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ABSTRACT

We formalize and study a phenomenon called feature collapse that makes precise
the intuitive idea that entities playing a similar role in a learning task receive sim-
ilar representations. As feature collapse requires a notion of task, we leverage a
synthetic task in which a learner must classify ‘sentences’ constituted of L tokens.
We start by showing experimentally that feature collapse goes hand in hand with
generalization. We then prove that, in the large sample limit, distinct tokens that
play identical roles in the task receive identical local feature in the first layer of the
network. This analysis shows that a neural network trained on this task provably
learns interpretable and meaningful representations in its first layer.

1 INTRODUCTION

Many machine learning practices implicitly rely on the belief that good generalization and transfer
learning requires good features. Despite this, the notion of ‘good features’ remains vague and carries
many potential meanings. One definition is that features/representations should only encode the
information necessary to do the task at hand, and discard any unnecessary information as noise. For
example, two distinct patches of grass should map to essentially identical representations even if
these patches differ in pixel space. Intuitively, a network that gives the same representation to many
distinct patches of grass has learned the ‘grass’ concept. We call this phenomenon feature collapse,
meaning that a learner gives the same feature to entities that play similar roles for the task at hand.
This phenomenon captures the common intuition, often confirmed by practice, that the ability to
learn good representations in early layers is essential for the empirical success of neural networks.

Broadly speaking, we conduct a theoretical investigation into how such representations are learned
in the early layers of a neural network. To make progress we adopt a common approach in theoretical
deep-learning community. One starts with a synthetic data model exhibiting a clear latent structure,
and then prove that a specific neural network architecture successfully uncovers this latent structure
during training. For example, recent work in representation learning (Damian et al., 2022; Mousavi-
Hosseini et al., 2022) leverages a data model (the multiple-index model) with latent structure defined
by a low dimensional subspace. In this specific setting, the first layer of a fully connected neural
network provably learns this low-dimensional subspace.

Our work follows along the same lines. Specifically, we start with a data model that asks a learner
to classify ‘sentences’ comprised of L tokens. Some of these tokens play identical roles in the sense
that replacing one with another does not change the label of the sentence, and this equivalence of
tokens defines the latent structure in the data. We then consider a neural network containing a shared
embedding module, optionally followed by a LayerNorm module, and then a final linear classifica-
tion head. We show that this network, when equipped with the LayerNorm module, provably learn
the equivalence of these tokens in its first layer. To do so, we consider the large sample limit and
derive analytical formulas for the weights of the network trained on the data model. Under some
symmetry assumptions on the task, these analytical formulas reveal:

(i) If the network includes LayerNorm then feature collapse takes place. The neural network
learns to give the same embedding to tokens that play identical roles.

(ii) If the network does not include LayerNorm then feature collapse fails. The network does
not give the same embedding to tokens that play identical roles. Moreover, this failure stems
from the fact that common tokens receive large embeddings and rare tokens receive small
embeddings.
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Finally, we conduct experiments that show feature collapse and generalization go hand in hand.
These experiments demonstrate that for the network to generalize well it is essential for tokens
playing identical roles to receive the same embeddings.

In summary, our main contributions are as follow:

• We study how a network learns representations in its first layer. To do so, we make the notion
of ‘good features’ mathematically rigorous via a synthetic data model with latent structure.

• We derive analytical formulas for the weights of a two-layer network trained on this data model.
These analytical formulas show that, when equipped with a LayerNorm module, the network
provably learns interpretable and meaningful representations in its first layer.

The remainder of the paper proceeds as follows: In subsection 1.1 we discuss related works; In
section 2 we describe the data model and present a set of visual experiments to illustrate the main
ideas used in the paper; In section 3 we present the three theorems that constitute the main results of
the paper; Finally, section 4 outlines a set of additional experiments performed in the appendix.

1.1 RELATED WORKS

Our work most closely resembles recent work on theoretical representation learning and, to some
extent, the recent literature on neural collapse. The works by Damian et al. (2022) and Mousavi-
Hosseini et al. (2022) consider a synthetic data model, the multiple-index model, to investigate
representation learning. In this model, the learner must solve a regression task with normally dis-
tributed inputs x ∈ Rd and targets y = g(⟨u1,x⟩, . . . , ⟨ur,x⟩) for some function g : Rr → R,
some vectors u1, . . . ,ur ∈ Rd, and with r ≪ d. The target y therefore solely depends on the
projection of x on the low-dimensional subspace spanned by u1, . . . ,ur. These works prove that
a fully connected, two-layer neural network learns, in its first layer, the low dimensional subspace.
The behavior of fully connected networks trained on the multiple-index model, or on related data
models, has also been studied in various other works, including Ba et al. (2022), Bietti et al. (2022),
Abbe et al. (2022) and Parkinson et al. (2023). Both this line of investigation and our work prove, in
the appropriate sense, that a network uncovers latent structure. Nevertheless, our data model differs
quite substantially from the multi-index model. Moreover, we do not study a fully connected net-
work. Our network has shared embedding module, and this allows us to tie good features to a notion
of semantic equivalence.

The phenomenon we study in this work, feature collapse, has superficial similarity to neural collapse
but in detail is quite different. In a pioneering work, Papyan et al. (2020) conducted a series of
experiments that revealed that a well-trained network gives identical representations, in its last layer,
to training points that belong to the same class. In a K-class classification task we therefore see
the emergence, in the last layer, of K vectors coding for the K classes. Additionally, these K
vectors ‘point’ in ‘maximally opposed’ directions. This phenomenon, coined neural collapse, has
been studied extensively since its discovery (e.g. Mixon et al. (2020); Lu & Steinerberger (2020);
Wojtowytsch et al. (2020); Fang et al. (2021); Zhu et al. (2021); Ji et al. (2021); Tirer & Bruna
(2022); Zhou et al. (2022)). To emphasize the difference with feature collapse, note that neural
collapse refers to a phenomenon where all training points from the same class receive the same
representation at the end of the network. Unlike feature collapse, this does not provide any indication
that the network has learned good representations in its early layers, or that the neural network has
uncovered some latent structure beyond the one encoded in the training labels.

2 A TALE OF FEATURE COLLAPSE

We begin by more fully telling the empirical tale that motivates our theoretical investigation. To
make progress we adopt a common approach in theoretical deep-learning and leverage a synthetic
data model exhibiting a clear latent structure. The model generates sequences of length L from
some underlying set of latent variables that encode the K classes of a classification task. To make it
concrete we describe this generative process using NLP terminology like ‘sentences’ and ‘words’,
but of course do not intend it as a realistic language model. Figure 1 illustrates the basic idea. The
left side of the figure depicts a vocabulary of nw = 12 word tokens and nc = 3 concept tokens

V = {potato, cheese, carrots, chicken, . . .} and C = {vegetable, dairy, meat}
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Class 1

Latent variables12 words partitioned into 3 concepts 

butter
<latexit sha1_base64="jjiT4cjj8KMfjOtxFWhdX4T2ZgI=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qFW6VuHAsEqGVYitar8fJqvth7Y5b3JX/C1f4R1z4LWwcFzVJJUa29TTvPc/s7KSF4BbD8PdOp7t77/6DvYe9R/uPnzztHzz7ZnVpGEyYFtqcp9SC4AomyFHAeWGAylTAWXrxacmfXYKxXKuvWBWQSDpXPOeMok/N+i+Gw16M8B0zl5aIYOrecDjrD8Jx2ESwDaIWDEgbp7ODThhnmpUSFDJBrZ1GYYGJowY5E1D34tJCQdkFncPUQ0Ul2MQ17dfBG5/Jglwb/yoMmuxth6PS2kqmXikpLuwmt0zexU1LzD8kjquiRFBsVSgvRYA6WM4iyLgBhqLygDLDfa8BW1BDmZ/DVhVcyFFbbHTT0JpmyaDWwo4s+hSoub8TL8kg96A5lZNVBULoq9qZeVo7P9NR0H6OtqRzA6BulEvJ+0a8pTOQ/fvfkZf4x2sUXDEtJVWZay5Y1tMocS6+7WoIF6f5IKrrOzyXG55VR/9zZRuu9sjrNr9j0eZGbYPJ4fjjOPpyODh52y7bHnlFXpN3JCLH5IR8JqdkQhi5Jj/IT/Kr86e72+1191fSzk7reU7WovvyL4O+GG4=</latexit><latexit sha1_base64="jjiT4cjj8KMfjOtxFWhdX4T2ZgI="></latexit><latexit sha1_base64="jjiT4cjj8KMfjOtxFWhdX4T2ZgI="></latexit><latexit sha1_base64="jjiT4cjj8KMfjOtxFWhdX4T2ZgI=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qFW6VuHAsEqGVYitar8fJqvth7Y5b3JX/C1f4R1z4LWwcFzVJJUa29TTvPc/s7KSF4BbD8PdOp7t77/6DvYe9R/uPnzztHzz7ZnVpGEyYFtqcp9SC4AomyFHAeWGAylTAWXrxacmfXYKxXKuvWBWQSDpXPOeMok/N+i+Gw16M8B0zl5aIYOrecDjrD8Jx2ESwDaIWDEgbp7ODThhnmpUSFDJBrZ1GYYGJowY5E1D34tJCQdkFncPUQ0Ul2MQ17dfBG5/Jglwb/yoMmuxth6PS2kqmXikpLuwmt0zexU1LzD8kjquiRFBsVSgvRYA6WM4iyLgBhqLygDLDfa8BW1BDmZ/DVhVcyFFbbHTT0JpmyaDWwo4s+hSoub8TL8kg96A5lZNVBULoq9qZeVo7P9NR0H6OtqRzA6BulEvJ+0a8pTOQ/fvfkZf4x2sUXDEtJVWZay5Y1tMocS6+7WoIF6f5IKrrOzyXG55VR/9zZRuu9sjrNr9j0eZGbYPJ4fjjOPpyODh52y7bHnlFXpN3JCLH5IR8JqdkQhi5Jj/IT/Kr86e72+1191fSzk7reU7WovvyL4O+GG4=</latexit>

yogurt
<latexit sha1_base64="kJucv6sJWeSpKoLIRADtUxR2QNs="></latexit><latexit sha1_base64="kJucv6sJWeSpKoLIRADtUxR2QNs="></latexit><latexit sha1_base64="kJucv6sJWeSpKoLIRADtUxR2QNs="></latexit><latexit sha1_base64="kJucv6sJWeSpKoLIRADtUxR2QNs="></latexit>

cheese
<latexit sha1_base64="J26NsgqkGrQhMwJGC8yZNttxg0c="></latexit><latexit sha1_base64="J26NsgqkGrQhMwJGC8yZNttxg0c="></latexit><latexit sha1_base64="J26NsgqkGrQhMwJGC8yZNttxg0c="></latexit><latexit sha1_base64="J26NsgqkGrQhMwJGC8yZNttxg0c="></latexit>

cream
<latexit sha1_base64="8WGcWNPvtiBMmqVFfIN+H7rHReU="></latexit><latexit sha1_base64="8WGcWNPvtiBMmqVFfIN+H7rHReU="></latexit><latexit sha1_base64="8WGcWNPvtiBMmqVFfIN+H7rHReU="></latexit><latexit sha1_base64="8WGcWNPvtiBMmqVFfIN+H7rHReU="></latexit>

leek
<latexit sha1_base64="BC0sjIi9vSN0BIAVP3mu/eO3nUo="></latexit><latexit sha1_base64="BC0sjIi9vSN0BIAVP3mu/eO3nUo="></latexit><latexit sha1_base64="BC0sjIi9vSN0BIAVP3mu/eO3nUo="></latexit><latexit sha1_base64="BC0sjIi9vSN0BIAVP3mu/eO3nUo="></latexit>

carrot
<latexit sha1_base64="Pp/Yxt48KuNTKae7pyfhBViSZbY="></latexit><latexit sha1_base64="Pp/Yxt48KuNTKae7pyfhBViSZbY=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qAbdKXDgWidBKsRWt1+Nk1f2wdscpZuX/whX+ERd+CxvHRU1SiZFtPc17zzM7O2khuMUw/L3X6e7fuXvv4H7vweHDR4/7R0++Wl0aBhOmhTYXKbUguIIJchRwURigMhVwnl5+XPHnSzCWa/UFqwISSeeK55xR9KlZ/9lw2IsRvuHSMWqMxro3HM76g3AcNhHsgqgFA9LG2eyoE8aZZqUEhUxQa6dRWGDiqEHOBNS9uLRQUHZJ5zD1UFEJNnFN+3XwymeyINfGvwqDJnvT4ai0tpKpV0qKC7vNrZK3cdMS8/eJ46ooERRbF8pLEaAOVrMIMm6Aoag8oMxw32vAFtRQhn5i21VwIUdtsdF1QxuaFYNaCzuy6FOg5v5OvCSD3IPmVE5WFQihr2pn5mnt/ExHQfs52ZHODYC6Vq4kbxvxjs5A9u9/J17iH69RcMW0lFRlrrlgWU+jxLn4pqshXJzmg6iub/Estzzrjv7nyrZc7ZE3bX7Hou2N2gWT4/GHcfT5eHD6ul22A/KCvCRvSETekVPyiZyRCWHkO/lBfpJfnT/d/W6ve7iWdvZaz1OyEd3nfwGYOxh1</latexit><latexit sha1_base64="Pp/Yxt48KuNTKae7pyfhBViSZbY="></latexit><latexit sha1_base64="Pp/Yxt48KuNTKae7pyfhBViSZbY=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qAbdKXDgWidBKsRWt1+Nk1f2wdscpZuX/whX+ERd+CxvHRU1SiZFtPc17zzM7O2khuMUw/L3X6e7fuXvv4H7vweHDR4/7R0++Wl0aBhOmhTYXKbUguIIJchRwURigMhVwnl5+XPHnSzCWa/UFqwISSeeK55xR9KlZ/9lw2IsRvuHSMWqMxro3HM76g3AcNhHsgqgFA9LG2eyoE8aZZqUEhUxQa6dRWGDiqEHOBNS9uLRQUHZJ5zD1UFEJNnFN+3XwymeyINfGvwqDJnvT4ai0tpKpV0qKC7vNrZK3cdMS8/eJ46ooERRbF8pLEaAOVrMIMm6Aoag8oMxw32vAFtRQhn5i21VwIUdtsdF1QxuaFYNaCzuy6FOg5v5OvCSD3IPmVE5WFQihr2pn5mnt/ExHQfs52ZHODYC6Vq4kbxvxjs5A9u9/J17iH69RcMW0lFRlrrlgWU+jxLn4pqshXJzmg6iub/Estzzrjv7nyrZc7ZE3bX7Hou2N2gWT4/GHcfT5eHD6ul22A/KCvCRvSETekVPyiZyRCWHkO/lBfpJfnT/d/W6ve7iWdvZaz1OyEd3nfwGYOxh1</latexit>

potato
<latexit sha1_base64="1jivM2CzEwM8tDWd9QisS2CcROI="></latexit><latexit sha1_base64="1jivM2CzEwM8tDWd9QisS2CcROI=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qAbdKXDgWidBKsRWt1+Nk1f2wdscpZuX/whX+ERd+CxvHRU1SiZFtPc17zzM7O2khuMUw/L3X6e7fuXvv4H7vweHDR4/7R0++Wl0aBhOmhTYXKbUguIIJchRwURigMhVwnl5+XPHnSzCWa/UFqwISSeeK55xR9KlZ/9lw2IsRvuHSFRop6ro3HM76g3AcNhHsgqgFA9LG2eyoE8aZZqUEhUxQa6dRWGDiqEHOBNS9uLRQUHZJ5zD1UFEJNnFN+3XwymeyINfGvwqDJnvT4ai0tpKpV0qKC7vNrZK3cdMS8/eJ46ooERRbF8pLEaAOVrMIMm6Aoag8oMxw32vAFtRQhn5i21VwIUdtsdF1QxuaFYNaCzuy6FOg5v5OvCSD3IPmVE5WFQihr2pn5mnt/ExHQfs52ZHODYC6Vq4kbxvxjs5A9u9/J17iH69RcMW0lFRlrrlgWU+jxLn4pqshXJzmg6iub/Estzzrjv7nyrZc7ZE3bX7Hou2N2gWT4/GHcfT5eHD6ul22A/KCvCRvSETekVPyiZyRCWHkO/lBfpJfnT/d/W6ve7iWdvZaz1OyEd3nfwG7ZRiB</latexit><latexit sha1_base64="1jivM2CzEwM8tDWd9QisS2CcROI=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qAbdKXDgWidBKsRWt1+Nk1f2wdscpZuX/whX+ERd+CxvHRU1SiZFtPc17zzM7O2khuMUw/L3X6e7fuXvv4H7vweHDR4/7R0++Wl0aBhOmhTYXKbUguIIJchRwURigMhVwnl5+XPHnSzCWa/UFqwISSeeK55xR9KlZ/9lw2IsRvuHSFRop6ro3HM76g3AcNhHsgqgFA9LG2eyoE8aZZqUEhUxQa6dRWGDiqEHOBNS9uLRQUHZJ5zD1UFEJNnFN+3XwymeyINfGvwqDJnvT4ai0tpKpV0qKC7vNrZK3cdMS8/eJ46ooERRbF8pLEaAOVrMIMm6Aoag8oMxw32vAFtRQhn5i21VwIUdtsdF1QxuaFYNaCzuy6FOg5v5OvCSD3IPmVE5WFQihr2pn5mnt/ExHQfs52ZHODYC6Vq4kbxvxjs5A9u9/J17iH69RcMW0lFRlrrlgWU+jxLn4pqshXJzmg6iub/Estzzrjv7nyrZc7ZE3bX7Hou2N2gWT4/GHcfT5eHD6ul22A/KCvCRvSETekVPyiZyRCWHkO/lBfpJfnT/d/W6ve7iWdvZaz1OyEd3nfwG7ZRiB</latexit><latexit sha1_base64="1jivM2CzEwM8tDWd9QisS2CcROI=">AAADW3ichVJNb9NAEN0mBUookPJx4mKRgDhEkV0qAbdKXDgWidBKsRWt1+Nk1f2wdscpZuX/whX+ERd+CxvHRU1SiZFtPc17zzM7O2khuMUw/L3X6e7fuXvv4H7vweHDR4/7R0++Wl0aBhOmhTYXKbUguIIJchRwURigMhVwnl5+XPHnSzCWa/UFqwISSeeK55xR9KlZ/9lw2IsRvuHSFRop6ro3HM76g3AcNhHsgqgFA9LG2eyoE8aZZqUEhUxQa6dRWGDiqEHOBNS9uLRQUHZJ5zD1UFEJNnFN+3XwymeyINfGvwqDJnvT4ai0tpKpV0qKC7vNrZK3cdMS8/eJ46ooERRbF8pLEaAOVrMIMm6Aoag8oMxw32vAFtRQhn5i21VwIUdtsdF1QxuaFYNaCzuy6FOg5v5OvCSD3IPmVE5WFQihr2pn5mnt/ExHQfs52ZHODYC6Vq4kbxvxjs5A9u9/J17iH69RcMW0lFRlrrlgWU+jxLn4pqshXJzmg6iub/Estzzrjv7nyrZc7ZE3bX7Hou2N2gWT4/GHcfT5eHD6ul22A/KCvCRvSETekVPyiZyRCWHkO/lBfpJfnT/d/W6ve7iWdvZaz1OyEd3nfwG7ZRiB</latexit>

lettuce
<latexit sha1_base64="W9Hc0PQUKe0XCrTc25r8Pbx6k9U="></latexit><latexit sha1_base64="W9Hc0PQUKe0XCrTc25r8Pbx6k9U="></latexit><latexit sha1_base64="W9Hc0PQUKe0XCrTc25r8Pbx6k9U="></latexit><latexit sha1_base64="W9Hc0PQUKe0XCrTc25r8Pbx6k9U="></latexit>

beef
<latexit sha1_base64="tu7Z50OI4u7LSUY5XAHCU9O8QmY=">AAADWXichVJNa9tAEN1I/XDVLyc59iJqt/RgjJQGmtwCvfSYQt0ELGFWq5Essh9id5VELPorvbZ/qdAf05WslFgOdJDEY957mtnZSUpaKB0Ev/cc99HjJ09Hz7znL16+ej3eP/iuRCUJLIigQl4mWAEtOCx0oSlclhIwSyhcJFefW/7iGqQqBP+m6xJihnNeZAXB2qZW44Pp1Is03GpmEoCs8abT1XgSzIMu/F0Q9mCC+jhf7TtBlApSMeCaUKzUMgxKHRssdUEoNF5UKSgxucI5LC3kmIGKTdd847+zmdTPhLQv136Xve8wmClVs8QqGdZrNeTa5EPcstLZSWwKXlYaONkUyirqa+G3k/DTQgLRtLYAE1nYXn2yxhITbec1rKLXbNYXm901tKVpGS0EVTOlbQp4bm/ESlLILOhOZVhdA6XipjEyTxpjZzrz+8/xjjSXAPxO2Uo+duIdnYT03/+OrcQ+VsPhhgjGME/N5nqbZRgbE913dYSJkmwSNs0DnuuBZ9PR/1zpwNUfedtmdywcbtQuWBzNT+fh16PJ2ft+2UboDXqLPqAQfUJn6As6RwtE0C36gX6iX84f13FHrreROnu95xBthXv4F1R+F18=</latexit><latexit sha1_base64="tu7Z50OI4u7LSUY5XAHCU9O8QmY=">AAADWXichVJNa9tAEN1I/XDVLyc59iJqt/RgjJQGmtwCvfSYQt0ELGFWq5Essh9id5VELPorvbZ/qdAf05WslFgOdJDEY957mtnZSUpaKB0Ev/cc99HjJ09Hz7znL16+ej3eP/iuRCUJLIigQl4mWAEtOCx0oSlclhIwSyhcJFefW/7iGqQqBP+m6xJihnNeZAXB2qZW44Pp1Is03GpmEoCs8abT1XgSzIMu/F0Q9mCC+jhf7TtBlApSMeCaUKzUMgxKHRssdUEoNF5UKSgxucI5LC3kmIGKTdd847+zmdTPhLQv136Xve8wmClVs8QqGdZrNeTa5EPcstLZSWwKXlYaONkUyirqa+G3k/DTQgLRtLYAE1nYXn2yxhITbec1rKLXbNYXm901tKVpGS0EVTOlbQp4bm/ESlLILOhOZVhdA6XipjEyTxpjZzrz+8/xjjSXAPxO2Uo+duIdnYT03/+OrcQ+VsPhhgjGME/N5nqbZRgbE913dYSJkmwSNs0DnuuBZ9PR/1zpwNUfedtmdywcbtQuWBzNT+fh16PJ2ft+2UboDXqLPqAQfUJn6As6RwtE0C36gX6iX84f13FHrreROnu95xBthXv4F1R+F18=</latexit><latexit sha1_base64="tu7Z50OI4u7LSUY5XAHCU9O8QmY="></latexit><latexit sha1_base64="tu7Z50OI4u7LSUY5XAHCU9O8QmY="></latexit>

pork
<latexit sha1_base64="Ws3/eckYVpmNsf4mzQQ7cf9W4Ws="></latexit><latexit sha1_base64="Ws3/eckYVpmNsf4mzQQ7cf9W4Ws="></latexit><latexit sha1_base64="Ws3/eckYVpmNsf4mzQQ7cf9W4Ws="></latexit><latexit sha1_base64="Ws3/eckYVpmNsf4mzQQ7cf9W4Ws="></latexit>

lamb
<latexit sha1_base64="fo6KdKm2k9BR+ct1YPZxLwe3O/w="></latexit><latexit sha1_base64="fo6KdKm2k9BR+ct1YPZxLwe3O/w="></latexit><latexit sha1_base64="fo6KdKm2k9BR+ct1YPZxLwe3O/w="></latexit><latexit sha1_base64="fo6KdKm2k9BR+ct1YPZxLwe3O/w="></latexit>

chicken
<latexit sha1_base64="BgeNBC/CMCNAfqilTypg1JXZ31k="></latexit><latexit sha1_base64="BgeNBC/CMCNAfqilTypg1JXZ31k="></latexit><latexit sha1_base64="BgeNBC/CMCNAfqilTypg1JXZ31k="></latexit><latexit sha1_base64="BgeNBC/CMCNAfqilTypg1JXZ31k="></latexit>

potato
lettuce
carrot
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<latexit sha1_base64="Ub7G8Gg4Wmna/aIukRkhZ4Thb48="></latexit>

z1 = [ dairy, veggie, meat, veggie, dairy ]

