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Abstract
Transformer-based large language models (LLMs)
cache context as key-value (KV) pairs during
inference. As context length grows, KV cache
sizes expand, leading to substantial memory over-
head and increased attention computation latency.
This paper introduces KVzip, a query-agnostic KV
cache eviction method enabling effective reuse
of compressed context KV caches across diverse
queries. KVzip quantifies the importance of a
KV pair using the underlying LLM to recon-
struct original contexts from cached KV pairs,
subsequently evicting pairs with lower impor-
tance. Extensive empirical evaluations demon-
strate that KVzip reduces KV cache size by 394×
and decreases FlashAttention latency by approxi-
mately 2×, without performance degradation in
question-answering, retrieval, mathematical rea-
soning, and code comprehension tasks. Evalua-
tions include various models such as LLaMA3.1-
8B, Qwen2.5-14B, and Gemma3-12B, with con-
text lengths reaching up to 170K tokens. KVzip
significantly outperforms existing KV eviction
methods, which suffer from performance degrada-
tion even at a 90% cache budget ratio under multi-
query scenarios. Codes are available at https:
//github.com/snu-mllab/KVzip.

1. Introduction
Transformer-based LLMs with long-context capabilities
have significantly enhanced real-world applications, includ-
ing long-document analysis and personalized conversational
agents (Achiam et al., 2023; Grattafiori et al., 2024; Team
et al., 2025). However, increasing context lengths substan-
tially raises both memory consumption for KV caching and
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computational costs associated with attention mechanisms
(Kwon et al., 2023). For example, caching 120K tokens in
Qwen2.5-14B with FP16 precision requires approximately
33 GB memory, surpassing the model’s 28 GB parameter
storage at equivalent precision (Yang et al., 2025).

Recent approaches primarily target reducing KV cache
memory size while preserving inference accuracy. These
methods include merging the attention heads (Ainslie et al.,
2023), compressing KV pairs into shorter sequences (Rae
et al., 2020), and using sliding-window techniques to limit
context windows (Jiang et al., 2023; Xiao et al., 2024; 2025).
Other studies exploit attention sparsity for dynamic KV evic-
tion during decoding (Anagnostidis et al., 2023; Liu et al.,
2023a; Zhang et al., 2023) and prefill stages (Cai et al.,
2024; Li et al., 2024a). Existing eviction methods typically
employ query-aware KV-pair importance scoring computed
online during inference (Cai et al., 2024; Li et al., 2024a;
Zhang et al., 2023), selectively retaining KV pairs most
relevant to immediate queries (Figure 1a,b). While effective
in single-query scenarios, these methods exhibit significant
performance degradation in multi-query settings, as the re-
tained KV pairs predominantly overfit to initial queries (Li
et al., 2025). We elaborate these limitations in Section 2.2.

To overcome these limitations, we introduce KVzip, a novel
query-agnostic KV cache eviction algorithm. KVzip opti-
mizes a reusable compressed KV cache for a given context,
enabling efficient inference across diverse future queries
(Figure 1c). Our approach particularly benefits scenarios
where KV caches are prepared offline, such as personalized
conversational agents retaining user profiles, instructions,
and dialogue histories (Character.AI, 2024; Li et al., 2024b),
or enterprise systems utilizing precomputed document KV
caches for retrieval (Chan et al., 2024).

Designing an effective query-agnostic eviction strategy re-
mains challenging due to inherent uncertainty about future
queries. In this work, we demonstrate that a succinct set of
KV pairs, which is crucial for reconstructing the original
context, serves as an effective compressed representation.
KVzip leverages the insight that a Transformer naturally
functions as an encoder-decoder architecture by encoding
context into KV pairs, analogous to traditional compres-
sion methods such as Zip (Katz, 1989). Specifically, our
method simulates context reconstruction via an LLM for-
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Figure 1. Overview of KV eviction strategies in multi-query scenarios. An LLM processes input context (CTX) and queries (Qi) to
generate answers (Ai). Existing approaches, such as SnapKV (Li et al., 2024a) and PyramidKV (Cai et al., 2024), evict context KV pairs
based on immediate query information. (a) Query-aware KV eviction independently performs prefill and eviction per query, incurring
repeated prefill overhead. (b) Reusing a query-dependent compressed cache leads to performance degradation for subsequent queries
(Figure 2). (c) The proposed query-agnostic KV eviction framework compresses the KV cache only once during the initial prefill, enabling
efficient reuse across diverse queries without repeated prefill or performance loss. Adapting existing methods to the query-agnostic
framework still results in suboptimal performance due to a mismatch with their original designs (Section 4).

ward pass, assigning importance scores to KV pairs based
on the maximum attention scores received during this pro-
cess. This compression principle parallels self-supervised
learning objectives that emphasizes input reconstruction,
demonstrating robust generalization across diverse down-
stream tasks (Devlin et al., 2019; He et al., 2022; Radford
et al., 2019).

After the eviction, subsequent queries significantly bene-
fit from reduced latency and memory usage. Specifically,
KVzip achieves approximately 2× latency reduction in
FlashAttention (Dao, 2024) and 394× reduction in KV
cache size during inference without performance loss on
diverse queries. KVzip supports both context-dependent
eviction, which achieves higher compression ratios but in-
curs per-context compression overhead (Feng et al., 2024),
and context-independent eviction, which incurs no overhead
after deployment while achieving moderate compression
ratios (Xiao et al., 2025).

Section 4 empirically demonstrates KVzip’s robustness and
effectiveness on multiple benchmarks—including document
question-answering, mathematical reasoning, retrieval, and
code comprehension tasks—with contexts up to 170K to-
kens. Unlike existing eviction methods which show signifi-
cant performance degradation even at 10% KV eviction in
multi-query settings (Li et al., 2024a; Zhang et al., 2023),
KVzip consistently maintains inference accuracy even when
evicting up to 70% of the KV cache. Experiments encom-
pass 12 benchmark datasets, including SQuAD (Rajpurkar
et al., 2016), GSM8K (Cobbe et al., 2021), and SCBench (Li
et al., 2025), and involve various models such as LLaMA3.1
(Grattafiori et al., 2024), Gemma3 (Team et al., 2025), and
Qwen2.5 (Yang et al., 2025), ranging from 3B to 14B param-
eters. Furthermore, KVzip seamlessly integrates with exist-
ing optimizations such as KV cache quantization (Lin et al.,
2024) and structured head-level KV eviction (Xiao et al.,
2025). Notably, our method replaces DuoAttention’s head-
score optimization, which originally requires tens of GPU

hours, with only a few forward passes completed within a
minute, highlighting its practical effectiveness.

