bayesian Vine, a joint Bayesian predictive density estimator with an
analytical form and easy to sample from. This extends the existing works on Quasi-Bayesian
predictive densities, by using Sklar’s theorem to decompose the predictive density into predictive
marginals and a copula to model the high-dimensional dependency. This decomposition enables
a two-part estimation procedure, employing Quasi-Bayesian recursive density estimation for the
marginals and fitting a simplified vine copula for the dependence, resulting in a convergence rate
independent of dimension for certain joint densities. We empirically demonstrate the advantage of
QB-Vine on a range of datasets compared to other benchmark methods, showing excellent modeling
capabilities in large dimensions with only a few training data.

However, there is potential for further improvements. The main bottleneck of the QB-Vine is
the simplified vine, both computationally and methodologically. The non-uniqueness of the vine
decomposition resulting in a search over an exponentially large model space during estimation and the
hyperparameter selection of the KDE pair copulas could both lead to misspecified models. Further,
our main assumption is the use of a simplified vine copula which is only an approximation to the true
distribution. While these concerns stem from limited effective copula models for high dimensions
being available, from a practical point of view, a simplified vine offers tractable and fast likelihood
evaluations, and ultimately outperforms competitors as shown in experiments.

Future directions of this work include the incorporation of more effective copula models, or copulas
accommodating different dependence structures [98, 73, 51]. Another exciting direction are develop-
ments of new recursive Quasi-Bayes methods that can be merged into a Quasi-Bayesian Vine model
[33].

Author Contributions: David Huk wrote the code, ran the experiments, derived the proofs and
wrote the paper. Yuanhe Zhang helped write the initial code and the appendix. Ritabrata Dutta
conceptualised the project and David Huk formulated the concrete method. Ritabrata Dutta and Mark
Steel jointly supervised the project and helped to write the paper.
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A Copulas

Copulas are a widely adopted tool in statistics and machine learning for modelling densities, permit-
ting the construction of joint densities in a two-step estimation process. One firstly estimates the
marginal densities as if they were independent of each other, and secondly, models the copula which
accounts for the dependence between dimensions.

Definition 2.1.1 in [48] (Copula) A copula distribution is a multivariate distribution function with
standard uniform univariate marginal distributions, that is, U(0, 1) margins.

This approach is motivated through Sklar’s theorem:
Theorem A.1 (Sklar [91]). Let P be an d-dimensional distribution function with continuous marginal
distributions P 1, P 2, . . . , P d. Then there exists a copula distribution C such that for all x =
(x1, x2, . . . , xd) ∈ Rd:

P(x1, . . . , xd) = C(P 1(x1), . . . , P d(xd))

And if a probability density function (pdf) is available:

p(x1, . . . , xd) = p1(x1) · . . . · pd(xd) · c(P 1(x1), . . . , P d(xd))

where p1(x1), . . . , pd(xd) are the marginal pdfs, and c(P 1(x1), . . . , P d(xd)) is the copula pdf.

If the marginal distributions are absolutely continuous, the copula is unique. Consequently, one can
decompose the estimation problem of learning p(x) by first learning all the marginals {pi}di=1, and in
a second step learning an appropriate copula model c(u1, . . . , ud), where ui := P i(xi), i ∈ {1, . . . d}
are the images of the xi under the cdf of each dimension. By applying cdf transformations marginally,
the copula is agnostic to the differences between dimensions such as axis scaling, and purely focuses
on capturing the dependence structure among them.

Most parametric copula models are only suited for two-dimensional dependence modelling and
greatly suffer from the curse of dimensionality [27, 47]. The Gaussian copula is a popular parametric
choice as it is well-studied and can be fitted quickly even to moderate dimensions [48]. However, it
lacks the desired flexibility to capture more complex dependencies involving multiple dimensions.
Among nonparametric copulas, Kernel Density Estimator (KDE) copulas [34] are commonly used.
They apply an inverse Gaussian distribution to the observed {ui}di=1 to map them to a latent space
and perform regular KDE on the latent density. However, this KDE copula method suffers from the
poor scaling of KDE estimators in higher dimensions. Finally, deep learning copula models remain a
nascent line of research and typically are more computationally expensive and sample-dependent due
to their reliance on large models, with only a handful of candidate solutions such as [60, 56, 53, 3].
As such, current copula models are mostly limited to low to medium-dimensional modelling[54].

A.1 Gaussian copula

A popular parametric copula model is the Gaussian copula. It assumes that the dependence between
dimensions is identical to that of a Gaussian distribution with mean 0 and covariance matrix Σ:

c(u1, . . . , ud) =
Nd(Φ

−1(u1), . . . ,Φ−1(ud);0,Σ)∏d
i=1 N (Φ−1(ui); 0, 1)

.

As such, its only parameters are the off-diagonal entries of the covariance matrix Σ. In the case of
d = 2, there is a single parameter to estimate for the Gaussian copula.

A.2 Gaussian Kernel Density Estimator copulas

As the marginal distribution of a copula is uniform in [0, 1], the support of the copula estimator is
restricted to [0, 1]d and must satisfy the uniform marginal condition. It is fairly difficult to build such
an estimator that fulfills both desiderata with high expressivity. Gaussian Kernel Density Estimation
for copulas [13, 34] is a popular approach for such nonparametric copula models, which models the
copula on a latent Gaussian space. We explain the approach in the following.
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By the inverse sampling theorem, for any R-valued continuous random variable X , applying the
corresponding cumulative distribution function F to X results in F (X) being uniformly distributed
in [0, 1]. Thus, we can transform a uniform random variable into any continuous distribution using its
inverse cumulative distribution function. In the copula estimation stage, samples from the copula
already have uniform marginal distributions, meaning we can apply any inverse distribution F−1 to
each marginal sample value and obtain a corresponding latent marginal distribution. If F−1 is the
inverse standard normal distribution, then the latent distribution for each marginal will be normal and
R-valued with no uniformity restrictions.

Gaussian KDE for copulas applies inverse standard normal distributions to each marginal, resulting in
a latent representation of the samples on a Gaussian space. As such, one can employ regular Gaussian
KDE to estimate the copula density on this latent space. In the case of two-dimensional copulas, the
ensuing estimator has the following expression:

ĉ(u, v) =

∑K
k=1 ϕ

(
Φ−1(u)− Φ−1(uk); 0, b

)
· ϕ
(
Φ−1(v)− Φ−1(vk); 0, b

)
ϕ
(
Φ−1(u); 0, b

)
· ϕ
(
Φ−1(v); 0, b

) ,

where (u, v) and (uk, vk) are both in [0, 1]2,{(uk, vk)}Kk=1 are observed copula samples, and Φ and
ϕ are respectively the Gaussian distribution and density with mean 0 and variance b > 0.