<latexit sha1_base64="F6NDCiv0bPXXmIBVU3Z6oJgELU0="></latexit>

z2 = [ meat, dairy, dairy, veggie, meat ]

<latexit sha1_base64="op3QiJIMptHG6dR3/etwW5p2BAI="></latexit>

z3 = [ veggie, meat, dairy, meat, dairy ]
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b
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x11 = [ cheese, carrot, pork, potato, butter ]

x12 = [ butter, potato, chicken, lettuce, cheese ]

x13 = [ yogurt, lettuce, beef, leek, cheese ]

x14 = [ cream, lettuce, chicken, potato, yogurt ]

x21 = [ chicken, cheese, butter, lettuce, lamb ]

x22 = [ pork, cheese, cheese, carrot, pork ]

x23 = [ chicken, butter, cheese, potato, beef ]

x24 = [ chicken, cream, butter, potato, pork ]

x31 = [ potato, pork, yogurt, chicken, butter ]

x32 = [ carrot, beef, cheese, pork, cheese ]

x33 = [ lettuce, chicken, cheese, chicken, yogurt ]

x34 = [ potato, chicken, cheese, pork, cheese ]

Figure 1: Data model with parameters set to L = 5, nw = 12, nc = 3, K = 3.

with the 12 words partitioned into the 3 equally sized concepts. A sentence x ∈ VL is a sequence of
L words (L = 5 on the figure), and a latent variable z ∈ CL is a sequence of L concepts. The latent
variables generate sentences. For example

z = [ dairy, veggie, meat, veggie, dairy ]
generates−→ x = [ cheese, carrot, pork, potato, butter ]

with the sentence on the right obtained by sampling each word at random from the corresponding
concept. The first word represents a random sample from the dairy concept (butter, cheese, cream,
yogurt) according to the dairy distribution (square box at left), the second word represents a random
sample from the vegetable concept (potato, carrot, leek, lettuce) according to the vegetable distribu-
tion, and so forth. At right, figure 1 depicts a classification task with K = 3 categories prescribed
by the three latent variables z1, z2, z3 ∈ CL. Sentences generated by the latent variable zk share the
same label k, yielding a classification problem that requires a learner to classify sentences among K
categories.
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Figure 2: Networks

We use two similar networks to empirically study if and when the feature
collapse phenomenon occurs. The first network x 7→ hW,U (x), depicted
on the top panel of figure 2, starts by embedding each word in a sentence
by applying a d×nw matrixW to the one-hot representation of each word.
It then concatenates these d-dimensional embeddings of each word into a
single vector. Finally, it applies a linear transformation U to produce a K-
dimensional score vector y = hW,U (x) with one entry for each of the K
classes. The d × nw embedding matrix W and the K × Ld matrix U of
linear weights are the only learnable parameters, and the network has no
nonlinearities. The second network x 7→ h∗W,U (x), depicted at bottom,
differs only by the application of a LayerNorm module to the word em-
beddings prior to the concatenation. For simplicity we use a LayerNorm
module which does not contain any learnable parameters; the module sim-
ply removes the mean and divides by the standard deviation of its input
vector. As for the first network, the only learnable weights are W and U .

The task depicted on figure 1, and the networks depicted on figure 2, pro-
vide a clear way of studying how interpretable and meaningful representa-
tions are learned in the first layer of a network. For example, the four words butter, cheese, cream
and yogurt clearly play identical role for the task at hand (replacing one with another does not change
the label of the sentence). As a consequence we would expect the embedding layer of the network
to map them to the same representation. Similarly, the words belonging to the vegetable concepts
should receive same representation, and the words belonging to the meat concept should receive
same representation. If this takes place, we say that feature collapse has occurred.

If feature collapse occurs, this will also be reflected in the second layer of the network. To see this,
partition the linear transformation

U =


—u1,1— —u1,2— · · · —u1,L—
—u2,1— —u2,2— · · · —u2,L—

...
...

...
—uK,1— —uK,2— · · · —uK,L—

 (1)
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into its components uk,ℓ ∈ Rd. Suppose for example that zk,ℓ = veggie, meaning that the latent
variable zk contains the veggie concept in the ℓth position. If W properly encodes concepts then we
expect the vector uk,ℓ to give a strong response when presented with the embedding of a word that
belongs to the veggie concept. So we would expect uk,ℓ to align with the embeddings of the words
that belong to the veggie concept, and so feature collapse would occur in this manner as well.

In the remainder of this section we conduct experiments that visually illustrate the feature collapse
phenomenon and the formation of interpretable representations in networks h and h∗. These exper-
iments also show how layer normalization plays a key role in the feature collapse phenomenon. In
our experiments we use the standard cross entropy loss ℓ(y, k), with y ∈ RK and 1 ≤ k ≤ K, and
then minimize the corresponding regularized empirical risks

Remp(W,U) =
1

K

1

nspl

K∑
k=1

nspl∑
i=1

ℓ
(
hW,U (xk,i) , k

)
+
λ

2
∥U∥2F +

λ

2
∥W∥2F (2)

R∗
emp(W,U) =

1

K

1

nspl

K∑
k=1

nspl∑
i=1

ℓ
(
h∗W,U (xk,i) , k

)
+
λ

2
∥U∥2F (3)

of each network via stochastic gradient descent. The xk, i denote the i-th sentence of the k-
th category in the training set, and so each of the K categories has nspl representatives. For
the parameters of the architecture, loss, and training procedure, we use an embedding dimension
of d = 100, a weight decay of λ = 0.001, a mini-batch size of 100 and a constant learning
rate 0.1, respectively, for all experiments. The LayerNorm module implicitly regularizes the ma-
trix W so we do not penalize it in equation (3). The codes for our experiments are available at
https://github.com/xbresson/feature_collapse.

Remark: Without weight decay (i.e. λ = 0), the above objectives typically do not have global
minima. We therefore focus our theoretical investigation on the case λ > 0 which is analytically
more tractable. In appendix A.1 we provide an empirical investigation of the case without weight
decay to show that both cases (i.e. λ > 0 and λ = 0) exhibit the same behavior in practice.

2.1 THE UNIFORM CASE

We start with an instance of the task from figure 1 with parameters nc = 3, nw = 1200, L = 15,
K = 1000, and with uniform word distributions. So each of the 3 concepts (say veggie, dairy, and
meat) contain 400 words and the corresponding distributions (the veggie distribution, the dairy dis-
tribution, and the meat distribution) are uniform. We form K = 1000 latent variables z1, . . . , z1000
by selecting them uniformly at random from the set CL, which simply means that any concept se-
quence z = [z1, . . . , zL] has an equal probability of occurrence. We then construct a training set by
generating nspl = 5 data points from each latent variable. We then train both networks h, h∗ and
evaluate their generalization performance; both achieve 100% accuracy on test points.

1 0 1
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Figure 3: W & U

Since both networks generalize perfectly, we expect them to have learned good
representations. To confirm this, we start by visualizing in figure 3 the learnable
parameters W,U of the network hW,U after training. The embedding matrix
W contains nw = 1200 columns. Each column is a vector in R100 and cor-
responds to a word embedding. The top panel of figure 3 depicts these 1200
word embeddings after dimensionality reduction via PCA. The top singular
values σ1 = 34.9, σ2 = 34.7 and σ3 = 0.001 associated with the PCA indicate
that the word embeddings essentially live in a 2 dimensional subspace of R100,
and so the PCA paints an accurate picture of the distribution of word embed-
dings. We then color code each word embedding accorded to its concept, so
that all embeddings of words within a concept receive the same color (say all
veggie words in green, all dairy words in blue, and so forth). As the figure illus-
trates, words from the same concept receive nearly identical embeddings, and
these embeddings form an equilateral triangle or two-dimensional simplex. We therefore observe
collapse of features into a set of nc = 3 equi-angular vectors at the level of word embeddings. The
bottom panel of figure 3 illustrates collapse for the parameters U of the linear layer. We partition
the matrix U into vectors uk,ℓ ∈ R100 via (1) and visualize them once again with PCA. As for the
word embeddings, the singular values of the PCA (σ1 = 34.9, σ2 = 34.6 and σ3 = 0.0003) reveal
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that the vectors uk,ℓ essentially live in a two dimensional subspace of R100. We color code each
uk,ℓ according to the concepts contained in the corresponding latent variable (say uk,ℓ is green if
zk,ℓ = veggie, and so forth). The figure indicates that vectors uk,ℓ that correspond to a same con-
cept collapse around a single vector. A similar analysis applied to the weights of the network h∗W,U
tells the same story, provided we examine the actual word features (i.e. the embeddings after the
LayerNorm) rather than the weights W themselves.

In theorem 1 and 3 (see section 3) we prove the correctness of this empirical picture. We show
that the weights of h and h∗ collapse into the configurations illustrated on figure 3 in the large
sample limit. Moreover, this limit captures the empirical solution very well. For example, the word
embeddings in figure 3 have a norm equal to 1.41 ± 0.13, while we predict a norm of 1.42214
theoretically.

2.2 THE LONG-TAILED CASE

At a superficial glance it appears as if the LayerNorm module plays no essential role, as both net-
works h and h∗, in the previous experiment, exhibit feature collapse and generalize perfectly. To
probe this issue further, we continue our investigation by conducting a similar experiment (keeping
nc = 3, nw = 1200, L = 15, and K = 1000) but with non-uniform, long-tailed word distributions
within each of the nc = 3 concepts. For concreteness, say the veggie concept contains the 400 words

potato, lettuce, . . . . . . , arugula, parsnip, . . . . . . , achojcha

where achojcha is a rare vegetable that grows in the Andes mountains. We form the veggie distribu-
tion by sampling potato with probability C/1, sampling lettuce with probability C/2, and so forth
down to achojcha that has probability C/400 of being sampled (C is chosen so that all the probabil-
ities sum to 1). This “1/i” power law distribution has a long-tail, meaning that relatively infrequent
words such as arugula or parsnip collectively capture a significant portion of the mass. Natural
data in the form of text or images typically exhibit long-tailed distributions (Salakhutdinov et al.,
2011; Zhu et al., 2014; Liu et al., 2019; Feldman, 2020; Feldman & Zhang, 2020). For instance,
the frequencies of words in natural text approximately conform to the “1/i” power law distribution,
also known as Zipf’s law (Zipf, 1935), which motivates the specific choice made in this experiment.
Many datasets of interest display some form of long-tail behavior, whether at the level of object oc-
currences in computer vision or the frequency of words or topics in NLP, and effectively addressing
these long-tail behaviors is frequently a challenge for the learner.

To investigate the impact of a long-tailed word distributions, we first randomly select the latent
variables z1, . . . , z1000 uniformly at random as before. We then use them to build two distinct
training sets. We build a large training set by generating nspl = 500 training points per latent
variable and a small training set by generating nspl = 5 training points per latent variable. We use
the “1/i” power law distribution when sampling words from concepts in both cases. We then train
h and h∗ on both training sets and evaluate their generalization performance. When trained on the
large training set, both are 100% accurate at test time (as they should be — the large training set
has 500, 000 total samples). A significant difference emerges between h and h∗ when trained on the
small training set. The network h achieves a test accuracy of 45% while h∗ remains 100% accurate.

We once again visualize the weights of each network to study the relationship between generaliza-
tion and collapse. Figure 4(a) depicts the weights of hW,U (via dimensionality reduction and color
coding) after training on the large training set. The word embeddings are on the left sub-panel and
the linear weights uk, ℓ on the right sub-panel. Words that belong to the same concept still receive

potato
lettuce

achojcha

parsnip

(a) h trained on the large
training set. Test acc. = 100%
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(b) h trained on the small
training set. Test acc. = 45%
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(c) h∗ trained on the small
training set. Test acc. = 100%

Figure 4: Visualization of matrices W (left in each subfigure) and U (right in each subfigure)

5



Published as a conference paper at ICLR 2024

embeddings that are aligned, however, the magnitude of these embeddings depends upon word fre-
quency. The most frequent words in a concept (e.g. potato) have the largest embeddings while the
least frequent words (e.g. achojcha) have the smallest embeddings. In other words, we observe
‘directional collapse’ of the embeddings, but the magnitudes do not collapse. In contrast, the linear
weights uk,ℓ mostly concentrate around three well-defined, equi-angular locations; they collapse in
both direction and magnitude. A major contribution of our work (c.f. theorem 2 in the next section)
is a theoretical insight that explains the configurations observed in figure 4(a), and in particular,
explains why the magnitudes of word embeddings depend on their frequencies.

Figure 4(b) illustrates the weights of hW,U after training on the small training set. While the word
embeddings exhibit a similar pattern as in figure 4(a), the linear weights uk,ℓ remain dispersed and
fail to collapse. This leads to poor generalization performance (45% accuracy at test time).

To summarize, when the training set is large, the linear weights uk,ℓ collapse correctly and the
network hW,U generalizes well. When the training set is small the linear weights fail to collapse, and
the network fails to generalize. This phenomenon can be attributed to the long-tailed nature of the
word distribution. To see this, say that zk = [ veggie, dairy, veggie, . . . , meat, dairy ] represents
the kth latent variable for the sake of concreteness. With only nspl = 5 samples for this latent
variable, we might end up in a situation where the 5 words selected to represent the first occurrence
of the veggie concept have very different frequencies than the five words selected to represent the
third occurrence of the veggie concept. Since word embeddings have magnitudes that depend on
their frequencies, this will result in a serious imbalance between the vectors uk,1 and uk,3 that code
for the first and third occurrence of the veggie concept. This leads to two vectors uk,1, uk,3 that
code for the same concept but have different magnitudes (as seen on figure 4(b)), so features do not
properly collapse. This imbalance results from the ‘noise’ introduced by sampling only 5 training
points per latent variable. Indeed, if nspl = 500 then each occurrence of the veggie concept will
exhibit a similar mix of frequent and rare words, uk, 1 and uk, 3 will have roughly same magnitude,
and full collapse will take place (c.f. figure 4(a)). Finally, the poor generalization ability of hW,U
when the training set is small really stems from the long-tailed nature of the word distribution. The
failure mechanism occurs due to the relatively balanced mix of rare and frequent words that occurs
with long-tailed data. If the data were dominated by a few very frequent words, then all rare words
combined would just contribute small perturbations and would not adversely affect performance.

We conclude this section by examining the weights of the network h∗W,U after training on the small
training set. The left panel of figure 4(c) provides a visualization of the word embeddings after the
LayerNorm module. These word representations collapse both in direction and magnitude; they do
not depend on word frequency since the LayerNorm forces vectors to have identical magnitude. The
right panel of figure 4(c) depicts the linear weights uk,ℓ and shows that they properly collapse. As a
consequence, h∗W,U generalizes perfectly (100% accurate) even with only nspl = 5 sample per class.
Normalization plays a crucial role by ensuring that word representations do not depend upon word
frequency. In turn, this prevents the undesired mechanism that causes hW,U to have uncollapsed
linear weights uk,ℓ when trained on the small training set. Theorem 3 in the next section proves the
correctness of this picture. The weights of the network h∗ collapse to the ‘frequency independent’
configuration of figure 4(c) in the large sample limit.

3 THEORY

Our main contributions consist in three theorems. In theorem 1 we prove that the weights of the
network hW,U collapse into the configurations depicted on figure 3 when words have identical fre-
quencies. In theorem 2 we provide theoretical justification of the fact that, when words have distinct
frequencies, the word embeddings of hW,U must depend on frequency in the manner that figure 4(a)
illustrates. Finally, in theorem 3 we show that the weights of the network h∗W,U exhibit full collapse
even when words have distinct frequencies. Each of these theorems hold in the large nspl limit and
under some symmetry assumptions on the latent variables. All proofs are in the appendix.

Notation. The set of concepts, which up to now was C = {veggie, dairy, meat}, will be represented
in this section by the more abstract C = {1, . . . , nc}. We let sc := nw/nc denote the number of
words per concept, and represent the vocabulary by

V =
{
(α, β) ∈ N2 : 1 ≤ α ≤ nc and 1 ≤ β ≤ sc

}
6
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So elements of V are tuples of the form (α, β) with 1 ≤ α ≤ nc and 1 ≤ β ≤ sc, and we think of the
tuple (α, β) as representing the βth word of the αth concept. Each concept α ∈ C comes equipped
with a probability distribution pα : {1, . . . , sc} → [0, 1] over the words within it, so that pα(β) is
the probability of selecting the βth word when sampling out of the αth concept. For simplicity we
assume that the word distributions within each concept follow identical laws, so that

pα(β) = µβ for all (α, β) ∈ V
for some positive scalars µβ > 0 that sum to 1. We think of µβ as being the ‘frequency’ of
word (α, β) in the vocabulary. For example, choosing µβ = 1/sc gives uniform word distribu-
tions while µβ ∝ 1/β corresponds to Zipf’s law. We use X := VL to denote the data space and
Z := CL to denote the latent space. The elements of the data space X correspond to sequences
x = [(α1, β1), . . . , (αL, βL)] of L words, while elements of the latent space Z correspond to se-
quences z = [α1, . . . , αL] of L concepts. For a given latent variable z we write x ∼ Dz to indicate
that the data point x was generated by z (formally Dz : X → [0, 1] is a probability distribution).

Word embeddings, LayerNorm, and word representations. We use w(α,β) ∈ Rd to denote the
embedding of word (α, β) ∈ V . The collection of all w(α,β) determines the columns of the matrix
W ∈ Rd×nw . These embeddings feed into a LayerNorm module without learnable parameters:

φ(v) = v−mean(v)1d

σ(v) where mean(v) = 1
d

∑d
i=1 vi and σ2(v) = 1

d

∑d
i=1

(
vi−mean(v)

)2
.

So the LayerNorm module converts a word embedding w(α, β) ∈ Rd into a vector φ(w(α, β)) ∈ Rd,
and we call this vector a word representation.

Equiangular vectors. We call a collection of nc vectors f1, . . . , fnc ∈ Rd equiangular if
nc∑
α=1

fα = 0 and ⟨fα, fα′⟩ =
{
1 if α = α′

−1/(nc − 1) otherwise
(4)

hold for all possible pairs α, α′ ∈ [nc] of concepts. For example, three vectors f1, f2, f3 ∈ R100 are
equiangular exactly when they have unit norms, live in a two dimensional subspace of R100, and
form the vertices of an equilateral triangle in this subspace. This example exactly corresponds to the
configurations in figure 3 and 4 (up to a scaling factor). Similarly, four vectors f1, f2, f3, f4 ∈ R100

are equiangular when they have unit norms and form the vertices of a regular tetrahedron. We will
sometimes require f1, . . . , fnc ∈ Rd to also satisfy ⟨fα,1d⟩ = 0 for all α ∈ [nc], in which case we
say f1, . . . , fnc ∈ Rd form a collection of mean-zero equiangular vectors.

Collapse configurations. Our empirical investigations reveal two distinct candidate solutions for
the weights (W, U) of the network hW,U and h∗W,U . We therefore isolate each of these possible
candidates as a definition before turning to the statements of our main theorems. We begin by defin-
ing the type of collapse observed when training the network hW,U with uniform word distributions
(see figure 3 for a visual illustration of this type of collapse).
Definition 1 (Type-I Collapse). The weights (W,U) of the network hW,U form a type-I collapse
configuration if and only if the conditions

i) There exists c ≥ 0 so that w(α,β) = c fα for all (α, β) ∈ V .

ii) There exists c′ ≥ 0 so that uk,ℓ = c′ fα for all (k, ℓ) satisfying zk,ℓ = α and all α ∈ C.

hold for some collection f1, . . . , fnc
∈ Rd of equiangular vectors.

Recall that the network h∗W,U exhibits collapse as well, up to the fact that the word representations
φ(wα, β) collapse rather than the word embeddings themselves. Additionally, the LayerNorm also
fixes the magnitude of the word representations. We isolate these differences in the next definition.
Definition 2 (Type-II Collapse). The weights (W,U) of the network h∗W,U form a type-II collapse
configuration if and only if the conditions

i) φ(w(α,β)) =
√
d fα for all (α, β) ∈ V .

ii) There exists c ≥ 0 so that uk,ℓ = c fα for all (k, ℓ) satisfying zk,ℓ = α and all α ∈ C.

hold for some collection f1, . . . , fnc ∈ Rd of mean-zero equiangular vectors.

7



Published as a conference paper at ICLR 2024

Finally, when training the network hW,U with non-uniform word distributions (c.f. figure 4(a)) we
observe collapse in the direction of the word embeddings w(α, β) but their magnitudes depend upon
word frequency. We therefore isolate this final observation as
Definition 3 (Type-III Collapse). The weights (W,U) of the network hW,U form a type-III collapse
configuration if and only if

i) There exists positive scalars rβ ≥ 0 so that w(α, β) = rβ fα for all (α, β) ∈ V .

ii) There exists c ≥ 0 so that uk,ℓ = c fα for all (k, ℓ) satisfying zk,ℓ = α and all α ∈ C.

hold for some collection f1, . . . , fnc ∈ Rd of equiangular vectors.

In a type-III collapse we allow the word embedding w(α, β) to have a frequency-dependent magni-
tude rβ while in type-I collapse we force all embeddings to have the same magnitude; this makes
type-I collapse a special case of type-III collapse, but not vice-versa.

3.1 PROVING COLLAPSE

Our first result proves that the words embeddings w(α,β) and linear weights uk,ℓ exhibit type-I
collapse in an appropriate large-sample limit. When turning from experiment (c.f. figure 3) to
theory we study the true risk

R(W,U) =
1

K

K∑
k=1

E x∼Dzk

[
ℓ(hW,U (x), k)

]
+
λ

2

(
∥W∥2F + ∥U∥2F

)
(5)

rather than the empirical risk Remp(W,U) and place a symmetry assumption on the latent variables.
Assumption 1 (Latent Symmetry). For every k ∈ [K], r ∈ [L], ℓ ∈ [L], and α ∈ [nc] the identities∣∣∣{k′ ∈ [K] : dist(zk, zk′) = r and zk′,ℓ = α

}∣∣∣ = { K
|Z|
(
L−1
r

)
(nc − 1)r if zk,ℓ = α

K
|Z|
(
L−1
r−1

)
(nc − 1)r−1 if zk,ℓ ̸= α

(6)

hold, with dist(zk, zk′) denoting the Hamming distance between a pair (zk, zk′ ) of latent variables.