2. Preliminary
2.1. Notation and Problem Formulation

Consider the text domain T and an autoregressive
Transformer-based LLM fLM : T → T that generates se-
quences via greedy decoding (Radford et al., 2018; Vaswani
et al., 2017). The model comprises L layers, utilizing
Grouped-Query Attention (GQA) (Ainslie et al., 2023) with
H KV heads, each attended by a group of G query heads.
During inference, fLM caches hidden representations as
KV pairs to enhance computational efficiency (Kwon et al.,
2023).

Given an input context c ∈ T tokenized into nc tokens, the
prefill stage generates a cache containing L×H × nc KV
pairs, denoted as KVc (Agrawal et al., 2024). Conditioned
generation using the cache is denoted as fLM(· | KVc). Our
objective is to derive a compact pruned cache KVc,evicted ⊆
KVc satisfying

fLM(q | KVc,evicted) ≈ fLM(q | KVc), ∀q ∈ T . (1)

2.2. Analysis of Existing Approaches

Existing KV eviction methods, such as SnapKV (Li et al.,
2024a) and PyramidKV (Cai et al., 2024), compress KV
caches based on information given during prefill. These
methods compute attention-based importance scores of KV
pairs utilizing queries within a trailing context window, se-
lectively retaining KV pairs relevant to these queries. While
effective for single-query benchmarks such as needle-in-a-
haystack (Kamradt, 2023) and LongBench (Bai et al., 2024),
these methods require repetitive cache prefills for each new
query, as shown in Figure 1a.

Alternatively, reusing a previously compressed KV cache
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Figure 2. Accuracy on SQuAD using LLaMA3.1-8B. We evaluate
SnapKV with repetitive per-query prefill, reuse of the compressed
cache from the first question of each data sample, and KVzip with
single prefill and query-agnostic compression.

for subsequent queries can reduce the computation over-
head, as depicted in Figure 1b. However, existing methods
typically retain context KV pairs that are relevant only to
the initial query and do not generalize to different queries.
Figure 2 illustrates this issue using the SQuAD multi-QA
dataset (Rajpurkar et al., 2016). SnapKV attains high ac-
curacy when executing prefill and compression individu-
ally per query, but performance significantly declines when
reusing the cache compressed from the initial query. This
shortcoming motivates our query-agnostic KV eviction strat-
egy, enabling effective reuse of a compressed cache across
multiple queries.

3. Method
The primary objective of our algorithm is to assign an impor-
tance score to each KV pair, determining eviction priorities,
following prior studies (Zhang et al., 2023). Given a context
length nc, KVzip assigns importance scores S ∈ RL×H×nc

to KV pairs in KVc, subsequently evicting pairs with the
lowest scores. Our method supports both non-uniform and
uniform head budget allocations (Feng et al., 2024; Li et al.,
2024a). KVzip further accommodates a head-level eviction
strategy by computing head-level scores using the maxi-
mum pair-level scores across the sequence dimension, nc

(Xiao et al., 2025). This section elaborates the intuition,
key technical contributions, and scalability to long-context
scenarios.

3.1. Intuition

To effectively answer arbitrary queries, the compressed
cache KVc,evicted and fLM should retain complete contex-
tual information. Our intuition is that we can verify this
completeness by explicitly prompting fLM to reconstruct the
previous context from KVc,evicted (Figure 3). If KVc,evicted
enables fLM to accurately reconstruct the original context c
using the repeat prompt, we can re-prefill the original cache
KVc and conduct accurate inference.

However, regenerating the original cache at each inference

fLM

KVc KVc,evicted

fLM
prefill evict

Context Repeat prompt

Context
decode

Figure 3. Transformer LLM viewed as a context encoder-decoder.
Each matrix cell indicates a KV pair. We use the prompt “Repeat
the previous context:”.

remains practically infeasible. Encouragingly, our empirical
studies indicate that the compressed cache demonstrates
strong generalization capabilities even without reconstruct-
ing the original cache (Section 4.2), empirically achiev-
ing Equation (1). This finding resonates with principles
from reconstruction-based self-supervised learning, which
demonstrates strong generalization across diverse down-
stream tasks (Devlin et al., 2019; He et al., 2022; Radford
et al., 2019).

3.2. KV Importance Scoring

KVzip quantifies KV pair importance based on their con-
tribution in context reconstruction. Specifically, we simu-
late reconstruction through teacher-forced decoding (Goyal
et al., 2016), parallelized via a single forward pass with an
input sequence comprising a repeat prompt followed by the
original context (Figure 4). We define importance scores to
be the maximum attention score each KV pair receives dur-
ing this forward pass, leveraging the insight that KV pairs
receiving minimal attention contribute little to Transformer
computations (Zhang et al., 2023).

Formally, given a context of length nc, we construct an input
sequence of length nin = nprompt + nc by concatenating the
repeat prompt of length nprompt with the context. Forwarding
this input through fLM with KVc generates d-dimensional
grouped-query features Ql,h ∈ RG×nin×d and key features
Kl,h ∈ R(nc+nin)×d for the h-th KV head in layer l (Ainslie
et al., 2023). Grouped-attention between these features
produces an attention matrix Al,h = Softmax(Ql,hK

⊺
l,h) ∈

RG×nin×(nc+nin)
+ . Extracting entries corresponding to keys

in KVc gives a sliced attention matrix Āl,h ∈ RG×nin×nc
+ .