A.3 Vine copulas

A vine copula is an efficient dependency modelling method which decomposes d-dimensional
copula estimation into d(d− 1)/2 bivariate copula estimation via structured conditioning [5]. Here
we illustrate the decomposition by a 3-dimensional copula density cU,V,W for the random vector
(U, V, W ):

cU,V,W (u, v, w) = cU,V (u, v) · cV,W (v, w) · cU,W |V

(
CU |V (u| v), CW |V (w| v)

∣∣∣∣ v) ,

where

• CU,V is the copula of (U, V ), CV,W is the copula of (V, W );

• CU,W |V=v is the copula of (CU |V (U | v), CW |V (W | v)) conditional on V = v;

• CU |V is the conditional distribution of CU,V on V , and CW |V is the conditional distribution
of CV,W on V .

Generally, the distribution of CU,W |V=v will change with different values v and this will make the
model relatively complex. Therefore, it is common to use the simplifying assumption by ignoring the
conditioning of pair copulas and simply model them as unconditional bivariate densities:

cU,V,W (u, v, w) = cU,V (u, v) · cV,W (v, w) · cU,W |V

(
CU |V (u| v), CW |V (w| v)

)
.

The rationale of the simplified assumption is studied in [42]. In this paper, we mainly focus on the
regular vine copula (R-vine) with a simplified assumption. The construction of an R-vine copula has
two basic ingredients: (1) a valid tree structure of all random variables, (2) the choice of family for
bivariate copulas.

Before we introduce the tree structure which is valid to construct a R-vine copula, let us first rigorously
define the random variable of a copula we want to estimate. Suppose U = (U1,U2, ...,Ud) is a
d-dimensional random variable which is distributed as a copula C, then we have that each marginal
random variable Ui is uniformly distributed in [0, 1]-scale. For notational simplicity, we will use
the index of a random variable as its notation instead. Denote T = {T1, ..., Td−1} as a sequence of
(d− 1) trees in terms of Ti = (Vi, Ei). Here we use a set of two nodes to represent the corresponding
edge in Ti, i.e., e = (a, b) if node a and b in Ei are linked. To construct a valid R-vine copula, T
satisfies the following conditions:
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• T1 is a tree with a set of edges E1 and a set of nodes V1 = {1, ..., d};

• Ti is a tree with a set of edges Ei and a set of nodes Vi = V(Ei−1) for i = 2, 3, ..., d − 1,
where V(E) denoted that the pair of nodes which are linked by an edge in E is treated as a
new node.

• If two nodes in Ei+1 are linked by an edge in Vi+1, then they must be linked to one common
node in Ti.

For ∀ e = (a, b) ∈ Ti with i ≥ 2, we define

c(e) = a ∩ b, a(e) = a \ c(e), b(e) = b \ c(e) .

Finally, we rigorously define the R-vine copula as follows.
Definition A.2 (Regular Vine Copulas). A d-dimensional copula C is a regular vine copula if there
exists a tuple (T , C) such that

• T is a regular vine tree sequence with (d− 1) trees;

• C = {Ce : e ∈ Ei, i ∈ [d− 1], Ce is a bivariate copula} is a family of bivariate copulas for
each edge;

• For ∀e ∈ Ei and ∀i ∈ [d− 1], then Ce is corresponding to the copula of
(
a(e), b(e)

)∣∣∣∣ c(e).
Therefore, the density function of R-vine C can be expressed as

c(T ,C)(u1, ..., ud)

=

d−1∏
i=1

∏
e∈Ei

c(a(e),b(e))|c(e)(Ca(e)|c(e)(va(e)|vc(e)), Cb(e)|c(e)(vb(e)|vc(e))) .

Here we illustrate an R-vine copula density in five dimensions where we use different colors for the
pair copulas corresponding to each of the d− 1 = 4 trees.

cT ,C(u1, u2, u3, u4, u5) =c(u1, u2) · c(u1, u3) · c(u2, u4) · c(u3, u5)

·c1,5|3(u1|3, u5|3) · c2,3|1(u2|1, u3|1) · c1,4|2(u1|2, u4|2)

·c2,5|1,3(u2|1,3, u5|1,3) · c3,4|1,2(u3|1,2, u4|1,2)

·c4,5|1,2,3(u4|1,2,3, u5|1,2,3) .

Specifying the tree structure for an R-vine decomposition is essential and plays an important role
in pair-copula estimation through conditioning. An excellent overview is given in [17]. Notably,
an R-vine decomposition is not unique for a given joint copula pdf. An appealing tree selection
algorithm is proposed in [72], where authors derive a modified BIC criterion that prioritizes sparse
trees while being consistent when the dimension d grows at most at the rate of

√
n where n is the

sample size.

B Martingale Posterior Distributions

Here we explain martingale posterior distributions as a justification of the Bayesian approach through
a focus on prediction.

B.1 The Bayesian Choice as a Consequence of Predictive Uncertainty

A common goal in statistics is the inference of a parameter or quantity θ by analysing data in the form
of observations (x1, . . . , xn), n ∈ N. The rationale for learning from data is that each observation
provides information about the underlying process and parameter θ, without which statistical analysis
would be redundant. Indeed, consider a decision-maker basing their decision on their belief about
θ (in an i.i.d. setting). Having observed data (x1, . . . , xn) and given the opportunity to observe
an additional data point xn+1, they would be assumed to accept, as they could refine their beliefs
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on θ. This process of updating one’s beliefs based on data is at the core of the Bayesian approach.
Equipped with an initial guess about the parameter of interest θ captured by the prior π(θ), the goal
is the inference about the distribution of the parameter given observed data (x1, . . . , xn) which is
encoded in the posterior density π(n) (θ|(x1, . . . , xn)).

For the decision-maker to refuse, it would mean that the additional observation has no significant
effect on their belief. This implies, as identified by [29] and [50], that there is a point where additional
observations (xn+1, . . . , xN ) provide no benefit to the knowledge update of θ. Inspecting the
Bayesian posterior in terms of observed data x1:n = (x1, . . . , xn) and possible future observations to
be made xn+1:∞, written as

π(n) (θ|x1:n) =

∫
π(n) (θ, xn+1:∞|x1:n) dxn+1:∞,

one can expand the right-hand integrand by including the predictive density p for future data, obtaining

π(n) (θ|x1:n) =

∫
π(∞) (θ|x1:∞)︸ ︷︷ ︸

Bayes estimate

· p(xn+1:∞|x1:n)︸ ︷︷ ︸
predictive density

dxn+1:∞.