With this assumption in hand we may state our first main result
Theorem 1 (Full Collapse of h). Assume uniform sampling µβ = 1/sc for each word dis-
tribution. Let τ ≥ 0 denote the unique minimizer of the strictly convex function H(t) :=

log

(
1− K

nL
c
+ K

nL
c

(
1 + (nc − 1)e−ηt

)L)
+ λt where η = nc

nc−1
1√

nwKL
. Assume z1, . . . , zK

are mutually distinct and satisfy the symmetry assumption 1. Then any (W,U) in a type-I collapse
configuration with constants c =

√
τ/nw and c′ =

√
τ/(KL) is a global minimizer of (5).

We also prove two strengthenings of this theorem in the appendix. First, under an additional techni-
cal assumption on the latent variables z1, . . . , zK we prove its converse; any (W,U) that minimizes
(5) must be in a type-I collapse configuration (with the same constants c, c′). This additional as-
sumption is mild but technical, so we state it in appendix C. We also prove that if d > nw then
R(W,U) does not have spurious local minimizers; all local minimizers are global (see appendix H).

The symmetry assumption, while odd at a first glance, is both needed and natural. Indeed, a type-I
collapse configuration is highly symmetric and perfectly homogeneous. We therefore expect that
such configurations could only solve an analogously ‘symmetric’ and ‘homogeneous’ optimization
problem. In our case this means using the true risk (5) rather than the empirical risk (2), and im-
posing that the latent variables satisfy the symmetry assumption. This assumption means that all
latent variables play interchangeable roles, or at an intuitive level, that there is no ‘preferred’ latent
variable. To understand this better, consider the extreme case K = nLc and {z1, . . . , zK} = Z ,
meaning that all latent variables in Z are involved in the task. The identity (6) then holds by simple
combinatorics. We may therefore think of (6) as an equality that holds in the large K limit, so it is
neither impossible nor unnatural. We refer to appendix C for more discussion about assumption 1.

While theorem 1 proves global optimality of type-I collapse configurations in the limit of large
nspl and large K, these solutions still provide valuable predictions when K and nspl have small to
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moderate values. For example, in the setting of figure 3 (nspl = 5 and K = 1000) the theorem
predicts that word embeddings should have a norm c =

√
τ/nw = 1.42214 (with τ obtained by

minimizing H(t) numerically). By experiment we find that, on average, word embeddings have
norm 1.41 with standard deviation 0.13. To take another example, when K = 50 and nspl = 100
(and keeping nc = 3, nw = 1200, L = 15) the theorem predicts that words embeddings should
have norm 0.61602. This compares well against the values 0.61 ± 0.06 observed in experiments.
The idealized solutions of the theorem capture their empirical counterparts very well.

For non-uniform µβ we expect hW,U to exhibit type-III collapse rather than type-I collapse. Addi-
tionally, in our long-tail experiments, we observe that frequent words (i.e. large µβ) receive large
embeddings. We now prove that this is the case in our next theorem. To state it, consider the
following system of sc + 1 equations

λ
L

rβ
c

(
nc − 1 + exp

(
nc

nc−1c rβ

))
= µβ for all 1 ≤ β ≤ sc (7)∑sc

β=1

( rβ
c

)2
= LnL−1

c (8)

for the unknowns (c, r1, . . . , rsc). If the regularization parameter λ is small enough, namely λ2 <
L

nL+1
c

∑sc
β=1 µ

2
β , then (7)–(8) has a unique solution. This solution defines the magnitudes of the word

embeddings. The left hand side of (7) is an increasing function of rβ , so µβ < µβ′ implies rβ < rβ′

and more frequent words receive larger embeddings.
Theorem 2 (Directional Collapse of h). Assume λ2 < (L/nL+1

c )
∑sc
β=1 µ

2
β , K = nLc and

{z1, . . . , zK} = Z . Suppose (W, U) is in a type-III collapse configuration for some constants
(c, r1, . . . , rsc). Then (W,U) is a critical point of the true risk (5) if and only if (c, r1, . . . , rsc)
solve the system (7)–(8).

Essentially this theorem shows that word embeddings must depend on word frequency and so feature
collapse fails. Even in the fully-sampled case K = nLc and {z1, . . . , zK} = Z a network exhibiting
type-I collapse is never critical if the word distributions are non-uniform. While we conjecture
global optimality of the solutions in theorem 2 under appropriate symmetry assumptions, we have
no proof of this yet. The bound on λ is the natural one for theorem 2, for if λ is too large the trivial
solution (W,U) = (0, 0) is the only one. In our experiments, λ satisfies this bound.

Our final theorem completes the picture; it shows that normalization restores global optimality of
fully-collapsed configurations. For the network h∗W,U with LayerNorm, we use the appropriate limit

R∗(W,U) =
1

K

K∑
k=1

E x∼Dzk

[
ℓ(h∗W,U (x), k)

]
+
λ

2
∥U∥2F (9)

of the associated empirical risk and place no assumptions on the sampling distribution.
Theorem 3 (Full Collapse of h∗). Assume the non-degenerate condition µβ > 0 holds.
Let τ ≥ 0 denote the unique minimizer of the strictly convex function H∗(t) =

log

(
1− K

nL
c
+ K

nL
c

(
1 + (nc − 1)e−η

∗t
)L)

+ λ
2 t

2 where η∗ = nc

nc−1
1√
KL/d

. Assume z1, . . . , zK

are mutually distinct and satisfy assumption 1. Then any (W, U) in a type-II collapse configuration
with constant c = τ/

√
KL is a global minimizer of (9).

As for theorem 1, we prove the converse under an additional technical assumption on the latent
variables. Any (W,U) that minimizes (9) must be in a type-II collapse configuration with c =

τ/
√
KL. The proof and exact statement can be found in section F of the appendix.

4 ADDITIONAL EXPERIMENTS

Our theoretical investigation of feature collapse uses a simple synthetic data model and a basic net-
work. These simplifications allow us to rigorously prove that feature collapse occurs in this setting.
The first section of the appendix provides preliminary evidence that the feature collapse phenomenon
also occurs in more complex settings, which are beyond the reach of our current analytical tools. In
particular, we experimentally observe feature collapse in more complex data models that involve
a deeper hierarchy of latent structures. We also investigate the feature collapse phenomenon in
transformer architectures in both a classification setup and the usual next-word-prediction setup.
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Appendix

In section A we conduct an empirical investigation of the feature collapse phenomenon in settings
beyond the reach of our current analytical tools. The remaining sections are all devoted to the proofs
of the three theorems that constitute the main results of the paper.

Section B provides formulas for the networks hW,U and h∗W,U depicted on figure 2 of the main paper,
and formula for the distribution Dzk

: X → [0, 1] underlying the data model depicted on figure 1 of
the main paper. We also use this section to introduce various notations that our proofs will rely on.

Section C is devoted to the symmetry assumptions that we impose on the latent variables. We start
with an in depth discussion of assumption 1. from the main paper. This assumption is required for
theorem 1 and 3 to hold. We then present and discuss an additional technical assumption on the
latent variables (c.f. assumption B) that we will use to prove the converse of theorems 1 and 3.

Whereas sections B and C are essentially devoted to notations and discussions, most of the analysis
occurs in section D, E, F and G. We start by deriving a sharp lower bound for the unregularized
risk in section D. Theorem 1 from the main paper, as well as its converse, are proven in section E.
Theorem 3 and its converse are proven in section F. Finally we prove theorem 2 in section G.

We conclude this appendix by proving in section H that if d > min(nw,KL), then the risk associ-
ated to the network hW,U does not have spurious local minimizers; all local minimizers are global.
This proof follows the same strategy that was used in Zhu et al. (2021).

A FURTHER EMPIRICAL INVESTIGATIONS

In this section, show empirically that the feature collapse phenomenon is not limited to the simple
controlled setting where we were able to prove it. In particular, we show that feature collapse
occurs in the absence of weight decay and when the LayerNorm has learnable parameters. We also
show that feature collapse occurs in transformer architectures, and also when the classification task
is replaced with a language modeling task. Finally, we show that feature collapse occurs in data
models involving a deeper hierarchy of latent structures, such as a Context Free Grammar (CFG).

A.1 EXPERIMENTS WITHOUT WEIGHT DECAY

Figure 5

We start by reproducing the experiments depicted in Figure 3 and 4 but without
weight decay. Specifically, we set λ = 0 in equations (2) and (3). All other
parameters defining the networks and data model remain the same. To train the
networks, we perform 5 million iterations of stochastic gradient descent with
a batch size of 100 and a learning rate of 0.1. After training, the empirical
losses for all networks are below 10−4. The outcomes of these experiments
are depicted in Figures 5 and 6. These figures are virtually identical to Figures
3 and 4 in the main paper. In other words, the absence or presence of weight
decay does not affect our main qualitative findings.

(a) h trained on the large
training set. Test acc. = 100%

(b) h trained on the small
training set. Test acc. = 66%

(c) h∗ trained on the small
training set. Test acc. = 100%

Figure 6: Same experiments as in Figure 4 but with no weight decay. Note that the result are
qualitatively similar.
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A.2 LAYERNORM WITH LEARNABLE PARAMETERS

Figure 7: Same experiment as
in Figure 4(c) but with learnable
weight in the LayerNorm

When the LayerNorm module has no learnable weights, the word
embeddings must lie on a sphere of constant radius. This con-
straint aids collapse. A natural question is whether collapse
still occurs when the LayerNorm has learnable parameters. To
answer this question, we reproduce the experiment that corre-
sponds to Figure 4(c) but allow the LayerNorm module to have
learnable weights. The result of this experiment is depicted on
Figure 7, and one can clearly observe that feature collapse does
occur in this setting as well.

A.3 CLASSIFICATION EXPERIMENTS WITH TRANSFORMERS

In this set of experiments, we train a transformer on the classification task depicted on figure 1. The
transformer has 2 layers, 8 heads, 512 dimensions, and we use absolute positional embeddings (as
in GPT-2). A classification token is appended to each input sentence, and this classification token
is used in the last layer to predict the category. The network is trained with AdamW (constant
learning rate of 10−4, weight decay of 0.1, β1 = 0.9 and β2 = 0.95) during 3 epochs on a training
sets containing 0.5 million sentences. For the data model, we use nc = 3, nw = 1200, L = 15,
K = 1000 as in the main paper. In figure 8(a) and 8 (b) we display the word embeddings via
dimensionality reduction and color coding. These are the word embeddings obtained before addition
of the positional embeddings, and before going through the first transformer layer. Figure 8(a)
corresponds to the case in which the words are uniformly distributed, and Figure 8(b) corresponds
to the long-tail case. We observe that the word embeddings, in both the uniform and long-tail case,
are properly collapsed.

A.4 LANGUAGE MODELING EXPERIMENTS WITH TRANSFORMERS

In this set of experiments, we train a transformer to predict the next token on sentences generated
by the data model depicted on Figure 1. We use the GPT-2 architecture (Radford et al., 2019) with
2 layers, 8 heads, and 512 dimensions. The training set contains 1 million sentences generated by
our data model with parameters nc = 3, nw = 1200, L = 15, K = 1000, and with uniform
word distributions. We perform a single epoch through the training set and use AdamW with same
parameters as above. On figure 8 (c) we display the word embeddings via dimensionality reduction
and color coding, and we observe that they are they are properly collapsed.

A.5 EXPERIMENTS WITH CONTEXT FREE GRAMMAR

The data model presented in the paper extends to one with a deeper hierarchy of latent structures.
Recall that words are partitioned into concepts and that the latent variables are sequences of con-
cepts. We can further partitioned the latent variables into ‘meta-concepts’ and create deeper latent
variables that are sequences of ‘meta-concepts’. We can iterate this process to obtain a hierarchy
of any depth. Such a data model is a particular instance of a Context Free Grammar (Chomsky,
1956), which generates sentences with probabilistic trees and are widely used to understand natural

(a) Classification task
(uniform word distribution)

(b) Classification task
(long-tail word distribution)

(c) Language modeling task
(uniform word distribution)

Figure 8: Experiments with transformers.
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language models (e.g. Kim et al. (2019); Allen-Zhu & Li (2023); Liu et al. (2023)). In Figure 9 we
provide an illustration of a simple depth 3 context free grammar.

We ran experiments with a context free grammar of depth 4, meaning that we have words, concepts,
meta-concepts and meta-meta-concepts. We used a deep neural network with ReLU nonlinearities
and LayerNorm module at each layer. The architecture of the neural network was chosen to match
that of the context free grammar, see Figure 10. In Figure 11 we plot the activations after each of the
three hidden layers and readily observe the expected feature collapse phenomenon. All segments of
the input sentence that correspond to same concept, meta-concept, or meta-meta-concept receive the
same representations in the appropriate layer of the network (layer 1 for concepts, layer 2 for meta-
concepts, and layer 3 for meta-meta-concepts). This shows that the feature collapse phenomenon is
a general one.

Details of the Context Free Grammar: We used the following context free grammar for our experi-
ment. We chooseK = 100 categories. Each category generates a sequence of ‘meta-meta-concepts’
of length 8 by choosing uniformly at random among 5 possible sequences of meta-meta-concepts.
Each meta-meta-concept then generates a sequence of meta-concepts of length 8, again by choos-
ing uniformly at random among 5 possible sequences of meta-concepts. Each meta-concept then
generates a sequence of concepts of length 8 by choosing among 5 possible sequences of concepts.
Finally, each concept generates a sequence of words of length 8 by choosing among 5 possible
sequences of words. At level 0 the sequences of words have an overall length of 84 = 4096.

<latexit sha1_base64="gqXSuzOKDCgv2u8D+lsHQBRtKrs="></latexit>

�1

�1 �2

�1 �2 �3 �4 �5 �6

↵1 ↵2 ↵3 ↵4 ↵5 ↵6 ↵7 ↵8 ↵9 ↵10 ↵11 ↵12 ↵13 ↵14 ↵15 ↵16 ↵17 ↵18 Sequence of words 

Sequence of concepts 

Sequence of meta-concepts  

Class index in {1,2,…,K}

generates

generates generates

(level 0)

(level 1)

(level 2)

(level 3)

generatesgeneratesgeneratesgeneratesgeneratesgenerates

Figure 9: Probabilistic Context Free Grammar of depth 3. The class index generates a sequence of
meta-concepts. Each meta-concept further generates a sequence of concepts. Finally each concept
generates a sequence of words. The process by which a token from one level generates a sequence
of tokens in the level below is random. For example, the meta-concept γ2 = 5 might generate
the sequence of concepts [β4, β5, β6] = [4, 1, 3] with probability 1/3, the sequence [β4, β5, β6] =
[2, 5, 3] with probability 1/3, and the sequence [β4, β5, β6] = [3, 5, 5] with probability 1/3.

<latexit sha1_base64="yrbSemmJFXeMDwHIHB/CH4T+dXM="></latexit>

~d1

~c1 ~c2

~b1
~b2

~b3
~b4

~b5
~b6

~a1 ~a2 ~a3 ~a4 ~a5 ~a6 ~a7 ~a8 ~a9 ~a10 ~a11 ~a12 ~a13 ~a14 ~a15 ~a16 ~a17 ~a18
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Block 1 Block 1 Block 1 Block 1 Block 1 Block 1

Block 2 Block 2

Linear

Sequence of words 

Vectors in Rd    (level 0) 

Vectors in Rd     (level 1 )

Vectors in Rd    (level 2)  

Vectors in RK   (level 3)

Embedding

Figure 10: Neural network architecture matching the context free grammar from Figure 9. Each
block consists in a MLP followed by layer normalization. The vectors are concatenated before
being fed to a block. If feature collapse occurs, then two sequences of words [α1, α2, α3] generated
by the same concept β1 should have almost identical representation b⃗1 in level 1 of the network.
Similarly, two sequences of words [α1, α2, . . . , α9] generated by the same meta-concept γ1 should
have almost identical representation c⃗1 in level 2 of the network.
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Level 1 representations 
color-coded according to concepts

Level 2 representations 
color-coded according to meta-concepts

Level 3 representations 
color-coded according to meta-meta-concepts

Figure 11: Results of an experiment ran on a context free grammar of depth 4 (so deeper than the
one depicted on Figure 1). At every level, each token generates in the level below a sequence of
length 8 chosen uniformly at random among 5 possible sequences. After training the network, we
generate 1000 test sequences, feed them to the network, and visualize via PCA the representations
obtained at each layer (i.e. we plot the vectors b⃗i, c⃗i and d⃗i). The vectors are color coded accord-
ing to the concept, meta-concept, and meta-meta-concept that generated them, and we keep only
representations corresponding to the first 3 concepts, meta-concepts, and meta-meta-concepts. We
clearly observe the feature collapse phenomenon. Note that since we are dealing with a network of
depth 4, the vectors d⃗i are not the output, but the last hidden representations.

B PRELIMINARIES AND NOTATIONS

B.1 FORMULA FOR THE NEURAL NETWORKS

Recall that the vocabulary is the set

V = {(α, β) ∈ N2 : 1 ≤ α ≤ nc and 1 ≤ β ≤ sc},

and that we think of the tuple (α, β) ∈ V as representing the βth word of the αth concept. The data
space is X = VL, and a sentence x ∈ X is a sequence of L words:

x = [(α1, β1), . . . , (αL, βL)] 1 ≤ αℓ ≤ nc and 1 ≤ βℓ ≤ sc.

The two neural networks h, h∗ studied in this work process such a sentence x ∈ X in multiple steps:

1. Each word (αℓ, βℓ) of the sentence is encoded into a one-hot vector.

2. These one-hot vectors are multiplied by a matrix W to produce word embeddings that live
in a d-dimensional space.

3. Optionally (i.e. in the case of the network h∗), these word embeddings go through a Lay-
erNorm module without learnable parameters.

4. The word embeddings are concatenated and then goes through a linear transformation U .

We now formalize these 4 steps, and in the process, we set the notations on which we will rely in all
our proofs.

Step 1: One-hot encoding. Without loss of generality, we choose the following one-hot encoding
scheme: word (α, β) ∈ V receives the one-hot vector which has a 1 in entry (α − 1)sc + β and 0
everywhere else. To formalize this, we define the one-hot encoding function

ζ(α, β) = e(α−1)sc+β (10)

where ei denotes the ith basis vector of Rnw . The one-hot encoding function ζ can also be applied
to a sequence of words. Given a sentence x = [(α1, β1), . . . , (αL, βL)] ∈ X we let

ζ(x) :=

[ | | |
ζ(α1, β1) ζ(α2, β2) . . . ζ(αL, βL)

| | |

]
∈ Rnw×L (11)

and so ζ maps sentences to nw × L matrices.
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Step 2: Embedding. The embedding matrix W has nw columns and each of these columns be-
longs to Rd. Since ζ(α, β) denote the one-hot vector associated to word (α, β) ∈ V , we define the
embedding of word (α, β) by

w(α,β) :=W ζ(α, β) ∈ Rd. (12)

Due to (10), this means that w(α,β) is the jth column of W , where j = (α − 1)sc + β. The
embedding matrix W can therefore be visualized as follow (for concreteness we choose nc = 3 and
nw = 12 as in figure 1 of the main paper):

W =

 | | | | | | | | | | | |
w(1,1) w(1,2) w(1,3) w(1,4) w(2,1) w(2,2) w(2,3) w(2,4) w(3,1) w(3,2) w(3,3) w(3,4)

| | | | | | | | | | | |


︸ ︷︷ ︸

Embeddings of the words in the 1st concept.

︸ ︷︷ ︸
Embeddings of the words in the 2nd concept.

︸ ︷︷ ︸
Embeddings of the words in the 3rd concept.

Given a sentence x = [(α1, β1), . . . , (αL, βL)] ∈ X , appealing to (11) and (12), we find that

Wζ(x) =

 | | |
w(α1,β1) w(α2,β2) · · · w(αL,βL)

| | |

 ∈ Rd×L (13)

and therefore Wζ(x) is the matrix that contains the d-dimensional embeddings of the words that
constitute the sentence x ∈ X .

Step 3: LayerNorm. Recall from the main paper that the LayerNorm function φ : Rd → Rd is
defined by

φ(v) =
v −mean(v)1d

σ(v)
where mean(v) =

1

d

d∑
i=1

vi and σ2(v) =
1

d

d∑
i=1

(
vi−mean(v)

)2
,

We will often apply this function column-wise to a matrix. For example if V is the d×m matrix

V =

[ | | |
v1 v2 · · · vm
| | |

]
, then φ(V ) =

[ | | |
φ(v1) φ(v2) · · · φ(vm)

| | |

]
Applying φ to (13) gives

φ
(
Wζ(x)

)
=


| | |

φ
(
w(α1,β1)

)
φ
(
w(α2,β2)

)
· · · φ

(
w(αL,βL)

)
| | |

 ∈ Rd×L (14)

and so φ (Wζ(x)) contains the word representations of the words from the input sentence (recall
that by word representations we mean the word embeddings after the LayerNorm).

Step 4: Linear Transformation. Recall from the main paper that

U =


—u1,1— —u1,2— · · · —u1,L—
—u2,1— —u2,2— · · · —u2,L—

...
...

...
—uK,1— —uK,2— · · · —uK,L—

 ∈ RK×Ld (15)

where each vector uk,ℓ belongs to Rd. The neural networks hW,U and h∗W,U are then given by the
formula

hW,U (x) = U Vec [Wζ(x)] (16)

h∗W,U (x) = U Vec
[
φ
(
Wζ(x)

)]
(17)
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where Vec : Rd×L → RdL is the function that takes as input a d × L matrix and flatten it out into
a vector with dL entries (with the first column filling the first d entries of the vector, the second
column filling the next d entries, and so forth). It will prove convenient to gather the L vectors uk,ℓ
that constitute the kth row of U into the matrix

Ûk =

[ | | |
uk,1 uk,2 · · · uk,L
| | |

]
∈ Rd×L (18)

With this notation, we have the following alternative expressions for the networks hW,U and h∗W,U

hW,U (x) =



〈
Û1 , W ζ(x)

〉
F〈

Û2 , W ζ(x)
〉
F

...〈
ÛK , Wζ(x)

〉
F


and h∗W,U (x) =



〈
Û1 , φ

(
W ζ(x)

)〉
F〈

Û2 , φ
(
W ζ(x)

)〉
F

...〈
ÛK , φ

(
Wζ(x)

)〉
F


(19)

where ⟨·, ·⟩F denote the Frobenius inner product between matrices (see next subsection for a defini-
tion).

Finally, we use Û to denote the matrix obtained by concatenating the matrices Û1, . . . , ÛK , that is

Û :=
[
Û1 Û2 · · · ÛK

]
∈ Rd×KL (20)

The matrix Û , which is nothing but a reshaped version of the original weight matrix U ∈ RK×Ld,
will play a crucial role in our analysis.

