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Abstract

In this work, we propose using a unified representation, termed Factorized Fea-
tures, for low-level vision tasks, where we test on Single Image Super-Resolution
(SISR) and Image Compression. Motivated by the shared principles between
these tasks, they require recovering and preserving fine image details, whether by
enhancing resolution for SISR or reconstructing compressed data for Image Com-
pression. Unlike previous methods that mainly focus on network architecture, our
proposed approach utilizes a basis-coefficient decomposition as well as an explicit
formulation of frequencies to capture structural components and multi-scale visual
features in images, which addresses the core challenges of both tasks. We replace
the representation of prior models from simple feature maps with Factorized Fea-
tures to validate the potential for broad generalizability. In addition, we further
optimize the compression pipeline by leveraging the mergeable-basis property
of our Factorized Features, which consolidates shared structures on multi-frame
compression. Extensive experiments show that our unified representation delivers
state-of-the-art performance, achieving an average relative improvement of 204.4%
in PSNR over the baseline in Super-Resolution (SR) and 9.35% BD-rate reduction
in Image Compression compared to the previous SOTA.

1 Introduction

Single-image super-resolution (SISR) aims to recover high-quality images from low-resolution inputs,
with accuracy depending on precise restoration of fine details and geometric correspondences (e.g.,
stripes, grids, textures). CNN pioneers [24} 59]] were followed by GAN-based methods for perceptual
realism [47] and Transformer networks for long-range context [14]. Swin-based variants further
boosted performance [22}[18},[19,[71]], inspiring ever-heavier architectures. These prior works optimize
network design while neglecting the underlying image-content representations themselves. On the
other hand, decomposition-based methods[66} 44, 39]] seek to model the frequency components
directly through adding Fourier- or Wavelet-like bottlenecks in the middle. Although these designs
can indeed better capture the recurring visual patterns in learning effective SR representations than
aforementationed methods, as illustrated in fig. |1} they still suffer from poor perceptual quality.

This raises a critical question: beyond a simple network output, can we derive a formulation that
more effectively captures these patterns and aligns with the goals of SISR?

Conventional multi-scale pyramids aggregate features at several resolutions, but they store all acti-
vations densely, do not disentangle frequency content, and cannot be shared directly across tasks.
Instead, our factorized descriptor decomposes images into generalizable basis x coefficient pairs,
providing an explicit multi-frequency handle through different modulations.

On the other hand, image compression serves as a fundamental task in low-level vision applications,
where the traditional compression standards [41} 95} 92] lay the groundwork. The emerging learned
image compression models [8, 13 134} 162} 180} 20]], compression algorithms of which mostly follow
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Figure 1: In this work, we propose to represent images by Factorized Features, contrasting with prior
methods that either (a) rely on fixed-basis decomposition[|66} 139] or (b) introduce various complex
model blocks [15} [71] such as sparse attention, dense skip connection, etc. As highlighted in the

boxes, (a) successfully captures periodic line structures but suffers from lower fidelity, while
(b) cannot recover those repeating patterns without explicit frequency modeling. In contrast, our
method (c) uses learned decomposition with generalizable bases to deliver high-fidelity reconstruction
while preserving periodic structures. We also present LAM [32] and Diffusion Index (DI) [32] for
reconstructing the red-boxed patch, with its pixel-importance map shown on the middle row; a higher
DI indicates more pixel utilization.

the pixel-space transform coding [8}[31]] paradigm, then introduce a variety of networks [96} 62|
106l 167, [27]] or difference losses [35] to further optimize compression efficiency by learning more
compact latent representations and improving reconstruction quality. Specifically, they convert pixels
into compact representations through a transform module, which eliminates the redundancy and
reduces the bit cost in the subsequent entropy coding process. However, the core challenge of image
compression is to accurately reconstruct the information lost during compression and quantization.
In other words, the models can essentially be viewed as reconstructing a high-quality image from its
‘low-resolution’ version, much like Super-Resolution or all other common low-level vision tasks such
as image restoration, deblurring, denoising, etc.

Based on the aforementioned analysis, it becomes clear that although these tasks appear to be distinct,
they share mutual similarities in two key aspects: (1) The tasks require models to restore fine details
from low-quality image content, as well as implicitly capture and reconstruct repetitive structural
elements. (2) They aim to conserve image quality, either by enhancing resolution or efficiently
compressing data without significant loss of perceptual fidelity. Hence, inspired by recent advances
in decomposition fields and matrices factorization in 3D scene modeling [[11} 81} 9} 28 [7} [12} 30],
we propose a unified representation, Factorized Features, with generalizable Coefficient Backbone
and Basis Transformer for learned coefficient and basis, respectively. This approach explicitly
captures multi-scale visual features and repetitive structural components in images through a basis-
coefficient decomposition. The resulting representation strikes a balance between being compact and
information-rich, enabling the resolution of structural ambiguities and the precise modeling of image
details through a multi-frequency formulation.

Finally, we also propose consolidating multiple bases into one through a network for multi-image
processing, as in traditional Discrete Fourier Transform, all signals of same size are reconstruct
by the same set of basis functions, and we argue that learned shared basis can leverage the mutual
information across multiple images to capture common structures.

The main contributions of this paper are summarized as follows:



* We identify the weakness of previous similar representations and propose a refined rep-
resentation, Factorized Features, based on thorough analysis as in section for coarse
and fine details of images via explicitly modeling multi-scale visual features and structural
components.

* We generalize such image descriptors to learned settings on super-resolution and image
compression, with potential applicability to broader low-level vision tasks.

* We demonstrate state-of-the-art performance on benchmarks for both super-resolution and
image compression through extensive experiments.

2 Related Works

Super-Resolution (SR). Image super-resolution (SISR) aims to reconstruct high-resolution (HR)
images from low-resolution (LR) inputs, which is crucial for computer vision. Early CNN-based
methods [24, 59} (113} 189, 43| introduced residual [48, 161} 94,112,111\ 21} 158]] and recursive learn-
ing [19/190]. GAN-based approaches [47, 48, 97, 98] improved perceptual quality but faced spatial-
locality constraints, leading to Transformer-based SISR models [[14}53]]. SwinIR [55]] integrated
window attention with Swin Transformer [69], inspiring further advancements [22, [114} 109} 21} [71].
Hybrid models such as CRAFT [50], DAT [18]], and HAT [15] optimize feature aggregation,
while RGT [19]] enhances spatial details efficiently. Recent efficient Transformer variants such
as Restormer [[105]] and Uformer [99]] demonstrate that lightweight attention or activation-free blocks
can match or surpass heavier designs. Diffusion-based methods such as DDRM [42] provide an
orthogonal line of plug-and-play restoration priors, with recent advances extending to video restora-
tion [104]], reference-based face restoration [37]], and inpainting tasks [64]. Additionally, learned
pipeline approaches [68] reverse the image formation process for reconstruction tasks.

Spectral Coordinate Transforms. A separate line of work seeks to encode coordinates rather
than deepen the backbone. Fourier Features [91] 78] map input positions to a fixed harmonic basis,
enabling MLPs to model high-frequency detail. CoordConv [65] expands convolutional layers
with raw (z,y) channels to facilitate spatial reasoning. On the other hand, sawtooth coordinate
transformation ~y(+), of our Factorized Features, folds space into a piece-wise linear triangle wave and
produces evenly spaced spectral peaks (see section [4.1)) that favor sparse and low-rank Factorized
Features. Unlike the above encoding, our basis-coefficient decomposition paired with  can be trained
end-to-end and reused directly in both super-resolution and compression pipelines.