Having rewritten the posterior density in this way, it becomes apparent that the uncertainty in the
value of θ, which is given by the Bayes estimate, is a consequence of the uncertainty surrounding
the imputation of missing observations xn+1:∞ through the predictive. With this insight, unlike the
traditional Bayesian construction of prior-likelihood, [29] proceed to replace the predictive density
p with a predictive mechanism using all available data to impute the missing xn+1:∞ (or at least
impute xn+1:N for a sufficiently large N ), and replace the Bayes estimate π(∞) with an appropriate
functional of the complete data x1:∞. This predictive mechanism used to impute the unobserved data
xn+1:∞ given observed x1:n directly leads to the martingale posterior as the limiting distribution of
functionals when the unobserved data has been imputed, see definition 1 in [29].

B.2 The martingale posterior of the QB-Vine

In [29, 35], the authors are interested in predictive resampling (not considered in this paper for
the QB-Vine), which means to progressively sample from p(n) and using those samples instead
of observations to continue the recursive construction of p(n+1). For this predictive resampling to
make sense (see conditions 1 and 2 in [29]), they show that it is sufficient for the sequence to be
conditionally identically distributed. This condition is in turn shown to be equivalent to the following
martingale condition in [9]:

Theorem B.1. (Theorem 3.1 of [9]). A sequence of random variables X1,X2, . . . is c.i.d. if and only
if its densities p1,p2, . . . are such that for n ≥ 0 and all x ∈ Rd:∫

p(n)(x) · p(n−1)(x
n)dxn = p(n−1)(x).

We show that our QB-Vine construction indeed satisfies this condition. The only assumption is the
ratio of two consecutive vines must be 1, i.e., the dependence structure is constant between predictive
steps. We note that these derivations hold for any marginal recursive construction of the form (2)
and any copula density used for xn, but show it for the QB-Vine here. We interpret the condition
of having the same dependence structure between steps as natural when data is supposed to come
from the same data-generating process, which is indeed the circumstance in which we apply the
QB-Vine. Further, given observations, the best guess of the multivariate copula is given by fitting
it at the last iteration, which is our approach in practice. We write c(i) = v(i) to avoid confusion
with bivariate copulas and denote inputs to v(i) as vectors (P1(x1), . . . , Pd(xd)) = [P i(xi)]. For
clarity, we also write the mixture between the independence and Gaussian copula used in (2)
as
[
(1− αn) + αn · cρ(P(n−1)(x), P(n−1)(xn))

]
= cn(P(n−1)(x

i), P(n−1)(x
i
n)). The proof is as

follows:
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Proof.∫
p(n)(x) · p(n−1)(x

n)dxn

=

∫ d∏
i=1

{p(n−1)(x
i) · cn(P(n−1)(x

i), P(n−1)(x
i
n))} · v(n)([P

i
(n)(x

i)]) · p(n−1)(x
n) dxn

=

d∏
i=1

{p(n−1)(x
i)} · v(n−1)([P

i
(n−1)(x

i)])

·
∫ d∏

i=1

{p(n−1)(x
i
n) · cn(P(n−1)(x

i), P(n−1)(x
i
n))} ·

v(n)([P
i
(n)(x

i)])

v(n−1)([P
i
(n−1)(x

i)])
· v(n−1)([P

i
(n−1)(x

i
n)]) dx

n

=p(n−1)(x)
1

v(n−1)([P
i
(n−1)(x

i)])

∫ d∏
i=1

{cn(P(n−1)(x
i), ui

n)} · v(n)([P
i
(n)(x

i)]) · v(n−1)([u
i
n]) du

n

=p(n−1)(x)
1

v(n−1)([P
i
(n−1)(x

i)])

=

∫ d∏
i=1

{cn(P(n−1)(x
i), ui

n)} · v(n−1)([u
i
n]) · v(n)([(1− αn) · P i

(n−1)(x
i) + α ·H(P i

(n)(x
i)|un)]) du

n

=p(n−1)(x)
v(n)([P

i
(n−1)(x

i)])

v(n−1)([P
i
(n−1)(x

i)])
= p(n−1)(x).

The first equality is applying Sklar on p(n)(x) and using recursion (2) on the ensuing marginal
densities pi(n)(x

i). The second equality is Sklar on p(n−1)(xn). The third step is obtained by the
substitution dui

n = pi(n)(x
i
n)dx. Lastly, we use equation (3) for the cdf inside the copula. Then,

the result follows by noticing that the bivariate copulas and the copula v(n−1)([u
i
n]) integrate to

1 by copula properties (see e.g. the proof of Theorem 6 in [9]), and [(1 − αn) · P i
(n−1)(x

i) + α ·
H(P i

(n)(x
i)|un)] integrates into [P i

(n−1)(x
i)] due to it being a martingale marginally for each i.

Consequently, predictive resampling is also possible with our approach and is as simple as sampling
from the fitted copula, and marginally updating each univariate R-BP. This can be done in parallel
across dimensions, instead of sequentially as in [29, 35], which is computationally appealing and
opens an interesting avenue for future work.

B.3 Constructing a martingale posterior for the DPMM

As explained in Section 2, given a sequence of observations (xi)i≥1 from the data generating process,
the Bayesian approach wants to obtain an infinite sequence of copula densities (ci)i≥1 to recursively
update the Bayesian predictive distribution. However, finding such an infinite sequence of copulas
isn’t feasible in practice and the ensuing copula family is determined by the prior-likelihood pair one
implicitly chooses. For example, from [43], we have the following copula sequences:

• If we select the likelihood and prior as l(y; θ) = θe−θy and π(θ) = e−θ, then

cn(u, vn) =
(n+ 1)[(1− u)−1−1/n(1− vn)

−1−1/n]

n[(1− u)−1/n + (1− vn)−1/n − 1]n+2
,

which is a sequence of Clayton copula [16] with parameter n−1.
• If we select the likelihood and prior as l(y|θ) = ϕ(y; θ, 1) and π(θ) = ϕ(θ; 0, τ−1), then

cn(u, vn) =
ϕ2(Φ

−1(u),Φ−1(vn);0,Σρn
)

ϕ(Φ−1(u); 0, 1)ϕ(Φ−1(vn); 0, 1)
,

where ϕ2 is the pdf of a bivariate normal distribution, ϕ is the pdf of normal distribution, and

Σρn =

[
1 ρn
ρn 1

]
, ρn = (n+ τ)−1 .
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Therefore, we obtain a sequence of Gaussian copulas with parameters {ρn}n≥1. Further,
if we additionally put a conjugate prior on the variance parameter σ2 of the likelihood
l(y|θ) = ϕ(y; θ, σ2), then we will recover a sequence of Student-t copulas.