B.2 BASIC PROPERTIES OF THE FROBENIUS INNER PRODUCT

We recall that the Frobenius inner product between two matrices A,B ∈ Rm×n is defined by

⟨A,B⟩F =

m∑
i=1

n∑
j=1

AijBij

and that the Frobenius norm of a matrix A ∈ Rm×n is given by ∥A∥F =
√

⟨A,A⟩F . In the course
of our proofs, we will constantly appeal to the following property of the Frobenius inner product, so
we state it in a lemma once and for all.
Lemma A. Suppose A ∈ Rm×n, B ∈ Rm×r and C ∈ Rr×n. Then

⟨A,BC⟩F =
〈
BTA,C

〉
F

and ⟨A,BC⟩F =
〈
ACT , B

〉
F

Proof. The Frobenius inner product can be expressed as ⟨A,B⟩F = Tr(ATB), and so we have

⟨A,BC⟩F = Tr(ATBC) = Tr
((
BTA

)T
C
)
=
〈
BTA,C

〉
F
.

Using the cyclic property of the trace, we also get

⟨A,BC⟩F = Tr(ATBC) = Tr(CATB) = Tr
((
ACT

)T
B
)
=
〈
ACT , B

〉
F

B.3 THE TASK, THE DATA MODEL, AND THE DISTRIBUTION Dzk

Recall that C = {1, . . . , nc} represents the set of concepts, and that Z = CL is the latent space. We
aim to study a classification task in which the K classes are defined by K latent variables

z1, . . . , zk ∈ Z

17
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We write x ∼ Dzk
to indicate that the sentence x ∈ X is generated by the latent variable zk ∈ Z

(see figure 1 of the main paper for a visual illustration). Formally, Dzk
is a probability distribution

on the data space X , and we now give the formula for its p.d.f. First, recall that µβ > 0 stands for
the probability of sampling the βth word of the αth concept. Let us denote the kth latent variable by

zk = [ zk,1 , zk,2 , . . . , zk,L ] ∈ Z
where 1 ≤ zk,ℓ ≤ nc. The probability of sampling the sentence

x = [ (α1, β1) , (α2, β2) . . . , (αL, βL) ] ∈ X
according to Dzk

is then given by the formula

Dzk
({x}) =

L∏
ℓ=1

1{αℓ=zk,ℓ} µβℓ

Note that Dzk
({x}) > 0 if and only if [zk,1, . . . , zk,L] = [α1, . . . , αL]. So a sentence x has a non-

zero probability of being generated by the latent variable zk only if its words match the concepts in
zk. If this is the case, then the probability of sampling x according to Dzk

is simply given by the
product of the frequencies of the words contained in x.

We use Xk to denote the support of the distribution Dzk
, that is

Xk := {x ∈ X : Dzk
(x) > 0}

and we note that if the latent variables z1, . . . , zK are mutually distinct, then Xj ∩ Xk = ∅ for all
j ̸= k. Since the K latent variables define the K classes of our classification problem, we may
alternatively define Xk by

Xk = {x ∈ X : x belongs to the kth category}

To each latent variable zk = [ zk,1 , zk,2 , . . . , zk,L ] we associate a matrix

Zk =

[ | | |
ezk,1

ezk,2
· · · ezk,L

| | |

]
∈ Rnc×L (21)

In other words, the matrix Zk provides a one-hot representation of the concepts contained in the
latent variable zk. Concatenating the matrices Z1, . . . , ZK gives the matrix

Z = [Z1 Z2 · · · ZK ] ∈ Rnc×KL (22)

which is reminiscent of the matrix Û defined by (20).

We encode the way words are partitioned into concepts into a ‘partition matrix’ P ∈ Rnc×nw . For
example, if we have 12 words and 3 concepts, then the partition matrix is

P =

[
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

]
∈ Rnc×nw , (23)

indicating that the first 4 words belong to concept 1, the next 4 words belongs to concept 2, and so
forth. Formally, recalling that ζ(α, β) is the the one-hot encoding of word (α, β) ∈ V , the matrix P
is defined the relationship

P ζ(α, β) = eα for all (α, β) ∈ V. (24)
Importantly, note that the matrix P maps datapoints to their associated latent variables. Indeed, if
x = [(α1, β1), . . . , (αL, βL)] is generated by the latent variable zk (meaning that x ∈ Xk), then we
have that

P ζ(x) = P

[ | | |
ζ(α1, β1) ζ(α2, β2) . . . ζ(αL, βL)

| | |

]
=

[ | | |
eα1

eα2
. . . eαL

| | |

]
= Zk (25)

where the last equality is due to definition (21) of the matrix Zk.

Another important matrix for our analysis will be the matrix Q ∈ Rnc×nw . In the concrete case
where we have 12 words and 3 concepts, this matrix takes the form

Q =

[
µ1 µ2 µ3 µ4 0 0 0 0 0 0 0 0
0 0 0 0 µ1 µ2 µ3 µ4 0 0 0 0
0 0 0 0 0 0 0 0 µ1 µ2 µ3 µ4

]
∈ Rnc×nw (26)

and, in general, it is defined by the relationship
Q ζ(α, β) = µβ eα for all (α, β) ∈ V. (27)

18
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C SYMMETRY ASSUMPTIONS ON THE LATENT VARIABLES

In subsection C.1 we provide an in depth discussion of the symmetry assumption required for theo-
rems 1 and 3 to hold. In subsection C.2 we present and discuss the assumption that will be needed
to prove the converse of theorems 1 and 3.

C.1 SYMMETRY ASSUMPTION NEEDED FOR THEOREM 1 AND 3

To better understand the symmetry assumption 1 from the main paper, let us start by considering the
extreme case

K = nLc and {z1, z2, . . . , zK} = Z, (28)
meaning that z1, . . . , zK are mutually distinct and represent all possible latent variables in Z . In
this case, we easily obtain the formula∣∣∣{j ∈ [K] : dist(zj , z1) = r and zj,L = z1,L

}∣∣∣ = (L− 1

r

)
(nc − 1)r (29)

where dist(zj , z1) is the Hamming distance between the latent variables zj and z1. To see this, note
that the left side of (29) counts the number of latent variables zj that differs from z1 at r locations
and agrees with z1 at the last location ℓ = L. This number is clearly equal to the right side of
(29) since we need to choose r positions out of the first L − 1 positions, and then, for each chosen
position ℓ, we need to choose a concept out of the nc − 1 concepts that differs from z1,ℓ. A similar
reasoning shows that, if z1,L ̸= α, then∣∣∣{j ∈ [K] : dist(zj , z1) = r and zj,L = α

}∣∣∣ = (L− 1

r − 1

)
(nc − 1)r−1 (30)

where the term
(
L−1
r−1

)
arises from the fact that we only need to choose r − 1 positions, since z1 and

zj differ in their last position ℓ = L. Suppose now that the random variables z1, . . . , zK are selected
uniformly at random from Z , and say, for the sake of concreteness, that

K =
1

5
nLc

so that z1, . . . , zK represent 20% of all possible latent variables (note that |Z| = nLc ). Then (29) –
(30) should be replaced by∣∣∣{j ∈ [K] : dist(zj , z1) = r and zj,L = z1,L

}∣∣∣ ≈ 1

5

(
L− 1

r

)
(nc − 1)r (31)∣∣∣{j ∈ [K] : dist(zj , z1) = r and zj,L = α

}∣∣∣ ≈ 1

5

(
L− 1

r − 1

)
(nc − 1)r−1 for α ̸= z1,L (32)

where the equality only holds approximatively due to the random choice of the latent variables.
In the above example, we chose z1 as our ‘reference’ latent variables and we ‘froze’ the concept
appearing in position ℓ = L. These choices were clearly arbitrary. In general, when K is large, we
have

∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣ ≈


K
nL
c

(
L−1
r

)
(nc − 1)r if zk,ℓ = α

K
nL
c

(
L−1
r−1

)
(nc − 1)r−1 if zk,ℓ ̸= α

(33)

and this approximate equality hold for most k ∈ [K], r ∈ [L], ℓ ∈ [L], and α ∈ [nc]. The
symmetry assumption 1 from the main paper requires (33) to hold not approximatively, but exactly.
For convenience we restate below this symmetry assumption:
Assumption A (Latent Symmetry). For every k ∈ [K], r ∈ [L], ℓ ∈ [L], and α ∈ [nc] the identities

∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣ =


K
nL
c

(
L−1
r

)
(nc − 1)r if zk,ℓ = α

K
nL
c

(
L−1
r−1

)
(nc − 1)r−1 if zk,ℓ ̸= α

(34)

hold.
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To be clear, if the latent variables z1, . . . , zK are selected uniformly at random from Z , then they will
only approximatively satisfy assumption A. Our analysis, however, is conducted in the idealized case
where the latent variables exactly satisfy the symmetry assumption. Specifically, we show that, in
the idealized case where assumption A is exactly satisfied, then the weightsW and U of the network
are given by some explicit analytical formula. Importantly, as it is explained in the main paper, our
experiments demonstrate that these idealized analytical formula provide very good approximations
for the weights observed in experiments when the latent variables are selected uniformly at random.

In the next lemma, we isolate three properties which hold for any latent variables satisfying as-
sumption A. Importantly, when proving collapse, we will only rely on these three properties — we
will never explicitly need assumption A. We will see shortly that these three properties, in essence,
amount to saying that all position ℓ ∈ [L] and all concepts α ∈ [nc] plays interchangeable roles for
the latent variables. There are no ‘preferred’ ℓ or α, and this is exactly what will allow us to derive
symmetric analytical solutions.

Before stating our lemma, let us define the ‘sphere’ of radius r centered around the kth latent variable

Sr(k) :=
{
j ∈ [K] : dist(zj , zk) = r

}
for r, k ∈ [L] (35)

With this notation in hand we may now state
Lemma B. Suppose the latent variables z1, . . . , zK satisfy the symmetry assumption A. Then
z1, . . . , zK satisfies the following properties:

(i) |Sr(j)| = |Sr(k)| for all r ∈ [L] and all j, k ∈ [K].

(ii) The equalities
K∑
k=1

Zk =
K

nc
1nc

1TL and ZZT =
KL

nc
Inc

hold, with Inc
denoting the nc × nc identity matrix.

(iii) There exists θ1, . . . , θL > 0 and matrices A1, . . . , AL ∈ Rnc×L such that

Zk −
1

|Sr(k)|
∑

j∈Sr(k)

Zj = θrZk +Ar

holds for all r ∈ [L], all j ∈ [K], and all k ∈ [K].

We will prove this lemma shortly, but for now let us start by getting some intuition about properties
(i), (ii) and (iii). Property (i) is transparent: it states that all latent variables have the same number
of ‘distance-r neighbors’. Recalling how matrix Zk was defined (c.f. (21)), we see that the first
identity of (ii) is equivalent to

|{k ∈ [K] : zk,ℓ = α}| = K

nc
for all ℓ ∈ [L] and all α ∈ [nc]. (36)

This means that the number of latent variables that have concept α in position ℓ is equal to K/nc.
In other words, each concept is equally represented at each position ℓ. We now turn to the second
identity of statement (ii). Recalling the definition (22) of matrix Z, we see that ZZT ∈ Rnc×nc is
a diagonal matrix since each column of Z contains a single nonzero entry. One can also easily see
that the αth entry of the diagonal is[

ZZT
]
α,α

= |{(k, ℓ) ∈ [K]× [L] : zk,ℓ = α}|,
which is the total number of times concept α appears in the latent variables. Overall, the identity
ZZT = KL

nc
Inc

is therefore equivalent to the statement

|{(k, ℓ) ∈ [K]× [L] : zk,ℓ = α}| = KL

nc
for all α ∈ [nc]

and it is therefore a direct consequence of (36).

Property (iii) is harder to interpret. Essentially it is a type of mean value property that states that
summing over the latent variables which are at distance r of zk gives back zk. We will see that this
mean value property plays a key role in our analysis.

To conclude this subsection, we prove lemma B.

20



Published as a conference paper at ICLR 2024

Proof of lemma B. We start by proving statement (i). Since Sr(k) = {j ∈ [K] : dist(zj , zk) = r},
we clearly have that

|Sr(k)| =
nc∑
α=1

∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣ (37)

We then use identity (34) and Pascal’s rule to find

|Sr(k)| = (nc − 1)

(
K

|Z|

(
L− 1

r − 1

)
(nc − 1)r−1

)
+

K

|Z|

(
L− 1

r

)
(nc − 1)r

=
K

|Z|
(nc − 1)r

((
L− 1

r − 1

)
+

(
L− 1

r

))
=

K

|Z|

(
L

r

)
(nc − 1)r (38)

which clearly implies that |Sr(k)| = |Sr(j)| for all j, k ∈ [K] and all r ∈ [L].

We now turn to the first identity of t (ii). As previously mentioned, this identity is equivalent to (36).
Choose k such that zk,ℓ ̸= α. Then any any latent variable zj with zj,ℓ = α is at least at a distance
1 of zk and we may write

|{j ∈ [K] : zj,ℓ = α}| =
L∑
r=1

∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣ (39)

=

L∑
r=1

K

nLc

(
L− 1

r − 1

)
(nc − 1)r−1 (40)

which is equal toK/nc according to the binomial theorem. The second identity of (ii), as mentioned
earlier, is a direct consequence of the first identity.

We finally turn to statement (iii). Appealing to (38), we find that,∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣

|Sr(k)|
=

K
|Z|
(
L−1
r

)
(nc − 1)r

K
|Z|
(
L
r

)
(nc − 1)r

=

(
L−1
r

)(
L
r

) =
L− r

L

if zk,ℓ = α. On the other hand, if zk,ℓ ̸= α, we obtain∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣

|Sr(k)|
=

K
|Z|
(
L−1
r−1

)
(nc − 1)r−1

K
|Z|
(
L
r

)
(nc − 1)r

=
1

nc − 1

(
L−1
r−1

)(
L
r

) =
1

nc − 1

r

L

Fix ℓ ∈ [L] and assume that zk,ℓ = α⋆. We then have

1

|Sr(k)|
∑

j∈Sr(k)

ezj,ℓ =
1

|Sr(k)|

nc∑
α=1

∣∣∣{j ∈ Sr(k) : zj,ℓ = eα

}∣∣∣ eα
=

nc∑
α=1

∣∣∣{j ∈ [K] : dist(zj , zk) = r and zj,ℓ = α
}∣∣∣

|Sr(k)|
eα

=
L− r

L
eα⋆ +

1

nc − 1

r

L

∑
α ̸=α⋆

eα

=
L− r

L
eα⋆ − 1

nc − 1

r

L
eα⋆ +

1

nc − 1

r

L

nc∑
α=1

eα

=

(
1− nc

nc − 1

r

L

)
eα⋆ +

1

nc − 1

r

L
1nc

Recalling that zk,ℓ = α⋆, the above implies that

ezk,ℓ
− 1

|Sr(k)|
∑

j∈Sr(k)

ezj,ℓ =
nc

nc − 1

r

L
ezk,ℓ

− 1

nc − 1

r

L
1nc (41)
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Finally, recalling that

Zk =

[ | | |
ezk,1

ezk,2
· · · ezk,L

| | |

]
∈ Rnc×L

we see that (41) can be written in matrix format as

Zk −
1

|Sr(k)|
∑

j∈Sr(k)

Zj =
nc

nc − 1

r

L
Zk −

1

nc − 1

r

L
1nc1

T
L

and therefore the scalars θr and the matricesAr appearing in statement (iii) are given by the formula
θr =

nc

nc−1
r
L and Ar = − 1

nc−1
r
L1nc

1TL .

C.2 SYMMETRY ASSUMPTION NEEDED FOR THE CONVERSE OF THEOREM 1 AND 3

In this subsection we present the symmetry assumption that will be needed to prove the converse of
theorem 1 and 3. This assumption, as we will shortly see, is quite mild and is typically satisfied even
for small values of K.

For each pair of latent variables (zj , zk) we define the matrix

Γ(j,k) := Zj(Zj − Zk)
T ∈ Rnc×nc .

We also define

A :=
{
A ∈ Rnc×nc : There exists a, b ∈ R s.t. A = aInc + b1nc1

T
nc

}
(42)

which is the set of matrices whose diagonal entries are equal to some constant and whose off-
diagonal entries are equal to some possibly different constant. We may now state our symmetry
assumption.
Assumption B. Any positive semi-definite matrix A ∈ Rnc×nc that satisfies〈

A , Γ(j,k) − Γ(j′,k′)
〉
F
= 0 ∀j, k, j′, k′ ∈ [K] s.t. dist(zj , zk) = dist(zj′ , zk′) (43)

must belongs to A.

Note that (43) can be viewed as a linear system of equations for the unknown A ∈ Rnc×nc , with
one equation for each quadruplet (j, k, j′, k′) satisfying dist(zj , zk) = dist(zj′ , zk′). To put it
differently, each quadruplet (j, k, j′, k′) satisfying dist(zj , zk) = dist(zj′ , zk′) adds one equation
to the system, and our assumption requires that we have enough of these equations so that all positive
semi-definite solutions are constrained to live in the set A. Since a symmetric matrix has (nc +
1)nc/2 distinct entries, we would expect that (nc + 1)nc/2 quadruplets should be enough to fully
determine the matrix. This number of quadruplets is easily achieved even for small values of K. So
assumption B is quite mild.

The next lemma states that assumption B is satisfied when K = nLc . In light of the above discussion
this is not surprising, since the choice K = nLc leads to a system with a number of equations much
larger than (nc + 1)nc/2. The proof, however, is instructive: it simply handpicks (nc + 1)nc/2 −
2 quadruplets to determine the entries of the matrix A. The ‘−2’ arises from the fact A is a 2
dimensional subspace, and therefore (nc + 1)nc/2− 2 equations are ‘enough’ to constrain A to be
in A.
Lemma C. Suppose K = nLc and {z1, . . . , zK} = Z . Then z1, . . . , zK satisfy the symmetry
assumption B.

Proof. Let A = CTC be a positive semi-definite matrix that solve satisfies (43). We use cα to
denote the αth column of C. Since {z1, . . . , zK} = Z , we can find i, j, k ∈ [K] such that

zi = [2, 1, 1, . . . , 1] ∈ Z
zj = [3, 1, 1, . . . , 1] ∈ Z
zk = [4, 1, 1, . . . , 1] ∈ Z
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Using lemma A and recalling the definition (21) of the matrix Zk, we get〈
A , Γ(i,j)

〉
F
=
〈
CTC,Zi(Zi − Zj)

T
〉
F

= ⟨C(Zi − Zj), CZi⟩F
= ⟨CZi, CZi⟩F − ⟨CZj , CZi⟩F
=
(
⟨c2, c2⟩+ (L− 1)⟨c1, c1⟩

)
−
(
⟨c2, c3⟩+ (L− 1)⟨c1, c1⟩

)
= ⟨c2, c2⟩ − ⟨c2, c3⟩

Similarly we obtain that 〈
A , Γ(i,k)

〉
F
= ⟨c2, c2⟩ − ⟨c2, c4⟩

Since dist(zi, zj) = dist(zi, zk) = 1, and since A satisfies (43), we must have〈
A , Γ(i,j)

〉
F
=
〈
A , Γ(i,k)

〉
F

which in turn implies that
A2,3 = ⟨c2, c3⟩ = ⟨c2, c4⟩ = A2,4

This argument easily generalizes to show that all off-diagonal entries of the matrix A must be equal
to some constant b ∈ R.

We now take care of the diagonal entries. Since {z1, . . . , zK} = Z , we can find i′, j′, k′ ∈ [K] such
that

zi′ = [1, 1, . . . , 1] ∈ Z
zj′ = [2, 2, . . . , 2] ∈ Z
zk′ = [3, 3, . . . , 3] ∈ Z

As before, we compute〈
A , Γ(i′,j′)

〉
F
= ⟨CZi′ , CZi′⟩F − ⟨CZj′ , CZi′⟩F = L⟨c1, c1⟩ − L⟨c1, c2⟩ = L⟨c1, c1⟩ − Lb

where we have used the fact that the off diagonal entries are all equal to b. Similarly we obtain〈
A , Γ(j′,k′)

〉
F
= L⟨c2, c2⟩ − Lb

Since dist(zi′ , zj′) = dist(z′j , zk′) = L, we must have
〈
A,Γ(i′,j′)

〉
F

=
〈
A,Γ(j′,k′)

〉
F

which
implies that A1,1 = A2,2. This argument generalizes to show that all diagonal entries of A are
equal.

D SHARP LOWER BOUND ON THE UNREGULARIZED RISK

In this section we derive a sharp lower bound for the unregularized risk associated with the network
hW,U ,

R0(W,U) :=
1

K

K∑
k=1

E x∼Dzk

[
ℓ(hW,U (x), k)

]
, (44)

where ℓ : RK → R is the cross entropy loss

ℓ(y, k) = − log

(
exp (yk)∑K
j=1 exp (yj)

)
for y ∈ RK

The kth entry of the output y = hW,U (x) of the neural network, according to formula (19), is given
by

yk =
〈
Ûk , W ζ(x)

〉
F
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Recalling that Xk is the support of the distribution Dzk
: X → [0, 1], we find that the unregularized

risk can be expressed as

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

ℓ(hW,U (x), k) Dzk
(x)

=
1

K

K∑
k=1

∑
x∈Xk

− log

 e⟨Ûk,Wζ(x)⟩
F∑K

j=1 e
⟨Ûj ,Wζ(x)⟩

F

 Dzk
(x)

=
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−⟨Ûk−Ûj ,Wζ(x)⟩
F

 Dzk
(x)

where we did the slight abuse of notation of writing Dzk
(x) instead of Dzk

({x}). Note that a data
points x that belongs to class k is correctly classified by the the network hW,U if and only if〈

Ûk , W ζ(x)
〉
F
>
〈
Ûj , W ζ(x)

〉
F

for all j ̸= k

With this in mind, we introduce the following definition:
Definition A (Margin). Suppose x ∈ Xk. Then the margin between data point x and class j is

MW,U (x, j) :=
〈
Ûk − Ûj ,Wζ(x)

〉
F

With this definition in hand, the unregularized risk can conveniently be expressed as

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−MW,U (x,j)

 Dzk
(x) (45)

and a data point x ∈ Xk is correctly classified by the network if and only if the margins MW,U (x, j)
are all strictly positive (for j ̸= k). We then introduce a definition that will play crucial role in our
analysis.
Definition B (Equimargin Property). If

dist(zk, zj) = dist(zk′ , zj′) =⇒ MW,U (x, j) = MW,U (x
′, j′) ∀x ∈ Xk and ∀x′ ∈ Xk′

then we say that (W,U) satisfies the equimargin property.

To put it simply, (W,U) satisfies the equimargin property if the margin between data point x ∈ Xk
and class j only depends on dist(zk, zj). We denote by E the set of all the weights that satisfy the
equimargin property

E = {(W,U) : (W,U) satisfies the equimargin property} (46)

and by N the set of weights for which the submatrices Ûk defined by (18) sum to 0,

N =

{
(W,U) :

K∑
k=1

Ûk = 0

}
(47)

We will work under the assumption that the latent variables z1, . . . , zK satisfy the symmetry as-
sumption A. According to lemma B, |Sr(k)| then doesn’t depend on k, and so we will simply use
|Sr| to denote the size of the set Sr(k). Lemma B also states that

Zk −
1

|Sr(k)|
∑

j∈Sr(k)

Zj = θrZk +Ar

for some matrices A1, . . . , AL and some scalars θ1, . . . , θL > 0. We use these scalars to define

g(x) := log

(
1 +

L∑
r=1

|Sr| eθrx/K
)

(48)

and we note that g : R → R is a strictly increasing function. With these definitions in hand we may
state the main theorem of this section.
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Theorem D. If the latent variables satisfy the symmetry assumption A, then

R0(W,U) = g
(
−
〈
Û ,WQTZ

〉
F

)
for all (W,U) ∈ N ∩ E (49)

R0(W,U) > g
(
−
〈
Û ,WQTZ

〉
F

)
for all (W,U) ∈ N ∩ Ec (50)

We recall that the matrices Û , Q, and Z where defined in section B (c.f. (20), (26) and (22)). The
remainder of this section is devoted to the proof of the above theorem.

