
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DAG-MOE: FROM SIMPLE MIXTURE TO STRUC-
TURAL AGGREGATION IN MIXTURE-OF-EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) models have become a leading approach for decou-
pling parameter count from computational cost in large language models. Despite
significant progress, effectively scaling MoE performance remains a challenge.
Previous work shows that the use of fine-grained experts enlarges the space of
expert combinations and can improve flexibility, but it also imposes substantial
routing overhead, creating a new scalability bottleneck. In this paper, we explore
a complementary axis for scaling — expert-output mixture. We first analyze the
limitations of the standard weighted-summation aggregation in conventional MoE
architectures. We then theoretically demonstrate that introducing structural ag-
gregation both expands the expert-combination space without altering the experts
or router configuration and enables possible multi-step reasoning within a sin-
gle MoE layer. To this end, we propose DAG-MoE, a sparse MoE framework
that employs a lightweight module to automatically learn the optimal aggrega-
tion structure among the selected experts. We evaluate DAG-MoE under standard
language modeling settings. Extensive experiments show that DAG-MoE con-
sistently improves performance in both pretraining and fine-tuning, surpassing
traditional MoE baselines.

1 INTRODUCTION

Mixture-of-Experts (MoE) models (Shazeer et al., 2017b; Lepikhin et al., 2020; Fedus et al., 2022)
have recently emerged as a state-of-the-art architecture for large-scale foundation models, such as
Large Language Models (LLMs). Compared to standard dense models, MoE decouples model size
from computational cost by splitting a large dense neural network into multiple smaller experts, with
a router dynamically selecting the top-K most relevant experts for each input. This paradigm has
been widely adopted in recent open-source LLMs and multimodal models (Liu et al., 2024; Yang
et al., 2025; Meta, 2025; Muennighoff et al., 2025; Li et al., 2025b).

Despite the success of MoE, how to effectively scale their performance remains unclear. Prior
works have examined various aspects: some studies improve the routing mechanism by propos-
ing advanced routing algorithms (Zhou et al., 2022; Qiu et al., 2024; Chi et al., 2022; Wang et al.,
2024); others investigate the relationship between MoE performance and sparsity (Li et al., 2025a;
Tian et al., 2025b); and another line of research explores the effect of expert granularity (He, 2024;
Ludziejewski et al., 2024). In particular, these studies show that MoE performance can be improved
by increasing both the total number of experts and the number of active experts while reducing the
size of each individual expert. While this strategy has strong potential, it also introduces substantial
router-side complexity, creating a new bottleneck for scaling. Consequently, state-of-the-art MoE
systems typically avoid extremely fine-grained configurations. Nevertheless, most existing work on
MoE overlooks a critical component of the architecture: how expert outputs are mixed. In standard
MoE, once the router selects the top-K experts, the final representation is formed by a weighted sum
using the router scores as coefficients. Because weighted summation is permutation-invariant, the
output is fully determined by the set of selected experts—independent of their ordering or interac-
tions—thereby constraining the framework’s flexibility and expressiveness.

In this paper, we propose replacing simple mixing with structural aggregation in MoE. Specif-
ically, we organize the aggregation of the top-K experts into a directed acyclic graph (DAG), as-
signing each expert a distinct structural role within the graph. output of experts are then aggregated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

according to the prescribed graph structure. We demonstrate that introducing structural relation-
ships among experts effectively expands the expert combination space without modifying the ex-
perts or the router, and avoids adding additional complexity on the router side, thereby increasing
the model’s expressiveness. Furthermore, the DAG structure enables the approximation of multi-
step reasoning within a single MoE layer, which is beneficial for solving complex problems such
as dynamic programming. To this end, we present DAG-MoE, which incorporates a DAG learning
module within the MoE layer that automatically discovers the optimal structure among the selected
top-K experts and performs aggregation according to that structure through iterative refinement.
We conduct extensive experiments on both language modeling tasks and downstream tasks, and
DAG-MoE consistently outperforms standard MoE architectures, demonstrating the effectiveness
of structural aggregation relative to simple mixing.

2 PRELIMINARIES

Architecture of MoE. In the paper, we consider standard transformer-based LLM model. Let x ∈
Rd denote the input token embedding in LLM. Let {Ei(·)|i = 1 . . . , N} be a set of N expert
networks, where each expert is an identical Feed-Forward Network (FFN) with inner hidden size
dr. Finally, let gi(·) be the sparse gate function in router that choose the top-K experts given the
input token. The output of the MoE layer is computed as:

y =

N∑
i=1

gi(x)Ei(x), (1)

where the gating function is defined as:

gi(x) =

{
si, si ∈ TopK({sj}Nj=1,K),

0, otherwise,
and si = δ(e⊤i x). (2)

The δ is the score function, which can be implemented by the Softmax or the Sigmoid function.
ei ∈ Rd is a learnable vector related to i-th expert. The gating function ensures that only the top-K
experts can be used to compute the output of token x in the MoE layer.

Granularity of MoE. Key hyperparameters of an MoE model include the number of experts N and
the number of active experts K. Recent studies show that increasing the granularity of experts can
scale up the performance of MoE (He, 2024; Ludziejewski et al., 2024). Specifically, granularity
is defined as G =

df

dr
, where df is the hidden size of a dense FFN counterpart. For example,

suppose df = 2048 and dr = 1024, the granularity is 2 and we pick top-2 experts. Holding df
fixed while decreasing dr increases K (and also N , as we typically assume the total parameters in
the MoE layer are fixed). Higher granularity enlarges the space of possible expert combinations
and thus the model’s flexibility and expressiveness. For example, suppose that we have 8 experts
and we choose the top-2 experts, there are in total

(
8
2

)
= 28 different combinations. Instead, if

we have 16 experts and we choose the top-4 experts, the total combination quickly increases to(
16
4

)
= 1820. Despite these benefits, fine-grained MoE introduces additional routing complexity.