The issue of model mis-specification naturally arises here due to the selection of prior-likelihood
pair. Fortunately, here we can employ the DPMM which has relatively high flexibility due to its
nonparametric nature.For the DPMM, suppose the first observation x1 arrives, then we can obtain the
first predictive via the updating kernel

k1(x, x1) =
E [fG(x) fG(x1)]

E[fG(x)] · E[fG(x1)]
,

where p0(x) = E[fG(x)]. Then, we can derive the numerator as

E [fG(x) fG(x1)]

=E

 ∞∑
j=1

∞∑
k=1

wj wk ϕ (x; θj , 1)ϕ (x1; θk, 1)



=

(
1− E

[ ∞∑
i=1

w2
i

])
EG0 [ϕ(x; θ, 1)] EG0 [ϕ(x1; θ, 1)]

+E

[ ∞∑
i=1

w2
i

]
EG0

[ϕ(x; θ, 1)ϕ(x1; θ, 1)]

=

(
1− E

[ ∞∑
i=1

w2
i

])
p0(x) p0(x1) + E

[ ∞∑
i=1

w2
i

]
EG0

[ϕ(x; θ, 1)ϕ(x1; θ, 1)] .

The first equality follows from the stick-breaking representation [89] of the DP, we can formulate G
as

G( · ) =

∞∑
i=1

wi δθi( · )

where
wi = vi

∏
j<i

(1− vj), vi
i.i.d.∼ Beta(1, a), θi

i.i.d.∼ G0.

Then, the second equality follows from the condition that
∑∞

i=1 wi = 1 almost surely. Denote
α = E

[∑∞
i=1 w

2
i

]
, then we can write the updating kernel as

k1(x, x1) = (1− α) + α · EG0 [ϕ(x; θ, 1)ϕ(x1; θ, 1)]

p0(x) p0(x1)

= (1− α) + α · ϕ2(Φ
−1(u),Φ−1(v1);0,Σρ)

ϕ(Φ−1(u); 0, 1)ϕ(Φ−1(v1); 0, 1)

= (1− α) + α · cρ(Φ−1(u),Φ−1(v1)) ,

where

• covariance matrix Σρ =

[
1 ρ
ρ 1

]
,

• Φ−1 is the inverse cdf of standard normal distribution,
• u = P0(x), v1 = P0(x1),
• p0( · ) = ϕ( · ; 0, 1 + τ−1),

22



• cρ is a bivariate Gaussian copula density function with the correlation parameter ρ =
1/(1 + τ).

Therefore, we can see that the copula c1(u, v1) for the first updating step is a mixture of independent
copula and Gaussian copula. However, we will lose the tractable form of the copula from the second
updating step. According to [43], instead of deriving the explicit rule for the sequence of copula, we
fix the correlation parameter ρ and set α to be a (0, 1)-valued decreasing sequence (αi)i≥1.

C Strictly Proper Scoring Rules

In probabilistic machine learning, a Scoring Rule (SR) measures the appropriateness of a distribution
P in modelling an observation x ∈ X through a score written as S(P,x). For (hyper) parameter
estimation, suppose we aim to model the underlying distribution of an observation x using a family
of distributions Pθ parametrized by θ, then we can use a SR S to select the suitable θ. If we assume
that x ∼ Q, then we can obtain the expected SR S via taking expectation w.r.t. x as

S(P,Q) = Ex∼Q

[
S(P,x)

]
.

According to [38], we call S strictly proper if S(P,Q) is minimized if and only if P = Q, i.e. for
∀P ∈ P with P ̸= Q such that

S(Q,Q) < S(P,Q) .

Considering our settings of marginal distributions, we have observed data x1:n
i.i.d.∼ P∗, and we aim

to model P∗ using Pθ. More explicitly, we don’t need to use Pθ directly in the expected SR, instead
we normally use its probability density function or samples from this distribution to evaluate. In
general, we optimise

θ∗ = argmin
θ∈Θ

Eθ∈ΘS(Pθ,Q)

= argmin
θ∈Θ

S(Pθ,Q).

Since we do not have the complete population of Q, we use the empirical SR Ŝ instead, i.e.

θ̂∗ = argmin
θ∈Θ

Eθ∈ΘŜ(Pθ,Q) ,

where Ŝ(Pθ,Q) = 1
n

∑n
k=1 S(Pθ,xk). Under mild conditions, it can be proven that θ̂∗ → θ∗

asymptotically in [19]. For any positive definite kernel k( · , · ), the Kernel Score [38] is given by

Sk(Pθ,x) = E[k(Y,Y′)]− 2 · E[k(Y,x)] ,

where Y,Y′ ∼ Pθ. If we set k(x,y) = −||x − y||β2 , then we obtain the energy score which is
strictly proper if EY∼Pθ

||Y||β2 < ∞. The energy Score is defined as

Sβ
E(Pθ,x) = 2 · E||Y − x||β2 − E||Y −Y′||β2 , for β ∈ (0, 2] .

Here YandY′ are i.i.d. samples from Pθ. Practically, given finite samples y1(θ), ...,ym(θ)
i.i.d.∼ Pθ

where y(θ) denotes a sample from Pθ which is a differentiable function of θ, the unbiased estimate
of the energy Score via Monte Carlo approximation is

Ŝβ
E(y1:m(θ),x) =

2

m

m∑
j=1

||yj(θ)− x||β2 − 1

m(m− 1)

∑
k ̸=j

||yj(θ)− yk(θ)||β2 . (8)

Similarly, we can derive the unbiased gradient of Sβ
E(y1:m(θ),x) w.r.t. θ which is crucial for any

gradient descent algorithm. For notational convenience, we define

g(Y,Y′,x) = 2 · ||Y − x||β2 − ||Y −Y′||β2 ,
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then Sβ
E(Pθ,x) = EY,Y′∼Pθ

[g(Y,Y′,x)]. Next, we have that

∇θS
β
E(Pθ,x)

=∇θEY,Y′∼Pθ
[g(Y,Y′,x)]

=EY,Y′∼Pθ

[
∇θg(Y,Y′,x)

]
≃ 1

m(m− 1)

m∑
j=1

m∑
k=1

∇θg(yj(θ),yk(θ),x) · δ{j ̸=k}

=
2

m

m∑
j=1

∇θ||yj(θ)− x||β2 − 1

m(m− 1)

∑
k ̸=j

∇θ||yj(θ)− yk(θ)||β2

=∇̂θS
β
E(y1:m(θ),x) .

Furthermore, if Pθ and Q both are univariate distributions of R-valued random variables, then the
energy Score will be reduced to

Sβ
E(Pθ, x) = 2 · E|Y − x|β − E|Y − Y ′|β , for β ∈ (0, 2] , (9)

where Y, Y ′ ∼ Pθ, where the expectations can similarly be approximated using samples from Pθ.
Notice that this will become the Continuous Ranked Probability Score (CRPS) [96] when β = 1.

The energy Score is a strictly proper scoring rule [38, 19, 76] and is a special instance of the maximum
mean discrepancy [39] as well as a statistical divergence. It has been used as an effective objective
for copula estimation [53, 1, 51] and even for R-BP marginal predictives as shown in [52]. It has
also enjoyed success as an objective for Normalising Flows [90] and generative models [78]. The
energy Score is the only objective among Wasserstein p-metrics [57] that supports unbiased gradient
evaluations [6, 76], has a known optimisation-free solution and features a faster convergence rate
than similar integral probability metrics [94, 32].