D.1 PROOF OF THE THEOREM

We will use two lemmas to prove the theorem. The first one (lemma D below) simply leverages
the strict convexity of the various components defining the unregularized risk R0. Recall that if
f : Rd → R is strictly convex, and if the strictly positive scalars p1, . . . , pn > 0 sum to 1, then

f

(
n∑
i=1

pivi

)
≤

n∑
i=1

pif(vi) (51)

and that equality holds if and only if v1 = v2 = . . . = vn. For this first lemma, the only property
we need on the latent variables is that |Sr(k)| = |Sr(j)| = |Sr| for all j, k ∈ [K] and all r ∈ [L].

Define the quantity

NW,U (r) =
1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

∑
x∈Xk

MW,U (x, j) Dzk
(x) (52)

which should be viewed as the averaged margin between data points and classes which are at a
distance r of one another. We then have the following lemma:

Lemma D. If |Sr(k)| = |Sr(j)| for all j, k ∈ [K] and all r ∈ [L], then

R0(W,U) = log

(
1 +

L∑
r=1

|Sr|e−NW,U (r)

)
for all (W,U) ∈ E (53)

R0(W,U) > log

(
1 +

L∑
r=1

|Sr|e−NW,U (r)

)
for all (W,U) /∈ E (54)

Proof. Using the strict convexity of the function f : RK−1 → R defined by

f(v1, . . . , vk−1, vk+1, . . . , vK) = log
(
1 +

∑
j ̸=k

evj
)

we obtain

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−M(x,j)

 Dzk
(x)

≥ 1

K

K∑
k=1

log

1 +
∑
j ̸=k

e
−∑

x∈Xk
M(x,j)Dzk

(x)


and equality holds if and only if, for all k ∈ [K], we have that

M(x, j) = M(y, j) for all x,y ∈ Xk and all j ̸= k (55)

We then let
M(k, j) =

∑
x∈Xk

M(x, j)Dzk
(x)
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and use the strict convexity of the exponential function to obtain

1

K

K∑
k=1

log

1 +
∑
j ̸=k

e−M(k,j)

 =
1

K

K∑
k=1

log

1 +

L∑
r=1

∑
j∈Sr(k)

e−M(k,j)


=

1

K

K∑
k=1

log

1 +

L∑
r=1

|Sr|
1

|Sr|
∑

j∈Sr(k)

e−M(k,j)


≥ 1

K

K∑
k=1

log

(
1 +

L∑
r=1

|Sr|e−
1

|Sr|
∑

j∈Sr(k) M(k,j)

)
Moreover, equality holds if and only if, for all k ∈ [K] and all r ∈ [L], we have that

M(k, i) = M(k, j) for all i, j ∈ Sr(k) (56)
We finally set

M(k, r) =
1

|Sr|
∑

j∈Sr(k)

M(k, j)

and use the strict convexity of the function f(v1, . . . , vL) = log
(
1 +

∑L
r=1 |Sr|evr

)
to get

1

K

K∑
k=1

log

(
1 +

L∑
r=1

|Sr|e−M(k,r)

)
≥ log

(
1 +

L∑
r=1

|Sr|e−
1
K

∑K
k=1 M(k,r)

)
Moreover equality holds if and only if, for all k ∈ [K] and all r ∈ [L], we have that

M(k, r) = M(k′, r) for all k, k′ ∈ [K] and all r ∈ [L] (57)

Importantly, note that

1

K

K∑
k=1

M(k, r) =
1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

∑
x∈Xk

MW,U (x, j) Dzk
(x)

which is precisely how NW,U (r) was defined (c.f. (52)). To conclude the proof, we remark that
conditions (55), (56) and (57) are all satisfied if and only if (W,U) satisfies the equi-margin property.

We now show that, if assumption A holds, NW,U (r) can be expressed in a simple way.
Lemma E. Assume that the latent variables satisfy the symmetry assumption A. Then

NW,U (r) =
θr
K

〈
Û ,WQTZ

〉
F

for all (W,U) ∈ N (58)

Proof. We let
Xk =

∑
x∈Xk

ζ(x)Dzk
(x)

and note that the averaged margin can be expressed as

NW,U (r) =
1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

∑
x∈Xk

MW,U (x, j) Dzk
(x)

=
1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

∑
x∈Xk

〈
Ûk − Ûj ,Wζ(x)

〉
F
Dzk

(x)

=
1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

〈
Ûk − Ûj , Xk

〉
F

=
1

K

K∑
k=1

〈
Ûk,WXk

〉
F

− 1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

〈
Ûj ,WXk

〉
F

(59)
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Let

a
(r)
k,j =

{
1 if dist(zk, zj) = r

0 otherwise

and rewrite the second term in (59) as

1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

〈
Ûj ,WXk

〉
F
=

1

K

1

|Sr|

K∑
k=1

K∑
j=1

a
(r)
k,j

〈
Uj ,WXk

〉
F

=
1

K

1

|Sr|

K∑
j=1

K∑
k=1

a
(r)
j,k

〈
Ûk,WXj

〉
F

=
1

K

1

|Sr|

K∑
k=1

∑
j∈Sr(k)

〈
Ûk,WXj

〉
F

=
1

K

K∑
k=1

〈
Ûk , W

1

|Sr|
∑

j∈Sr(k)

Xj

〉
F

Combining this with (59) we obtain

NW,U (r) =
1

K

K∑
k=1

〈
Ûk , W

(
Xk −

1

|Sr|
∑

j∈Sr(k)

Xj

) 〉
F

(60)

From formula (26), we see that row α of the matrix Q is given by the formula

QTeα =

sc∑
β=1

ζ(α, β) µβ . (61)

We then write zk = [α1, . . . , αL] and note that the ℓth column of Xk can be expressed as

[
Xk

]
:,ℓ

=

nc∑
β=1

ζ(αℓ, β)µβ = QTeαℓ
. (62)

From this we obtain that
Xk = QTZk

and therefore (60) becomes

NW,U (r) =
1

K

K∑
k=1

〈
Ûk , WQT

(
Zk −

1

|Sr|
∑

j∈Sr(k)

Zj

) 〉
F

=
1

K

K∑
k=1

〈
Ûk , WQT

(
θrZk +Ar

) 〉
F

where we have used the identity Zk− 1
|Sr|

∑
j∈Sr(k)

Zj = θrZk+Ar to obtain the second equality.

Finally, we use the fact that
∑
k Ûk = 0 to obtain

NW,U (r) =
θr
K

K∑
k=1

〈
Ûk , WQTZk

〉
F
=
θr
K

〈
Û ,WQTZ

〉
F

Combining lemma D and E concludes the proof of theorem D.
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E PROOF OF THEOREM 1 AND ITS CONVERSE

In this section we prove theorem 1 under assumption A, and its converse under assumptions A and
B. We start by recalling the definition of a type-I collapse configuration.
Definition C (Type-I Collapse). The weights (W,U) of the network hW,U form a type-I collapse
configuration if and only if the conditions

i) There exists c ≥ 0 so that w(α,β) = c fα for all (α, β) ∈ V .

ii) There exists c′ ≥ 0 so that uk,ℓ = c′ fα for all (k, ℓ) satisfying zk,ℓ = α and all α ∈ C.

hold for some collection f1, . . . , fnc
∈ Rd of equiangular vectors.

It will prove convenient to reformulate this definition using matrix notations. Toward this goal, we
define equiangular matrices as follow:
Definition D. (Equiangular Matrices) A matrix F ∈ Rd×nc is said to be equiangular if and only if
the relations

F1nc
= 0 and FTF =

nc
nc − 1

Inc
− 1

nc − 1
1nc

1Tnc

hold.

Comparing the above definition with the definition of equiangular vectors provided in the main
paper, we easily see that a matrix

F =

[ | | |
f1 f2 · · · fnc

| | |

]
∈ Rd×nc

is equiangular if and only if its columns f1, . . . , fnc
∈ Rd are equiangular. Relations (i) and (ii)

defining a type-I collapse configuration can now be expressed in matrix format as

W = c F P and Û = c′ F Z for some equiangular matrix F

where the matrices Z and P are given by formula (22) and (23). We then let

ΩIc :=
{
(W,U) : There exist an equiangular matrix F such that

W = c F P and Û = c

√
nw
KL

F Z
}

(63)

and note that ΩIc is simply the set of weights (W,U) which are in a type-I collapse configuration
with constant c and c′ = c

√
nw/(KL). We now state the main theorem of this section.

Theorem E. Assume uniform sampling µβ = 1/sc for each word distribution. Let τ ≥ 0 denote
the unique minimizer of the strictly convex function

H(t) := log

(
1− K

nLc
+
K

nLc

(
1 + (nc − 1)e−ηt

)L)
+ λt where η =

nc
nc − 1

1√
nwKL

and let c =
√
τ/nw. Then we have the following:

(i) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumption A, then
ΩIc ⊂ argminR

(ii) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumptions A and B,
then

ΩIc = argminR

Note that (i) states that any (W,U) ∈ ΩIc is a minimizer of the regularized risk — this corresponds
to theorem 1 from the main paper. Statement (ii) assert that any minimizer of the regularized risk
must belong to ΩIc — this is the converse of theorem 1. The remainder of this section is devoted to
the proof of theorem E. We will assume uniform sampling

µβ = 1/sc for all β ∈ [sc]

everywhere in this section — all lemmas and propositions are proven under this assumption, even
when not explicitly stated.
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E.1 THE BILINEAR OPTIMIZATION PROBLEM

From theorem D, it is clear that the quantity〈
Û ,WQTZ

〉
F

plays an important role in our analysis. In this subsection we consider the bilinear optimization
problem

maximize
〈
Û ,WQTZ

〉
F

(64)

subject to
1

2

(
∥W∥2F + ∥Û∥2F

)
= c2 nw (65)

where c ∈ R is some constant. The following lemma identifies all solutions of this optimization
problem.
Lemma F. Assume the latent variables satisfy assumption A. Then (W,U) is a solution of the
optimization problem (64) – (65) if and only if it belongs to the set

BIc =
{
(W,U) : There exist a matrix F ∈ Rd×nc with ∥F∥2F = nc

such that W = c FP and Û = c

√
nw
KL

FZ
}

(66)

Note that the set BIc is very similar to the set ΩIc that defines type-I collapse configuration (c.f. (92)).
In particular, since an equiangular matrix has nc columns of norm 1, it always satisfies ∥F∥2F = nc,
and therefore we have the inclusion

ΩIc ⊂ BIc . (67)
The remainder of this subsection is devoted to the proof of the lemma.

First note that the lemma is trivially true if c = 0, so we may assume c ̸= 0 for the remainder of the
proof. Second, we note that since µβ = 1/sc, then the matrices P and Q defined by (23) and (26)
are scalar multiple of one another. We may therefore replace the matrix Q appearing in (64) by P ,
wich leads to

maximize
〈
Û ,WPTZ

〉
F

(68)

subject to
1

2

(
∥W∥2F + ∥Û∥2F

)
= c2 nw (69)

We now show that any (W, Û) ∈ BIc satisfies the constraint (69) and have objective value equal to
sc c

2
√
KLnw.

Claim A. If (W, Û) ∈ BIc , then
1

2

(
∥W∥2F + ∥Û∥2F

)
= c2 nw and

〈
Û ,WPTZ

〉
F
= c2 sc

√
KLnw

Proof. Assume (W,U) ∈ BIc . From definition (23) of the matrix P , we have PPT = scInc , and
therefore

∥W∥2F = c2∥FP∥2F = c2 ⟨FP, FP ⟩F = c2
〈
FPPT , F

〉
F
= c2 sc ∥F∥2F = c2 sc nc = c2 nw

where we have used the fact that sc = nw/nc. Using ZZT = KL
nc
I from lemma B, we obtain

∥FZ∥2F = ⟨FZ,FZ⟩F =
〈
FZZT , F

〉
F
=

(
KL

nc

)
∥F∥2F = KL

As a consequence we have

∥Û∥2F = c2
nw
KL

∥FZ∥2F = c2 nw

and, using PPT = scInc one more time,〈
Û ,WPTZ

〉
F
= c2

√
nw
KL

〈
FZ,FPPTZ

〉
F
= c2 sc

√
nw
KL

⟨FZ,FZ⟩F = c2 sc
√
KLnw
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We then prove thatW and Û must have same Frobenius norm if they solve the optimization problem.
Claim B. If (W,U) is a solution of (68) – (69), then

∥W∥2F = ∥Û∥2F = c2 nw (70)

Proof. We prove it by contradiction. Suppose (W, Û) is a solution of (64)–(65) with ∥W∥2F ̸=
∥Û∥2F . Since the average of ∥W∥2F and ∥Û∥2F is equal to c2nw > 0 according to the constaint, there
must then exists ϵ ̸= 0 such that

∥W∥2F = c2nw + ϵ and ∥Û∥2F = c2nw − ϵ

Let

W0 =

√
c2nw

c2nw + ϵ
W and Û0 =

√
c2nw

c2nw − ϵ
Û

and note that
∥W0∥2F = ∥Û0∥2F = c2 nw

and therefore (W0, Û0) clearly satisfies the constraint. We also have〈
Û0,W0P

TZ
〉
F
=

√
c4n2w

c4n2w − ϵ2

〈
Û ,WPTZ

〉
F
>
〈
Û ,WPTZ

〉
F

since ϵ ̸= 0 and therefore (W, Û) can not be a maximizer, which is a contradiction.

As a consequence of the above claim, the optimization problem (68) – (69) is equivalent to

maximize
〈
Û ,WPTZ

〉
F

(71)

subject to ∥W∥2F = c2 nw and ∥Û∥2F = c2 nw (72)

We then have
Claim C. If (W, Û) is a solution of (71) – (72), then (W, Û) ∈ BIc .

Note that according to the first claim, all (W, Û) ∈ BIc have same objective value, and therefore,
according to the above claim, they must all be maximizer. As a consequence, proving the above
claim will conclude the proof of lemma F.

Proof of the claim. Maximizing (71) over Û first gives

Û = c
√
nw

WPTZ

∥WPTZ∥F
(73)

and therefore the optimization problem (71) – (72) reduces to

maximize ∥WPTZ∥2F
subject to ∥W∥2F = c2 nw

Using ZZT = KL
nc
I from lemma B we then get

∥WPTZ∥2F =
〈
WPTZ,WPTZ

〉
F
=
〈
WPTZZT ,WPT

〉
F
=
KL

nc
∥WPT ∥2F

and therefore the problem further reduces to

maximize ∥WPT ∥2F
subject to ∥W∥2F = c2 nw

The KKT conditions for this optimization problem are

WPTP = νW (74)

∥W∥2F = c2 nw (75)
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where ν ∈ R is the Lagrange multiplier.

Assume that (W, Û) is a solution of the original optimization problem (71) – (72). Then, according
to the above discussion, W must satisfy (74) – (75). Right multiplying (74) by PT , and using
PPT = scInc , gives

scWPT = νWPT

So either ν = sc or WPT = 0. The latter is not possible since the choice WPT = 0 leads to an
objective value equal to zero in the original optimization problem (71) – (72). We must therefore
have ν = sc, and equation (74) becomes

W =
1

sc
WPTP (76)

which can obviously be written as
W = c FP

by setting F := 1
c sc

WPT . Since W satisfies (75) we must have

c2 nw = ∥W∥2F = c2∥FP∥2F = c2 ⟨FP, FP ⟩F = c2
〈
FPPT , F

〉
F
= c2 sc∥F∥2F , (77)

and so ∥F∥2F = nw/sc = nc.

According to (73), Û bust be a scalar multiple of the matrix

WPTZ = (cFP )PTZ = c sc FZ

Using the fact that ZZT = KL
nc
I and ∥F∥2F = nc we then obtain that

∥FZ∥2F = ⟨FZ,FZ⟩F =
〈
FZZT , F

〉
F
=
KL

nc
∥F∥2F = KL (78)

and so equation (73) becomes

Û = c
√
nw

WPTZ

∥WPTZ∥F
= c

√
nw

FZ√
KL

(79)

which concludes the proof.

E.2 PROOF OF COLLAPSE

Recall that the regularized risk associated with the network hW,U is defined by

R(W,U) = R0(W,U) +
λ

2

(
∥W∥2F + ∥U∥2F

)
(80)

and recall that the set of weights in type-I collapse configuration is

ΩIc =
{
(W,U) : There exist an equiangular matrix F such that

W = c F P and Û = c

√
nw
KL

F Z
}

(81)

This subsection is devoted to the proof of the following proposition.

Proposition A. We have the following:

(i) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumption A, then there
exists c ∈ R such that

ΩIc ⊂ argminR

(ii) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumptions A and B,
then any (W,U) that minimizes R must belong to ΩIc for some c ∈ R.
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This proposition states that, under appropriate symmetry assumption, the weights of the network
hW,U do collapse into a type-I configuration. This proposition however does not provide the value
of the constant c involved in the collapse. Determining this constant will be done in the subsection
E.3.

We start with a simple lemma.
Lemma G. Any global minimizer of (80) must belong to N .

Proof. Let (W ⋆, U⋆) be a global minimizer. Define B = 1
K

∑K
k=1 U

⋆
k and

U0 = [U⋆1 −B U⋆2 −B · · · U⋆K −B]

From the definition of the unregularized risk we have R0(W
⋆;U0) = R0(W

⋆;U⋆) and therefore

1

K
(R(W ⋆;U0)−R(W ⋆;U⋆)) =

λ

2

1

K

K∑
k=1

(
∥U⋆k −B∥2F − ∥U⋆k∥2F

)
=
λ

2

1

K

K∑
k=1

(
∥B∥2F − 2 ⟨B,U⋆k ⟩F

)
=
λ

2

(
∥B∥2F − 2

〈
B,

1

K

K∑
k=1

U⋆k

〉
F

)

= −λ
2
∥B∥2F

So B must be equal to zero, otherwise we would have R(W ⋆, U0) < R(W ⋆, U⋆).

The next lemma bring together the bilinear optimization problem from subsection E.1 and the sharp
lower bound on the unregularized risk that we derived in section D.
Lemma H. Assume the latent variables satisfy assumption A. Assume also that (W ⋆, U⋆) is a global
minimizer of (80) and let c ∈ R be such that

1

2

(
∥W ⋆∥2F + ∥U⋆∥2F

)
= c2 nw.

Then the following hold:

(i) Any (W,U) that belongs to N ∩ E ∩ BIc is also a global minimizer of (80).

(ii) If N ∩ E ∩ BIc ̸= ∅, then (W ⋆, U⋆) must belong to N ∩ E ∩ BIc .

Proof. Recall from theorem D that

R0(W,U) = g
(
−
〈
Û ,WQTZ

〉
F

)
for all (W,U) ∈ N ∩ E (82)

R0(W,U) > g
(
−
〈
Û ,WQTZ

〉
F

)
for all (W,U) ∈ N ∩ Ec (83)

We start by proving (i). If (W,U) ∈ N ∩ E ∩ BIc , then we have

R0(W
⋆, U⋆) ≥ g

(
−
〈
Û⋆,W ⋆QTZ

〉
F

)
[because (W ⋆, U⋆) ∈ N due to lemma G ]

≥ g
(
−
〈
Û , WQTZ

〉
F

)
[because (W,U) ∈ BIc and g is increasing]

= R0(W,U) [because (W,U) ∈ N ∩ E ]

Since (W,U) ∈ BIc we must have 1
2

(
∥W∥2F + ∥U∥2F

)
= c2 nc = 1

2

(
∥W ⋆∥2F + ∥U⋆∥2F

)
. There-

fore R(W,U) ≤ R(W ⋆, U⋆) and (W,U) is a minimizer.

We now prove (ii) by contradiction. Suppose that (W ⋆, U⋆) /∈ N ∩ E ∩ BIc . This must mean that

(W ⋆, U⋆) /∈ E ∩ BIc
since it clearly belongs to N . If (W ⋆, U⋆) /∈ E then the first inequality in the above computation is
strict according to (83). If (W ⋆, U⋆) /∈ BIc then the second inequality is strict because g is strictly
increasing.
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The above lemma establishes connections between the set of minimizers of the risk and the set
E ∩ N ∩ BIc . The next two lemmas shows that the set E ∩ N ∩ BIc is closely related to the set of
collapsed configurations ΩIc . In other words we use the set E ∩ N ∩ BIc as a bridge between the set
of minimizers and the set of type-I collapse configurations.

Lemma I. If the latent variables satisfy the symmetry assumption A, then

ΩIc ⊂ E ∩ N ∩ BIc

Proof. We already know from (67) that ΩIc ⊂ BIc . We now show that ΩIc ⊂ E . Suppose (W,U) ∈
ΩIc . Then there exists an equiangular matrix F ∈ Rd×nc such that

W = c F P and Û = c′ F Z

where c′ = c
√
nw/(KL). Recall from (25) that

Pζ(x) = Zk for all x ∈ Xk.

Consider two latent variables

zk = [α1, . . . , αL] and zj = [α′
1, . . . , α

′
L]

and assume x is generated by zk, meaning that x ∈ Xk. We then have

MW,U (x, j) =
〈
Ûk − Ûj ,Wζ(x)

〉
F

= c c′ ⟨F Zk − F Zj ,F Pζ(x)⟩F
= c c′ ⟨F Zk − F Zj ,F Zk⟩F

= c c′
L∑
ℓ=1

〈
fαℓ

− fα′
ℓ
, fαℓ

〉
F

= c c′
(
L−

L∑
ℓ=1

〈
fα′

ℓ
, fαℓ

〉
F

)
Since f1, . . . , fnc are equiangular, we have

L∑
ℓ=1

〈
fα′

ℓ
, fαℓ

〉
F
=
(
L− dist(zj , zk)

)
− 1

nc − 1
dist(zj , zk) = L− nc

nc − 1
dist(zj , zk).

Therefore
MW,U (x, j) = cc′

nc
nc − 1

dist(zj , zk)

and it is clear that the margin only depends on dist(zj , zk), and therefore (W,U) satisfies the
equimargin property.

Finally we show that ΩIc ⊂ N . Suppose (W,U) ∈ ΩIc . From property (ii) of lemma B we have

K∑
k=1

Zk =
K

nc
1nc1

T
L

Therefore,

K∑
k=1

Ûk = c′
K∑
k=1

F Zk = c′
K

nc
F 1nc

1TL = 0

where we have used the fact that F 1nc
= 0.

Lemma J. If the latent variables satisfy assumptions A and B, then

ΩIc = E ∩ N ∩ BIc
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Proof. From the previous lemma we know that ΩIc ⊂ E ∩ N ∩ BIc so we need to show that

E ∩ N ∩ BIc ⊂ ΩIc .