Image Compression (IC). Deep learning surpasses traditional codecs such as JPEG [95] and
JPEG-2000 [92]], with CNN-based [8| |4, 33]], Transformer-based [45} [115} [100, 25} 27} [106! 67}
29|, and GAN-based [73\ [74} 26} 186] approaches improving performance. ELIC [36] introduced
adaptive coding; LIC TCM [62] combines CNNs and Transformers; eContextformer [46] leverages
spatial-channel attention. GroupedMixer [51] introduces token mixers, while Wavelet Conditional
Diffusion [88] balances perceptual quality and distortion. Generative codecs such as HiFiC [[77]
pursue high-fidelity reconstructions at extremely low bitrates and offer a complementary direction to
likelihood-based models.

Our work diverges from these trends by introducing Factorized Features, a unified framework
modeling both visual and structural features to enhance performance across super-resolution and
image compression.

3 Frequency Decomposition Preliminary

In this section, we start by revisiting several previous renowned representations for images, e.g., 2D
Fourier Transform, Learnable Fourier Series [66], and Factor Fields [12]], and then generalize them to
a concise formulation of basis-coefficient decomposition as in eq. (3).

The Fourier Transform has long been used in many scenarios to represent periodic or finite signals
with a group of sinusoidal functions. In practice, it often takes the form of the Discrete Cosine
Transform for a real-valued 2D discrete signal f with height H and width W:

e U 1 v 1
flz,y]l = Z ZSu,Ucos {% (m—&—g)}cos [WW (y—l— 5)} , (1)

u=0 v=0

where S, ,, is the amplitude.



Without the loss of generality, we consider square images in this work, with edge length (and also the
period) denoted as 7":

T—-1T-1

flz,y] = Z Z Su,v COS { (uz +vy) — Euw| , 2)

u=0 v=0
where z < T,y < T, and £, ,, is phase shift.

In image processing tasks, the goal is to learn S and &, then use the formula above to reconstruct
high-quality images from degraded inputs. To achieve this, [66] treats .S and £ as learnable parameters,
allowing the model to optimize them for better reconstruction. Furthermore, the frequencies « and
v are also designed to be promptable by the model, enabling dynamic adaptation to spatial-varying
high- and low-frequency components.

More generally, we can formulate it as the multiplication of coefficient c and basis b with simplified
notation, and in this work, we use x to represent the pixel coordinates (z,y):

N
= Z ¢i - bi(x), bi(x) = cos [(wiz + viy) — &, 3)

where N denotes the number of frequency components.

In the next section, starting from the concise formulation in eq. (E]), we introduce our Factorized
Features framework and elaborate on its spatially variant coefficients and adaptive basis functions,
while showing its application to super-resolution and image compression.

4 Methods

In this section, we dive into the motivation and how we resolve the weaknesses of previous
decomposition-based methods by our Factorized Features in section 4.1} Next, we discuss how
to integrate such a strategy into learned settings of Super-Resolution in section[d.2]and Image Com-
pression section.3] We provide the background of learned image compression in the supplementary
materials.

4.1 Formulation of Factorized Features

In this subsection, we focus on the analysis of the properties from different factorization components,
and derive our final Factorized Features through these insights, starting from the simplest expression
eq. (3).

Spatially Variant Coefficient. Intuitively, the local frequency spectrum of a signal is spatially
variant, meaning that different regions exhibit distinct spectral characteristics, e.g., certain regions of
an image do not require high-frequency components. Therefore, in this work, we set coefficient ¢; to
be spatial-varying, following [12], i.e.,

N
=S () - bi). )

i=1

Learned Non-uniform Basis. Previous works[66, 154, |49]] learn basis through frequencies u, v and
phase shift &; however, constructing signals with definitive sets of uniform sinusoidal harmonic
functions does not facilitate the utmost details. The predefined nature of these sinusoidal functions re-
stricts local flexibility, making fine-grained adjustments more challenging. Also, since low-frequency
components typically require more energy [52], during the learning process with training losses of
MAE or MSE, models would attend more to low-frequency parts and sacrifice local details. As shown
in fig. 2a] higher frequency components converge after their counterpart. Hence, in this work, we
generate the entire basis map b; = M; € RT*7 for better fitting and local reconstruction.

To this end, we have introduced our rough idea: Under the generalizable setting, we use networks to
generate a multi-channel coefficient map and a multi-channel basis map, and combine them. In this

work, the composition process happens in the end with a projection function P for RGB images I:

ix)=P (c(mcatfil {ci(x) b (x)}) . )
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Figure 2: Comparison of different trainable basis settings We test on single-image regression
with f(x) = Zf\il ¢i(x) bi(x) with equal parameter count. (a) fixed sinusoidal basis favoring
low—frequency content, eq. (3); (b) learnable (i.e. requires gradient) coordinate mapping with

moderate gains; (c) Learned Non-uniform Basis M; € R7*T converges more synchronously. Note
that a1, aeg are the frequencies, functionally similar to u, v.
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Figure 3: Visualization of different factorization methods This figure shows the difference between
vanilla fields, coordinate transformation, and multi-frequency modulation. Specifically, (a) is a vanilla
basis-coefficient field, and (b) adds sawtooth transformation. We can see in (b) that the coordinate
transformation explicitly models a patch-like pattern, e.g., the second plot from the top is divided
into two periods. By enforcing such frequency components, the models can decompose the signal
effectively. Next, (d) is our full formulation, while (c) has no «. Intuitively, from (b) to (c), applying
1) (we use cos here) should not have much effect on the performance since we do not have any
constraint on these learnable bases. With the introduction of «, the models are forced to attend to
signal components of different frequencies.

In contrast to previous works which employ Fourier bottlenecks[66]], or frequency decomposition
blocks[54, 49, 152]] among model blocks, here we seek to address a fundamental question: Can a
well-learned representation effectively replace the simple feature map output? That is, our solution is
meant to be applied directly on networks to represent any images.

Next, we discuss more improvements on frequency decomposition to model image details.

Coordinate Transformation. The success of the Fourier-based representation originates from
its sinusoidal decomposition. By using such periodic functions, one can effectively analyze and
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Figure 4: The Proposed Factorized Features. In this figure « = {1, 16}, 1) = sin(-), and that ~; ()
is coordinate transformation. We can see in this figure with sawtooth transformation ~ the feature
is prompted to learn pattern from different scale in a patch-like manner, e.g. > makes the same
basis repeat four times in the grid. However, only - is not enough for very fine details; therefore,
we introduce « and 1. Each basis is forced to accommodate both high-frequency (large « ) and
low-frequency (small o)) components together with periodic functions 1), i.e., larger o will make v
oscillate sharper.With explicit formulation of repetitive patterns and high frequency components,
images can be represented with fine-grained details, which is especially useful for low-level vision
tasks such as Super-Resolution and Image Compression.

reconstruct signals with the enforcement of high- and low-frequency components. However, the
formulation in eq. (3] does not have such explicit harmonic feature (coefficient and basis are learned
maps), and thus as in fig. E[(a) vs (b)) we witness performance loss due to lack of such guidance.
Inspired by position encoding [78], 1T} [81} [7, O] and Fourier feature mapping [91], we introduce
coordinate transformation function ; on x before sampling basis b;:

i(w) = P(Concaty {ci(2) - bi(ri(2)) } ). ©)

In practice, we empirically[12]] use sawtooth transformation y(z) = 2 mod k, k € R; visualization is
also provided in the supplementary material. We argue that the function explicitly imposes patch-like
periodic constraints and, therefore, enforces models to learn such repetitive patterns.

Multi-frequency Modulation. has shown that neural networks are biased towards learning
low-frequency content. Hence, we propose multi-frequency modulation to compel the model to fit
high-frequency components, visualized in fig. B¢ and fig. Bd:

I(@) = P(ConcatLy =, {eis(2) © vl - bi(1(2)) }). ™

where 1) € sin, cos and o € R. In this way, each basis b; contributes to both high- and low-frequency
components by different values of ce. Consequently, if a basis is only accurate in the low-frequency
domain, the output will contain undesired high-frequency noise.