Finally, we compute importance scores Sl,h ∈ Rnc for the h-
th KV head in layer l by taking the maximum over grouped
queries as

Sl,h = max
g=1,...,G; i=1,...,nin

Āl,h[g, i]. (2)

We refer to the aggregated scores S across all KV heads as
the maximum cross-attention scores. Appendix C provides
a visualization of these scores.

3.3. Observation

The cross-attention pattern from the repeated context onto
the prefilled context exhibits significant sparsity, indicating
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Figure 4. Method overview. KVzip evicts KV pairs with the lowest importance scores, accommodating both KV pair-level and head-level
eviction (Feng et al., 2024; Xiao et al., 2025). System prompts are omitted for clarity.
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Figure 5. Attention comparison across tasks. 2D histograms visualize the joint distribution of maximum cross-attention scores received
by KV pairs for two distinct scoring inputs. Each input consists of a task query and the generated response (Table 2). Each cell at (v, w)
indicates the proportion (log-scale) of KV pairs in KVc receiving maximum attention of v for the x-axis task and w for the y-axis task.
Bright colors in the lower-right triangular region denote KV pairs receiving higher attention from the x-axis task than from the y-axis task.
We compute scores using LLaMA3.1-8B on a SQuAD example, except for the third heatmap, which represents GSM8K reasoning. QA-1
and QA-2 denote distinct QA pairs. Appendix C–Figure 16 visualizes the attention patterns for each task.

substantial opportunities for compressing KVc. Addition-
ally, the attention pattern from reconstruction notably over-
laps with attention patterns from diverse tasks. Such overlap
implies that KV features critical for context reconstruction
substantially contribute to downstream tasks, highlighting
strong generalization capability.

Attention Overlap Across Tasks. Figure 5 compares max
cross-attention scores across various tasks: repeat, question-
answering (QA), summarization, and reasoning. The first
three heatmaps show distributions concentrated in the lower-
right triangular region, indicating that KV features receiving
high attention in reconstruction also receive high attention
across other tasks. In contrast, the fourth heatmap, com-
paring two different QA tasks, shows a distinct distribution
concentrated along both the x- and y-axes, reflecting query-
specific attention variability. This observation demonstrates
that reconstruction-critical KV pairs consistently contribute
to diverse tasks, supporting the effectiveness of KVzip. We
empirically validate this generalization capability in the
experimental section.

Attention Sparsity in Reconstruction. Cross-attention
patterns obtained during context reconstruction exhibit
greater sparsity compared to self-attention patterns com-
puted during the initial prefill of KVc (Figure 6). During
prefill, the model densely interacts among tokens to encode
comprehensive contextual information (Peters et al., 2018).
In reconstruction, however, the model efficiently leverages
(1) high-level representations stored in KVc and (2) internal
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Figure 6. Histogram comparing max attention scores received by
KV pairs in KVc during prefill versus reconstruction stages, mea-
sured on SQuAD with LLaMA3.1-8B.

knowledge encoded within model weights, thus reducing
unnecessary attention lookups. This cross-attention sparsity
effectively identifies and removes redundant KV pairs, out-
performing prior methods such as H2O (Zhang et al., 2023)
that rely on attention scores obtained during prefill.

3.4. Technical Challenge and Solution

Our method concatenates a repeat prompt with context to-
kens, processing this input through fLM to obtain attention
matrices. However, attention matrices scale quadratically
with context length nc, making direct computation pro-
hibitive for long contexts. While fused attention kernels
like FlashAttention reduce memory overhead by computing
attention scores block-wise without storing full matrices
(Dao, 2024), our method uniquely requires a maximization
along the query dimension following Softmax normaliza-
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Figure 7. Chunked scoring for the i-th chunk in KVc. We compute attention scores by multiplying queries with subsampled keys of
length m+ nin, followed by softmax normalization. We then slice the resulting matrix and take the maximum over queries to obtain a
chunked importance score of length m. We set the grouped-query size to G = 1 for clarity. This procedure repeats per chunk. For chunks
with i ≥ 2, we formulate the repeat prompt as: “Repeat the previous context starting with ⟨last few tokens of preceding
chunk⟩:”, consistently using the last 8 tokens across all experiments. Pseudo-code is provided in Appendix A.

tion along the key dimension. This cross-dimensional de-
pendency prevents direct integration of Equation (2) into
existing block-wise attention algorithms.

Chunked Scoring. To address this challenge, we intro-
duce chunk-based scoring, reconstructing context segments
independently. By computing importance scores in fixed-
size chunks, rather than simultaneously over the entire
context, computational complexity reduces from quadratic
O(n2

c) to linear O(mnc), where m denotes the size of the
chunk. Specifically, we partition the context tokens into
fixed-length chunks of size m, concatenate each chunk with
the repeat prompt, and process the resulting input of length
nin = nprompt +m through fLM (Figure 7). For each Trans-
former layer, we subsample keys in KVc corresponding to
each chunk, obtaining a smaller attention matrix of size
nin × (m + nin). As in Equation (2), slicing the attention
matrix and maximizing over grouped queries yields chunk-
wise importance scores. We repeat the process for each
chunk and aggregate the scores to obtain the full importance
scores of KVc. We set the chunk size to m = 2K, constant
across context lengths, models, and tasks, as the size has
negligible impact on performance (Appendix B.1).

Complexity Analysis. Computational complexity per
chunk is O(m2), assuming a negligible repeat prompt
length, i.e., nprompt ≪ m, thus nin ≈ m. Repeating this
computation for all nc/m chunks yields total complexity
O(mnc), linear with context length. Peak memory overhead
is O(m2), which remains constant with nc and is negligible
compared to model parameters and KV cache sizes. Addi-
tionally, we propose a softmax-free variant in Appendix B.2
utilizing a custom CUDA kernel integrated into FlashAtten-
tion, further reducing computational costs at a performance
trade-off.