Let (W,U) ∈ E ∩ N ∩ BIc . Since (W,U) belongs to BIc , there exists a matrix F ∈ Rd×nc with
∥F∥2F = nc such that

W = c F P and U = c′ F Z (84)

where c′ = c
√
nw/(KL). Our goal is to show that F is equiangular, meaning that it satisfies the

two relations

F 1nc
= 0 and FTF =

nc
nc − 1

Inc
− 1

nc − 1
1nc

1Tnc
. (85)

The first relation is easily obtained. Indeed, using the fact that (W,U) ∈ N together with the identity∑K
k=1 Zk = K

nc
1nc

1TL (which hold due to lemma B), we obtain

0 =

K∑
k=0

Uk = c′
K∑
k=0

FZk = c′
K

nc
F1nc

1TL.

We then note that the matrix F1nc1
T
L is the zero matrix if and only if F1nc = 0.

We now prove the second equality of (85). Assume that x ∈ Xk. Using the fact that Pζ(x) = Zk
together with (84), we obtain

MW,U (x, j) =
〈
Ûk − Ûj ,Wζ(x)

〉
F

= c c′ ⟨F Zk − F Zj , F Pζ(x)⟩F
= c c′ ⟨F Zk − F Zj , F Zk⟩F
= c c′

〈
FTF (Zk − Zj), Zk

〉
F

= c c′
〈
FTF , Γ(k,j)

〉
F

(86)

We recall that the matrices
Γ(k,j) = Zk(Zk − Zj)

T ∈ Rnc×nc .

are precisely the ones involved in the statement of assumption B. Since (W,U) ∈ E , the margins
must only depend on the distance between the latent variables. Due to (86), we can be express this
as〈
FTF , Γ(j,k)

〉
F
=
〈
FTF , Γ(j′,k′)

〉
F

∀j, k, j′, k′ ∈ [K] s.t. dist(zj , zk) = dist(zj′ , zk′)

Since the FTF is clearly positive semi-definite, we may then use assumption B to conclude that
FTF ∈ A. Recalling definition (42) of the set A, we therefore have

FTF = a Inc
+ b 1nc

1Tnc
(87)

for some a, b ∈ R. To conclude our proof, we need to show that

a =
nc

nc − 1
and b = − 1

nc − 1
. (88)

Combining (87) with the first equality of (85), we obtain

0 = FTF 1nc
= a 1nc

+ b 1nc
1Tnc

1nc
= (a+ bnc)1nc

(89)

Combining (87) with the fact that ∥F∥2F = nc, we obtain

nc = ∥F∥2F = Tr(FTF ) = nc(a+ b) (90)

The constants a, b ∈ R, according to (89) and (90) must therefore solve the system{
a+ bnc = 0

a+ b = 1

and one can easily check that the solution of this system is precisely given by (88).
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We conlude this subsection by proving proposition A.

Proof of Proposition A. Let (W ⋆, U⋆) be a global minimizer of R and let c ∈ R be such that

1

2

(
∥W ⋆∥2F + ∥U⋆∥2F

)
= c2 nw

If the latent variables satisfies assumption A, we can use lemma I together with the first statement of
lemma H to obtain

ΩIc ⊂ E ∩ N ∩ BIc ⊂ argminR,
which is precisely statement (i) of the proposition.

We now prove statement (ii) of the proposition. If the latent variables satisfies assumption A and B
then lemma J asserts that

ΩIc = E ∩ N ∩ BIc
The set ΩIc is clearly not empty (because the set of equiangular matrices is not empty), and we may
therefore use the second statement of lemma H to obtain that

(W ⋆, U⋆) ∈ E ∩ N ∩ BIc = ΩIc

E.3 DETERMINING THE CONSTANT c

The next lemma provides an explicit formula for the regularized risk of a network whose weights
are in type-I collapse configuration with constant c.
Lemma K. Assume the latent variables satisfy assumption A. If the pair of weights (W,U) belongs
to ΩIc , then

R(W,U) = log

(
1− K

nLc
+
K

nLc

(
1 + (nc − 1)e−η nwc

2
)L)

+ λnwc
2 (91)

where η = nc

nc−1

√
1

nwKL
.

From the above lemma it is clear that if the pair (W,U) ∈ ΩIc minimizes R, then the constant cmust
minimize the right hand side of (91). Therefore combining lemma K with proposition A concludes
the proof of theorem E.

Remark In the previous subsections, we only relied on relations (i), (ii) and (iii) of lemma B to
prove collapse. Assumption A was never fully needed. In this section however, in order to determine
the specific values of the constant involved in the collapse, we will need the actual combinatorial
values provided by assumption A.

The remainder of this section is devoted to the proof of lemma K.

Proof of lemma K. Recall from (45) that the unregularized risk can be expressed as

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−MW,U (x,j)

 Dzk
(x)

We also recall that the set ΩIc is given by

ΩIc =
{
(W,U) : There exist an equiangular matrix F such that

W = c F P and Û = c

√
nw
KL

F Z
}

(92)

and that Pζ(x) = Zk for all x ∈ Xk (see equation (25) from section B). Consider two latent
variables

zk = [α1, . . . , αL] and zj = [α′
1, . . . , α

′
L]
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and assume x is generated by zk, meaning that x ∈ Xk.

MW,U (x, j) =
〈
Ûk − Ûj ,Wζ(x)

〉
F

= c2
√
nw
KL

⟨F Zk − F Zj ,F Pζ(x)⟩F

= c2
√
nw
KL

⟨F Zk − F Zj ,F Zk⟩F

= c2
√
nw
KL

L∑
ℓ=1

〈
fαℓ

− fα′
ℓ
, fαℓ

〉
F

= c2
√
nw
KL

(
L−

L∑
ℓ=1

〈
fα′

ℓ
, fαℓ

〉
F

)
Since f1, . . . , fnc

are equiangular, we have
L∑
ℓ=1

〈
fα′

ℓ
, fαℓ

〉
F
=
(
L− dist(zj , zk)

)
− 1

nc − 1
dist(zj , zk) = L− nc

nc − 1
dist(zj , zk).

Therefore

MW,U (x, j) = c2
√
nw
KL

nc
nc − 1

dist(zj , zk)

Letting ω =
√

nw

KL
nc

nc−1 we therefore obtain

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−ωc
2dist(zj ,zk)

 Dzk
(x)

=
1

K

K∑
k=1

log

1 +
∑
j ̸=k

e−ωc
2dist(zj ,zk)

 (93)

where we have used the quantity inside the log does not depends on x. We proved in section C (see
equation (38)) that if the latent variables satisfy assumption A, then

|Sr| =
K

nLc

(
L

r

)
(nc − 1)r

Using this identity we obtain∑
j ̸=k

e−ωc
2dist(zj ,zk) =

L∑
r=1

|{j : dist(zj , zk) = r}| e−ωc
2r

=
K

nLc

L∑
r=1

(
L

r

)
(nc − 1)r e−ωc

2r

= − K

nLc
+
K

nLc

L∑
r=0

(
L

r

)
(nc − 1)r e−ωc

2r

= − K

nLc
+
K

nLc

(
1 + (nc − 1)e−ωc

2
)L

where we have used the binomial theorem to obtain the last equality. The above quantity does not
depends on k, therefore (93) can be expressed as

R0(W,U) = log

(
1− K

nLc
+
K

nLc

(
1 + (nc − 1)e−ω c

2
)L)

We then remark that the matrix F P has nw columns, and that each of these columns has norm 1.
Similarly, the F Z has KL columns of length 1. We therefore have

1

2

(
∥W∥2F + ∥Û∥2F

)
=

1

2

(
c2∥F P∥2F + c2

nw
KL

∥F Z∥2F
)
= c2nw.

To conclude the proof we simply remark that ω = nwη.
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F PROOF OF THEOREM 3 AND ITS CONVERSE

In this section we prove theorem 3 under assumption A, and its converse under assumptions A and
B. We start by recalling the definition of a type-II collapse configuration.
Definition E (Type-II Collapse). The weights (W,U) of the network h∗W,U form a type-II collapse
configuration if and only if the conditions

i) φ(w(α,β)) =
√
d fα for all (α, β) ∈ V .

ii) There exists c ≥ 0 so that uk,ℓ = c fα for all (k, ℓ) satisfying zk,ℓ = α and all α ∈ C.

hold for some collection f1, . . . , fnc ∈ Rd of mean-zero equiangular vectors.

As in the previous section we will reformulate the above definition using matrix notations. Toward
this aim we make the following definition:
Definition F. (Mean-Zero Equiangular Matrices) A matrix F ∈ Rd×nc is said to be a mean-zero
equiangular matrix if and only if the relations

1Td F = 0, F1nc
= 0 and FTF =

nc
nc − 1

Inc
− 1

nc − 1
1nc

1Tnc

hold.

Comparing the above definition with the definition of equiangular vectors provided in the main
paper, we easily see that F is a mean-zero equiangular matrix if and only if its columns are mean-
zero equiangular vectors. Relations (i) and (ii) of definition F can be conveniently expressed as

φ(W ) =
√
d F P and Û = c F Z

for some equiangular matrix F. We then set

ΩIIc =
{
(W,U) : There exist a mean-zero equiangular matrix F such that

φ(W ) =
√
d F P and Û = c F Z

}
(94)

and note that ΩIIc is simply the set of weights (W,U) which are in a type-II collapse configuration.
We now state the main theorem of this section.
Theorem F. Assume the non-degenerate condition µβ > 0 holds. Let τ ≥ 0 denote the unique
minimizer of the strictly convex function

H∗(t) = log

(
1− K

nLc
+
K

nLc

(
1 + (nc − 1)e−η

∗t
)L)

+
λ

2
t2 where η∗ =

nc
nc − 1

1√
KL/d

and let c = τ/
√
KL. Then we have the following:

(i) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumption A, then

ΩIIc ⊂ argminR∗

(ii) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumptions A and B,
then

ΩIIc = argminR∗

Note that statement (i) corresponds to theorem 3 of the main paper, whereas statement (ii) can be
viewed as its converse. To prove F we will follow the same steps than in the previous section. The
main difference occurs in the study of the bilinear problem, as we will see in the next subsection.
We will assume

µβ > 0

everywhere in this section — all lemmas and propositions are proven under this assumption, even
when not explicitly stated.

Before to go deeper in our study let us state a very simple lemma that expresses the regularized risk
R∗ associated with network h∗ in term of the function R0 defined by equation (44).
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Lemma L. Given a pair of weights (W,U), we have

R∗(W,U) = R0

(
φ(W ) , U

)
+
λ

2
∥U∥2F (95)

Proof. Recall from section B that

hW,U (x) = U Vec [Wζ(x)]

h∗W,U (x) = U Vec
[
φ
(
Wζ(x)

)]
Note that since ζ(α, β) is a one hot vector, we obviously have that φ (Wζ(α, β)) = φ (W ) ζ(α, β).
Therefore the the network h∗ and h are related as follow:

h∗W,U (x) = U Vec
[
φ
(
Wζ(x)

)]
= U Vec

[
φ(W ) ζ(x)

]
= hφ(W ), U (x)

As a consequence, the regularized risk associated with the network h∗W,U can be expressed as

R∗(W,U) =
1

K

K∑
k=1

Ex∼Dzk

[
ℓ(h∗W,U (x), k)

]
+
λ

2
∥U∥2F

=
1

K

K∑
k=1

Ex∼Dzk

[
ℓ(hφ(W ),U (x), k)

]
+
λ

2
∥U∥2F

= R0(φ(W ) , U) +
λ

2
∥U∥2F

where R0 is the unregularized risk defined in (44).

F.1 THE BILINEAR OPTIMIZATION PROBLEM

Let
Range(φ) = {V ∈ Rd×nw : There exist W ∈ Rd×nw such that V = φ(W ) }

and consider the optimization problem

maximize
〈
Û , V QTZ

〉
F

(96)

subject to V ∈ Range(φ) and ∥Û∥2F = KLc2 (97)

where the optimization variables are the matrix V ∈ Rd×nw and the matrix Û ∈ Rd×KL.

Lemma M. Assume the latent variables satisfy assumption A. Then (V,U) is a solution of the
optimization problem (96) – (97) if and only if it belongs to the set

BIIc =
{
(V,U) : There exist a matrix F ∈ F such that V =

√
dFP and Û = c FZ

}
(98)

where F denotes the set of matrices whose columns have unit length and mean zero, that is

F = {F ∈ Rd×nc : 1Td F = 0 and the columns of F have unit length}.

The remainder of this subsection is devoted to the proof of the above lemma.

We start by showing that all (V,U) ∈ BIIc have same objective values and satisfy the constraints.

Claim D. If (V,U) ∈ BIIc , then

V ∈ Range(φ) , ∥Û∥2F = KLc2, and
〈
Û , V QTZ

〉
F
= c

√
dKL

Proof. Assume (V,U) ∈ BIIc . Since the columns of P are one hot vectors in Rnc , the columns of
FP have unit length and mean zero. Therefore the columns of V have norm equal to

√
d and mean

zero. Therefore V ∈ Range(φ).

38



Published as a conference paper at ICLR 2024

Using ZZT = KL
nc
I from lemma B, together with the fact that ∥F∥2F = nc since its columns have

unit length, we obtain

∥FZ∥2F = ⟨FZ,FZ⟩F =
〈
FZZT , F

〉
F
=

(
KL

nc

)
∥F∥2F = KL (99)

As a consequence we have ∥Û∥2F = c2KL. Finally, note that

PQT = Inc

as can clearly be seen from formulas (23) and (26). We therefore have〈
Û , V QTZ

〉
F
= c

√
d
〈
FZ,FPQTZ

〉
F
= c

√
d ⟨FZ,FZ⟩F = c

√
dKL

We then prove that

Claim E. If (V, Û) is a solution of (96) – (97), then (V, Û) ∈ BIIc .

Note that according to the first claim, all (V, Û) ∈ BIIc have same objective value, and therefore,
according to the above claim, they must all be maximizer. As a consequence, proving the above
claim will conclude the proof of lemma M.

Proof of the claim. Maximizing (96) – (97) over Û first gives

Û = c
√
KL

V QTZ

∥V QTZ∥F
(100)

and therefore the optimization problem reduces to

maximize ∥V QTZ∥2F (101)
subject to V ∈ Range(φ) (102)

Using the fact that ZZT = KL
nc
I we then get

∥V QTZ∥2F =
〈
V QTZ, V QTZ

〉
F
=
〈
V QTZZT , V QT

〉
F
=
KL

nc
∥V QT ∥2F (103)

and so the problem further reduces to

maximize ∥V QT ∥2F (104)
subject to V ∈ Range(φ) (105)

Let us define
v(α,β) := V ζ(α, β)

In other words v(α,β) is the jth column of V , where j = (α − 1)sc + β. The KKT conditions for
the optimization problem (104) – (105) then amount to solving the system

V QTQ = V Dν + 1d λ
T (106)

⟨v(α,β),1d⟩ = 0 for all (α, β) ∈ V (107)

∥v(α,β)∥2 = d for all (α, β) ∈ V (108)

forDν some nw×nw diagonal matrix of Lagrange multipliers for the constraint (108) and λ ∈ Rnw

a vector of Lagrange multipliers for the mean zero constraints. Left multiplying the first equation
by 1Td and using the second shows λ = 0nw , and so it proves equivalent to find solutions of the
reduced system

V QTQ = V Dν (109)
⟨v(α,β),1d⟩ = 0 for all (α, β) ∈ V (110)

∥v(α,β)∥2 = d for all (α, β) ∈ V (111)
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instead. Recalling the identity Qζ(α, β) = µβeα (see (27) in section B) we obtain

QTQζ(α, β) = µβ Q
T eα

and so right multiplying (109) by ζ(α, β) gives

V QT eα =
ν(α, β)

µβ
v(α, β) for all (α, β) ∈ V

where we have denoted by ν(α, β) the Lagrange multiplier corresponding to the constraint (111).
Define the support sets

Ξα := {β ∈ [sc] : ν(α, β) ̸= 0} and Ξ := {α : Ξα ̸= ∅}
of the Lagrange multipliers. If α ∈ Ξ then imposing the norm constraint (111) gives

∥V QT eα∥ =
ν(α, β)

µβ

√
d,

and so ∥V QT eα∥ > 0 if α ∈ Ξ since ν(α, β) > 0 for some β ∈ [sc] by definition. This implies
that the relation

v(α, β) =
√
d

V QT eα
∥V QT eα∥

for all (α, β) ∈ Ξ× [sc]

must hold. As a consequence there exist mean-zero, unit length vectors f1, . . . , fnc
(namely the

normalized V QT eα) so that
v(α, β) =

√
d fα

holds for all pairs (α, β) with α ∈ Ξ. Taking a look at (26), we easily see that its αth row of the
matrix Q can be written as QT eα =

∑
β µβζ(α, β), and therefore

V QT eα =
∑
β∈[sc]

µβV ζ(α, β) =
∑
β∈[sc]

µβv(α, β) =
√
d fα

 ∑
β∈[sc]

µβ

 =
√
d fα

holds as well. If α /∈ Ξ then V QT eα = 0 since the corresponding Lagrange multiplier vanishes. It
therefore follows that

∥V QT ∥2F =
∑
α∈[nc]

∥V QTeα∥2 = d
∑
α∈Ξ

∥fα∥2 = d |Ξ|

and so global maximizers of (104) – (105) must have full support. In other words, there exist mean-
zero, unit-length vectors f1, . . . , fnc

so that

v(α, β) =
√
d fα (112)

holds. Equivalently V =
√
dFP for some F ∈ F . We then recover Û using (100).

Û = c
√
KL

V QTZ

∥V QTZ∥F
= c

√
KL

FPQTZ

∥FPQTZ∥F
= c

√
KL

FZ

∥FZ∥F
(113)

where we have used the fact that PQT = Inc
. To conclude the proof, we use the fact ∥FZ∥F =√

KL, as was shown in (99).

F.2 PROOF OF COLLAPSE

Recall from lemma L that the regularized risk associated with the network h∗W,U can be expressed
as

R∗(W,U) = R0

(
φ(W ) , U

)
+
λ

2
∥U∥2F (114)

and recall that the set of weights in type-II collapse configuration is

ΩIIc =
{
(W,U) : There exist a mean-zero equiangular matrix F such that

φ(W ) =
√
d F P and Û = c F Z

}
(115)

This subsection is devoted to the proof of the following proposition.
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Proposition B. We have the following:

(i) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumption A, then there
exists c ∈ R such that

ΩIIc ⊂ argminR∗

(ii) If the latent variables z1, . . . , zK are mutually distinct and satisfy assumptions A and B,
then any (W,U) that minimizes R∗ must belong to ΩIIc for some c ∈ R.

As in the previous section, we have the following lemma.
Lemma N. Any global minimizer of (114) must belong to N .

The proof is identical to the proof of lemma G. The next lemma bring together the bilinear opti-
mization problem from subsection F.1 and the sharp lower bound on the unregularized risk that we
derived in section D.
Lemma O. Assume the latent variables satisfy assumption A. Assume also that (W ⋆, U⋆) is a global
minimizer of (114) and let c ∈ R be such that

∥U⋆∥2F = KLc2

The the following hold:

(i) Any (W,U) that satisfies
(φ(W ), U) ∈ N ∩ E ∩ BIIc

is also a global minimizer of R∗.

(ii) If N ∩ E ∩ BIIc ̸= ∅, then

(φ(W ⋆), U⋆) ∈ N ∩ E ∩ BIIc

Proof. Recall from theorem D that

R0(V,U) = g
(
−
〈
Û , V QTZ

〉
F

)
for all (V,U) ∈ N ∩ E (116)

R0(V,U) > g
(
−
〈
Û , V QTZ

〉
F

)
for all (V,U) ∈ N ∩ Ec (117)

We start by proving (i). Define V ⋆ = φ(W ⋆), and assume that U, V,W are such that φ(W ) = V
and (V,U) ∈ N ∩ E ∩ Bc. Then we have

R0(φ(W
⋆), U⋆) = R0(V

⋆, U⋆)

≥ g (−⟨U⋆, V ⋆QZ⟩F ) [because (V ⋆, U⋆) ∈ N ]

≥ g (−⟨U, V QZ⟩F ) [because (V,U) ∈ BIIc ]
= R0(V,U) [because (V,U) ∈ N ∩ E ]
= R0(φ(W ), U)

Since ∥U∥2F = KLc2 = ∥U⋆∥2F , we have R∗(W,U) ≤ R∗(W ⋆, U⋆) and therefore (W,U) is a
minimizer.

We now prove (ii) by contradiction. Suppose that (φ(W ⋆), U⋆) /∈ N ∩ E ∩ BIIc . This must mean
that

(φ(W ⋆), U⋆) /∈ E ∩ BIIc
since it clearly belongs to N . If (φ(W ⋆), U⋆) /∈ E then the first inequality in the above computation
is strict according to (117). If (φ(W ⋆), U⋆) /∈ BIIc then the second inequality is strict because g is
strictly increasing.

The next two lemmas shows that the set E ∩ N ∩ BIIc is closely related to the set of collapsed
configurations ΩIIc . In order to states these lemmas, the following definition will prove convenient

Ω
II

c =
{
(V,U) : There exist a mean-zero equiangular matrix F such that

V =
√
d F P and Û = c F Z

}
(118)
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Note that (W,U) ∈ ΩIIc if and only if (φ(W ), U) ∈ Ω
II

c . Also, in light of (98), the inclusion

Ω
II

c ⊂ BIIc
is obvious. We now prove the following lemma.
Lemma P. If the latent variables satisfy the symmetry assumption A, then

Ω
II

c ⊂ E ∩ N ∩ BIIc

Proof. The proof is almost identical to the one of lemma I. We repeat it for completeness. We
already know that Ω

II

c ⊂ BIIc . We the show that Ω
II

c ⊂ E . Suppose (V,U) ∈ Ω
II

c . Then there
exists a mean-zero equiangular matrix F ∈ Rd×nc such that

V =
√
d F P and Û = c F Z

Recall from (25) that Pζ(x) = Zk for all x ∈ Xk. Consider two latent variables

zk = [α1, . . . , αL] and zj = [α′
1, . . . , α

′
L]

and assume x is generated by zk, meaning that x ∈ Xk. We then have

MV,U (x, j) =
〈
Ûk − Ûj , V ζ(x)

〉
F

= c
√
d ⟨F Zk − F Zj ,F Pζ(x)⟩F

= c
√
d ⟨F Zk − F Zj ,F Zk⟩F

= c
√
d

L∑
ℓ=1

〈
fαℓ

− fα′
ℓ
, fαℓ

〉
F

= c
√
d dist(zj , zk)

From the above computation it is clear that the margin only depends on dist(zj , zk), and therefore
(V,U) satisfies the equimargin property.

Finally we show that Ω
II

c ⊂ N . Suppose (V,U) ∈ Ω
II

c . Using the identity
∑K
k=1 Zk = K

nc
1nc

1TL
we obtain

K∑
k=1

Ûk = c

K∑
k=1

F Zk = c
K

nc
F 1nc1

T
L = 0

where we have used the fact that F 1nc = 0.

Finally, we have the following lemma.
Lemma Q. If the latent variables satisfy assumptions A and B, then

Ω
II

c = E ∩ N ∩ BIIc

Proof. The proof, again, is very similar to the one of lemma J. From the previous lemma we know
that Ω

II

c ⊂ E ∩ N ∩ BIIc so we need to show that

E ∩ N ∩ BIIc ⊂ Ω
II

c .