Alternatively, eq. can be interpreted as making the spatial coordinates z,y of b;(x) =
cos [(u;z + v;y) — &) in eq. (3) learnable instead of the frequency components u, v. To validate this,
we conduct experiments (fig.[2b) showing that learning coordinates mitigates the rigid constraint of
uniform distribution, aligning better with the non-uniform nature of visual patterns across spatial
layouts; that is, some pixels share similar RGB values, indicating smooth color transitions, while
others exhibit abrupt changes, suggesting high-frequency variations.

To this end, our full Factorized Features representation is formulated in eq. (7)), visualized in fig. 4]

4.2 Super-Resolution with Factorized Features

We represent a super-resolved image using our Factorized Features, where coefficients and basis are
generated by networks Fioesr and Fiqgis from a low-resolution Image:

~ K

Is(x) = P (ConcatLy;” {cif (@) © (e, - b (@) }), @®)

where 'R (2) = Feperr(Ir) () and 0™ (2) = Fasis(Feoett(ILr)) (7()). Note that we sample the
outputs Feoerr(ILr) and Fhasis(Feoetrf(ILr)) With coordinates x and ~y(z), respectively. We omit
convolution layers here for simiplicity.
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Figure 5: Super-Resolution and Image Compression with Factorized Features. This figure
illustrates how Factorized Features are used in Super-Resolution and Image Compression. (a) Given
a low-resolution input image, we first extract X .. sy feature with Coefficient Backbone. Next, we
generate the basis and coefficient with Basis Swin Transformer and convolution layers, respectively,
from the same X, ;. Finally, the prediction is reconstructed by Factorized Features Reconstruction.
(b) To decrease distortion in image compression, we replace the synthesis transform of the traditional
learned image compression pipeline with (a) by aligning spatial resolution and latent channels.

Our model comprises three main components: Coefficient Backbone Figefr, Basis Swin Transformer
Fasis, and Factorized Features Reconstruction. As shown in fig. Eh, the process begins with
I1p € R3*XHEXW The Coefficient Backbone extracts features Xeoer € REe*#e*We which are then
used to generate coefficients c through convolution and pixel shuffle operations. Also, Xcoes is fed
into the Basis Swin Transformer to produce a multi-scale basis b = {b1, ..., by }, b; € R X Ho; xWo;
The coefficients and basis are combined to reconstruct gz € R3**H*sW ysing eq. , where s is
the scale factor.

We optimize model parameters using L, loss. To be more clear, when the Basis Swin Transformer is
optimized, the basis is optimized simultaneously, i.e. the models are trained to adapt to a content-
aware basis, not calculated by heuristic rules. This design enables content-aware basis generation:
smooth regions get low-frequency bases while textured areas receive high-frequency ones.

To demonstrate the effectiveness of our method, we use existing SR methods [16} |18, [109] as
the Coefficient Backbone. For the Basis Swin Transformer, we employ simple Swin Transformer
Blocks [[70] with a series of special downsampling operations. Specifically, we use a dilation-like
downsampling technique to accommodate the v sawtooth sampling pattern, where the details and
visualization can be found in Supplementary Materials. The final basis is refined using additional
upsampling and convolution layers.

4.3 Image Compression with Factorized Features

Image compression balances bit-rate and visual fidelity. Recent work recovers hidden details mainly
via architectural tweaks—analysis transforms and entropy models [46, 51] or sophisticated de-
coders [88] 25]. We instead target the representation itself: our Factorized Features formulation
(eq. (7)) explicitly models structural correlations, boosting quality.

Priors from SR. In addition, with our trained SR model described in section}4.2] it intuitively serves
as a strong prior for information recovery, i.e., it contains extensive knowledge of how to reconstruct
missing details and enhance image quality by leveraging learned patterns from the training data.
Thus, since Super-Resolution and Image Compression share the core principle of reconstructing and
enhancing image details from low-quality sources, we can effectively integrate this prior into the
compression pipeline.

The overall pipeline is shown in fig.[5p. To demonstrate the robustness of our representation and the
effectiveness of the SR prior, the compression and decompression networks greatly follow [62], with
only the synthesis transform replaced by our SR pipeline, where the details can be referenced in the
Supplementary Materials. In practice, the training is performed in two stages. After we obtain the
trained SR prior, the model is fine-tuned with a lower learning rate alongside the compression module,



Table 1: Quantitative comparisons on 4 x super-resolution with state-of-the-art methods. The
best results are colored red. The models with fare those who use the same-task pretraining [[16]], i.e.,
pretrained on ImageNet. Please refer to quantitative results in section |3Lf| for details.

Params MACs  Forward Pass Set5 Set14 B100 Urban100 Mangal09
Method ™M) (G)  Memory (MB) PSNRT SSIMtT PSNRT SSIMt PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT
EDSR [581(CVPR’17) 43.09 207.07 1,182 3246 0.8968 2880 0.7876 27.71 0.7420 26.64 0.8033 31.02 09148
RCAN [LLLI(ECCV’18) 1559 6552 1,176 3263 09002 2887 0.7889 27.77 0.7436 2682 0.8087 31.22 09173
SwinIR [55/(ICCV’21) 28.01 119.68 3,826 3293 09043 29.15 07958 2795 0.7484 27.56 0.8273 3222  0.9273
CAT-A+ [17](NIPS’22 Spotlight) 16.60  70.29 3,508 33.14 09059 2923 0.7968 2801 07516 27.99 0.8356 3252  0.9293
ART [108](ICLR’23 Spotlight) 16.56  69.94 3,010 33.04 09051 29.16 07958 2797 07510 27.77 0.8321 3231 0.9283
ATD [L10J(CVPR’24) 2026 77.10 6,572 33.14 09061 2925 0.7976 28.02 0.7524 2822 0.8414 32.65 0.9308
DAT [I8))(ICCV’23) 1480  61.66 4,192 33.15 09062 2929 0.7983 28.03 0.7518 2799 0.8365 32.67 0.9301
RGT [I9](ICLR 24) 1337 834.25 3,404 33.16 09066 2928 0.7979 28.03 0.7520 28.09 0.8388  32.68  0.9303
PFT [711(CVPR’25) 19.66  80.21 6,414 33.15 09065 2929 07978  28.02 0.7527 2820 0.8412 32.63  0.9306
HAT' [I3](CVPR’23) 20.77  86.02 3,692 33.18 09073 2938 0.8001 28.05 0.7534  28.37 0.8447 32.87 0.9319
ATD-L 4942 184.83 15,582 3315 09062 2931 07985 28.02 07514 2825 0.8422 3278  0.9309
ATD-F (Ours) 4546  149.87 8,674 3329 09082 2948 0.8017 28.03 0.7539 28.53 0.8487 33.11  0.9335
DATL ¥ 43.01 17542 11,326 3333 09084 2940 0.8009 28.04 07543 2849 0.8473  33.02 0.9321
DAT-F (Ours) 40.00 134.42 6,206 3345 09094 29.60 08039 28.13 07560 28.75 0.8520 3323  0.9339
HAT-L' 40.84 167.27 6,804 3330 09083 2947 08015 2809 07551 2860 0.8498 33.09 0.9335
HAT-F' (Ours) 45.97  158.79 5,750 3353 09100 29.65 0.8050 28.18 0.7569 2879 0.8527 33.33  0.9342
HAT-L-F' (Ours) 66.04  240.03 8,888 3375 09116 2987 0.8091 2831 07597 2951 0.8637 3336 0.9343
HAT—F—Basis—F_irsl+ (Ours, ablation) ~ 46.67  161.66 5,696 3333 09085 2947 08015 28.10 0.7554 2857 0.8494 33.14  0.9336
HAT-F-Concat” (Ours, ablation) 45.52  129.05 4,826 3346 09095 2957 0.8035 28.16 0.7566 2873 0.8518 3328  0.9341

which is then trained end-to-end with common loss function used in learned image compression,
defined as

L= R(9) + R(2) + A D(, &), ©
where Z is the hyperprior, R(-) refers to the bit-rate cost, D(-) is the distortion term, and A controls
the trade-off.