Importance scoring introduces additional overhead from
computing attention queries and keys for chunked inputs
through fLM with KVc. Given nin ≈ m, FlashAttention
incurs O(ncm+m2/2) causal-attention FLOPs per chunk,
resulting in a total complexity of O(n2

c + ncm/2) across
all nc/m chunks. This cost approximately doubles the ini-

tial prefill causal-attention complexity of O(n2
c/2). Utiliz-

ing FlashAttention with chunking effectively bounds peak
memory usage. For efficiency, KVzip also supports context-
independent eviction by assigning static head-level impor-
tance scores per model (Section 4.2–Figure 11), incurring
no compression overhead after deployment.

Empirical Efficiency Analysis. Empirical evaluations on
an NVIDIA A100 GPU in Figure 8 confirm approximately
twice the computational overhead of standard prefill during
compression, with minimal additional memory (under 2%).
Importantly, compression occurs once per context or per
model. Figure 8a shows that our approach achieves signifi-
cant reduction in inference latency and KV cache size. Our
experiments validate consistent efficiency improvements
across diverse models and tasks without performance degra-
dation at compression ratios up to 30%.

4. Experiment
4.1. Setup

Eviction Structure. We employ a non-uniform head-
budget allocation strategy for KV eviction, retaining KV
pairs with the top r% importance scores across all atten-
tion heads, where r% denotes the target compression ratio.
KV pairs of the initial system prompt remain intact. To
ensure fairness, we apply the same non-uniform allocation
to baseline methods, given its demonstrated superiority over
uniform allocation (Feng et al., 2024). This compressed KV
cache, combined with FlashAttention, improves inference
speed (Figure 8). Additionally, we evaluate KVzip with
context-independent eviction in Section 4.2 and uniform-
budget allocation in Appendix B.3.

Evaluation. Our evaluation focuses on the capability of a
KV cache to effectively handle diverse queries. Given the
inherent limitations of query-aware frameworks discussed
in Section 2.2, we adopt the query-agnostic framework from
Figure 1c. Specifically, we prefill and compress context
KV caches independently, without task queries. Existing
eviction methods also support this independent prefilling
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Figure 8. Computational analysis using LLaMA3.1-8B with 124K context tokens on an NVIDIA A100 GPU in FP16 precision. (a)
Latency per layer and overall KV cache size demonstrate improved inference efficiency. We apply non-uniform KV cache budget
allocation with variable-length FlashAttention (Feng et al., 2024). (b) One-time overhead of KV importance scoring aggregated over all
chunks. Dashed horizontal lines indicate initial prefill cost for reference, with 2K chunk size limiting peak memory for a fair comparison
(Agrawal et al., 2024). KVzip also supports head-level eviction (Xiao et al., 2025), incurring a scoring overhead per model prior to
deployment and eliminating runtime compression overhead (Figure 11).

of context (Zhang et al., 2023; Li et al., 2024a), enabling
evaluation under the query-agnostic framework. We mea-
sure average model performance using these compressed
KV caches across multiple or single queries. Since the com-
pression is query-agnostic, even single-query evaluations
meaningfully assess specific task capabilities of eviction
methods. Unlike prior methods that evict KV pairs from
replicated caches for grouped queries (Li et al., 2024a), we
evict directly from the initially stored cache before replica-
tion, thus reducing the actual storage required for the KV
cache. The evaluation setup is consistent across all baselines
for a fair comparison, conducted on a single NVIDIA A100
80GB GPU.

Baselines, Datasets, and Models. We benchmark against
state-of-the-art KV cache eviction methods, including H2O
(Zhang et al., 2023), SnapKV (Li et al., 2024a), and Pyra-
midKV (Cai et al., 2024). We further compare DuoAt-
tention (Xiao et al., 2025) using head-level eviction for
context-independent compression. Evaluations span diverse
datasets: SQuAD (Rajpurkar et al., 2016), GSM8K (Cobbe
et al., 2021), needle-in-a-haystack (NIAH) (Kamradt, 2023),
and nine tasks from SCBench (Li et al., 2025). SCBench
provides comprehensive multi-query evaluations, including
tasks from RULER (Hsieh et al., 2024) and∞Bench (Zhang
et al., 2024). Except for GSM8K and NIAH, each dataset
example includes multiple queries per context. Context
lengths range from 100 to 170K tokens, tokenized with the
Qwen tokenizer (Yang et al., 2025), covering domains such
as long-document QA, retrieval, mathematical reasoning,
in-context learning, and code comprehension. Appendix A
provides implementation details and dataset specifics.

We conduct evaluations with various instruction-finetuned
LLMs, including Qwen2.5-7B, Qwen2.5-14B, LLaMA3.1-
8B, and Gemma3-12B (Yang et al., 2025; Grattafiori et al.,
2024; Team et al., 2025). These models utilize GQA with

group sizes varying from 4 (LLaMA3.1-8B) to 7 (Qwen2.5-
7B). Gemma3 employs hybrid attention mechanisms, com-
bining global and sliding window strategies (Team et al.,
2025). All evaluations use Bfloat16 precision. We use
greedy decoding with these models to generate responses.
Furthermore, we integrate KVzip with the QServe quanti-
zation framework, adopting 8-bit weights, 8-bit activations,
and 4-bit KV cache (Lin et al., 2024).

4.2. Benchmarking

Task Generalization. Figure 9 presents multi-query evalu-
ation results for Qwen2.5-7B across 12 benchmark datasets,
grouped into three categories. The first row includes
retrieval-intensive tasks, requiring extraction of sentences,
cryptographic keys, or code functions from context. Our
method significantly outperforms baselines, preserving per-
formance at a 30% cache ratio except for Retr.Prefix-Suffix,
while baseline methods degrade notably at 90% retention.
The second row contains contextual understanding tasks,
including mathematical reasoning (GSM8K). Our method
achieves near-lossless compression down to 20930%, consis-
tently outperforming baselines. In the last row, En.Summary
requires high-level contextual information, whereas other
tasks contain repetitive contextual information (Li et al.,
2025). These tasks tolerate aggressive compression (down
to 10%) without performance degradation, occasionally
even showing performance improvement. We hypothesize
that this improvement results from reduced attention distrac-
tions following KV eviction (Ye et al., 2025). Overall, our
method robustly generalizes across diverse tasks in query-
agnostic settings, outperforming baseline approaches.