First, as each expert i needs a learnable vector ei to serve as a router key, increasing the number of
experts greatly expands router parameters. Moreover, identifying the optimal expert set per token
becomes harder, and maintaining balanced token–expert assignments further complicates training.
Substantial efforts have aimed to improve fine-grained MoE. PEER (He, 2024) reduces expert vector
size via product-key retrieval Lample et al. (2019), but it remains costly when scaled up to millions
of experts. (Ludziejewski et al., 2024) uses an expert-choice router to address balance issues, but
this proves suboptimal compared to token-choice routers in large-scale training (Muennighoff et al.,
2025).

3 DAG-MOE: HARNESSING THE POWER OF STRUCTURE IN MOE

3.1 FROM SIMPLE MIXTURE TO STRUCTURAL-GUIDED AGGREGATION

Given the current limitations of MoE scaling, we explore alternative ways to enhance MoE capabil-
ity. We begin by discussing the expressiveness of the standard MoE architecture. As shown in Eq. 1,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1

2

3

4

1

2

3

4

Standard MoE Tree-style MoE DAG-style MoE

Input token

𝑖 𝑖-th expert

𝐴𝐺𝐺

Aggregation

𝐴𝐺𝐺

𝐴𝐺𝐺

𝐴𝐺𝐺

1

Output token

2

3

4

𝐴𝐺𝐺

𝐴𝐺𝐺

𝐴𝐺𝐺

𝐴𝐺𝐺

Figure 1: Comparison of different mixing structures in MoE.

expressiveness is determined by two components: the expert set F = {Ei(x) | i = 1, . . . , N}
and the score set S = {gi(x) | i = 1, . . . , N}. This can be broken down into the capacity of
each Ei(x) and gi(x), and the cardinalities |F| and |S|. Each gi(x) is a single scalar, thus having
constant expressiveness, while each Ei(x) is an FFN with identical architecture whose capacity is
determined by its parameter size. Since increasing expert size raises practical concerns, throughout
the discussion, we assume that the total parameter budget for F remains fixed. Under this constraint,
improving expressiveness depends on scaling the cardinality of F and S, which both equal to N .
In essence this equivalent to increase the granularity of MoE. Once both F and S are determined,
the overall expressiveness of the MoE is bounded by the functional form of Eq. 1, which is also
fixed once the top-K experts are chosen by the router, due to the permutation-invariant nature of
summation. To further improve the model capacity, a natural question arises:

Is there a more effective way other than summation to combine information from the experts?

Let us view the experts from a structural perspective and consider the case where the top-4 experts
are selected. As shown on the left of Fig. 1, the aggregation process in standard MoE can be inter-
preted as a computational graph in which each expert corresponds to an isolated node with no edges.
In this setting, permuting the order of experts does not change the graph, since all nodes share the
same structural role. Now, let AGG denote the aggregation function, and consider a tree-structured
computation over the top-4 experts. As illustrated in the middle of Fig. 1, the experts are arranged
into a hierarchy of depth 2: at the first level, experts 1 and 2 are combined by AGG to produce an
intermediate representation, while experts 3 and 4 are simultaneously merged by another instance
of AGG. At the second level, these two intermediate outputs are further combined using additional
instances of AGG. In this setup, swapping experts 1 and 3 changes the final output, because the
second-level operations now act on different inputs. This indicates that experts 1 and 3 occupy dis-
tinct structural roles within this expert graph. More generally, the top-4 experts can be organized
into a directed acyclic graph (DAG), with an example shown in the right panel of Fig. 1. By sim-
ply permuting the four experts or choosing a different DAG, the computational graph changes and
yields a different output. Thus, even without modifying the experts or the router, the expressiveness
of the MoE architecture can be substantially enhanced through structural composition alone. For
a given K, the number of possible DAGs grows exponentially, offering a vast space of structural
configurations. We refer to this form of structural aggregation as DAG-style MoE.

3.2 A GENERAL FORMULATION OF DAG-STYLE MOE AND THEORETICAL ANALYSIS

In this section, we formally define and analyze DAG-style MoE. We assume the expert and router
configurations remain the same as in standard MoE, and denote the list of top-K experts selected
by the router as k = [k | sk ∈ TopK({sj}Nj=1,K)]. We then define G(K) as the set of all possible
DAGs constructed from K experts, where each DAG is represented as G = (V,A). Here, V denotes
the set of nodes, and each node v ∈ V corresponds to an output representation, which can be
either an initial expert output or an intermediate result produced by the aggregation function AGG.
Let each node be indexed by v = (l, i), where l denotes the depth of the node and i its index
at depth l. For example, the initial output from expert 1 corresponds to node (0, 1). The set A
is the adjacency list, which specifies the connections within the DAG. Formally, we define A =
{Al

i | l = 1, . . . , L; i = 1, . . . , n(l)}, where L is the maximum depth of the DAG and n(l)
denotes the number of nodes at depth l. Each Al

i is the set of incoming nodes connected to node
(l, i). Formally, (k, j) ∈ Al

i means that node (k, j) connect to node (l, i) and we have k < l.
For example, the adjacency list of the tree graph shown in the middle of Fig. 1 can be written as
A = {A1

1 = {(0, 1), (0, 2)}, A1
2 = {(0, 3), (0, 4)}, A2

1 = {(1, 1), (1, 2)}}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Now, let xl
i denote the learned representation of node v = (l, i). For a given DAG G ∈ G(K), the

corresponding computation in DAG-style MoE can be formulated as:

x0
i = gk[i](x)Ek[i](x), i = 1, . . . ,K, (3)

xl
i = AGG({xk

j |(k, j) ∈ Al
i}), i = 1, . . . , n(l), l = 1, . . . , L− 1, (4)

y = AGG({xk
j , |(k, j) ∈ AL

1 }). (5)

Here, we assume that the last depth L only have one node (L, 1) and its connection in G is defined
by AL

1 . With the above formulation in place, we are now prepared to present a formal analysis and
theoretical results for DAG-style MoE.