4.3.1 Multi-Image Compression

Intuitively, different images often share common frequency components. By learning a single, shared
set of basis functions, we can leverage the frequently appearing similar or repetitive patterns across
images to greatly reduce coding redundancy in multi-image compression. In practice, this means
fewer total parameters and lower computational cost required when compressing an image collection.

Each per-image basis b; € R *Ho: Wb, captures local pixel structure. We fuse the M bases into a

denoised, generic basis with a transformer Fiyeree [83] applied at every position:
b’b(haw) :Fmerge ({b;n(hvw) ‘ne 13"'aM})v (10)

Treating bases as tokens (prepended with a CLS token), the transformer’s output forms the merged
basis.

Because compression noise corrupts the coefficient map Xcoefr (fig. Bb), feeding it directly into the
Basis Swin Transformer would amplify errors. Instead, we transmit the merged basis separately,
alongside the quantized variables Q(y, 1), 2, and reconstruct each image with this clean basis plus
its own decoded coefficients, yielding higher quality at similar bit-rates. A single- vs. multi-image
compression comparison is in the supplementary materials.

5 Experiments

In this section, we provide the experiment setup and performance of Super-Resolution and Image
Compression tasks. Please refer to Supplementary Materials for more ablation studies, training,
implementation details, and analysis.

5.1 Image Super-Resolution

Experimental Setup. Following the same-task pretraining strategy of [15} [21]], we pretrain all Super-
Resolution (SR) models on ImageNet[23]]. Our Factorized Features plug a shared Basis Transformer
into four pretrained SR backbones—SwinlIR [55]], HAT [16], DAT [18], and ATD [110]. Backbones
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Figure 6: Visual comparisons on super-resolution (4x). The proposed method achieves the best
reconstruction results compared to the reference HR images.

keep their original weights, while Basis Transformers start randomly. Pretraining runs 300k iterations
on ImageNet with AdamW (Ir 2e-4, batch 32, 5 = 0.9/0.99); finetuning runs 200k iterations on DF2K
(DIV2K [1]+Flickr2K [59]]) with Ir 1e-5. Inputs are 256 x 256 crops, bicubically down-sampled to
64 x 64 for the backbone. We set the number of coefficient—basis pairs to N = 6 and use frequency
scalars a; € {1,4, 16,64} to capture both low- and high-frequency details.

Quantitative Results. table[T|presents the quantitative comparison between our approach and state-of-
the-art (S0TA) methods. We evaluate the methods using five benchmark datasets, including Set5 [6],
Set14 [107], BSD100 [73], Urban100 [38], and Manga109 [76]. For quantitative metrics, PSNR and
SSIM are reported. Our model delivers a 204.4% average PSNR gain, defined as (¢ —b)/(a — b) with
b=SwinIR, a=HAT-L, and c=HAT-L-F. We embed three SOTA SR backbones: ATD [109], DAT [18]],
HAT [16], yielding ATD-F, DAT-F, and HAT-F. Each beats its parameter-matched baseline (ATD-L,
DAT-L, HAT-L). As only HAT provides a large variant, we upscale ATD and DAT to the same size
and train all models with identical pre-training and fine-tuning for fairness.

The Order of Coefficient and Basis. Furthermore, in traditional Fourier Series and other image
processing methods [95]], the basis is typically derived first and then used to compute the coefficients.
In contrast, our method derives the coefficient features first, as illustrated in fig. Eh To explore this
difference, we develop another variant of our model, denoted HAT-F-Basis-First, where we reverse
the order of operations. In this case, we first pass the image through the Basis Swin Transformer and
then use the resulting basis features and the image input to derive the coefficients. This approach,
however, leads to a gigantic performance drop, showing the importance of the order of the pipeline.
Specifically, we argue that in our pipeline, the Coefficient Backbone functions more as a feature
extraction module, where the refined features facilitate downstream basis extraction.

The Importance of Factorized Features Reconstruction. Lastly, to evaluate the effectiveness
of our Factorized Features, we trained a model named HAT-F-Concat, which does not apply the
formulation in eq. (7). Instead, it concatenates the basis and coefficient directly and decodes the
resulting features to produce the output. Although this approach results in reduced performance, the
Basis Swin Transformer with Sawtooth downsampling still contributes to improved reconstruction,
even without Factorized Features Reconstruction, highlighting its effectiveness.

Visual Comparison. We provide the visual comparison in fig.[f] The images are randomly sampled
from the DIV2K dataset. Our method faithfully reconstructs the image details, whereas the other
approaches suffer from over-smoothing or hallucinating details absent in the ground truth.

5.2 Single- and Multi-Image Compressions

Experimental Setup. Image-compression experiments follow the SR protocol (section[5.1)). Mod-
els are pretrained on ImageNet and fine-tuned for 200k steps on 256x256 crops. Compres-
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Figure 7: Performance (RD-Curve) evaluation on image compression using different datasets.

Table 2: Comprehensive evaluation for image compression. Using VTM as an anchor for calculat-
ing BD-Rate. Latencies are measured under an NVIDIA GTX 3090 GPU.

Method BD-Rate (%) |  Total Encoding Time (s) |  Total Decoding Time (s) |  Params(M)
VIM 0.00 129.21 0.14 -
Cheng (CVPR’20)[20] 5.44 1.98 4.69 29.6
Xie (MM 21)[101] -0.78 2.93 6.00 50.0
STF (CVPR’22)[116] -4.31 0.14 0.13 99.9
ELIC (CVPR’22)[36] -7.24 0.07 0.09 36.9
TCM (CVPR’23)[62] -11.74 0.16 0.15 76.7
SegPIC (ECCV’24) [67] -8.26 0.14 0.13 83.5
LALIC (CVPR’25) [27] -15.26 0.27 0.15 63.2
TCM-HAT-L-F (Ours) -21.09 0.109 0.264 110.34
TCM-HAT-F-multi M=1 (Ours) 27.96 0.2320 0.1742 131.35
TCM-HAT-F-multi M=2 (Ours) 2.70 0.1998 0.1270 131.35
TCM-HAT-F-multi M=4 (Ours) -10.11 0.1846 0.1039 131.35
TCM-HAT-F-multi M=8 (Ours) -16.61 0.1756 0.0922 131.35
TCM-HAT-F-multi M=16 (Ours) -19.88 0.1715 0.0863 131.35
TCM-HAT-F-multi M=24 (Ours) -20.97 0.1702 0.0844 131.35

sion/decompression networks start from TCM weights [62]] and are optimized end-to-end with
AdamW (Ir 1e-5, batch 16, 8 = 0.9/0.99) [72]. Integrating our SR module into TCM yields TCM-
HAT-F and TCM-HAT-L-F; TCM-HAT-F-multi is the multi-image variant.

Rate-Distortion Performance Comparison. We compare our model with State-of-the-Art learned
end-to-end image compression algorithms, including [63]], [[L3]], [L16]], [LOL], [201], [3], [S1], (401,
[79], [5], [84], and [36]. The classical image compression codec, VVC [93], is also tested by
using VTM12.1.The rate-distortion performance on various datasets, including Kodak, Tecnick’s
old test set with resolution 1200x 1200, and CLIC Professional Validation, is shown in fig. m TCM-
HAT-L-F achieves a -21.09% BD-Rate vs. VTM (Table 2)), surpassing earlier work. Multi-image
mode (TCM-HAT-F-multi) scales well, reaching -20.97% at M =24: sending a shared basis curbs
Coefficient-to-Basis error, though distortion grows slightly as basis capacity is stretched. Across
Kodak, CLIC, and Tecnick, FIPER consistently boosts rate-distortion and maintains competitive
latency.