D Proofs

D.1 Lemma 3.2

Proof. We follow the Definition 14.4-3 of stochastic boundedness from [12]. Begin by choosing
δ ∈ (0, 1). From Proposition 1 in [29], we have for ϵ > 0 and M > n, over the supremum of x ∈ X :

P
(∣∣P(M)(x)− P(n)(x)

∣∣ ≥ ϵ
)
≤ 2 exp

(
− ϵ2

2ϵαn+1

3 + 1
2

∑M
i=n+1 α

2
i

)

⇔ lim
M→∞

P
(∣∣P(M)(x)− P(n)(x)

∣∣ ≤ ϵ
)
≥ lim

M→∞
1− 2 exp

(
− ϵ2

2ϵαn+1

3 + 1
2

∑M
i=n+1 α

2
i

)
.

Next, we choose a value ϵn (where the subscript shows that this quantity is dependent on n) to have
the appropriate probability on the right-hand side by enforcing:

δ = 2 exp

(
− ϵ2n

2ϵnαn+1

3 + 1
2

∑∞
i=n+1 α

2
i

)

⇔ 0 = ϵ2n + log

(
δ

2

)
2αn+1

3
ϵn +

1

2
log

(
δ

2

) ∞∑
i=n+1

α2
i

with solution

ϵn =
− log

(
δ
2

) 2αn+1

3 +

√[
log
(
δ
2

) 2αn+1

3

]2
− 2 log

(
δ
2

)∑∞
i=n+1 α

2
i

2
.

Due to δ ∈ (0, 1) and αi > 0 ∀i, we have:

|ϵn| = n−1/2
− log

(
δ
2

)
n1/2 2αn+1

3 +

√[
log
(
δ
2

)
n1/2 2αn+1

3

]2
− 2 log

(
δ
2

)
n
∑∞

i=n+1 α
2
i

2
.
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With the choice of αi = (2 − 1
i )(

1
i+1 ), we see that limn→∞ n−aαi is bounded for all powers

a ≥ −1. As such, both − log
(
δ
2

)
n1/2 2αn+1

3 and
[
log
(
δ
2

)
n1/2 2αn+1

3

]2
will safely be bounded

for large enough n. Similarly, due to the choice of αi, we have
∑∞

i=n+1(αi)
2 = O(n−1),

meaning n−a
∑∞

i=n+1(αi)
2 will be bounded for large enough n as long as a ≥ −1. Hence

−2 log
(
δ
2

)
n
∑∞

i=n+1 α
2
i will also be bounded for large enough n.

Consequently, for our choice of δ, there exists a finite K > 0 and a finite N > 0 such that:

sup
x∈X

P
(∣∣∣∣P(∞)(x)− P(n)(x)

n−1/2

∣∣∣∣ ≤ K

)
≥ 1− δ ∀n > N.

D.2 Theorem 3.3

We prove the statement for general densities, which then naturally extends to predictive densities. The
proof of this result is largely an adaptation of the simplified vine copula convergence result (Theorem
1 in [70]) but where no rate on marginal densities is required. As such, our proof shares an identical
approach until the last part, where we deviate. We have a weaker result for the convergence of
distributions and yet show in what follows that convergence of our copula estimator can be obtained
even without convergence guarantees on marginal densities.

Notation used in the proof We follow vine copula notation from Appendix A.3 and use superscripts
with parenthesis to now differentiate between samples instead of predictive steps, following notational
conventions of the literature. We define h-functions as the conditional distribution functions for pair
copulas

hje|ℓe;D′
e
(u | v) :=

∫ u

0

cje,ℓe;D′
e
(s, v)ds, for (u, v) ∈ [0, 1]2.

Further, we refer to the true unobserved samples of pair-copulas as

U
(i)
je|De

:= Fje | De

(
X

(i)
je

| X(i)
De

)
, U

(i)
ke|De

:= Fke|De

(
X

(i)
ke

| X(i)
De

)
, (10)

for i = 1, . . . , n. We also denote estimators and quantities obtained by application to these unobserved
samples with a bar superscript, for example:

c̄je,ke;De(u, v) := c̄je,ke;De

(
u, v, U

(1)
je|De

, . . . , Uke|De

)
.

Finally, denote with a hat superscript all quantities and estimators obtained by using Ûl
(i)

:= F̂l(X
(i)
l )

instead of the true unobserved samples used in Equation (10).

Assumptions For completeness, we state assumptions about the marginal distribution estimator P̂
as well as bivariate copula estimators ĉ, even though our practical choices from the main text respect
these. We begin by stating the assumption about our marginal distribution estimator denoted P̂ :

• A1: The marginal distribution function estimator has the following convergence rate:

sup
x∈X

∣∣∣P̂ (x)− P (x)
∣∣∣ = Op

(
n−1/2

)
.

Next, we state our assumptions about the pair copula estimator for completeness:

• A2: For all e ∈ Em,m = 1, . . . , d− 1, with −r the convergence rate of a bivariate KDE
copula estimator, it holds:
(a) for all (u, v) ∈ (0, 1)2,

c̄je,ke;De
(u, v)− cje,ke;De

(u, v) = Op

(
n−r

)
,

(b) for every δ ∈ (0, 0.5],

sup
(u,v)∈[δ,1−δ]2

∣∣h̄je|ke;De
(u | v)− hje|ke;De

(u | v)
∣∣ = oa.s.

(
n−r

)
,

sup
(u,v)∈[δ,1−δ]2

∣∣h̄ke|je;De
(u | v)− hke|je;De

(u | v)
∣∣ = oa.s.

(
n−r

)
.
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• A3: For all e ∈ Em,m = 1, . . . , d− 1, it holds:
(a) for all (u, v) ∈ (0, 1)2,

ĉje,ke;De
(u, v)− c̄je,ke;De

(u, v) = Op (ae,n) ,

(b) for every δ ∈ (0, 0.5],

sup
(u,v)∈[δ,1−δ]2

∣∣∣ĥje|ke;De
(u | v)− h̄je|ke;De

(u | v)
∣∣∣ = Oa.s. (ae,n) ,

sup
(u,v)∈[δ,1−δ]2

∣∣∣ĥke|je;De
(u | v)− h̄ke|jj ;De

(u | v)
∣∣∣ = Oa.s. (ae,n) ,

where
ae,n := sup

i=1,...,n

∣∣∣Û (i)
je|De

− U
(i)
je|De

∣∣∣+ ∣∣∣Û (i)
ke|De

− U
(i)
ke|De

∣∣∣ .
• A4: For all e ∈ Em,m = 1, . . . , d− 1, the pair copula densities cje,ke;De are continuously

differentiable on (0, 1)2.