Theoretical expressiveness. Throughout the discussion, we assume AGG is a sufficiently powerful
injective function over set inputs, which can be readily implemented using MLPs combined with
summation, min, or sum (Zaheer et al., 2017; Xu et al., 2018). Under this assumption, we show that
DAG-style MoE possesses strictly greater expressive power than standard MoE.
Proposition 3.1. Given a top-K experts list k, any DAG-style MoE satisfy Eq. 3-Eq. 5 can injec-
tively encode any G ∈ G(K) if AGG is injective.
Theorem 3.2. Given a top-K experts set k, any DAG-style MoE satisfy Eq. 3-Eq. 5 is strictly more
powerful than standard MoE with Eq. 1 if AGG is injective.

We leave the detailed proof in Appendix A.1. Briefly speaking, we connect the DAG-style MoE
to the massage passing graph neural network (Xu et al., 2018; Gilmer et al., 2017) and leverage
the results from D-VAE (Zhang et al., 2019) to prove that the above formulation can injectively
encode any different DAG structure and node permutation, while the standard MoE cannot, which
is sufficient to prove that DAG-style MoE holds better expressiveness than standard MoE.

Benefits for Reasoning. Next, we discuss the practical benefits brought by the greater expressive-
ness of DAG-style MoE. Specifically, we use dynamic programming (DP) as a running example. DP
is a foundational paradigm for solving decision-making and combinatorial optimization problems.
We defer the formal definition of the general DP framework to Appendix A.2.1. In general, solving
a DP problem entails iteratively solving a partially ordered collection of subproblems and aggre-
gating their solutions to produce the final answer. Recent work shows that Transformers without
a Chain-of-Thought (CoT) mechanism (Wei et al., 2022) cannot effectively solve dynamic pro-
gramming (DP) tasks (Feng et al., 2023), as a constant-depth model cannot simulate the requisite
multi-step subproblem computations. Importantly, many DP solution procedures induce a directed
acyclic graph (DAG) over subproblems via their natural partial order, which suggests a direct fit for
DAG-style MoE. Conceptually, due to the flexibility of the DAG-style MoE, a well-trained model
can naturally learn a alignment between the DP problem and corresponding DAG solving process.
By learning mapping between each input and answer of each subproblem through AGG and perform
aggregation according to the DAG structure, it can directly output the final solution of a DP problem.
In what follows, we demonstrate that DAG-style MoE is much more effective than standard MoE
to emulate this multi-step reasoning. Let G(dp) be the computational DAG for a DP problem and
L(dp) be the maximum depth of the G(dp), we have:
Theorem 3.3. For any integer n ∈ N, consider any DP problem satisfying Assumption 4.2 to 4.5
in (Feng et al., 2023) with problem size length less than O(K log(n)), there exists a log-precision
constant depth transformer composed of (i) multi-head attention block and (ii) at least one DAG-
MoE block with top-K experts and number of iteration L ≥ L(dp) and computation defined by
G(dp), with hidden dimension d and parameter size bounded by O(poly(n)) that can output the
correct DP answer.

We defer the detailed proof to Appendix A.3. At a high level, by constructing the DAG-style MoE
computation to mirror the DP computation graph G(dp) the model can explicitly simulate all inter-
mediate subproblem steps for DP instances of size O(K log(n)) (with K active experts), whereas
standard MoE can realize only a single aggregation step, due to its permutation-invariant summa-
tion. While solving a full O(n)-sized DP instance in a single forward pass with a constant-depth
DAG-style MoE remains challenging, a single layer can nevertheless execute multiple reasoning
steps, effectively increasing the logical depth of a standard Transformer layer without significant
parameter and compute overhead. Due to space limit, we defer detailed example and additional
discussion to Appendix A.2.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(zero initialization)

DAG Learning Module MoE Block

E1 E2 E3 E4

Input token
ResidualResidual

output token

1 2 3 4

𝜎 𝜎 𝜎 𝜎

Figure 2: Left: the DAG Learning Module automatically learns an optimal DAG structure over the
selected experts and execute DAG-style computation. Right: the complete MoE block in DAG-MoE.

3.3 DAG-MOE: LEARNING OPTIMAL DAG BETWEEN EXPERTS

As discussed in the previous section, organizing experts into a DAG offers several theoretical ad-
vantages. However, implementing a DAG-style MoE architecture is highly non-trivial. First, since
the size of G(K) grows exponentially with K, the design space of possible DAG structures quickly
becomes intractable. A straightforward solution is to predefine the structure and then design specific
model tailored to the structure. For example, S′MoRE (Zeng et al., 2025) fixes the structure to a tree
and employs a hierarchical router that selects experts at each depth in a top-down manner. However,
this mechanism does not generalize to other structures, and different tokens may require different
structures for optimal processing. In this section, we introduce DAG-MoE, a general and practical
architecture that learns the optimal DAG structure and processes the aggregation accordingly.

Architecture design. Specifically, in DAG-MoE, given an input token, the router first selects the
top-K experts and obtains their output representations, which serve as the initial node set for DAG
learning. A DAG learning module is then applied to infer the structure among these expert repre-
sentations and perform aggregation based on the learned connections. This module operates for L
iterations, with each iteration applies the same module to learn structure at current depth, producing
a DAG with maximum depth L. At each iteration i, node representations from the previous iteration
are updated, and the connectivity for the current depth is determined. Formally, let xl

i be the output
representation of node i at depth l = 0, . . . , L for token x. The DAG learning module learns the
DAG structure between experts and generates the final token representation through the following
procedure:

xl=0
i = gk[i](x)Ek[i](x) +

x

K
, i = 1, . . . ,K, (6)

xl
i,input = LayerNorm

(
xl−1
i

)
, (7)

xl
i,down = W l

downx
l
i,input, (8)

xl
(i,j) = Concat(xl

i,down, x
l
j,down), (9)

el(i,j) = σ
(
W l

edgex
l
(i,j)

)
, x̂l

(i,j) = el(i,j) ∗W
l
nodex

l
(i,j), (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

xl
i = W l

up

 ∑
j=1,...,K

x̂l
(i,j)