6 Conclusion

We proposed Factorized Features, a representation that decomposes images into multi-frequency
components to model implicit structures and patterns. Our approach addresses challenges in Super-
Resolution and Image Compression by effectively restoring details and preserving visual fidelity.
We integrate SR priors with Image Compression for better information recovery and introduce a
basis-merging technique to enhance multi-image processing performance.

Limitations. Although effective, our method requires further optimization for computation-limited
scenarios such as real-time decoding. Additionally, incorporating semantic information remains a
promising direction for future research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect the paper’s contributions and
scope by highlighting our novel contribution: we introduce Factorized Features to enhance
the performance in super-resolution and multi-image compression.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our paper explicitly discusses the limitations of our approach, including the
long training and inference time.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper primarily focuses on empirical research and does not introduce new
theoretical results. As such, there are no theoretical assumptions or proofs discussed in the
study.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper thoroughly details the methodologies, parameter settings, and exper-
imental setups, providing all necessary information for replicating the main experimental
results. This comprehensive documentation supports the validity of our primary claims and
conclusions, ensuring clarity and reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will make a full open access to both the code and the data used in our
experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper meticulously details the experimental setup, including data splits
for training and testing, hyperparameter configurations, and the types of optimizers utilized.
These elements are crucial for a thorough understanding of the experimental procedures and
the interpretation of results.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the limited scope of our experiments, which encompass only two
trials yielding similar results, our paper does not include detailed error bars or extensive
statistical analysis. We recognize the potential for variability in these findings and suggest
that additional experiments be conducted under varied conditions to validate and expand
upon our results.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We use GPU GTX 4090 as our computational resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We carefully follow the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: In the conclusion of our paper, we discuss the societal impacts directly related
to our research on super resolution and image compression.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not include the release of pre-trained models, new datasets, or
any other resources that typically necessitate specific safeguards to prevent misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have diligently credited the creators and original owners of all assets used
in our research, including code, data, and models, ensuring that each source is accurately
cited within our paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, any new assets introduced in the paper will be well documented.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA|
Justification: Our research does not involve crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects, and therefore, there were no
study participants exposed to any risks.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for writing, editing in our work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Overview

This supplementary material provides additional implementation details and experimental results to
complement our main manuscript. Our FIPER framework explicity models multi-scale patterns and
captures periodic features effectively, as visualized in fig.[§]

BSD100 x4 : img_096 _SRF 4

Figure 8: Visual comparisons on super-resolution (4 x).

In the following, we dive into the details. Specifically, we first elaborate on coordinate transformation,
the background of learned image compression, and a comparison between single- and multi-image
compression in appendix [B] which were omitted in the main paper due to space limitations. Following
this, we discuss the differences with factor fields [12]] in appendix [C} Next, in appendix [D} we present
comprehensive details about the experiments and benchmarks, including the Video Super-Resolution
task, which was not discussed in the main paper. Then, we provide ablation studies regarding
different components of our pipeline, validating the design in appendix [E] Finally, we provide
extensive visualizations to facilitate a more detailed comparison of the results in appendix [H]

B Method Details

In this section, we provide the details of Sawtooth coordinate transformation and downsampling
inspired by it, the background of Learned Image Compression, and comparison between single- and
multi-image compression.

B.1 Sawtooth Coordinate Transformation and Downsampling

Sawtooth transformation Sawtooth transformation is formulated as y(z) = = mod k, k € R.We
can easily observe that such transformation implicitly captures patch-like frequency information
as shown in fig. [P, and thus, we propose that by leveraging the inter-patch information from the
sawtooth coordinate transformation, the visual correspondence between spatial locations can be
effectively represented.

Downsampling based on Sawtooth transformation To reconstruct a 256 x 256 image, we
formulate our Factorized Features as

i(w) =P (Concatly,, ;- {cij (2) © (o - bi(v(=)) }), (11

which is the same as eq. (7) in the main paper.

In practice, the bases are of shape C x H x W with N = 6. Weset H = W =
{256, 128, 64, 32, 16, 8} and C' = 24 for all bases. Thus, we sample each basis with v;(z) = =
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Figure 9: The correlation between coordinate transformation and downsampling. (a) The
sawtooth transformation example with £ = 2. (b) The PixelUnShuffle downsample. (c) To ex-
plicitly model the information for sampling with a sawtooth, we rearrange the feature map in
a dilation-like manner in the downsample layer of the Basis Swin Transformer. This way, the
feature sampled would capture the information in the original layout correctly; in other words,
I = Sawtooth-Pixel-Sampling(Sawtooth-Aware-Downsample (7))

mod k; where z € {0,...,255}% and k = {256,128, 64,32,16,8}. This formulation can be in-
terpreted as we sample the same feature on different spatial location of a image, e.g., when using
by € R2X128X128 with k) = 128, x = {0,0} and = = {128,0} will be extracting b; (0, 0), which
is also visualized in fig. [Op. Therefore, we want to aggregate the information appearing in different
location of the image, where these spatial locations will be sampled at the same location on the basis;
that is, we want the information of 1(0,0) and (128, 0) to be aggregated in b1 (0, 0) in previous
example. This way, we can explicitly model repetitve structure in different scale, and such frequency
modeling subsequently enhances the reconstruction.

Based on the analysis, as visualized in fig. [0k, we integrate Sawtooth-Aware Downsample layer
into Basis Transformer. Such operation is essentially the inverse of Sawtooth transformation, i.e., we
merge the feature together with Sawtooth-Aware Downsample, decode the feature to basis, and then
sample the basis to different spatial location via Sawtooth transformation.

B.2 Learned Image Compression.

Following [79} 13]], a learned image compression model with a channel-wise entropy model can be
formulated as:

z=ha(y;én), ¥ = ga(x:; 9),

{Fmeam Fscale} = hs(é; ah)v zZ= Q(Z),
9 =1{Q (Yo — to) + fto, -, Q(ys — put) + 1},
& = gs(7;0), 7 = Refiney_(uio, ..., p11, ),

(12)

where 0 <=t < I, ur = €;(J<i, Fmean). The encoder g, transforms the raw image x into a
latent representation y. A hyper-prior encoder h, further processes y to output z, capturing spatial
dependencies. z is then quantized to Z, where a factorized density model ¢ is used to encode
quantized 2 as pz |, (2 | ) = []; (D210 () x U (—=1,1)) (%)) where j specifies the position or each
element of each signal. The derivation of the equation can be found in [2]. Next, 2 is decoded by
hs to produce features Fiean and Fycye, used to estimate the mean p and variance o of y. The latent
y is divided into [ slices, and each quantized around computed means p;. These u; are derived
from earlier quantized slices and Fine., by a slice network e;. The quantized slices form g. For
decompression, ¢ is refined using Refiney_ based on p; and y to produce ¥, approximating the
original y. Finally, g5 reconstructs the decompressed image & from 7. The model is trained using a
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Lagrangian multiplier-based rate-distortion optimization:
L=R(G)+R(E)+ N D(z,%)
=B [~log, (pgz (9] 2))] + E [~ logs (pzi (2| 9))] (13)
+A-D(x,z)

where R({) and R(Z) denote bit rates, D(z, %) is the distortion term (calculated by MSE), and A
balances compression efficiency and image fidelity. In our experiments, we follow [62]], modifying
only g, to demonstrate our representation’s effectiveness.

B.3 Comparison between single- and multi-image compression
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Figure 10: The illustration of our image-compression framework (a) Traditional learning-based
compression methods. (b) Our approach surpasses (a) by incorporating our Factorized Features and
Super-Resolution (SR) Module from section [4.2] in the main paper as information-recovery prior.
(¢) Expanding on (b), we introduces a multi-image compression strategy that utilizes both our SR
Module and a Basis Merging Transformer to capture shared structure.