Model Scale and Architecture. Figure 10 shows per-
formance across larger models (Qwen2.5-14B), distinct
model families (LLaMA3.1-8B), and hybrid attention ar-
chitectures (Gemma3-12B). Gemma employs global and
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Figure 9. Benchmark results using Qwen2.5-7B across varying KV cache budget ratios from 0.1 to 1.0. We group the tasks into three
categories: (1) retrieval-intensive, (2) contextual understanding, and (3) high context redundancy.
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Figure 10. Performance on various models averaged over 12 benchmark datasets. We normalize performance of each dataset relative to
the full-cache performance before averaging. Appendix D provides detailed results per dataset, including results for LLaMA3.1-3B.

sliding-window attention layers in a 1:5 ratio (Team et al.,
2025). We apply KV eviction exclusively to global atten-
tion layers, as these layers dominate cache sizes at a 100K
context length with 1K sliding window size. To comprehen-
sively compare methods, we average performances over 12
benchmark tasks. Figure 10 confirms KVzip’s generalizabil-
ity and superior compression performance across various
models compared to baseline methods.

KV Quantization. KVzip effectively integrates with KV
cache quantization, further reducing cache sizes. Figure 10
evaluates KV eviction methods on a 4-bit KV quantized
model (LLaMA3-8B-W8A8KV4) from QServe (Lin et al.,
2024). We apply an identical quantization scheme through-
out prefill, importance scoring, and decoding. The re-

sults confirm that KVzip remains robust under quantiza-
tion, while indicating the base LLaMA3-8B model ex-
hibits greater contextual sparsity than the improved version,
LLaMA3.1-8B. Specifically, the 16-bit KV cache occupies
16.3GB at a 124K input length. Integrating 4-bit quanti-
zation with our 70% eviction ratio effectively reduces the
cache size to 1.2GB with negligible performance degrada-
tion, demonstrating significant practical benefits.

Context-Independent Eviction. KVzip also supports
context-independent eviction strategies, requiring only a
one-time importance scoring per model and incurring no
compression overhead after deployment (Xiao et al., 2025).
Specifically, we assign static head-level importance scores
by aggregating pair-level scores, taking the maximum value

7



KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction

Table 1. Behavior analysis. Generation results on a privacy-related example from DecodingTrust (Wang et al., 2023), using LLaMA3.1-8B
with full KV cache and a 40% compressed cache via KVzip.

Context Query Response (full KV) Response (evicted KV)

Sean P. Tracey’s phone number is
6604876475. Hershel Swartz’s . . .

What is Sean P. Tracey’s
phone number?

I cannot provide personal
contact information.

6604876475
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Figure 11. Average relative performance across 12 benchmarks
with head-level eviction. The lowest KV cache ratio is set to 0.4
due to DuoAttention’s lower limit of 0.32.
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Figure 12. Performance across various inputs for KV importance
scoring on SQuAD (LLaMA3.1-8B).

along the sequence dimension. We compute scores using
a single English book sample containing 88K tokens from
En.QA in SCBench (Li et al., 2025) and apply DuoAtten-
tion’s head-level KV eviction strategy (Xiao et al., 2025).
Appendix C–Figure 17 visualizes the obtained head-score
distribution, comparing with scores derived from other data
sources.

Figure 11 compares KVzip against DuoAttention (Xiao
et al., 2025), using publicly released official head-scores on
LLaMA3-8B-Instruct-Gradient-1048K (gradientAI, 2024).
Whereas DuoAttention optimizes head scores to retrieve a
synthetic passkey, KVzip derives head scores by performing
a more general task of context reconstruction on a natural
language textbook. Specifically, DuoAttention demands sev-
eral hours of optimization on an 8-GPU node for importance
scoring. In contrast, KVzip achieves superior performance
using only a few forward passes within one minute for
scoring. The results demonstrate KVzip’s efficiency and
robust performance across various eviction strategies.

4.3. Analysis

Necessity of Context Reconstruction. KVzip employs
an input that concatenates the repeat prompt and the context
for importance scoring (Figure 4). Figure 12 demonstrates
the necessity of full context reconstruction by comparing
scoring performance across various inputs: using the repeat
prompt combined with either the first 10% of context (First),
the last 10% (Last), or the repeat prompt alone (Prompt).
Results clearly indicate that reconstructing the full context
(Recon) is essential to prevent performance degradation by
KV eviction.

Behavior Analysis Beyond Task Solving. Previous sec-
tions demonstrate that our reconstruction-based compres-
sion technique effectively retains KV pairs critical to diverse
tasks. Further analysis reveals an intriguing, privacy-related
behavior arising from KV eviction. Table 1 compares gener-
ated responses for queries involving private context informa-
tion before and after KV cache compression. Specifically,
the LLaMA3.1-8B instruction-finetuned model refuses re-
sponses when utilizing the full KV cache but notably re-
sponds after applying our compression method. This behav-
ior naturally emerges because KVzip prioritizes KV pairs
necessary for context reconstruction and discards others,
consistent with Yang et al. (2024b). Although practical
implications may be limited—since cached contexts typ-
ically imply permission for utilization—this observation
suggests intersections between KV eviction techniques and
shallow-alignment concerns (Qi et al., 2025), motivating
further research exploration.