Let (V,U) ∈ E ∩ N ∩ BIIc . Since (V,U) belongs to BIIc , there exists a matrix F ∈ Rd×nc whose
columns have unit length and mean 0 such that

V =
√
d F P and U = c F Z

Our goal is to show that F is a mean-zero equiangular matrix, meaning that it satisfies the three
relations

1Tnc
F = 0, F 1nc = 0 and FTF =

nc
nc − 1

Inc −
1

nc − 1
1nc1

T
nc
. (119)
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We already know that the first relation is satisfied since the columns of F have mean 0. The sec-
ond relation is easily obtained. Indeed, using the fact that (V,U) ∈ N together with the identity∑K
k=1 Zk = K

nc
1nc1

T
L (which hold due to lemma B), we obtain

0 =

K∑
k=0

Uk = c′
K∑
k=0

FZk = c
K

nc
F1nc

1TL.

which implies F1nc
= 0.

We now prove the third equality of (119). Assume that x ∈ Xk. Using the fact that Pζ(x) = Zk
together with (84), we obtain

MV,U (x, j) =
〈
Ûk − Ûj , V ζ(x)

〉
F

= c
√
d ⟨F Zk − F Zj , F Pζ(x)⟩F

= c
√
d ⟨F Zk − F Zj , F Zk⟩F

= c
√
d
〈
FTF (Zk − Zj), Zk

〉
F

= c
√
d
〈
FTF , Γ(k,j)

〉
F

(120)

Since (V,U) ∈ E , the margins must only depend on the distance between the latent variables. Due
to (120), we can be express this as〈
FTF , Γ(j,k)

〉
F
=
〈
FTF , Γ(j′,k′)

〉
F

∀j, k, j′, k′ ∈ [K] s.t. dist(zj , zk) = dist(zj′ , zk′)

Since the FTF is clearly positive semi-definite, we may then use assumption B to conclude that
FTF ∈ A. Recalling definition (42) of the set A, we therefore have

FTF = a Inc
+ b 1nc

1Tnc
(121)

for some a, b ∈ R. To conclude our proof, we need to show that

a =
nc

nc − 1
and b = − 1

nc − 1
. (122)

Combining (121) with the first equality of (119), we obtain

0 = FTF 1nc = a 1nc + b 1nc1
T
nc
1nc = (a+ bnc)1nc

Since the columns of F have unit length, the diagonal entries of FTF must all be equal to 1, and
therefore (121) implies that a + b = 1. The constants a, b ∈ R, according must therefore solve the
system {

a+ bnc = 0

a+ b = 1

and one can easily check that the solution of this system is precisely given by (122).

We conlude this subsection by proving proposition B.

Proof of Proposition B. Let (W ⋆, U⋆) be a global minimizer of R and let c ∈ R be such that

∥U⋆∥2F = KLc2

We first prove statement (i) of the proposition. If the latent variables satisfies assumption A then
lemma P asserts that

Ω
II

c ⊂ E ∩ N ∩ BIIc
Assume (W,U) ∈ ΩIIc . This implies that (φ(W ), U) ∈ Ω

II

c , and and therefore (φ(W ), U) ∈
E ∩ N ∩ BIIc . We can then use lemma O to conclude that (W,U) is a global minimizer of R∗.
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We now prove statement (ii) of the proposition. If the latent variables satisfies assumption A and B
then lemma Q asserts that

Ω
II

c = E ∩ N ∩ BIIc
The set Ω

II

c is clearly not empty (because the set of mean-zero equiangular matrices is not empty),
and we may therefore use the second statement of lemma O to obtain that

(φ(W ⋆), U⋆) ∈ E ∩ N ∩ BIIc = Ω
II

c

which in turn implies (W ⋆, U⋆) ∈ ΩIIc .

F.3 DETERMINING THE CONSTANT c

The next lemma provides an explicit formula for the regularized risk of a network h∗W,U whose
weights are in type-II collapse configuration with constant c.
Lemma R. Assume the latent variables satisfy assumption A. If the pair of weights (W,U) belongs
to ΩIIc , then

R∗(W,U) = log

(
1− K

nLc
+
K

nLc

(
1 + (nc − 1)e−η

∗√KLc
)L)

+
λ

2

(√
KLc

)2
(123)

where η∗ = nc

nc−1

√
d
KL .

Combining lemma R with proposition B concludes the proof of theorem F.

Proof of lemma R. We recall that

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−MW,U (x,j)

 Dzk
(x)

and

ΩIIc =
{
(W,U) : There exist a mean-zero equiangular matrix F such that

φ(W ) =
√
d F P and Û = c F Z

}
(124)

Consider two latent variables
zk = [α1, . . . , αL] and zj = [α′

1, . . . , α
′
L]

and assume x ∈ Xk. Using the identity Pζ(x) = Zk we then obtain

Mφ(W ),U (x, j) =
〈
Ûk − Ûj , φ(W )ζ(x)

〉
F

= c
√
d ⟨F Zk − F Zj ,F Pζ(x)⟩F

= c
√
d ⟨F Zk − F Zj ,F Zk⟩F

= c
√
d

L∑
ℓ=1

〈
fαℓ

− fα′
ℓ
, fαℓ

〉
F

= c
√
d

(
L−

L∑
ℓ=1

〈
fα′

ℓ
, fαℓ

〉
F

)
= c

√
d

nc
nc − 1

dist(zj , zk)

Letting ω∗ =
√
d nc

nc−1 we therefore obtain

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

log

1 +
∑
j ̸=k

e−c ω
∗ dist(zj ,zk)

 Dzk
(x)

=
1

K

K∑
k=1

log

1 +
∑
j ̸=k

e−c ω
∗ dist(zj ,zk)

 (125)
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where we have used the quantity inside the log does not depends on x. Using the identity |Sr| =
K
nL
c

(
L
r

)
(nc − 1)r we then obtain obtain

∑
j ̸=k

e−c ω dist(zj ,zk) =

L∑
r=1

|{j : dist(zj , zk) = r}| e−c ω
∗ r

=
K

nLc

L∑
r=1

(
L

r

)
(nc − 1)r e−c ω

∗ r

= − K

nLc
+
K

nLc

L∑
r=0

(
L

r

)
(nc − 1)r e−c ω

∗ r

= − K

nLc
+
K

nLc

(
1 + (nc − 1)e−c ω

∗
)L

where we have used the binomial theorem to obtain the last equality. The above quantity does not
depends on k, therefore (125) can be expressed as

R0(W,U) = log

(
1− K

nLc
+
K

nLc

(
1 + (nc − 1)e−c ω

∗
)L)

We then remark that the matrix F Z has KL columns, and that each of these columns has norm 1.
We therefore have

∥Û∥2F = ∥cFZ∥2F = c2KL for all (W,U) ∈ ΩIIc

To conclude the proof we simply note that ω∗ =
√
KLη∗.

G PROOF OF THEOREM 2

This section is devoted to the proof of theorem 2 from the main paper, which we recall below for
convenience.
Theorem 2 (Directional Collapse of h). Assume K = nLc and {z1, . . . , zK} = Z . Assume also
that the regularization parameter λ satisfies

λ2 <
L

nL+1
c

sc∑
β=1

µ2
β (126)

Finally, assume that (W, U) is in a type-III collapse configuration for some constants
c, r1, . . . , rsc ≥ 0. Then (W,U) is a critical point of R if and only if (c, r1, . . . , rsc) solve the
system

λ

L

rβ
c

(
nc − 1 + exp

(
nc

nc − 1
c rβ

))
= µβ for all 1 ≤ β ≤ sc (127)

sc∑
β=1

(rβ
c

)2
= LnL−1

c . (128)

At the end of this section, we also show that if (149) holds, then the system (150) – (151) has a
unique solution (see proposition D in subsection G.2).

The strategy to prove theorem 2 is straightforward: we simply need to evaluate the gradient of
the risk on weights (W,U) which are in a type-III collapse configuration. Setting this gradient to
zero will then lead to a system for the constants c, r1, . . . , rsc defining the configuration. While
conceptually simple, the gradient computation is quite lengthy.

We start by deriving formulas for the partial derivatives of R0 with respect to the linear weights uk,ℓ
and the word embeddings w(α,β). As we will see, ∂R0/∂uk,ℓ and ∂R0/∂w(α,β) plays symmetric
roles. In order to observe this symmetry, the following notation will prove convenient:

Φ(α,β),(k,ℓ)(W,U) :=
1

K

K∑
j=1

∑
x∈Xj

1{xℓ=(α,β)}
(
1{j=k} − qk,W,U (x)

)
Dzj

(x) (129)
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where

qk,W,U (x) :=
e⟨Ûk,Wζ(x)⟩

F∑K
k′=1 e

⟨Uk′ ,Wζ(x)⟩F

We may now state the first lemma of this section:
Lemma S. The partial derivatives of R0 with respect to uk,ℓ and w(α,β) are given by

− ∂R0

∂uk,ℓ
(W,U) =

nc∑
α=1

sc∑
β=1

Φ(α,β),(k,ℓ)(W,U) w(α,β)

− ∂R0

∂w(α,β)
(W,U) =

K∑
k=1

L∑
ℓ=1

Φ(α,β),(k,ℓ)(W,U) uk,ℓ

Proof. Given K matrices V1, . . . , VK ∈ Rnw×KL, we define

f(V1, . . . , VK) :=
1

K

K∑
k=1

∑
x∈Xk

ℓ
(
⟨V1, ζ(x)⟩F , . . . , ⟨VK , ζ(x)⟩F ; k

)
Dzk

(x)

where ℓ(y1, . . . , yK ; k) is the cross entropy loss

ℓ(y1, . . . , yK ; k) = − log

(
exp (yk)∑K

k′=1 exp (yk′)

)
The partial derivative of f with respect to the matrix Vj can easily be found to be

− ∂f

∂Vj
(V1, . . . , VK) =

1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} −

e⟨Vj ,ζ(x)⟩F∑K
k′=1 e

⟨Vk′ ,ζ(x)⟩F

)
ζ(x) Dzk

(x) (130)

We then recall from (19) that the kth entry of the vector y = hW,U (x) is

yk =
〈
Ûk , W ζ(x)

〉
F
=
〈
WT Ûk , ζ(x)

〉
F

and so the unregularized risk can be expressed in term of the function f :

R0(W,U) =
1

K

K∑
k=1

∑
x∈Xk

ℓ
(
⟨WT Û1, ζ(x)⟩F , . . . , ⟨WT ÛK , ζ(x)⟩F ; k

)
Dzk

(x)

= f(WT Û1, . . . ,W
T ÛK)

The chain rule then gives

∂R0

∂W
(W,U) =

K∑
j=1

Ûj

[
∂f

∂Vj
(WT Û1, . . . ,W

T ÛK)

]T
(131)

∂R0

∂Ûj
(W,U) =W

[
∂f

∂Vj
(WT Û1, . . . ,W

T ÛK)

]
(132)

Using formula (130) for ∂f/∂Vj and the notation

qj,W,U (x) :=
e⟨W

T Ûj ,ζ(x)⟩
F∑K

k′=1 e
⟨WTUk′ ,ζ(x)⟩F

we can express (131) and (132) as follow

−∂R0

∂W
(W,U) =

K∑
j=1

Ûj

[
1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

)
ζ(x) Dzk

(x)

]T

−∂R0

∂Ûj
(W,U) =W

[
1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

)
ζ(x) Dzk

(x)

]
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We now compute the partial derivative of R0 with respect to uj,ℓ. Let eℓ ∈ RL be the ℓth basis
vector. We then have

− ∂R0

∂uj,ℓ
(W,U) = −

[
∂R0

∂Ûj
(W,U)

]
eℓ

=
1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

)
(Wζ(x) eℓ) Dzk

(x)

Recall from (13) that Wζ(x) is the matrix that contains the d-dimensional embeddings of the words
that constitute the sentence x ∈ X . So Wζ(x) eℓ is simply the embedding of the ℓth word of the
sentence x, and we can write it as

Wζ(x) eℓ =

nc∑
α=1

sc∑
β=1

1{xℓ=(α,β)}w(α,β)

We therefore have

− ∂R0

∂uj,ℓ
(W,U) =

1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

)  nc∑
α=1

sc∑
β=1

1{xℓ=(α,β)}w(α,β)

 Dzk
(x)

=

nc∑
α=1

sc∑
β=1

(
1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

)
1{xℓ=(α,β)}Dzk

(x)

)
w(α,β)

=

nc∑
α=1

sc∑
β=1

Φ(α,β),(j,ℓ)(W,U) w(α,β)

which is the desired formula.

We now compute the gradient with respect w(α,β). Recalling that ζ(α, β) is the one hot vector
associate with word (α, β), we have

− ∂R0

∂w(α,β)
(W,U) = −

[
∂R0

∂W
(W,U)

]
ζ(α, β)

=
1

K

K∑
j=1

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

) (
Ûj ζ(x)

T ζ(α, β)
)

Dzk
(x)

Recall that the ℓth column of ζ(x) is the one-hot encoding of the ℓth word in the sentence x. There-
fore, the ℓth entry of the vector ζ(x)T ζ(α, β) ∈ RL is given by the formula[

ζ(x)T ζ(α, β)
]
ℓ
=

{
1 if xℓ = (α, β)

0 otherwise

As a consequence

Ûj ζ(x)
T ζ(α, β) =

L∑
ℓ=1

1{xℓ=(α,β)}uj,ℓ

which leads to

− ∂R0

∂w(α,β)
(W,U) =

1

K

K∑
j=1

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

) ( L∑
ℓ=1

1{xℓ=(α,β)}uj,ℓ

)
Dzk

(x)

=

L∑
ℓ=1

K∑
j=1

(
1

K

K∑
k=1

∑
x∈Xk

(
1{j=k} − qj,W,U (x)

)
1{xℓ=(α,β)}

)
Dzk

(x) uj,ℓ

=

L∑
ℓ=1

K∑
j=1

Φ(α,β),(j,ℓ)(W,U) uj,ℓ

which is the desired formula.
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G.1 GRADIENT OF THE RISK FOR WEIGHTS IN TYPE-III COLLAPSE CONFIGURATION

In lemma S we computed the gradient of the risk for any possible weights (W,U) and for any
possible latent variables z1, . . . , zK . In this section we will derive a formula for the gradi-
ent when the weights are in type-III collapse configuration and when the latent variables satisfy
{z1, . . . , zK} = Z . We start by recalling the definition of a type-III collapse configuration.
Definition G (Type-III Collapse). The weights (W,U) of the network hW,U form a type-III collapse
configuration if and only if

i) There exists positive scalars rβ ≥ 0 so that w(α, β) = rβ fα for all (α, β) ∈ V .

ii) There exists c ≥ 0 so that uk,ℓ = c fα for all (k, ℓ) satisfying zk,ℓ = α and all α ∈ C.

hold for some collection f1, . . . , fnc ∈ Rd of equiangular vectors.

We also define the constant γ ∈ R and the sigmoid σ : R → R as follow:

γ :=
1

nc − 1
and σ(x) :=

1

1 + γe(1+γ)x
(133)

The goal of this subsection is to prove the following proposition.
Proposition C. Suppose K = nLc and {z1, . . . , zK} = Z . If the weights (W,U) are in a type-III
collapse configuration with constants c, r1, . . . , rsc ≥ 0, then

− ∂R0

∂uk,ℓ
(W,U) =

1

c

1 + γ

nLc

 sc∑
β=1

µβ σ(c rβ) rβ

 uk,ℓ

− ∂R0

∂w(α,β)
(W,U) = c

L(1 + γ)

nc

µβ σ(c rβ)

rβ
w(α,β)

Importantly, note that the above proposition states that ∂R0/∂uk,ℓ and uk,ℓ are aligned, and that
∂R0/∂w(α,β) and w(α,β) are aligned.

We start by introducing some notations which will make these gradient computations easier. The
latent variables z1, . . . , zK will be written as

zk = [ zk,1 , zk,2 , . . . , zk,L ] ∈ Z

where 1 ≤ zk,ℓ ≤ nc. We remark that any sentence x generated by the latent variable zk must be of
the form

x = [(zk,1, β1), . . . , (zk,L, βL)]

for some (β1, . . . , βL) ∈ [nc]
L, and that this sentence has a probability µβ1

µβ2
· · ·µβL

of being
sampled. In light of this, we make the following definitions. For every β = (β1, . . . , βL) ∈ [nLc ] we
let

xk,β := [(zk,1, β1), . . . , (zk,L, βL)] ∈ X (134)
µ[β] := µ[β1]µ[β2] · · · µ[βL] ∈ [0, 1] (135)

where we have used µ[βℓ] instead of µβℓ
in order to avoid the double subscript. With these definitions

at hand we have that

Dzj (xk,β) =

{
µ[β] if k = j

0 otherwise

We are now ready to prove proposition C. We break the computation into four lemmas. The first one
simply uses the notations that we just introduced in order to express Φ(α,β),(k,ℓ) in a more convenient
format.
Lemma T. The quantity Φ(α⋆,β⋆),(k,ℓ)(W,U) can be expressed as

Φ(α⋆,β⋆),(k,ℓ)(W,U) =
1

K

∑
β∈[nL

c ]

1{βℓ=β⋆}

1{zk,ℓ=α⋆} −
K∑
j=1

1{zj,ℓ=α⋆} qk,W,U (xj,β)

 µ[β].
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Proof. Using the above notations, we rewrite Φ(α,β),(k,ℓ)(W,U) as follow:

Φ(α⋆,β⋆),(k,ℓ)(W,U) =
1

K

K∑
j=1

∑
x∈Xj

1{xℓ=(α⋆,β⋆)}
(
1{j=k} − qk,W,U (x)

)
Dzj (x)

=
1

K

K∑
j=1

∑
β∈[nL

c ]

1{(zj,ℓ,βℓ)=(α⋆,β⋆)}
(
1{j=k} − qk,W,U (xj,β)

)
Dzj

(xj,β)

=
1

K

K∑
j=1

∑
β∈[nL

c ]

1{zj,ℓ=α⋆}1{βℓ=β⋆}
(
1{j=k} − qk,W,U (xj,β)

)
µ[β]

=
1

K

∑
β∈[nL

c ]

1{βℓ=β⋆}

 K∑
j=1

1{zj,ℓ=α⋆}
(
1{j=k} − qk,W,U (xj,β)

) µ[β]

To conclude the proof we simply remark that
∑
j 1{zj,ℓ=α⋆}1{j=k} = 1{zk,ℓ=α⋆}.

The following notation will be needed in our next lemma:

δ(α, α′) =

{
1 if α = α′

−γ if α ̸= α′ for all α, α′ ∈ [nc] (136)

where we recall that γ = 1/(nc − 1). We think of δ(α, α′) as a ‘biased Kroecker delta’ on the
concepts. Importantly, note that if f1, . . . , fnc

are equiangular, then
⟨fα, fα′⟩ = δ(α, α′)

which is the motivation behind this definition. We may now state our second lemma.
Lemma U. Assume K = nLc and {z1, . . . , zK} = Z . Assume also that the weights (W,U) are in
a type-III collapse configuration with constants c, r1, . . . , rsc ≥ 0. Then

qk,W,U (xj,β) =

∏L
ℓ=1 exp

(
c rβℓ

δ(zj,ℓ, zk,ℓ)
)

∏L
ℓ=1 ψ(c rβℓ

)
where ψ(x) = ex +

1

γ
e−γx.

for all j, k ∈ [K] and all β = (β1, . . . , βL) ∈ [nc]
L.

Proof. Recalling that xj,β := [(zj,1, β1), . . . , (zj,L, βL)], we obtain〈
Ûk,Wζ(xj,β)

〉
F
=

L∑
ℓ=1

⟨uk,ℓ,w(zj,ℓ,βℓ)⟩ =
L∑
ℓ=1

⟨ c fzk,ℓ
, rβℓ

fzj,ℓ ⟩ = c

L∑
ℓ=1

rβℓ
δ(zk,ℓ , zj,ℓ)

We then have

qk,W,U (xj,β) =
e⟨Ûk,Wζ(xj,β)⟩

F∑K
k′=1 e

⟨Ûk′ ,Wζ(xj,β)⟩
F

=
exp

(
c
∑L
ℓ=1 rβℓ

δ(zk,ℓ , zj,ℓ)
)

∑K
k′=1 exp

(
c
∑L
ℓ=1 rβℓ

δ(zk′,ℓ , zj,ℓ)
)

=

∏L
ℓ=1 exp

(
c rβℓ

δ(zk,ℓ , zj,ℓ)
)

∑K
k′=1

∏L
ℓ=1 exp

(
c rβℓ

δ(zk′,ℓ , zj,ℓ)
)

Since {z1, . . . , zK} = Z , the latent variables zk′ = [zk′,1, . . . , zk′,L] achieve all possible tuples
[α′

1, · · · , α′
L] ∈ [nc]

L. The bottom term can therefore be expressed as
K∑
k′=1

L∏
ℓ=1

exp
(
c rβℓ

δ(zk′,ℓ , zj,ℓ)
)

=

nc∑
α′

1=1

nc∑
α′

2=1

· · ·
nc∑

α′
L=1

exp
(
c rβ1δ(α

′
1, zj,1)

)
exp

(
c rβ2δ(α

′
2, zj,2)

)
· · · exp

(
c rβL

δ(α′
L, zj,L)

)

=

L∏
ℓ=1

 nc∑
α′

ℓ=1

exp
(
c rβℓ

δ(α′
ℓ, zk,ℓ)

)
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Recalling the definition of δ(α, α′), we find that

nc∑
α′

ℓ=1

exp
(
c rβℓ

δ(α′
ℓ, zk,ℓ)

)
= exp(c rβℓ

) +
∑

α′
ℓ ̸=zk,ℓ

exp

(
− c rβℓ

nc − 1

)

= exp(c rβℓ
) + (nc − 1) exp

(
− c rβℓ

nc − 1

)
= ψ(c rβℓ

) (137)

We now find a convenient expression for the term appearing between parenthesis in the statement of
lemma T.
Lemma V. Assume K = nLc and {z1, . . . , zK} = Z . Assume also that the weights (W,U) are in
a type-III collapse configuration with constants c, r1, . . . , rsc ≥ 0. Then

1{zk,ℓ=α⋆} −
K∑
j=1

1{zj,ℓ=α⋆} qk,W,U (xj,β) = δ(zk,ℓ, α
⋆) σ(c rβℓ

) (138)

for all k ∈ [K], ℓ ∈ [L], α⋆ ∈ [nc] and all β = (β1, . . . , βL) ∈ [nc]
L.