We provide visual comparison of single- and multi-image compression in fig.[TOp and fig. [T0, respec-
tively, with traditional compression method in fig.[I0p. First, we have single image compression(SIC),
the same as fig. [5p in the main paper. The goal of the SIC pipeline is to validate two aspects: (1) that
Factorized Features, which are designed to represent images, can be applied to different tasks; (2)
that leveraging super-resolution (SR) priors improves reconstruction quality. Note that we directly
adopt the SR module’s architecture to also reduce overall complexity.

Next, we derive multi-image compression (MIC) as in section[4.3.T] of the main paper. In traditional
signal processing, a shared set of bases is often used to represent diverse sources. We adopt this
property to further reduce compression redundancy. Specifically, our approach transmits (1) image
features, which are used to decode coefficients, and (2) the bases themselves. By contrast, single image
compression in fig. [I0p transmits only image features. Intuitively, transmitting the bases provides
additional information that can improve reconstruction quality. However, directly transmitting all
bases would significantly increase the bit rate. To address this, we merge the bases into a single set
before transmission, thereby enhancing reconstruction while minimizing extra transmission costs.

C Differences from Factor Fields

We explicitly highlight how Sawtooth-based sampling and Multi-frequency Modulation extend
the original factor fields. In 2D toy examples as shown in fig. [TT] traditional SR/IC representations can
be viewed as a “vanilla” scenario with N = 1 and ¢(z) = 1. factor fields already improve accuracy
over such baselines, but our introduction of ¥ and « further captures both high- and low-frequency
details. Specifically, forcing o = 4 compels the network to learn broader frequency ranges and avoid
noise from the fixed modulation. To confirm these advantages, we trained smaller SR models and
compared them with factor fields in table[3] The results illustrate that our multi-frequency constraint
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yields significant gains even in simpler configurations, underscoring its importance for high-frequency
detail preservation and overall reconstruction quality.

7
(a) Convergence curve (b) Target image (c) Vanilla fields (d) Factor fields  (e) Ours with %) only (f) Ours with ¢ and «

Figure 11: 2D toy example.

Table 3: Comparison with Factor Fields. HAT-FA-Small denotes replace our Factorized Features
with factor fields.

Method ‘Sawmmh a ‘Pm‘ams MACs Forward Pass Set5 Setl4 B100 Urban100 Mangal09

| A=) | ™ (G) Memory (MB) PSNRtT SSIMT PSNRT SSIMf PSNRT SSIMt PSNRtT SSIMT PSNRT SSIMt{
HAT-S 9.62  40.38 3,214 3292 09047 29.15 0.7958 27.97 0.7505 27.87 0.8346 32.35 0.9283
HAT 20.77  86.02 3,692 33.04 09056 2923 0.7973 28.00 0.7517 27.97 0.8368 3248 0.9292
HAT-FA-Small v 1599 5761 3,678 33.06 09065 29.26 0.7976 28.04 0.7524 28.12 0.8413 32.52 0.9301
HAT-F-Small-only-sin v {sin}  {1,4,16,64}| 16.13 66.34 4,176 33.16  0.9067 29.33 0.7989 28.05 0.7530 28.26 0.8429 32.64 0.9312
HAT-F-Small-half-freq v {sin,cos}  {1,16} 16.13  66.34 4,148 33.18 0.9073 29.35 0.8003 28.02 0.7521 2831 0.8431 32.70 0.9316
HAT-F-Small v {sin,cos} {1,4,16,64}| 16.26 75.06 4,640 33.24 09079 29.39 0.8009 28.06 0.7543 28.41 0.8453 32.82 0.9324
HAT-F (Our FIPER) v {sin,cos} {1,4,16,64}| 45.97 158.79 5,750 33.31 09085 29.45 0.8011 28.09 0.7553 28.55 0.8463 3299 0.9330
HAT-L (ImageNet pre-trained) 40.84 167.27 6,804 3330 0.9083 29.47 0.8015 28.09 0.7551 28.60 0.8498 33.09 0.9335

D Implementation Details

Single Image Super-Resolution The architecture of our SR networks is shown in fig. Firstly,
for Coefficient Backbones from various pre-trained models like [15,1109, [18]], we replace the output
upsampling layer (mostly pixel shuffle) with convolution of channel D = 256, i.e., for input image
with resolution 64 x 64, the original pre-trained models process hidden states in 64 x 64, and then
upsample the output to 256 x 256 for final result, where we replace the upsampling with convolution
and output the final hidden state X ocfr € R256x64x64

Next, the Basis Swin Transformer begins with feature embedding, extending the channels D from
256 to 384, where the features are then passed through a series of Swinv2[70]] and Sawtooth-Aware
Downsampling Blocks. Specifically, each block contains two layers, one of which uses shifted
window attention. After each block, the hidden state goes through upsampling by 4x and convolution
to convert the output basis channel to 24. Then, the Sawtooth-Aware Downsample block rearranges
the hidden state h as discussed in the main paper, which can be viewed as:

h = rearrange(h,’bc(sh) (sw) > b(ssc)hw’), s =2 (14)

, and reduces the feature channel by 4. In all experiments we use N = 6, i.e. there are 6 bases, where

. 24 256 256 ..
Basis; € R** > * %t foriin {0 ... 5}.

Finally, we derive our Coefficient by a series of Convolution and Pixelshuffle layers and decoded the
Bases and Coefficient to a predicted high-resolution image by eq. (I3):

I(w) = P(Concat, | {ci(x) ® v - bi((@))) }). (15)

In practice, the coefficient is generated with channels equal to the total number of base channels, and
it is split accordingly by channels.

Multi-Image (Video) Super-Resolution Building upon our prior work in Single-Image Super-
Resolution (SISR), we extend the applicability of Factorized Features to tackle the challenges
in Multi-Image Super-Resolution (MISR). In the main paper, we introduced the Basis Merging
Transformer for Multi-Image Compression. Here, we further expand its functionality to generate
per-timestamp Coefficients and Bases.

To evaluate the effectiveness of our approach, we use Video Super-Resolution (VSR) as the benchmark
task. Specifically, we simply leverage transformer blocks from [83]] to model temporal correlations.
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Figure 12: Detailed architecture of Super-Resolution Modules

Method Frames REDS4 Vimeo-90K-T Vid4
REDS/Vimeo PSNR SSIM PSNR SSIM PSNR SSIM
BasicVSR++[10] 30/14 3239 09069 37.79 0.9500 27.79 0.8400
VRTI[57] 16/7 32.19 09006 38.20 0.9530 27.93 0.8425
RVRT[56] 30/14 3275 09113 38.12 0.9527 2799 0.8462
PSRT[87] 16/14 32772 09106 38.27 0.9536 28.07 0.8485
TA-RT[102]] 16/7 3290 09138 38.14 0.9528 2826 0.8517
Ours-HAT-F 16/7 32.67 09096 38.09 009512 27.95 0.8441

Table 4: Performance comparison among different methods on REDS4, Vimeo-90K-T, and Vid4
datasets. Note that we don’t use any special design on the network, such as temporal correspon-
dence or motion sampling like previous works, demonstrating our effectiveness.

For a given video, we first derive the Coefficient and Basis for each frame and rearrange each level
1 of the Coefficients or Basis such that the spatial dimensions H and W are treated as the batch
dimension, while the temporal dimension is processed as a sequence of tokens for the Transformer.
Next, we apply positional embedding to the tokens, process the tokens with the transformer blocks,
and finally decode the Coefficient and Basis token from the respective position with convolution
layers for the output super-resolved frames.

table 4| shows quantitative comparison with state-of-the-art methods. All VSR experiments were
conducted using bicubic 4X downsampling. The training dataset includes the REDS[82] and Vimeo-
90K[103] datasets, while the testing dataset comprices REDS4[82]], Vid4[60], and Vimeo-90K-
T[103].