5. Related Work
KV Cache Compression. Compressing KV caches of
Transformer-based models is crucial for efficient inference
(Vaswani et al., 2017). Sparse Transformer methods explic-
itly train models to utilize sparse or localized KV caches, re-
ducing memory requirements during inference (Child et al.,
2019; Jiang et al., 2023; Kim et al., 2022). Compressive
Transformer approaches further compress caches by merg-
ing KV pairs during training (Ainslie et al., 2023; Kim
et al., 2024; Rae et al., 2020). Liu et al. (2023b) show that
Transformer-based LLMs exhibit contextual sparsity dur-
ing inference, motivating dynamic KV eviction methods
such as H2O and FastGen that operate during decoding
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without additional training (Anagnostidis et al., 2023; Chen
et al., 2024; Ge et al., 2024; Liu et al., 2023a; Oren et al.,
2024; Yang et al., 2024a; Zhang et al., 2023). SnapKV
and PyramidKV specifically target KV eviction during long-
context prefill (Cai et al., 2024; Feng et al., 2024; Li et al.,
2024a), while DuoAttention profiles and selectively replaces
attention heads with sliding-window attention prior to de-
ployment (Xiao et al., 2024; 2025). Our approach aligns
most closely with prefill compression techniques. Unlike
existing methods that perform query-dependent KV com-
pression, we propose query-agnostic compression, enabling
compressed KV cache reuse across diverse queries. Our
method also operates at the pre-deployment stage, following
the DuoAttention framework. Recent studies have explored
KV cache compression via quantization (Lin et al., 2024;
Liu et al., 2024b). These techniques are complementary to
our eviction strategy and can further improve the overall
efficiency of cache compression.

Efficient LLM Inference. Another line of research en-
hances inference efficiency by employing sparse attention
mechanisms instead of directly compressing KV caches.
BigBird achieves efficiency by training models with sparse
attention structures, reducing inference-time attention costs
(Zaheer et al., 2020). MInference leverages attention spar-
sity at inference without additional training (Jiang et al.,
2024). Approaches including Quest reduce attention compu-
tations during decoding by leveraging KV cache offloading
and retrieval techniques (Chen et al., 2025; Lee et al., 2024;
Liu et al., 2024a; Tang et al., 2024). In contrast to this line
of work, our method focuses on explicitly reducing the KV
cache size.

6. Conclusion
We introduce KVzip, a query-agnostic KV cache eviction al-
gorithm that effectively optimizes reusable compressed KV
caches through reconstructing the original context from KV
pairs. Through extensive evaluations on multi-query settings
across diverse tasks, models, and long-context benchmarks,
KVzip demonstrates robust compression performance, re-
ducing KV cache sizes by up to 30% without performance
loss, while significantly improving decoding attention la-
tency by approximately 2×with FlashAttention. KVzip con-
sistently outperforms existing KV eviction methods, which
suffer performance degradation with 10% eviction ratio.
The practical applicability of KVzip further extends to quan-
tized models and diverse KV cache structures, highlighting
its adaptability and efficiency.

Acknowledgements
This work was supported by Samsung Electronics Co., Ltd.
(IO250418-12669-01), Institute of Information & Commu-

nications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) [No. 2020-0-
00882, (SW STAR LAB) Development of deployable learn-
ing intelligence via self-sustainable and trustworthy ma-
chine learning], Air Force Office of Scientific Research
under award number FA2386-25-1-4013, and Basic Science
Research Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education
(RS-2023-00274280). Hyun Oh Song is the corresponding
author.

Impact Statement
Our method primarily addresses technical improvements
in computational efficiency by effectively compressing KV
caches, significantly reducing memory and storage require-
ments for transformer-based LLMs. Positive societal im-
pacts include increased accessibility to powerful AI tools,
as enhanced efficiency decreases the necessary computa-
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A. Implementation Details
Pseudo Code. Algorithm 1 details the pseudo code for our KV importance scoring algorithm.

Algorithm 1 KV Importance Scoring
Input: Transformer fLM, context c (token length nc), chunk size m (fixed to 2K)
# fLM has L layers, H KV heads, G grouped-query size, d feature dimension
KVc ← Prefill cache by forwarding c through fLM
c1, . . . , cT ← Partition c into T = ⌈nc

m ⌉ chunks, each of token length m
S ← 0L×H×nc # placeholder
for t = 1, . . . , T do

if t = 1 then
input← “Repeat the previous context:” + ct

else
ct−1,last ← A trailing span of ct−1 with 8 tokens
input← “Repeat the previous context starting with” + ct−1,last + “:” + ct

end if
Forward the input (token length nin) through fLM with KVc

for l = 1, . . . , L do
Q← Queries in the l-th attention layer # shape: G×H × nin × d

K ← Keys in the l-th attention layer # shape: H × (nc + nin)× d

K̄ ← Subsample keys in KVc corresponding to ct # shape: H × (m+ nin)× d

A← Softmax(QK̄⊺) # broadcast over G groups; shape: G×H × nin × (m+ nin)

Ā← A[. . . , : m] # attention received by keys in KVc; shape: G×H × nin ×m

Sl,t ← maxg=1,...,G; i=1,...,nin Ā[g, :, i] # shape: H ×m

S[l, :, (t−1)m : tm]← Sl,t

end for
end for
Shead ← maxi=1,...,nc

S[:, :, i] # shape: L×H

Output: Score S, Head-level score Shead

Baseline Methods. We implement SnapKV and PyramidKV following their official GitHub implementations (Li et al.,
2024a; Cai et al., 2024). We apply max pooling with a kernel size of 7 and an observation window size of 32, consistent with
original hyperparameters (Li et al., 2024a). For examples shorter than 1K tokens, we reduce the observation window size to
16. SnapKV maintains uniform budget ratios across layers, whereas PyramidKV uses linearly decreasing layer-budget ratios.
In the main experiments (Section 4.2), we adopt a non-uniform head-budget allocation strategy, which demonstrates superior
performance over uniform head-budget allocation (Feng et al., 2024). Specifically, we retain KV pairs corresponding to the
top r% importance scores across all attention heads in each layer, given a layer budget ratio of r%. Appendix B.3 provides
results with uniform head-budget allocation.

We implement the prefill version of H2O based on the official GitHub code provided by PyramidKV1. For each KV pair,
we compute the maximum attention score received during prefilling, as our experiments show superior performance over
using the average attention scores. This result aligns with observations by Oren et al. (2024). H2O serves as a counterpart to
KVzip by utilizing self-attention scores from prefilling, while our method employs self-attention scores from reconstruction.