+ xl−1
i , (11)

where Wdown ∈ Rdg×d, Wedge ∈ Rdg×2dg , Wnode ∈ Rdg×2dg , and Wup ∈ Rd×dg are learnable
parameters and dg is the hidden size in DAG learning module, which can be independent to both the
model hidden size d and expert hidden size dr. σ is a nonlinear activation, which is implemented by
the same activation function as in expert FFN. The final output of the MoE block is computed by:

y =
∑

i∈1,...,K

xL
i . (12)

We now detail the process and key design choices in the DAG learning module. First, Eq. 6 computes
the output representation for each selected expert i, serving as the initial node representation at depth
0. In addition, we incorporate the original token representation through a residual connection. To
ensure that the total residual contribution remains normalized to 1 after summing over all experts
in Eq. 12, the residual added to each node is scaled by a factor of 1/K. Empirically, we find that
both the residual connection and the scaling factor are crucial for stable optimization. To keep
the DAG learning module lightweight and avoid excessive parameters, at each iteration the node
representations are first normalized and then projected into a lower-dimensional space using Eq. 7
and Eq. 8. The structural relationships are then learned within this reduced space.

At iteration l, the structure is learned and executed as follows. First, we choose the number of
nodes n(l). In principle, it can be any positive integer, leading to an enormous search space. In
DAG-MoE, we fix n(l) = K, which is equal to the number of experts. Next, for each node (l, i), i =
1, . . . ,K, we determine how it aggregates information from previous depths. Learning connections
to all earlier nodes is computationally expensive and yields overly dense graphs. To mitigate this,
we restrict each node (l, i) to aggregate only from nodes at depth l − 1; information from depths
0, . . . , l − 2 is injected via residual connections. Finally, we use xl

i,down as the query for node (l, i)

and all xl
j,down, i = 1, . . . ,K for nodes (l − 1, j). The connection between node (l, i) and (l − 1, j)

are learned through Eq. 9 and Eq. 10.

Specifically, we first construct possible connections between (l, i) and (l − 1, j) for j = 1, . . . ,K
by concatenate xl

i,down with all xl
j,down. Next, the edge is learned by the projection Wedge and an ac-

tivation σ. The edge can potentially carry various information, like the logic operation in reasoning
tasks, or the relation in knowledge graphs, or even no connection. Next, the connection repre-
sentation between node (l, i) and (l − 1, j) is learned by Eq. 10, which is essential an element-wise
gating using eli,j . Finally, the information is aggregated and projected back to the original dimension
through Eq. 11, yielding the output representation for node (l, i). Note that for the up projection,
we use zero-weight initialization to stabilize training. The complete workflow of the DAG learning
module, together with the MoE block in DAG-MoE, is depicted in Fig. 2.

Computational cost analysis. Since DAG-MoE introduces only the DAG learning module as an
additional component, we focus our cost analysis on this module. Let the batch size be B and
the sequence length be S. The FLOPs of a single matrix multiplication are 2BSdindout. Based on
this, the FLOPs of the DAG learning module for a single iteration are FLOPsdag = 4BSddg + 4 ∗
K2BS ∗2dgdg = 4BSddg +8K2BSd2g . In comparison, the FLOPs for an additional shared expert
in MoE with hidden dimension dg is FLOPsexpert = 4BSddg + 2dBSdg . Subtracting and dividing
the common terms, the comparison reduces to 4K2dg versus d. In practical, as we have both K ≪ d
and dg ≪ d, 4K2dg can be similar or smaller than d. However, there will be additional overhead
for DAG learning module with multiple iteration due to the sequential nature of it.

4 RELATED WORKS

Mixture of Experts (MoEs). MoEs (Shazeer et al., 2017a; Fedus et al., 2022) have become a domi-
nant paradigm for building large-scale models such as LLMs due to their remarkable computational
efficiency. By decoupling model size from computational cost, the MoE design enables fine-grained
control over inference efficiency. Many state-of-the-art LLMs adopt MoE architectures, including
DeepSeek-V3 Liu et al. (2024), Mixtral Jiang et al. (2024), and Qwen-3 Yang et al. (2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Architecture improvement of MoEs. A number of works have sought to improve MoE archi-
tectures by modifying their core design. For instance, MH-MoE extends the MoE framework to a
multi-head setting, analogous to the design of multi-head attention. CoE (Wang et al., 2025) intro-
duces an iterative routing strategy, where the top-K experts are selected through multiple rounds
and the output representation is refined step by step. Recently, S′MoRE (Zeng et al., 2025) first
introduced the notion of structural flexibility into the MoE architecture. Rather than selecting top-K
experts in a single step, S′MoRE employs a hierarchical router that iteratively selects experts across
multiple stages. At each iteration, selected experts are connected to the next-layer experts through
a non-linear transformation, forming a tree-like structure. The aggregation of expert outputs is then
conducted based on this tree. While S′MoRE presents a novel structural perspective, it is primar-
ily designed as a parameter-efficient adapter module for LLM fine-tuning and is not evaluated as a
standalone MoE backbone. Moreover, its design remains limited to a tree-based structure and does
not explore generalization to other structural forms.

Scaling of MoEs. Recently, a growing body of work has focused on understanding and improving
the performance scaling of MoE architectures. For instance, OlMoE (Muennighoff et al., 2025) and
Skywork-MoE (Wei et al., 2024) conduct extensive experiments to analyze different components and
training strategies of MoE. Some studies improve the routing mechanism by proposing advanced
routing algorithms, including expert-choice routing (Zhou et al., 2022), RNN routing (Qiu et al.,
2024). Some also analyze the representation distribution between the router embedding and token
embedding (Chi et al., 2022). Others try to improve the training stability by improving the balance
loss of token-choice routing (Wang et al., 2024) or loss computation (Qiu et al., 2025). (Ludziejewski
et al., 2024) study the effect of granularity and show that fine-grained experts improve the flexibility
of MoE, thereby enhancing scaling performance. PEER He (2024) pushes the scalability of MoE to
a million experts using product-key retrieval. (Abnar et al., 2025) investigates the optimal sparsity
level for MoE architectures, while (Ludziejewski et al., 2025) examines the combined effects of
factors such as data, model design, and training strategies. Finally, Ling-mini-beta (Tian et al.,
2025a) evaluates the efficiency of MoE compared to dense models.