For the REDS dataset, we train for 300k iterations using 16 input frames, with a learning rate of
le-4 and a cosine learning rate that gradually decays to le-7. The batch size is set to 8, and the
Coefficient Backbone and the Basis Swin Transformer are initialized from SISR. When training on
the Vimeo-90K dataset, we first conduct 300k iterations with 14 input frames with flip sequence,
we then train model on 7 input frames with flip sequence, using a learning rate of le-4 and a cosine
learning rate decay to le-7. We initialize the weights using the model trained on the REDS dataset.
The batch size remains 8. Note that the training is only conducted on the newly added transformer
blocks, i.e., the Coefficient Backbone and Basis Swin Transformer are frozen. Test results for the
REDS model are reported on the REDS4 dataset, while test results for the Vimeo-90K model are
reported on Vimeo-90K-T and Vid4. We calculate PSNR and SSIM on the RGB channel for REDS4
and Y channel for Vimeo-90K-T and Vid4, following previous work[102} 87, 156]].

Single Image Compression As discussed in the main paper, to make a fair comparison with the
state-of-the-art, our entropy model and compression backbone greatly follow that of [62]], as shown
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Figure 13: Detailed architecture of Compression Modules

in fig. @Kmore details can be bound in [62]. What we do here is that we use the output from the last
main layer and convert it to match the hidden channel of the SR Module.

Multi-Image Compression Following VSR, we use transformer blocks to merge the bases. The
difference here is that we additionally prepend a CLS token so that we can use it as the final merged
basis, i.e., if we have 16 bases of W = H = 64 to merge into one, we rearrange the 64 x 64 tokens
as batch dimension, use the 16 + 1 as sequence dim, and finally treat the additional 1(CLS) token
as output. For the merged basis compression and transmission, we utilize the same architecture
of the image branch, i.e., we randomly initialize a module from [[62]] with input and out channels
change. After the Basis Merging Transformer is trained, we follow the same training setting for
Basis compression while randomly sampling 1 to 24 images for a batch and setting only the Basis
compression module trainable.

E Ablation Studies

E.1 Merged-Basis Strategy & SR Priors.

The SR prior accelerates detail recovery by leveraging high-resolution knowledge while basis merging
exploits shared structures for efficiency. Since merging is introduced after, the compression model is
pre-trained, and improvements stem not only from the SR prior but also from the well-initialized basis
merging. When trained from scratch (see table3)), the merging transformer tends to find a universal
solution rather than image-specific structures. Additionally, merging inevitably causes information
loss, prompting the coefficient branch to encode more image-specific details. This mutual offset
between SR prior and basis merging ultimately strengthens our approach.
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TCM-HAT-F-multi M =24 TCM-HAT-F-multi M = 24 Coeff-Frozen =TCM-HAT-F-multi M/ = 24 Scratch
BD-rate % -20.97 -19.18 -18.34

Table 5: Comparison of Merged-Basis Strategies.

E.2 Encoding/Decoding Times.

Fig. 5(c) processes each of the M images through the Coefficient Backbone, Basis Swin Transformer,
and Basis Merging Transformer, then compresses and transmits the merged basis. In Tab. 2, different
M values primarily affect the run time of the Basis Merging Transformer. Although merging larger M
increases computation, per-image overhead remains small once averaged by M, as shown in table [6]
Notably, Tab. 2 assumes each image’s basis is compressed independently, which can be confusing. In
practice, a merged basis is processed only once, so averaged encoding/decoding time is more realistic.

| M=1 M=2 M=4 M=8 M=16 M=24

Total Basis Merging Time (sec) 0.00328 0.00628 0.01140 0.02312 0.04784  0.08064
Averaged Basis Merging Time (sec) by M 0.00328 0.00314 0.00285 0.00289 0.00299  0.00336
Averaged Merged Basis Compression Time (sec) by M 0.0645  0.0323  0.0161  0.0081 0.0040 0.0027
Averaged Merged Basis Decompression Time (sec) by M | 0.0935  0.0467  0.0234  0.0117 0.0058 0.0039

Adjusted Enc Time (sec) by M 02320  0.1998  0.1836  0.1756  0.1715 0.1702
Adjusted Dec Time (sec) by M 0.1740  0.1272  0.1039  0.0922  0.0863 0.0844
BD-Rate % 27.96 2.70 -10.11 -16.61 -19.88 -20.97

Table 6: Comparison of Encoding/Decoding Times.

E.3 Inference Time Comparison for SR.

We provide the inference time in table /] compared with extensive SR models. The inference time of
different components of FIPER is also provided.

ATD DAT RGT HAT-S HAT HAT-L HAT-F(Ours) Coefficient Backbone (HAT-F) Basis Swin Transformer (HAT-F) Factorized Features Reconstruction (HAT-F)

Inference Time (s) 0.0592 0.0594 0.0612 0.0387 0.0398 0.0778 0.0716 0.0400 0.0132 0.0184
PSNR ont Set5 33.14 3315 33.16 3292 33.18 33.30 33.53 - - -

Table 7: Inference time comparison for SR.

E.4 Influence of SR Priors in Image Compression.

We conduct experiments with various configurations to verify our image compression pipeline’s
effectiveness. TCM-HAT refers to using the original HAT [16]] instead of our SR Module in fig. [T0p.
TCM-HAT-F represents our full pipeline, while TCM-HAT-F-Scratch initializes the SR Module
randomly. Results demonstrate that integrating SR priors improves image compression performance,
and our representation further enhances results, highlighting the robustness of Factorized Features.

Table 8: Validation of the effectiveness of SR prior. The best PSNRs are marked in red.

Kodak CLIC Tecnick
Method A =0.0025 A = 0.0067 A=0.025 A =0.0025 A= 0.0067 A=10.025 A =0.0025 A = 0.0067 X =0.025
bpp  PSNRT  bpp  PSNRT  bpp  PSNRT  bpp  PSNRT  bpp  PSNRT  bpp  PSNRT  bpp  PSNRT  bpp  PSNRT  bpp  PSNRT
TCM{62 0.1533  30.0834 02983 32.5841 0.6253 36.1345 0.1214 31.8207 02235 342098 04503 37.1201 0.1268 32.0588 02193 343669 03981 36.9066
TCM-HAT-F-Scratch 01570 30.0857 02976 325893 0.6211 36.1389 0.1214 31.9421 02235 342804 04503 37.1434 01258 320632 02189 343781 04001 36.9223
TCM-HAT 0.1567 30.1843 02992 32.6454 0.6268 362267 0.1220 319737 02266 343319 04512 37.2486 0.1262 32.1423 02174 345124 03971 36.9934
TCM-HAT-F 0.1574 304012 02998 32.8910 0.6276 364461 0.1229 321917 02249 344109 04512 37.3135 0.1255 324591 02186 347656 03975 37.3244

E.5 Effectiveness of Factorized Features Design.