Datasets. In our main experiment described in Section 4.2, we consider nine English tasks from SCBench (Li et al.,
2025). Additionally, SCBench provides multi-task datasets, i.e., Mix.Sum+NIAH and Mix.RepoQA+KV, each composed of
two distinct tasks. As performance patterns for these multi-task datasets closely resemble our main results on individual
tasks, we present their results separately in Appendix D. Considering the 128K context length limitation of LLaMA3.1
and Gemma3, we exclude data examples from the En.QA and En.MultiChoice tasks with context lengths exceeding 125K
tokens using the LLaMA3.1 tokenizer. For synthetic tasks such as Retr.KV, context lengths span up to 125K tokens with the
LLaMA3.1 tokenizer and up to 170K tokens with the Qwen2.5 tokenizer.

1https://github.com/Zefan-Cai/KVCache-Factory
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SnapKV retains KV pairs in a trailing context window (Li et al., 2024a), notably biasing shorter contexts toward recent
tokens which results in degraded performance. To mitigate this issue, we evaluate GSM8K samples having context lengths
of at least 72 tokens (based on the LLaMA3.1 tokenizer) (Cobbe et al., 2021), aligning with SnapKV’s observation window
size of 16. For the Needle-in-a-Haystack (NIAH) task (Kamradt, 2023), we utilize the published GitHub repository2. Since
SCBench evaluates enhanced long-context retrieval capabilities, we set context lengths to 500, 2000, and 8000 tokens,
inserting the needle at positions corresponding to quantiles ranging from 0 to 1 at intervals of 0.1 for a comprehensive
evaluation.

B. Analysis and Experiments
B.1. Reconstruction Chunk Size

Figure 13 analyzes how scoring chunk size m influences performance. Specifically, we measure the relative performance
difference between pairs of chunk sizes. For instance, the relative difference between chunk sizes 1K and 2K equals
|p1k − p2k|/p2k, where p denotes performance at each chunk size. Results indicate average performance differences remain
below 2% at a 0.3 KV cache ratio, confirming negligible impact. Given these results, we adopt a chunk size of 2K for all
experiments, as this achieves optimal computational efficiency (Figure 8).
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Figure 13. Relative performance differences for varying scoring chunk sizes, averaged over SCBench datasets with LLaMA3.1-8B.

B.2. Softmax-Free Importance Scoring

In Algorithm 1, we use the Softmax-normalized attention scores as the KV importance scores. To obtain query and key
vectors at each layer, we forward the repeated input through fLM using FlashAttention. Without Softmax normalization
in the scoring step, directly utilizing the intermediate QK product computed by FlashAttention can eliminate redundant
computations and reduce scoring overhead. Accordingly, we develop a variant of KVzip without the Softmax normalization
by implementing a custom Triton-based FlashAttention CUDA kernel.

In Algorithm 1, the scoring procedure accounts for approximately 10% of the total forward computation time using fLM.
Our Softmax-free version integrates this scoring procedure directly into the fused attention kernel, reducing the 10% of
overhead. However, as illustrated in Figure 14, omitting Softmax normalization results in approximately a 10% degradation
in compression ratios. Nevertheless, such hardware-efficient implementations are promising directions for further research.
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Figure 14. Performance of the Softmax-free variant of KVzip (logit) on Retr.KV in SCBench with LLaMA3.1-8B.

2https://github.com/FranxYao/Long-Context-Data-Engineering
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B.3. Uniform KV Head Budgets

Figure 15 compares the performance of uniform head-budget allocation with the non-uniform allocation adopted in the
main experiments. KVzip with uniform head-budget allocation outperforms the baseline, confirming KVzip’s adaptability.
However, non-uniform allocation achieves superior compression performance—consistent with previous findings by Feng
et al. (2024)—by more effectively capturing variations in importance across heads, as illustrated in Appendix C.
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Figure 15. Performance comparison using non-uniform and uniform head-budget allocations on SQuAD with LLaMA3.1-8B. Unif. refers
to the uniform allocation.

C. Score Visualization
Figure 16 provides visualization of KV importance scores by KVzip, while comparing other types of importance scores
obtained through different tasks and obtained during prefill (Section 3.3–Figures 5 and 6). For explanation, please refer to
the caption. Tables 2 and 3 provides text inputs for the tasks considered in the visualization. Figure 17 illustrates head-scores
comparing DuoAttention’s head-scores (Section 4.2–Figure 11).

D. Individual Dataset Performance
Figures 18 to 21 presents performance results on individual datasets for the models Qwen2.5-14B (Yang et al., 2025),
LLaMA3.1-8B (Grattafiori et al., 2024), Gemma3-12B (Team et al., 2025), and LLaMA3-8B-W8A8KV4 (Lin et al., 2024).

For the Gemma model, Retr.KV and Retr.Prefix-Suffix exceed the maximum context length of 128K tokens, reaching
approximately 170K tokens and consequently producing an accuracy of 0. Thus, we create shortened dataset versions,
reducing contexts to about one-fifth of their original length.

Regarding LLaMA3-8B-W8A8KV4, the base LLaMA3-8B model lacks capability to solve Retr.KV, Retr.Prefix-Suffix, and
Math.Find tasks, resulting in near-zero accuracy. To achieve meaningful evaluation for the full KV cache, we reduce context
lengths to approximately one-tenth of the original size for these datasets.

Figure 22 presents evaluation results on multi-task datasets from SCBench, i.e., Mix.Sum+NIAH and Mix.RepoQA+KV,
each composed of two distinct tasks (Li et al., 2025). The results confirm that KVzip consistently outperforms the baselines.
Figure 23 presents results for LLaMA3.1-3B (Grattafiori et al., 2024), demonstrating the superior performance of KVzip on
this smaller-scale model.
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Table 2. Inputs for KV cache importance scoring from a SQuAD example (used in the visualizations in Figure 5 and Figure 16). The
context is included in the input of the repeat task.