Proof. For simplicity we are going to prove equation (138) in the case ℓ = 1. Using the previous
lemma we obtain

K∑
j=1

1{zj,1=α⋆}qk,W,U (xj,β) =
K∑
j=1

1{zj,1=α⋆}

∏L
ℓ=1 exp

(
c rβℓ

δ(zj,ℓ, zk,ℓ)
)

∏L
ℓ=1 ψ(c rβℓ

)

Since the latent variables zj = [zj,1, . . . , zj,L] achieve all possible tuples [α1, · · · , αL] ∈ [nc]
L, we

can rewrite the above as

nc∑
α1=1

nc∑
α2=1

· · ·
nc∑

αL=1

1{α1=α⋆}

∏L
ℓ=1 exp

(
c rβℓ

δ(αℓ, zk,ℓ)
)

∏L
ℓ=1 ψ(c rβℓ

)

=

nc∑
α2=1

· · ·
nc∑

αL=1

exp
(
c rβ1δ(α

⋆, zk,1)
) ∏L

ℓ=2 exp
(
c rβℓ

δ(αℓ, zk,ℓ)
)

∏L
ℓ=1 ψ(c rβℓ

)

=
exp

(
c rβ1

δ(α⋆, zk,1)
)

∏L
ℓ=1 ψ(c rβℓ

)

nc∑
α2=1

· · ·
nc∑

αL=1

L∏
ℓ=2

exp
(
c rβℓ

δ(αℓ, zk,ℓ)
)

(139)

We then note that
nc∑
α2=1

· · ·
nc∑

αL=1

L∏
ℓ=2

exp
(
c rβℓ

δ(αℓ, zk,ℓ)
)
=

L∏
ℓ=2

 nc∑
α′

ℓ=1

exp
(
c rβℓ

δ(αℓ, zk,ℓ)
)

and, repeating computation (137), we find that
nc∑
αℓ=1

exp (c rβℓ
δ(αℓ, zk,ℓ)) = ψ(c rβℓ

)

Going back to (139) we therefore have

K∑
j=1

1{zj,1=α⋆}qk,W,U (xj,β) =
exp

(
c rβ1

δ(α⋆, zk,1)
)

∏L
ℓ=1 ψ(c rβℓ

)

L∏
ℓ=2

ψ(c rβℓ
) =

exp
(
c rβ1

δ(α⋆, zk,1)
)

ψ(c rβ1
)

and so

1{zk,1=α⋆} −
K∑
j=1

1{zj,1=α⋆} qk,W,U (xj,β) =

1− exp(c rβ1)
ψ(c rβ1

) if zk,1 = α⋆

− exp(−γ c rβ1)
ψ(c rβ1

) if zk,1 ̸= α⋆
(140)
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We now manipulate the above formula. Recalling that γ = 1/(nc − 1), and recalling the definition
of ψ(x), we get

1− ex

ψ(x)
= 1− ex

ex + 1
γ e

−γx =
1

1 + γe(1+γ)x
= σ(x) (141)

and

−e
−γx

ψ(x)
= − e−γx

ex + 1
γ e

−γx = −γ
(

1

1 + γe(1+γ)x

)
= −γσ(x)

which concludes the proof.

Our last lemma provides a formula for the quantity Φ(α⋆,β⋆),(k,ℓ)(W,U) when the weights are in a
type-III collapse configuration.
Lemma W. Assume K = nLc and {z1, . . . , zK} = Z . Assume also that the weights (W,U) are in
a type-III collapse configuration with constants c, r1, . . . , rsc ≥ 0. Then

Φ(α,β),(k,ℓ)(W,U) =
µβ
nLc

σ(c rβ) δ(zk,ℓ, α) (142)

for all k ∈ [K], ℓ ∈ [L], α ∈ [nc] and β ∈ [sc].

Proof. Combining lemmas T and V, and recalling that K = nLc , we obtain

Φ(α⋆,β⋆),(k,ℓ)(W,U) =
1

nLc

∑
β∈[nL

c ]

1{βℓ=β⋆}

1{zk,ℓ=α⋆} −
K∑
j=1

1{zj,ℓ=α⋆} qk,W,U (xj,β)

 µ[β]

=
1

nLc

∑
β∈[nL

c ]

1{βℓ=β⋆}
(
δ(zk,ℓ, α

⋆) σ(c rβℓ
)
)
µ[β]

=
δ(zk,ℓ, α

⋆)

nLc

∑
β∈[nL

c ]

1{βℓ=β⋆} σ(c rβℓ
)µ[β]

Choosing ℓ = 1 for simplicity we get∑
β∈[nL

c ]

1{β1=β⋆} σ(c rβ1)µ[β] =

sc∑
β1=1

sc∑
β2=1

· · ·
sc∑

βL=1

1{β1=β⋆} σ(c rβ1) µ[β1]µ[β2] · · ·µ[βL]

=

sc∑
β2=1

· · ·
sc∑

βL=1

σ(c rβ⋆) µ[β⋆]µ[β2] · · ·µ[βL]

= µ[β⋆] σ(c rβ⋆)

which concludes the proof.

We now prove the proposition.

Proof of proposition C. Combining lemmas S and W, and using the fact that w(α,β) = rβfα, we
obtain

− ∂R0

∂uk,ℓ
(W,U) =

nc∑
α=1

sc∑
β=1

Φ(α,β),(k,ℓ)(W,U) w(α,β)

=

nc∑
α=1

sc∑
β=1

(
µβ
nLc

σ(c rβ) δ(zk,ℓ, α)

)
rβfα

=
1

nLc

 sc∑
β=1

µβ σ(c rβ) rβ

( nc∑
α=1

δ(zk,ℓ, α) fα

)
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Using the fact that
∑nc

α=1 fα = 0 we get
nc∑
α=1

δ(zk,ℓ, α) fα = fzk,ℓ
− γ

∑
α ̸=zk,ℓ

fα = fzk,ℓ
+ γ fzk,ℓ

− γ

nc∑
α=1

fα = (1 + γ) fzk,ℓ
(143)

Using the fact that uk,ℓ = c fzk,ℓ
we then get

− ∂R0

∂uk,ℓ
(W,U) =

1

nLc

 sc∑
β=1

µβ σ(c rβ) rβ

 (1 + γ) fzk,ℓ

=
1 + γ

nLc

 sc∑
β=1

µβ σ(c rβ) rβ

 uk,ℓ
c

which is the desired formula.

Moving to the other gradient we get

− ∂R0

∂w(α,β)
(W,U) =

K∑
k=1

L∑
ℓ=1

Φ(α,β),(k,ℓ)(W,U) uk,ℓ

=

K∑
k=1

L∑
ℓ=1

(
µβ
nLc

σ(c rβ) δ(zk,ℓ, α)

)
c fzk,ℓ

=
µβ
nLc

σ(c rβ) c

L∑
ℓ=1

(
K∑
k=1

δ(zk,ℓ, α) fzk,ℓ

)
Since the latent variables zk = [zk,1, . . . , zk,L] achieve all possible tuples [α′

1, · · · , α′
L] ∈ [nc]

L, we
have, fixing ℓ = 1 for simplicity,

K∑
k=1

δ(zk,1, α) fzk,1
=

nc∑
α′

1=1

nc∑
α′

2=1

· · ·
L∑

α′
L=1

δ(α′
1, α) fα′

1
= nL−1

c

L∑
α′

1=1

δ(α′
1, α) fα′

1
(144)

Repeating computation (143) shows that the above is equal to nL−1
c (1+ γ) fα. We then use the fact

that w(α,β) = rβfα to obtain

− ∂R0

∂w(α,β)
(W,U) =

µβ
nLc

σ(c rβ) cL
(
nL−1
c (1 + γ) fα

)
=
µβ
nLc

σ(c rβ) cL
(
nL−1
c (1 + γ)

w(α,β)

rβ

)
=
µβ
nc
σ(c rβ) cL

(
(1 + γ)

w(α,β)

rβ

)

which is the desired formula.

G.2 PROOF OF THE THEOREM AND STUDY OF THE NON-LINEAR SYSTEM

In this subsection we start by proving theorem 2, and then we show that the system (150) – (151)
has a unique solution if the regularization parameter λ is small enough.

Proof of theorem 2. Recall that the regularized risk associated with the network hW,U is defined by

R(W,U) = R0(W,U) +
λ

2

(
∥W∥2F + ∥U∥2F

)
(145)

= R0(W,U) +
λ

2

 nc∑
α=1

sc∑
β=1

∥w(α,β)∥2 +
K∑
k=1

L∑
ℓ=1

∥uk,ℓ∥2
 (146)
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and therefore (W,U) is a critical points if and only if

− ∂R0

∂uk,ℓ
(W,U) = λ uk,ℓ and − ∂R0

∂w(α,β)
(W,U) = λ w(α,β)

According to proposition C, if (W,U) is in a type-III collapse configuration, then the above equations
becomes

1

c

1 + γ

nLc

 sc∑
β=1

µβ σ(c rβ) rβ

 uk,ℓ = λ uk,ℓ and c
L(1 + γ)

nc

µβ σ(c rβ)

rβ
w(α,β) = λ w(α,β)

So (W,U) is critical if and only if the constants r1, . . . , rsc and c satisfy the sc + 1 equations

1

c

1 + γ

nLc

sc∑
β=1

µβ σ(c rβ)rβ = λ (147)

c
L(1 + γ)

nc

µβ σ(c rβ)

rβ
= λ for all β ∈ [sc] (148)

From the second equation we have that

(1 + γ) µβ σ(c rβ) rβ =
nc λ r

2
β

Lc

Using this we can rewrite the first equation as

1

c

1

nLc

sc∑
β=1

nc λ r
2
β

Lc
= λ which simplifies to

sc∑
β=1

(rβ
c

)2
= LnL−1

c .

which is the desired equation (see (151)).

We now rewrite the second equation as

λ

L

rβ
c

nc
(1 + γ)σ(c rβ)

= µβ

We then recall that σ(x) := 1
1+γe(1+γ)x and therefore

nc
(1 + γ) σ(crβ)

=
nc

1 + γ
(1 + γe(1+γ)crβ ) = nc − 1 + exp

(
nc

nc − 1
crβ

)
and therefore the second equation can be written as

λ

L

rβ
c

(
nc − 1 + exp

(
nc

nc − 1
c rβ

))
= µβ .

We now prove that if the regularization parameter λ is small enough then the system has a unique
solution.
Proposition D. Assume µ1 ≥ µ2 ≥ . . . ≥ µsc > 0 and

λ2 <
L

nL+1
c

sc∑
β=1

µ2
β . (149)

Then the system sc + 1 equations

λ

L

rβ
c

(
nc − 1 + exp

(
nc

nc − 1
c rβ

))
= µβ for all 1 ≤ β ≤ sc (150)

sc∑
β=1

(rβ
c

)2
= LnL−1

c (151)

has a unique solution (c, r1, . . . , rsc) ∈ Rsc+1
+ . Moreover this solution satisfies r1 ≥ r2 ≥ . . . ≥

rsc > 0.

53



Published as a conference paper at ICLR 2024

Proof. Letting ρβ := rβ/c, the system is equivalent to

g(c, ρβ) =
L

λnc
µβ for all β ∈ [sc] (152)

sc∑
β=1

ρ2β = LnL−1
c (153)

for the unknowns (c, ρ1, ρ2, . . . , ρsc) where

g(c, x) = x
(
1 + γe(1+γ)c

2x
)
/(1 + γ) and γ = 1/(nc − 1)

Note that
∂g

∂x
(c, x) ≥

(
1 + γe(1+γ)c

2x
)
/(1 + γ) ≥ 1 ∀(c, x) ∈ R× [0,+∞)

and therefore x 7→ g(c, x) is strictly increasing on [0,+∞). Also note that we have

g(c, 0) = 0, lim
x→+∞

g(c, x) = +∞

So x 7→ g(c, x) is a bijection from [0,+∞) to [0,+∞) as well as a bijection from (0,+∞) to
(0,+∞). Recall that µβ ∈ (0,+∞) for all β ∈ [sc]. Therefore given c ∈ R and β ∈ [sc], the
equation

g(c, x) =
L

λnc
µβ

has a unique solution in (0,+∞) that we denote by ϕβ(c). In other words, the function ϕβ(c) is
implicitly defined by

g(c, ϕβ(c)) =
L

λnc
µβ . (154)

Also, since g(0, x) = x, we have

ϕβ(0) =
L

λnc
µβ

Claim F. The function ϕβ : [0,+∞) → (0,+∞) is continuous, strictly decreasing, and satisfies
limc→+∞ ϕβ(c) = 0.

Proof. We first show that c 7→ ϕβ(c) is continuous. Since ∂g
∂x (c, x) ≥ 1 for all x ≥ 0, we have

g(c, x2)− g(c, x1) =

∫ x2

x1

∂g

∂x
(c, x)dx ≥

∫ x2

x1

1dx = x2 − x1 for all c and all x2 ≥ x1 ≥ 0.

As a consequence, for all c1, c2, we have

|ϕβ(c2)− ϕβ(c1)| ≤ |g(c1, ϕβ(c2))− g(c1, ϕβ(c1))| = |g(c1, ϕβ(c2))− g(c2, ϕβ(c2))| (155)

where we have used the fact that g(c1, ϕβ(c1)) = L
λnc

µβ = g(c2, ϕβ(c2)). From (155) it is clear
that the continuity of c 7→ g(c, x) implies the continuity of c 7→ ϕβ(c).

We now prove that ϕβ is strictly decreasing on [0,+∞). Let 0 ≤ c1 < c2. Note that for any x > 0,
the function c 7→ g(c, x) is strictly increasing on [0,+∞). Since ϕβ(c) > 0 we therefore have

g(c2, ϕβ(c2)) =
L

λnc
µβ = g(c1, ϕβ(c1)) < g(c2, ϕβ(c1))

Since x 7→ g(c, x) is strictly increasing for all c, the above implies that ϕβ(c2) < ϕβ(c1).

Finally we show that limc→+∞ ϕβ(c) = 0. Since ϕβ is decreasing and non-negative on [0,+∞),
the limc→+∞ ϕβ(c) = A is well defined. We obviously have ϕβ(c) ≥ A for all c ≥ 0. Since
x 7→ g(c, x) is increasing we have

L

λnc
µβ = g(c, ϕβ(c)) ≥ g(c, A)

But the function g(c, A) is unbounded for all A > 0. Therefore we must have A = 0.
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System (152)–(153) is equivalent to

ρβ = ϕβ(c) for all β ∈ [sc] (156)
sc∑
β=1

(ϕβ(c))
2
= LnL−1

c (157)

Define the function

Φ(c) :=

sc∑
β=1

(ϕβ(c))
2

Then Φ clearly inherits the properties of the ϕβ’s: it is continuous, strictly decreasing, and satisfies

Φ(0) =

sc∑
β=1

(
L

λnc
µβ

)2

and lim
c→+∞

Φ(c) = 0

Therefore, if

LnL−1
c ≤

L∑
β=1

(
L

λnc
µβ

)2

then there is a unique c ≥ 0 satisfying (157). Since x 7→ g(c, x) is increasing, equation (152)
implies that the corresponding ρβ’s satisfy ρ1 ≥ ρ2 ≥ . . . ≥ ρsc > 0.

H NO SPURIOUS LOCAL MINIMIZER FOR R(W,U).

In this section we prove that if d > min(nw,KL), then R(W,U) does not have spurious local
minimizers; all local minimizers are global. To do this, we introduce the function

f : Rd×KL → R

define as follow. Any matrix V ∈ Rd×KL can be partition intoK submatrices Vk ∈ Rd×L according

V = [V1 V2 · · · VK ] where Vk ∈ Rd×L (158)

The function f is then defined by the formula

f(V ) :=
1

K

K∑
k=1

∑
x∈Xk

ℓ
(〈
V1, ζ(x)

〉
F
, . . . ,

〈
VK , ζ(x)

〉
F
; k
)

Dzk
(x)

where ℓ(y1, . . . , yK ; k) denotes the cross entropy loss

ℓ(y1, . . . , yK ; k) = − log

(
exp (yk)∑K

k′=1 exp (yk′)

)

We remark that f is clearly convex and differentiable. We then recall from (19) that the kth entry of
the vector y = hW,U (x) is

yk =
〈
Ûk , W ζ(x)

〉
F
=
〈
WT Ûk , ζ(x)

〉
F

Recalling that Û =
[
Û1 · · · ÛK

]
, we then see that the risk can be expressed as

R(W,U) = f(WT Û) +
λ

2

(
∥W∥2F + ∥Û∥2F

)
(159)

The fact that R(W,U) does not have spurious local minimizers come from the following general
theorem.
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Theorem G. Let g : Rm×n → R be a convex and differentiable function. Define

φ(A,B) := g(ATB) +
λ

2

(
∥A∥2F + ∥B∥2F

)
where A ∈ Rd×m and B ∈ Rd×n

and assume λ > 0 and d > min(m,n). Then any local minimizer (A,B) of the function φ :
Rd×m × Rd×n → R is also a global minimizer.

The above theorem directly apply to (159) and shows that the risk R(W,U) does not have spurious
local minimizers when λ > 0 and d > min(nw,KL).

The remainder of the section is devoted to the proof of theorem G. We will follow the exact same
steps as in Zhu et al. (2021), and provide the proof mostly for completeness (and also to show how
the techniques from Zhu et al. (2021) apply to our case). Finally, we refer to Laurent & Brecht
(2018) for a proof of theorem G in the case λ = 0.

Proof of theorem G. To prove the theorem it suffices to assume that d > m without loss of general-
ity. To see this, note that the function g̃(D) = g(DT ) is also convex and differentiable and note that
(A,B) is a local minimum of

g(ATB) +
λ

2

(
∥A∥2F + ∥B∥2F

)
if and only if it is a local minimum of

g̃(BTA) +
λ

2

(
∥A∥2F + ∥B∥2F

)
So the theorem for the case d > n follows by appealing to the case d > m with the function g̃.

So we may assume d > m. Following Zhu et al. (2021), we define the function ψ : Rm×n → R by

ψ(D) := g(D) + ∥D∥∗

where ∥D∥∗ denote the nuclear norm of D. We then have:

Claim G. For all A ∈ Rd×m and B ∈ Rd×n, we have that ψ(ATB) ≤ φ(A,B).

Proof. This is a direct consequence of the inequality

∥ATB∥∗ ≤ 1

2

(
∥A∥2F + ∥B∥2F

)
that we reprove here for completeness. Let ATB = UΣV T be the compact SVD of ATB. That is
Σ ∈ Rr×r, U ∈ Rm×r, V ∈ Rn×r, and r is the rank of ATB. We then have

∥ATB∥∗ = Tr(Σ) = Tr(UTATBV ) = ⟨AU,BV ⟩F ≤ 1

2

(
∥AU∥2F + ∥BV ∥2F

)
≤ 1

2

(
∥A∥2F + ∥B∥2F

)

Computing the derivatives of φ gives

∂φ

∂A
(A,B) = B

[
∇g(ATB)

]T
+ λA and

∂φ

∂B
(A,B) = A ∇g(ATB) + λB (160)

So (A,B) is a critical point of φ if and only if

λA = −B
[
∇g(ATB)

]T
(161)

λB = −A ∇g(ATB) (162)

Importantly, from the above we get

AAT = BBT ∈ Rd×d (163)

56



Published as a conference paper at ICLR 2024

which implies thatA andB have same singular values and same left singular vectors. Let U ∈ Rd×d
be the orthonormal matrix containing the eigenvectors of AAT = BBT . From this matrix we can
construct an SVD for both A and B:

A = UΣAV
T
A and B = UΣBV

T
B

where ΣA ∈ Rd×m and ΣB ∈ Rd×n have the same singular values. From this we get the SVD of
ATB,

ATB = VAΣ
T
AΣBV

T
B (164)

and it is transparent that,

∥ATB∥∗ = ∥A∥2F = ∥B∥2F . (165)

In particular this implies that if (A,B) is a critical point of φ, then we must have φ(A,B) =
ψ(ATB). This also implies that〈

∇g(ATB), ATB
〉
F
=
〈
A∇g(ATB), B

〉
F
= −λ∥B∥2F = −λ∥ATB∥∗ (166)

Using this together with the fact that the nuclear norm is the dual of the operator norm, that is
∥C∥∗ = sup∥G∥op≤1 ⟨G,C⟩F , we easily obtain:

Claim H. Suppose (A,B) is a critical point of φ which satisfies
∥∥∇g(ATB)

∥∥
op

≤ λ, then (A,B)

is a global minimizer of φ.

Proof. For any matrix C ∈ Rm×n we have

∥ATB∥∗ +
〈
− 1

λ
∇g(ATB), C −ATB

〉
F

=

〈
− 1

λ
∇g(ATB), C

〉
F

≤ sup
∥G∥op≤1

⟨G,C⟩F = ∥C∥∗

and therefore − 1
λ∇g(A

TB) ∈ ∂∥ATB∥∗. This implies that ATB is a global min of ψ. The fact
that φ(A,B) = ψ(ATB) (because (A,B) is a critical point φ) together with Claim G, then implies
that (A,B) is a global minimizer of φ.

We now show that all local min (A,B) of φ with ker(AT ) ̸= ∅ must satisfy
∥∥∇g(ATB)

∥∥
op

≤ λ.

Claim I. Suppose (A,B) is a critical point of φ which satisfies

(i) ker(AT ) ̸= ∅

(ii)
∥∥∇g(ATB)

∥∥
op
> λ

Then (A,B) is not local min.

Proof. We follow the computation from Zhu et al. (2021). Let (A,B) be a critical point of φ. Since
AAT = BBT , we must have that ker(AT ) = ker(AAT ) = ker(BBT ) = ker(BT ). According to
(ii) these kernels are non trivial and we may choose a unit vector z ∈ Rd that belongs to them. We
then consider the perturbations

dA = zaT dB = zbT

where a ∈ Rm and b ∈ Rn are unit vectors to be chosen later. Note that since z,a and b are unit
vectors we have ∥dA∥2F = ∥dB∥2F = 1. Moreover, the columns of dA and dB are clearly in the
kernel of AT and BT , therefore AT dA = AT dB = BT dA = BT dB = 0. This implies that all the
‘cross terms’ disappear when expanding the expression:

(A+ εdA)T (B + εdB) = ATB + ε2dAT dB = ATB + ε2abT

We also have
∥A+ εdA∥2F = ∥A∥2F + ∥εdA∥2F = ∥A∥2F + ε2
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and similarly, ∥B + εdB∥2F = ∥B∥2F + ε2. We then get

φ(A+ εdA,B + εdB) = g
(
(A+ εdA)T (B + εdB)

)
+
λ

2

(
∥A+ εdA∥2F + ∥B + εdB∥2F

)
= g(ATB + ε2abT ) +

λ

2

(
∥A∥2F + ∥B∥2F

)
+ λε2

=
[
g(ATB) +

〈
∇f(ATB), ε2abT

〉
F
+O(ε4)

]
+
λ

2

(
∥A∥2F + ∥B∥2F

)
+ λε2

= φ(A,B) + ε2
( 〈

∇g(ATB),abT
〉
F
+ λ

)
+O(ε4)

Let G = ∇f(ATB) ∈ Rm×n. We want to choose the unit vectors a and b that makes
〈
G,abT

〉
F

as negative as possible. The best choice is to choose −a and b to be the first left and right singular
vectors of G since this give the negative of the best rank-one approximation of G. So we choose
a ∈ Rm and b ∈ Rn such that Gb = −σ1a, and therefore〈

abT , G
〉
F
= Tr(baTG) = Tr(aTGb) = −σ1

which gives

φ(A+ εdA,B + εdB) = φ(A,B) + ε2
(
−
∥∥∇g(ATB)

∥∥
op

+ λ
)
+O(ε4)

and (ii) implies that (A,B) is not a local min.

Combining the previous two claims we can easily prove the theorem. Indeed, if d > m, then the
kernel of AT is nontrivial and (i) is always satisfied. As a consequence, if (A,B) is a local min of
φ, then

∥∥∇g(ATB)
∥∥
op

≤ λ, and therefore (A,B) must be a global min of φ.
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