We note that A1 is satisfied by our marginal predictive estimator, as proved in D.1 while A2, A3, A4
are all satisfied by the KDE pair copula estimator, as shown in [70].

Proof strategy We perform the proof in three parts. To obtain the final result, we first prove
the convergence of pseudo observations to true observations through induction. We then rely on
the aforementioned convergence to show that feasible pair-copula density estimators ĉje,ke;De

, and
conditional distribution function estimators F̂je|De

and F̂ke|De
are pointwise consistent. Lastly,

these two results are combined to obtain the convergence of the joint copula estimator ĉ to the true
multivariate copula c.

Part 1: Convergence of pseudo observations we start by proving a convergence rate of samples
on the copula space obtained through marginal distributions to their true unobserved equivalent. That
is, ∀ e ∈ E1, . . . , Ed−1, i = 1, . . . , n,

Û
(i)
je|De

− U
(i)
je|De

= Op

(
n−r

)
, Û

(i)
ke|De

− U
(i)
ke|De

= Op

(
n−r

)
. (11)

Starting with e ∈ E1 (the conditioning set De is empty), as a consequence of A1 we obtain the bound∣∣∣Û (i)
je

− U
(i)
je

∣∣∣ = ∣∣∣F̂ (Xje)− F (Xje)
∣∣∣ ≤ sup

xje∈ΩXje

∣∣∣F̂ (xje)− F (xje)
∣∣∣ = Op

(
n−r

)
.

To obtain the second part of (11) one can use identical arguments, providing the initial inductive
hook. Next, assuming (11) holds for all e ∈ Em with 1 ≤ m ≤ d− 2, we extend the induction to
e ∈ Em+1. Recalling that pseudo-observations e′ ∈ Em+1 are equal to Û

(i)
je|De∪ke

or Û (i)
ke|De∪je

for
some e ∈ Em, it follows by multiple triangle inequalities that

∣∣Û (i)
je|De∪ke

− U
(i)
je|De∪ke

∣∣ =
∣∣ĥje|ke;De

{
Û

(i)
je|De

|Û (i)
ke|De

}
− hje|ke;De

{
U

(i)
je|De

|U (i)
ke|De

)
}
∣∣

≤
∣∣ĥje|ke;De

{
Û

(i)
je|De

|Û (i)
ke|De

}
− hje|ke;De

{
Û

(i)
je|De

|Û (i)
ke|De

}∣∣
+
∣∣hje|ke;De

{
Û

(i)
je|De

|Û (i)
ke|De

}
− hje|ke;De

{
Û

(i)
je|De

|Û (i)
ke|De

}∣∣
+
∣∣hje|ke;De

{
Û

(i)
je|De

|Û (i)
ke|De

}
− hje|ke;De

{
U

(i)
je|De

|U (i)
ke|De

}∣∣
= H1,n +H2,n +H3,n

Notice that for δi := min
{
U

(i)
je|De

, U
(i)
ke|De

, 1 − U
(i)
je|De

, 1 − U
(i)
ke|De

}
> 0, we have that all realisa-

tions (U
(i)
je|De

, U
(i)
ke|De

) are contained within [δi, 1 − δi]
2 almost surely. Similarly, all realisations
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(Û
(i)
je|De

, Û
(i)
ke|De

) are in [δi/2, 1− δi/2]
2 for sufficiently large n as a consequence of (11). Combining

this with A2 (b) and A3 (b), with large enough n:

H1,n ≤ sup
(u,v)∈[δi/2,1−δi/2]2

∣∣ĥje|ke;De
(u|v)− hje|ke;De

(u|v)
∣∣ = Op(ae,n),

H2,n ≤ sup
(u,v)∈[δi/2,1−δi/2]2

∣∣hje|ke;De
(u|v)− hje|ke;De

(u|v)
∣∣ = Op(n

−r),

and by another application of (11),

ae,n = sup
i=1,...,n

|Û (i)
je|De

− U
(i)
je|De

∣∣+ ∣∣Û (i)
ke|De

− U
(i)
ke|De

∣∣ = Op(n
−r),

giving H1,n = Op(n
−r). To complete part 1, we want to show that H3,n = Op(n

−r). We
write the gradient of hje|ke;De

as ∇hje|ke;De
and use a first-order Taylor approximation of

hje|ke;De

(
Û

(i)
je|De

|Û (i)
ke|De

)
around

(
U

(i)
je|De

, U
(i)
ke|De

)
to get

H3,n ≤
∣∣∣∣∇⊤hje|ke;De

(
U

(i)
je|De

|U (i)
ke|De

)(Û
(i)
je|De

− U
(i)
je|De

Û
(i)
ke|De

− U
(i)
ke|De

)∣∣∣∣+ oa.s.

(
Û

(i)
je|De

− U
(i)
je|De

Û
(i)
ke|De

− U
(i)
ke|De

)
getting the desired result,. and hence the first equality of (11) by yet another application of (11). The
second equation follows by identical steps, completing the induction.

Part 2: consistency of conditional CDF and pair-copula density estimators Following similar
steps to as in Part 1, one can obtain that for all e ∈ E1, . . . , Ed−1, and all x ∈ ΩX , the CDF
estimators are bounded as

F̂je|De

(
xje |xDe

)
− Fje|De

(
xje |xDe

)
= Op(n

−r),

F̂ke|De

(
xke

|xDe

)
− Fke|De

(
xke

|xDe

)
= Op(n

−r).
(12)

To bound pair-copula density estimators, we apply the triangle inequality to obtain

∣∣ĉje,ke;De

(
u, v
)
− cje,ke;De

(
u, v
)∣∣

≤
∣∣ĉje,ke;De

(
u, v
)
− cje,ke;De

(
u, v
)∣∣+ ∣∣cje,ke;De

(
u, v
)
− cje,ke;De

(
u, v
)∣∣

= Rn,1 +Rn,2.

Assumption A3 (a) coupled with (11) bounds Rn,1 while Rn,2 is bounded byA2 (a), completing the
second part.

Part 3: Consistency of the vine copula estimator Up to now, our steps have mirrored those of
[70]. With the following we differentiate ourselves by noticing that to get a bound on the copula
estimator alone, no marginal densities are required:

ĉ(x) =

d−1∏
k=1

∏
e∈Ek

ĉje,ke;De

{
F̂je|De

(xje |xDe
), F̂ke|De

(xke
|xDe

)
}

=

d−1∏
k=1

∏
e∈Ek

[
cje,ke;De

{
F̂je|De

(xje |xDe), F̂ke|De
(xke |xDe)

}
+Op(n

−r)

]

=

d−1∏
k=1

∏
e∈Ek

[
cje,ke;De

{
Fje|De

(xje |xDe
), Fke|De

(xke
|xDe

)
}
+Op(n

−r) +Op(n
−r)

]
= c(x) +Op(n

−r).

where the first line is a consequence of pair-copula estimator convergence in Part 2, and the second
equality is a consequence of (12) and the fact that cje,ke;De

is continuously differentiable. This
concludes the proof.
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Table 3: Average LPS (in bpd, lower is better) over five runs with standard errors for the Digits
dataset.