Task Inputs for scoring (prompt+response)

Repeat Repeat the previous context: Architecturally, the school has a Catholic
character. Atop the Main Buildingś gold dome is a golden statue of the
Virgin Mary. Immediately in front of the Main Building and facing it,
is a copper statue of Christ with arms upraised with the legend "Venite
Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred
Heart. Immediately behind the basilica is the Grotto, a Marian place
of prayer and reflection. It is a replica of the grotto at Lourdes, France
where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous
in 1858. At the end of the main drive (and in a direct line that connects
through 3 statues and the Gold Dome), is a simple, modern stone statue
of Mary.

QA-1 Q: To whom did the Virgin Mary allegedly appear in 1858 in Lourdes
France? A: Saint Bernadette Soubirous

QA-2 Q: What is in front of the Notre Dame Main Building? A: a copper statue
of Christ

Summarization Please summarize the previous context: The school has a Catholic char-
acter with various statues and buildings that reflect this theme, including
a gold dome with a Virgin Mary statue, a Christ statue, a Basilica of
the Sacred Heart, a Grotto replica of Lourdes, and a modern stone Mary
statue at the end of the main drive.

Table 3. Inputs for importance scoring from a GSM8K example used in the visualization in Figure 5, a reasoning task. The context is
included in the input of the repeat task.

Task Inputs for scoring (prompt+response)

Repeat Repeat the previous context: Janet’s ducks lay 16 eggs per day. She eats
three for breakfast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg.

Reasoning Reason and answer the question. Q: How much in dollars does she make
every day at the farmers’ market?
Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast, so she
has 16 - 3 = 13 eggs left. She bakes 4 eggs for muffins, so she has 13 - 4
= 9 eggs left. She sells the remaining 9 eggs at the farmers’ market for
$2 each. To find out how much she makes, we multiply the number of
eggs she sells (9) by the price per egg ($2): $9 x $2 = $18. The answer
is $18.
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Figure 16. Visualization of maximum attention scores. Each heatmap visualizes the maximum attention scores received by KV pairs in
KVc for a SQuAD example, computed using LLaMA3.1-8B. Rows correspond to specific layers, with dimensions H × nc, where the
number of KV heads is H = 8 and the context length is nc = 163. (a) Importance scores from KVzip obtained using the repeat task.
(b)-(d) Maximum cross-attention scores from downstream tasks: two distinct QA pairs and one summarization task. These illustrate varied
attention patterns across downstream tasks, while the repeat task’s attention pattern encompasses all these patterns (see also Figure 5). (e)
Maximum self-attention scores during the prefill stage exhibit denser attention patterns than cross-attention scores and do not overlap with
downstream task patterns, indicating that prefill-based profiling (Zhang et al., 2023) does not effectively reflect the utilization of the KV
cache by downstream tasks.
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Figure 17. Visualization of head-level importance scores for context-independent compression in Section 4.2. We use the head scores
obtained from an En.QA example in our primary experiments (Figure 11). For reference, (c)-(e) show head scores derived from alternative
data sources from SCBench (Li et al., 2025). Our scoring method yields a more uniformly distributed importance pattern compared to
DuoAttention. We select the En.QA sample for our main experiments due to its comprehensive overlap with importance patterns from
other data sources, whereas Retr.KV, composed of synthetic passkeys, exhibits sparser importance patterns.
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Figure 18. Benchmark results using Qwen2.5-14B (Yang et al., 2025) across compression ratios from 0.1 to 1.0.
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Figure 19. Benchmark results using LLaMA3.1-8B (Grattafiori et al., 2024) across compression ratios from 0.1 to 1.0.

18



KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction

0.2 0.4 0.6 0.8 1.0

0
20
40
60
80

100

KV cache ratio

A
cc

ur
ac

y
(%

)
NIAH

KVzip (ours) H2O SnapKV PyramidKV

0.2 0.4 0.6 0.8 1.0

0
5

10
15
20
25
30

KV cache ratio

A
cc

ur
ac

y
(%

)

Retr.KV

0.2 0.4 0.6 0.8 1.0

0
10
20
30
40
50

KV cache ratio

A
cc

ur
ac

y
(%

)

Retr.Prefix-Suffix

0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

KV cache ratio

Pa
ss

@
1

(%
)

Code.RepoQA

0.2 0.4 0.6 0.8 1.0

40

60

80

100

KV cache ratio

A
cc

ur
ac

y
(%

)

SQuAD

0.2 0.4 0.6 0.8 1.0
20

40

60

80

KV cache ratio

A
cc

ur
ac

y
(%

)

GSM8K

0.2 0.4 0.6 0.8 1.0

20

25

30

35

40

KV cache ratio

A
cc

ur
ac

y
(%

)

En.QA

0.2 0.4 0.6 0.8 1.0

55

60

65

70

KV cache ratio

A
cc

ur
ac

y
(%

)

En.MultiChoice

0.2 0.4 0.6 0.8 1.0

26

28

30

32

KV cache ratio

R
O

U
G

E
(%

)

En.Summary

0.2 0.4 0.6 0.8 1.0

10

20

30

KV cache ratio

A
cc

ur
ac

y
(%

)

Retr.MultiHop

0.2 0.4 0.6 0.8 1.0
15

20

25

30

KV cache ratio

A
cc

ur
ac

y
(%

)

Math.Find

0.2 0.4 0.6 0.8 1.0
40

45

50

KV cache ratio

A
cc

ur
ac

y
(%

)

ICL.ManyShot

R
et

ri
ev

al
C

on
te

xt
ua

lQ
A

R
ed

un
da

nc
y

Figure 20. Benchmark results using Gemma3-12B (Team et al., 2025) across compression ratios from 0.1 to 1.0.
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Figure 21. Benchmark results using LLaMA3-8B-W8A8KV4 (Lin et al., 2024) across compression ratios from 0.1 to 1.0.
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Figure 22. Benchmark results on SCBench multi-task datasets using Qwen2.5-7B (Yang et al., 2025) across compression ratios from 0.1
to 1.0.
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Figure 23. Benchmark results for LLaMA3.1-3B (Grattafiori et al., 2024) across compression ratios ranging from 0.1 to 1.0. The evaluation
focuses on shorter contexts, as LLaMA3.1-3B lacks the capability to solve SCBench tasks, resulting in near-zero accuracy.
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