5 EXPERIMENTS

In this section, we empirically evaluate DAG-MoE. Specifically, we aim to answer the following
questions: Q1: Does DAG-MoE exhibit greater performance than standard MoE across different
base MoE configurations? Q2: How do the hyperparameters of the DAG learning module affect
DAG-MoE ’s performance? Q3: How does DAG-MoE perform on downstream language tasks? To
address these questions, we integrate DAG-MoE as the primary MoE block in an LLM and train the
model from scratch on casual language modeling task.

5.1 EXPERIMENTAL SETTINGS

We briefly discuss the setting of pretraining and fine-tuning, defer more details to Appendix B.

Model Details. The architecture of DAG-MoE is implemented on top of Llama3 (Dubey et al.,
2024). Except the MoE block, we directly adopt the architecture and tokenizer of Llama3.1-8B.
Due to resource constraints, we reduce the number of layers and the hidden size. For the MoE
block, we use a standard token-choice router. The router follows the implementation of Switch
Transformer Fedus et al. (2022) with standard balance loss. Meanwhile, we add Z-loss to regularize
the learned router logits Muennighoff et al. (2025); Zoph et al. (2022). To systematically evaluate the
behavior of DAG-MoE under different model size, we design three model variants: small, medium,
and large, denoted as DAG-MoE-s, DAG-MoE-m, DAG-MoE-l, respectively. In the DAG-MoE-s,
we use 4 layers with a hidden size of 512. For the MoE block, we further consider two settings: (1)
a coarse-grained configuration with 32 experts per block, each expert being an FFN with dr = 256,
where the router selects the top-4 experts for each token; and (2) a fine-grained configuration with
64 experts per block, each expert having dr = 128, where the router selects the top-8 experts per
token. In the DAG-MoE-m, we increase the number of layers to 6. Finally, for DAG-MoE-l, we
further increase the number of layer and hidden size to 8 and 1024. We also increase the expert size
to dr = 512. We keep the MoE block in the coarse-grained configuration for medium and large
version. On top of the standard MoE block, we add the proposed DAG learning module and vary
the dg and depth L. For the baseline, we adopt the same overall architecture as described above,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

but replace the MoE block with a standard MoE. To ensure a fair comparison with DAG-MoE, we
introduce a shared expert such that the total parameter count in the MoE block closely matches that
of DAG-MoE.

Data, training, and evaluation details. We use the Pile dataset (Gao et al., 2020) as the pretraining
corpus. We design two experimental setups. In the first experiment, we train DAG-MoE-s and
DAG-MoE-m on approximately 12B tokens randomly sampled from the Pile and evaluate trained
model on a held-out 1.3B-token subset. In the second experiment, we train DAG-MoE-l on about
40B tokens and evaluate on both in distribution and out-of-domain corpus, including Pile, FineWeb-
edu (Lozhkov et al., 2024), Wikipeida text (Thrush et al., 2022), and C4 (Raffel et al., 2020). All
models are trained with the standard causal language modeling objective (Radford et al., 2018) using
a maximum sequence length of 2048. Perplexity on the evaluation sets serves as the primary metric.

Fine-tuning setting. To evaluate the downstream performance, we fine-tune DAG-MoE-l and its
corresponding baseline, both pre-trained on 40B tokens. The fine-tuning datasets includes Al-
paca (Taori et al., 2023), Open-Platypus (Lee et al., 2023), SlimOrca (Mukherjee et al., 2023),
MathInstruct (Yue et al., 2023), Open-r1-math, and MetaMathQA (Yu et al., 2023). Models are
trained for 3 epochs with a constant learning rate. After fine-tuning, we evaluate on downstream
tasks including PIQA (Bisk et al., 2020), ARC-e (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), GPQA (Rein et al., 2024), Lambada (Paperno et al., 2016), MMLU (Hendrycks et al., 2009),
and BBH (Suzgun et al., 2022). Detailed implementation and dataset description for fine-tuning are
described in Appendix B.2.

5.2 PRETRAINING EVALUATION RESULTS

0 50 100 200 400 600
Total added parameters 1e3

14.4

14.6

14.8

15.0

Pe
rp

le
xi

ty

MoE-s
DAG-MoE-s, d_g=64
DAG-MoE-s, d_g=128

(a) Small version, top-K=4

0 50 100 200 400 600
Total added parameters 1e3

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15.0

15.1

Pe
rp

le
xi

ty

MoE-s
DAG-MoE-s, d_g=64
DAG-MoE-s, d_g=128

(b) Small version, top-K=8

0 50 100 200 400 600
Total added parameters 1e3

13.0

13.1

13.2

13.3

13.4
Pe

rp
le

xi
ty

MoE-m
DAG-MoE-m, d_g=64
DAG-MoE-m, d_g=128

(c) Middle version, top-K=4

Figure 3: Perplexity of standard MoE and DAG-MoE on Pile subset. The x-axis indicates the
additional parameters in the MoE module. For the baseline, it is the size of added shared expert. For
DAG-MoE, it is equal to the the number of iteration times parameter size for each iteration.

We first pre-train both DAG-MoE-s, DAG-MoE-m and corresponding standard MoE baseline with
12B tokens. For DAG-MoE, we vary dg and the depth L with dg ∈ {64, 128} and L ∈ {1, 2, 3}.
The main results are shown in Fig. 3, including baseline MoE, DAG-MoE-s, and DAG-MoE-m. For
the baseline MoE, we include variants with and without a shared expert; the shared-expert size is
encoded on the x-axis as “added parameters,” where 0 denotes no shared expert. For DAG-MoE-
s and DAG-MoE-m, the x-axis likewise reflecting the added parameters introduced by the DAG
learning module. Each curve in the figure corresponds to a fixed dg while varying L from 1 to 3,
and the marker position indicates the total added parameters accumulated over all L iterations.