Model DIGITS
n/d 1797/64

MAF −8.76±0.10

RQ-NSF −6.17±0.13

R-BP −8.80±0.00

Rd-BP −7.46±0.12

AR-BP −8.66±0.03

ARd-BP −7.46±0.18

ARnet-BP −7.72±0.28

QB-Vine (30) −6.66±0.16

QB-Vine (50) −7.92±0.23

QB-Vine (100) −8.98±0.34

QB-Vine (200) −9.69±0.48

QB-Vine (300) −10.23±0.10

QB-Vine (400) −10.39±0.13

QB-Vine (500) −10.49±0.20

QB-Vine (full) −10.47±0.28

E Experiments and practical details

Details of the UCI datasets are discussed in [35]. In experiments, We use the implementation of vine
copulas from [88] through a Python interface. We follow the data pre-processing of [35] to make
results comparable.

Hyperparameter search In our experiments on small UCI datasets, we use a grid search over 50
values from 0.1 to 0.99 to select ρ, independently across dimensions, selecting possibly different
values for each. To select the KDE pair copula bandwidth we use a 10-fold cross-validation to
evaluate the energy score for 50 values between 2 and 4, as these ranges were appraised to give the
best fits on preliminary runs on train data. We note the hyperparameter selection of ρ also supports
gradient-based optimisation (see Appendix C), which we utilise in the Gaussian Mixture Model
experiments in Appendix E.1. In general, gradient-based optimisation of ρ converges within less than
five iterations. For energy score evaluations, with marginal predictives, we sample 100 observations
and compare them to the training data, while for the copula we simulate 100 samples from the joint
to compare with the energy score against training data.
For the PRticle filter, we took an initial sample size of d · n to accommodate for different dimensions
while not being overcome by computational burden. The Kernel used is a standard multivariate
Gaussian kernel.

Compute We ran all experiments on an Intel(R) Core(TM) i7-9700 Processor. In total our experi-
ments for the QB-Vine took a combined 15 hours with parallelisation across 8 cores, or 120 hours on
a single core. The Digits dataset on 8 cores took us 6 hours to run with 5 different train and test splits.
Other datasets require about half an hour for five runs in parallel, while the Gaussian Mixture study
had a total time of 4 hours. The PRticle Filter takes about two hours on all density estimation tasks
combined. The RQ-NSF experiments on Gaussian Mixture Models took about 4 hours combined.
Our total compute time is therefore the equivalent of 126 hours on a single core. Our implementation
of the QB-Vine is not fully efficient so the computational times are rough upper bounds.

Selection of P(0) in practice In practice, the initial choice of P(0) is made to reflect the support
and spread of the data. As we standardize our data to be mean 0 and have standard deviation 1, a
natural choice is the standard Gaussian N (0, 1). However, given distribution transformations are
used throughout the recursion, if observations fall in the tails of the predictive density, numerical
overflow might make them redundant, lowering the accuracy of our approach. Therefore, it is
desirable to have heavier tails than those of the true distribution to capture outliers accurately. This
coincides with the theory on such recursion requiring heavier tails for the initial predictive compared
to those of the data, see the assumptions on P(0) in [97, 64] and [43, 29]. As such, our default choice
is a standard Cauchy distribution.
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For experiments, we tested Normal, Cauchy, and Uniform (over the range of the training samples
plus a margin) initial guesses on train data. Generally, the Cauchy distribution is a well-performing
choice and obtained the best NLL in all but two experiments. We give a summary of initial density p0
choices for different experiments in Table 4 for density estimation and Table 5 for regression and
classification.

Dataset WINE BREAST PARKIN IONO BOSTON

Choice of p0 Cauchy Cauchy Cauchy Normal Cauchy
Table 4: Choice of p0 for different density estimation experiments.

Dataset BOSTON (reg) CONCR (reg) DIAB (reg) IONO (class) PARKIN (class)

Choice of p0 Normal Cauchy Cauchy Cauchy Cauchy

Table 5: Choice of p0 for different regression and classification experiments.

Marginal Sampling Here we briefly introduce our inverse sampling method for marginal
predictive distributions via linear interpolation. In general, through basic rules of probability, for
univariate x ∼ p with the corresponding cumulative distribution function P with inverse P−1, given
u ∼ U [0, 1], we can obtain x̃ = P−1(u) as a sample from p. However, in our case, we have an
analytical expression for P only, with no expression for P−1. As such, to sample from our model,
we need an approximation of P−1 that we can evaluate.

To do so, we start by considering the range of values over which we seek to approximate P−1. In our
work, we consider a range R = [min(x1:n)− η,max(x1:n) + η] defined as the range from the lowest
observation to the highest observation with an added extrapolation value η to each side. This value
can be adjusted depending on the extrapolation capabilities desired from model samples, and how
heavy-tailed the data is thought to be. We found η = 0.1 to work well, given the data is pre-scaled to
have standard deviation 1.

Next, for gridded, equally spaced ordered values {x̄i}Ki=1 with x̄1 = min(x1:n) − η and
x̄K = max(x1:n) + η, we evaluate the cdf at each of these point. This gives us an equally sized
set of points {ūi}Ki=1 with ūi := P (x̄i) ∈ [0, 1], where K is a hyperparameter guaranteeing the
exactness of our approximation with higher value of K in exchange for an increased computational
cost. To encompass the complete range of [0, 1], we set u1 = 0 and uK = 1. We fix K = 1000 in
our experiments.

We then use the set of gridded cdf values {ū}Ki=1 to construct an approximation of P−1 through
linear interpolation. More specifically, given a value u ∈ [ūj , ūj+1] with 1 ≤ j ≤ K − 1 that we
wish to evaluate the inverse at to obtain x̃ := P−1(u), we have

x̃ ≈ x̄j +
u− ūj

ūj+1 − ūj
(x̄j+1 − x̄j) := P̂−1(u)

By consequence, we can easily obtain the gradient of x̃ w.r.t. marginal hyperparameter ρ as

∂x̃

∂ρ
=

∂

∂ρ

(
x̄j +

u− ūj

ūj+1 − ūj
(x̄j+1 − x̄j)

)
(13)

=
(x̄j+1 − x̄j)

(ūj+1 − ūj)2

(
−(ūj+1 − u)

∂ūj

∂ρ
− (u− ūj)

∂ūj+1

∂ρ

)
(14)

=
(x̄j+1 − x̄j)

(P (x̄j+1)− P (x̄j))2

(
− (P (x̄j+1)− u)

∂P (x̄j)