We conduct experiments to verify our multi-frequency modulation. The quantitative performance
reported on single-image regression is shown in table [9] where each result is measured after 256
iterations. Compared to baseline results, our refinements in modeling pixel-level frequency have
significantly improved all performance metrics. Additionally, our results demonstrate that the
modulation function ¢ and the scalar « are interdependent, each essential to the other’s function.
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Table 9: Comparison of improvements of Factorized Features. v) and « are the same in eq. .
Note that here we test on single-image regression

Metric PSNR+ SSIM1T LPIPS |

Baseline [12] 22.04 0.505 0.5296
Ours 38.44 0.999 0.0385

No ) to control magnitude 13.46 0.147 0.766
No « for pixel-wise frequency information 21.25 0.537 0.527

Method Latency (ms) #FLOPs (G) #Params (K) Set5 PSNR/SSIM  Setl4 PSNR/SSIM  B100 PSNR/SSIM  Urban100 PSNR/SSIM  Mangal09 PSNR / SSIM
SwinIR-It 2229 63.6 930 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ELAN-It 18.0 54.1 640 32.43/0.8975 28.78/0.7858 27.69 /0.7406 26.54/0.7982 30.92/0.9150
OmniSR 225 50.9 792 32.49/0.8988 28.78/0.7859 27.71/0.7415 26.64/0.8018 31.02/0.9150
SRFormer-It 2872 62.8 873 32.51/0.8988 28.82/0.7872 27.73/0.7422 26.67/0.8032 31.17/0.9165
ATD-It 189.7 100.1 769 32.63/0.8998 28.89/0.7886 27.79/0.7440 26.97/0.8107 31.48/0.9198
HiT-SRF 82.1 58.0 866 32.55/0.8999 28.87/0.7880 27.75170.7432 26.80/0.8069 31.26/0.9171
ASID-D8 61.8 49.61 748 32.57/0.8990 28.89/0.7898 27.78 1 0.7449 26.89/0.8096 -
MambalR-1t 55.8 84.6 924 32.42/0.8977 28.74/0.7847 27.68/0.7400 26.52/0.7983 30.94/0.9135
MambalRV2-1t 153.4 75.6 790 32.51/0.8992 28.84/0.7878 27.7510.7426 26.82/0.8079 31.24/0.9182
RDN 66.0 1309.2 22271 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151
RCAN 522 917.6 15592 32.63/0.9002 28.87/0.7889 27.7710.7436 26.82/0.8087 31.22/0.9173
CATANet (CVPR’25) 102.4 49.3 535 32.58/0.8998 28.90/0.7880 27.7510.7427 26.87/0.8081 31.31/0.9183
ESC (ICCV’25) 21.9 149.2 968 32.68/0.9011 28.93/0.7902 27.80/0.7447 27.07/0.8144 31.54/0.9207
CATANet-F (Ours) 110.3 56.7 941 32.69/0.9017 28.9370.7906 27.82/0.7444 27.05/0.8133 31.62/0.9214
ESC-F (Ours) 24.6 73.4 952 32.74/0.9032 28.99/0.7931 27.86/0.7483 27.11/0.8158 31.78/0.9233

Table 10: Quantitative comparison on benchmark datasets for x4 lightweight image super-resolution.

E.6 Light-weight Model Comparison

To demonstrate the effectiveness of our method even under computation-constrained scenarios, we
integrate our Factorized Features framework to state-of-the-art lightweight super-resolution models
and observe consistent improvement as shown in table [I0]

E.7 Task-Specific Overfitting

To confirm that our Factorized Features are not overfitted to a single task, we further apply the same
representation to other low-level vision problems such as motion deblurring in table|l I{and image
dehazing in table[I2] without any task-specific modification. The consistent improvements across
these tasks demonstrate that our features generalize well and capture transferable visual priors.

Metric/ Method DeblurtGAN-v2  SRN  DMPHN SDWNet MPRNet MIMO-UNet+ DeepRFT+ MAXIM-3$  Stripformer  MSDI-net  Restormer NAFNet FFTformer GRL-B  MLWNet (CVPR'24)  MLWNet-F (Ours)

PSNR 29.55 3026 31.20 3126 32.66 3245 3323 32.86 33.08 33.08 33.57 33.69 3421 33.93 33.83 34.40
SSIM 0.934 0934 0945 0.966 0.959 0.957 0.963 0.961 0.962 0.964 0.966 0.967 0.969 0.968 0.968 0.971

Table 11: Performance comparison on the GoPro dataset for motion deblurring.

Metric/ Method DehazeNet AOD-Net MSBDN FFA-Net AECR-Net DeHamer PMNet DehazeFormer TaylorFormer LH-Net MITNet PGH?Net (AAAI'24) ConvIR (TPAMI'24)  ConvIR-F (Ours)

PSNR 13.84 13.14 15.37 14.39 15.80 16.62 16.79 16.29 16.66 18.87 16.97 17.02 1745 18.12
SSIM 0.43 0.41 0.49 0.45 0.47 0.56 0.51 0.51 0.56 0.561 0.606 0.61 0.802 0.823

Table 12: Performance comparison on the Dense-Haze dataset for image dehazing.

E.8 Analysis of Model Hyperparameters

We further conduct a comprehensive study on three key hyperparameters of our model: the number
of frequency components NN, the frequency modulation «, and the basis transformation + in table [I3]
and table [T4] These factors collectively control the expressiveness and efficiency of the proposed
Factorized Features.

These results show that our design choices provide a good trade-off between representation flexi-
bility and efficiency, while maintaining stable performance across a wide range of hyperparameter
configurations.
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N (Number of Frequency Components) 1 1 2 6 6 6 6 10

« {1} {1,4,16,64} {1,4,16,64} {1} {1,4} {1,4,16,64} {1,4,16,64,256,1024} {1,4,16,64}
Set5 PSNR 32.62 32.64 3270 3262 3271 3274 32.69 32.73
Set5 SSIM 0.9018 0.9020 0.9029 0.9020 0.9027 0.9032 0.9024 0.9033

Table 13: Ablation on the number of frequency components N and scaling coefficients «. We select
N = 6 for balanced quality and training efficiency, as N = 10 yields marginal gains but converges
slower.

Set5 Performance /v  Sawtooth Sin Triangular

PSNR 3271 32.69 32.71
SSIM 0.9027 0.9026 0.9023

Table 14: Comparison of alternative transformation bases .

F Failure Cases

Failure cases typically involve extremely fine textures—details that are absent in the low-resolution
(LR) input but appear in the super-resolved (SR) output. However, this has been a shared inherent
limitation of super-resolution methods to date. For example, in top row of fig.[6l some white structures
are prevent in HR but completely absent in LR.

G Future Generalization

For image generation, for example, we can integrate our Factorized Features into the VAE decoder
of a diffusion model. For video generation, we can employ our mergeable basis and leverage its
properties to enhance structural coherence.

H More Visualization

H.1 Single Image Super-Resolution

Below, we provide more visual comparisons of single-image super-resolution, where FIPER denotes
HAT-F.
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H.2 Image Compression

Below, we provide more visual comparisons of image compression. The results are present with
TCM-HAT-F and the metrics are PSNR/Bpp.

Original TCM 32.61/0.3254 FIPER (ours) 33.25/0.3061
T
=
I
1
I
| 3 \ /
1 |
3 3 \
3 3 \
: \
z s h
E = \
L]
Original TCM 46.43/0.0167 FIPER (ours) 48.46/0.0131

CLIC : jason-briscoe-149782

E |

TCM 38.89/0.1103 FIPER (ours) 40.12/0.1015
: |

Tecnick : img_1200x1200_3x16bit_BO1!

€00_RGB_cards_a Original TCM 35.10/0.2511 FIPER (ours) 35.93/0.2364

h
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Tecnick : img_1200x1200_3x16bit_B01C00_RGB_cards_b Original TCM 34.45/0.2274 FIPER (ours) 35.00/0.2244
- - - i et

wg!\‘fﬁ\'l »

Tecnick : img_1200x1200_3x16bit_B0O1C00_RGB_chairs Original TCM 41.77/0.0471 FIPER (ours) 42.44/0.0415

Tecnick : img_1200x1200_3x16bit_BO1C00_RGB_clips Original TCM 33.84/0.2909 FIPER (ours) 34.50/0.2761

G5
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Tecnick : img_1200x1200_3x16bit_BO1C00_RGB_roof Original TCM 35.52/0.1828 FIPER (ours) 37.02/0.1686

Tecnick : img_1200x1200_3x16bit_C00C00_RGB_billiard_balls_b Original

E

Tecnick : img_1200x1200_3x16bit_T01C00_RGB_pencils_b Original

TCM 38.25/0.1205 FIPER (ours) 38.76/0.1171

TCM 36.61/0.1174 FIPER (ours) 37.16/0.1120
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