From Fig. 3, several observations emerge. First, DAG-MoE consistently achieves lower perplex-
ity than the standard MoE architecture across nearly all model sizes and settings of L and dg .
This indicates that DAG-MoE ’s greater expressiveness yields practical performance gains: for a
comparable computational budget, the learned DAG structure affords greater flexibility in com-
posing and processing information from the selected experts. More importantly, it is effective under
both coarse-grained (top-K=4) and fine-grained (top-K=8) expert settings, indicating that the DAG
learning module applies robustly across MoE configurations for performance gains. Second, with
only a small number of additional parameters, DAG-MoE can significantly improve over standard
MoE (without shared expert). All these observation directly answer the Q1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

DAG-MoE-s, topk=4 DAG-MoE-s, topk=8 DAG-MoE-m
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rp

le
xi

ty
 im

pr
ov

em
en

t

0.42

0.57

0.12

0.61

0.75

0.28

0.66

0.78

0.31

Iteration
L=1
L=2
L=3

Figure 4: Perplexity improvement for
DAG-MoE (dg = 64) over baseline MoE.

To answer Q2, we shown the performance improve-
ment over iteration comparing to baseline MoE with-
out shared expert in Fig. 4. First, for both DAG-MoE-
s and DAG-MoE-m, given the same dg , performance
improves as the number of iterations L increases. In
particular, increasing L from 0 to 1 and 1 to 2 brings
a substantial gain, For example, for DAG-MoE-s with
both top-K=4 and top-K=8, adding a DAG learning
module with dg=64 for a single iteration yields about
0.5 improvement in perplexity. However, the improve-
ment from 2 to 3 is marginal. A plausible explanation is
that, for most tokens, one or two iterations suffice to ac-
curately aggregate information from the selected experts, making additional iterations unnecessary.
Second, increasing dg also helps, but the effect is less pronounced than increasing L. For example,
in Fig. 3a, DAG-MoE with dg = 64 and L = 2 achieves better performance than dg = 128 and
L = 1, while adding fewer additional parameters. Similar trends are also observed in Fig. 3b.

Table 1: Pretraining evaluation of DAG-MoE-l
Perplexity ↓ Pile Wiki FineWeb C4

MoE-l 10.51 21.08 25.38 35.21
DAG-MoE-l 10.27 20.54 24.69 34.21

Finally, to further validate our statement, we
pretrain DAG-MoE-l with 40B tokens and eval-
uate the perplexity on multiple corpus. For
DAG-MoE-l, we adopt DAG learning module
with dg = 256 and L = 2. Corresponding,
the baseline model add an shared expert with
dr = 512. Both DAG-MoE-l and corresponding baseline have 699M parameters. After pretraining,
we evaluate the perplexity of the model on both in-domain corpus (Pile) and out-of-domain corpus.
The results are shown in Table 1. We can see that DAG-MoE is consistent outperform standard MoE
with the same training and parameter budget, especially on the out-of domain corpus. This further
validate the superior expressiveness of DAG-MoE and the flexibility brought by the DAG structure.
We provide training curve and additional discussion in Appendix C.1.

5.3 FINE-TUNING EVALUATION RESULTS

Table 2: Downstream results of DAG-MoE-l
Accuracy ↑ PIQA ARC-e HellaSwag GPQA Lambada MMLU BBH Average

MoE-l 47.52 24.34 25.90 21.72 8.11 24.17 16.65 24.06
DAG-MoE-l 50.67 25.57 25.73 27.78 11.57 24.03 17.55 26.13

To answer Q3, we further fine-tune the pretrained DAG-MoE-l and MoE-l on several instruction-
tuning dataset. after fine-tuning, we evaluate the model on downstream tasks. Note that both
DAG-MoE-l and MoE-l were trained with exactly the same configuration to ensure a fair com-
parison. The evaluation results are shown in Table 1. We can see that DAG-MoE-l achieve better or
similar performance across all downstream task comparing to baseline. This results confirm that the
advantage the DAG-MoE obtained can effectively transfer into downstream domain, further confirm
the effectiveness of the DAG-MoE.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we replace the simple weighted summation in MoE with structural aggregation. By
introducing structure and formulating expert aggregation as a DAG, we enlarge the space of ex-
pert combinations and enhance model flexibility without modifying the router or expert configu-
rations. To this end, we propose DAG-MoE, which dynamically learns an optimal DAG structure
via a lightweight DAG-learning module. Across both language modeling and downstream tasks,
DAG-MoE consistently outperforms standard MoE, confirming its effectiveness. However, in the
current implementation of DAG-MoE, we impose restrictions on the class of DAGs (number of
node at each iteration) that can be learned, which may limit overall expressiveness. Moreover, the
problem of identifying the optimal DAG structure for a given token—and how to learn it effectively
within the module—remains underexplored. Finally, our evaluation is limited to small-scale train-
ing; it is unclear how DAG-MoE would perform at larger scales (e.g., billion-parameter models and
trillion-token corpora). We leave these directions to future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We include detailed proof of all theorems provided in the main paper in Appendix A. The de-
tailed implementation, training, and data configuration used to reproduce the results are pro-
vided in Appendix B. The code to reproduce the results are provided in anonymous link https:
//anonymous.4open.science/r/DAG_MoE-1301/.