∂ρ
− (u− P (x̄j))

∂P (x̄j+1)

∂ρ

)
. (15)

As such, gradients of the inverse cdf become gradients of the cdf, which we can efficiently compute
with automatic differentiation software.
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Table 6: Comparison of LPS for QB-Vine (our method) and RQ-NSF on GMM with 4 clusters for
changing n and d. Results for our QB-Vine method are shown as the top numbers of each row, and
RQ-NSF values as the bottom numbers of each row.

d \ n 50 100 300 500 103

10 3.98±0.23 1.73±0.29 2.15±0.06 0.94±0.31 2.43±0.17

36.47±4.87 17.14±1.51 12.82±0.36 7.10±0.26 7.91±0.11

30 - 17.94±1.06 11.04±0.35 12.87±0.17 9.85±0.40

- 91.09±7.54 50.51±2.20 48.50±0.73 34.98±0.31

50 - - 38.59±4.31 25.82±0.06 26.14±0.01

- - 115.64±3.06 112.16±2.05 71.43±1.65

100 - - - - 78.20±0.23

- - - - 268.88±1.37

E.1 Comparison to normalising flow on Gaussian Mixture Model

We assess the performance of the QB-Vine on a mixture of 4 non-isotropic Gaussians across a range
of dimensions and sample sizes. We simulate n d-dimensional data points from

p(y) =

4∑
k=1

πk · ϕ(y;µk,Σk) ,

where (π1, π2, π3, π4) = (0.2, 0.3, 0.1, 0.4) and

µk
i.i.d.∼ U [−50, 50]d , Σk

i.i.d.∼ Wishart(d, Id) .

We compare the QB-Vine with the RQ-NSF as a benchmark off-the-shelf estimator. The hyperparam-
eters for the RQ-NSF were chosen to give the best performance on training data, and are 100,000
epochs, 0.0001 learning rate, 1 flow step, 8 bins, 2 blocks, and 0.2 dropout probability in common.
For the number of hidden features, we set 16 for d = 10, 32 for d = 30, 64 for d = 50, and 128 for
d = 100. Our results in Table 6 show that the QB-Vine consistently outperforms the RQ-NSF for the
dimensions and sample sizes considered.

We additionally considered some even higher dimensional examples to asses the QB-Vine’s scalability.
We study the performance in d = 400, 500, 600 dimensions on Gaussian mixture models (GMMs)
with 20 random means (drawn uniformly from [−100, 100]d) and non-isotropic covariances drawn
from a Wishart distribution, with n = 20000 observations, and using a 50/50 split for training and
testing. We compare the QB-Vine against the RQ-NSF taken as a benchmark for high-dimensional
modelling, with the same hyperparameters from the experiments of Table 6. We repeated this study 5
times with different seeds, leading to different GMM models. Figure 2 shows the LPS over the 5
runs for each method and dimension. Further, as the generating distribution is known, we sample
from the fitted models and evaluate their samples under the true GMM density (known as the reverse
KL divergence, lower is better), reported in Figure 3. Finally, we compute the Maximum Mean
Discrepancy (MMD) as a commonly used measure that compares samples to observations, reported
in Table 7. The MMD assess how close the model is to the true data-generating process by comparing
model samples to observed data, with a lower MMD score implying a better fit for the data. The
results suggest that the QB-Vine has better density estimation as well as sampling capabilities for
these examples.
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Figure 2: LPS (lower is better) for test points on 5 GMMs and for d = 400, 500, 600. The QB-Vine
achieves lower LPS values on average than the RQNSF, across all 5 GMMs.

Dimension GMM 1 GMM 2 GMM 3 GMM 4 GMM 5

400 29.2213
29.7847

29.2775
29.7731

29.0477
29.7247

29.2993
29.7835

29.3515
29.8447

500 32.7893
33.1789

32.8354
33.4401

32.5520
33.2011

32.6044
33.4355

32.7249
33.4143

600 35.7948
36.5586

35.8328
36.6095

35.9390
36.4700

35.6756
36.4400

35.7731
36.7090

Table 7: Comparison of the MMD (lower is better) computed on samples from the QBVine and
RQNSF models across different dimensions and GMMs. Each cell shows the QBVine value on top
and the RQNSF value on the bottom, separated by a dotted line. The QB-Vine outperforms the
RQNSF in all cases considered, demonstrating better sample quality via this metric.

Figure 3: Reverse KL divergence (lower is better) for the GMM experiment in high dimensions,
assessing sample fidelity. Both models perform equally well.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: ‘We claimed to provide a new density estimation scheme with analytical form
which used smaller data to train and can handle a large dimensional space. We showed that
our proposed QB-Vine has outperformed other benchmark methods for many benchmark
dataset in the experimental section, providing strength to our claim. Further we proved
theoretically that our proposed method has a dimension-independent convergence rate when
the dependency of the true model satisfies the assumptions of a simplified vine copula.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitation of the method is the use of simplified vine copula which is
an approximation to the true distribution. We discuss this in the discussion but also point that
this apparent limitation gives us advantages in the sense of fast computation and achieving
best results compared to the benchmark methods.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the statements of our main theorems in Section 3 and the proofs
of the theorems in the Appendix. To our belief, we have explained all the assumptions (eg.
assumption of simplified vine copula) in the statements and we believe the proofs provided
are correct and rigorous.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments are done on publicly available benchmark datasets using
other benchmark methods. We provide all the code necessary to reproduce the results as
supplementary material.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the data and code as the supplementary material with this
paper. Further we host all of this in a personal Github repository, as soon as the reviewing is
done we would make that repository public for better public access to our code and data.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the experimental section we have provided all the details needed for our
experiments. In addition, the hyperparameters and their tuning was described in tSection 3.
So to our belief, any reader of this paper should be able to implement the algorithms and
reproduce exactly the same results following our paper.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We did provide the LPS as the diagnostics for the performance of our method.
To show the significance of this method and the compared benchmark ones, we have provided
means and variances of these key diagnostics over repetitions.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the supplementary materials, we provide code files to replicate experiments
as well as a notebook file with instructions. In Appendix E we describe the compute used
and disclose the time taken to run experiments.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper provides a new algorithm for density estimation and classifica-
tion/regression. As this is a purely an algorithmic research, we believe our work fully
satisfies the necessary code of ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This is foundational algorithmic work, which may have potential to impact all
sectors of society where density estimation and classification/regression is used. We do not
believe this proposed methodology has any negative societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only use publicly available data and code which to our best knowledge
does not constitute high risk for misuse. Hence we do not think this is necessary for our
work.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the other data and codes for benchmark methods used in this paper are
properly cited and we believe we followed the best practice.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper proposes a new algorithm, which is thoroughly explained and code
is provided.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As our studies only involve publicly available datasets not involving any human
participation, this approval is not necessary for our work.
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