REFERENCES

Samira Abnar, Harshay Shah, Dan Busbridge, Alaaeldin Mohamed Elnouby Ali, Josh Susskind,
and Vimal Thilak. Parameters vs flops: Scaling laws for optimal sparsity for mixture-of-experts
language models. arXiv preprint arXiv:2501.12370, 2025.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of
experts. Advances in Neural Information Processing Systems, 35:34600–34613, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36:70757–70798, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Xu Owen He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs, pp. 20, 2009.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

10

https://anonymous.4open.science/r/DAG_MoE-1301/
https://anonymous.4open.science/r/DAG_MoE-1301/
https://github.com/open-compass/opencompass

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys. Advances in Neural Information Processing
Systems, 32, 2019.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement
of llms. 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Houyi Li, Ka Man Lo, Ziqi Wang, Zili Wang, Wenzhen Zheng, Shuigeng Zhou, Xiangyu Zhang,
and Daxin Jiang. Can mixture-of-experts surpass dense llms under strictly equal resources? arXiv
preprint arXiv:2506.12119, 2025a.

Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma,
and Min Zhang. Uni-moe: Scaling unified multimodal llms with mixture of experts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, Marek Cygan,
and Sebastian Jaszczur. Scaling laws for fine-grained mixture of experts. In Ruslan Salakhut-
dinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Research, pp. 33270–33288. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/ludziejewski24a.html.

Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Maciej Stefaniak, Michał Krutul, Jan Małaśnicki,
Marek Cygan, Piotr Sankowski, Kamil Adamczewski, Piotr Miłoś, et al. Joint moe scaling laws:
Mixture of experts can be memory efficient. arXiv preprint arXiv:2502.05172, 2025.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe:
Open mixture-of-experts language models, 2025. URL https://arxiv.org/abs/2409.
02060.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Zihan Qiu, Zeyu Huang, Shuang Cheng, Yizhi Zhou, Zili Wang, Ivan Titov, and Jie Fu. Layerwise
recurrent router for mixture-of-experts. arXiv preprint arXiv:2408.06793, 2024.

11

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://proceedings.mlr.press/v235/ludziejewski24a.html
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
training specialized mixture-of-expert models. arXiv preprint arXiv:2501.11873, 2025.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017a.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017b.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Tristan Thrush, Helen Ngo, Nathan Lambert, and Douwe Kiela. Online language modelling data
pipeline. https://github.com/huggingface/olm-datasets, 2022.

Changxin Tian, Kunlong Chen, Jia Liu, Ziqi Liu, Zhiqiang Zhang, and Jun Zhou. Towards
greater leverage: Scaling laws for efficient mixture-of-experts language models. arXiv preprint
arXiv:2507.17702, 2025a.

Changxin Tian, Kunlong Chen, Jia Liu, Ziqi Liu, Zhiqiang Zhang, and Jun Zhou. Towards
greater leverage: Scaling laws for efficient mixture-of-experts language models. arXiv preprint
arXiv:2507.17702, 2025b.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts. arXiv preprint arXiv:2408.15664, 2024.

Zihan Wang, Rui Pan, Jiarui Yao, Robert Csordas, Linjie Li, Lu Yin, Jiajun Wu, Tong Zhang,
Manling Li, and Shiwei Liu. Chain-of-experts: Unlocking the communication power of mixture-
of-experts models, 2025. URL https://arxiv.org/abs/2506.18945.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang,
Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-
of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

12

https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/huggingface/olm-datasets
https://arxiv.org/abs/2506.18945

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Timothée Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Qi Ma, Mariama Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M Rush. HuggingFace’s Transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Hanqing Zeng, Yinglong Xia, Zhuokai Zhao, Gilbert Jiang, Qiang Zhang, Jiayi Liu, Lizhu Zhang,
Xiangjun Fan, and Benyu Zhang. S’more: Structural mixture of residual experts for llm fine-
tuning, 2025. URL https://arxiv.org/abs/2504.06426.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. Advances in neural information processing systems, 32,
2019.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

13

https://arxiv.org/abs/2504.06426
http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED PROOFS OF ALL THEOREMS

A.1 DETAILED PROOFS FOR EXPRESSIVENESS OF DAG-MOE

For the completeness, here we first restate the general formula of DAG-style MoE. Now, let xl
i

denote the output of node v = (l, i). For a given DAG G ∈ G(K), the corresponding computation
in DAG-style MoE can be formulated as:

x0
i = gk[i](x)Ek[i](x), i = 1, . . . ,K, (13)

xl
i = AGG({xk

j |(k, j) ∈ Al
i}), i = 1, . . . , n(l), l = 1, . . . , L− 1, (14)

y = AGG({xk
j , |(k, j) ∈ AL

1 }). (15)

We leverage results from D-VAE (Zhang et al., 2019), which encodes computations over a DAG
via an injective aggregation–update scheme executed in topological order. Concretely, for a DAG
G = (V,A) with an initial node (0, 0), the D-VAE encode the DAG via:

x0
0 = x̂0

0, (16)

xl
i = AGG({U(x̂l

i, x
j
k)|(k, j) ∈ Al

i}), i = 1, . . . , n(l), l = 1, . . . , L− 1, (17)

y = AGG({xk
j , |(k, j) ∈ AL

1 }). (18)

where AGG (aggregation) and U (node update) are injective, and x̂ l
i is the initial feature of node

(l, i). In D-VAE (Zhang et al., 2019), the author provide the following conclusion and we restate it
here:
Proposition A.1. Let G be a DAG graph with a single initial node (0, 0), the Eq. 16-Eq. 18 can
map G to y injectively if AGG and U is injective.

Proof. See Theorem 2 in D-VAE Zhang et al. (2019).

With the above Proposition, we are ready to prove the Proposition 3.1. We restate it here:
Proposition A.2. Given a top-K experts list k, any DAG-style MoE satisfy Eq. 3-Eq. 5 can injec-
tively encode any G ∈ G(K) if AGG is injective.

Proof. To prove the conclusion, we reduce Eq. 13–Eq. 15 to a special case of the D-VAE encoder
Eq. 16–Eq. 18. Before reduction, there are several divergence between the definition in DAG-style
MoE and D-VAE.

• in D-VAE, the author assumes that any DAG G have a single start node (0, 0). However,
here, we assume that we have K start node, each corresponding to an output from one
expert. To align it, we notice that all representations are generated by the input token x,
and x can serve as the node (0, 0) to match the Eq. 16. Then, all previous K start nodes
become node at iteration 1, so on so for.

• in D-VAE, each node in G is assumed to have initial feature x̂l
i and it is integrated through

injective U function, while in DAG-style MoE, we do not have it. To align the DAG-
style MoE to D-VAE, we assume that each node in G will have same 0 initialized input
feature except node (0, 0). Note that it is obvious that these modification will not affect the
expressiveness of DAG-style MoE as we do not have initial features.

Given all these change, we can rewrite the formulation of DAG-style MoE as follows:

x0
0 = x, (19)

x1
i = gk[i](x

0
0)Ek[i](U(0, x0

0)), i = 1, . . . ,K, (20)

xl
i = AGG({U(0, xk

j)|(k, j) ∈ Al
i}), i = 1, . . . , n(l), l = 2, . . . , L, (21)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

y = AGG({xk
j , |(k, j) ∈ AL+1

1 }). (22)

We observe that the above equations almost coincide with the D-VAE encoder, except several com-
ponents. First, we add U to the DAG-style MoE to match the equation in D-VAE.However, as
the initial feature here is 0, it will not affect the expressiveness of the model, and we can actually
combine it with AGG as new aggregation function. Second, at the first iteration, under our DAG
definition, every node at iteration 1 has exactly one incoming predecessor, using E(x) as the AGG
function is equivalent to original formulation, as each node aggregates from a singleton parent.
Meanwhile, the gi and Ei can be easily implemented as injective function. Consequently, the Eq. 20
can be further rewrites as:

x1
i = AGG({U(0, x0

0)}), i = 1. . . . ,K. (23)

Now, the process of DAG-style MoE can perfectly match with D-VAE and the theorem is directly
proved given Proposition A.1. We omit details here.

Next, we prove the Theorem 3.2. We restate it here:
Theorem A.3. Given a top-K experts set k, any DAG-style MoE satisfy Eq. 13-Eq. 15 is strictly
more powerful than standard MoE with Eq. 1 if AGG is injective.

Proof. First, it is straightforward that DAG-style MoE is at least as powerful as standard MoE. Set
G to have K isolated nodes (no interactions among the top-K experts; see the left panel of Fig. 1)
and take L = 0. Then Eq. 14 vanishes and Eq. 15 reduces to a readout over {x0

i = gi(x)Ei(x)}Ki=1.
With AGG chosen as summation, this exactly recovers the standard MoE weighted sum.

Next, we show that DAG-style MoE can map different DAG structures to different outputs, whereas
standard MoE always produces the same representation for a fixed set of selected experts. Consider
the tree in the middle of Fig. 1 and define two DAGs that differ only in how two leaves are paired at
the first depth:

G1 = (V1,A1), A1 = {A1
1 = {(0, 1), (0, 2)}, A1

2 = {(0, 3), (0, 4)}, A2
1 = {(1, 1), (1, 2)}},

G1 = (V1,A1), A1 = {A1
1 = {(0, 1), (0, 3)}, A1

2 = {(0, 2), (0, 4)}, A2
1 = {(1, 1), (1, 2)}},

Let x0
g,i denote the initial representation of node (0, i) in graph Gg . Assume the four leaf repre-

sentations are the same in both graphs, i.e., x0
1,i = x0

2,i for i = 1, . . . , 4, and that x0
·,2 ̸= x0

·,3.
Then the predecessor multisets at depth 1 differ between G1 and G2 (one pairs (0, 1) with (0, 2),
the other pairs (0, 1) with (0, 3)), hence the depth-1 node states differ because AGG is injective
on multisets. By composition of injective maps, all downstream states—and therefore the final
outputs—also differ. Formally, by Proposition A.2, DAG-style MoE maps G1 and G2 to distinct
outputs. In contrast, standard MoE aggregates the same leaf set {x0

·,i}4i=1 by a permutation-invariant
weighted sum, yielding identical outputs for G1 and G2. Thus, DAG-style MoE strictly separates
these two structures while standard MoE does not, which conclude the proof.

A.2 DETAILED DISCUSSION ON DYNAMIC PROGRAMMING.

A.2.1 DEFINITION OF DYNAMIC PROGRAMMING.

In this section, we formally define the dynamic programming problem based on previous work Feng
et al. (2023). Formally, a general DP algorithm can be characterized via three key ingredients: state
space I, transition function T , and aggregation function AGG. Given a DP problem with N input
sequences s(1), · · · , s(N), denote the problem size to be the vector n = (|s(1)|, · · · , |s(N)|). Given
the fixed problem size n, there is an associated states space In ⊂ I representing the finite set of
decomposed subproblems, where each state i ∈ In is an index signifying a specific subproblem.
The size of the state space In grows with the problem size n. We denote by dp(i) the answer along
with other information about the DP process of subproblem i. Furthermore, there is a partial order
relation between different states: we say state j precedes state i (denoted as j ≺ i) if subproblem
j should be solved before subproblem i. This partial order naturally creates a DAG within the state
space, thereby establishing a reasoning chain that can be approximated by the DAG-style MoE.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In the paper, we focus on a restricted setting where each state i only depends on (i) a finite number
of tokens in the input sequence s and (ii) a finite number of previous states. Under this assumption,
the transition function T can be generally written as:

dp(i) = f(n, i, sg(n,i), dp(h(n, i)))

= f(n, i, sg1(n,i), · · · , sgJ (n,i), dp(h1(n, i)), · · · , dp(hP (n, i))),
(24)

where functions f, g,h fully determine the transition function T and have the following form f :
NN ×I ×X J ×Y , g : NN ×I → (N∪{∅})J , h : NN ×I → (I ∪{∅})P . Here, the state space I,
input space X , and DP output space Y can be arbitrary domains, and J, P are constant integers. If
state i depends on less than J input tokens or less than P previous states, we use the special symbol
∅ to denote a placeholder, such that all terms s∅ and dp(∅) are unused in function f . To further
explain, g(n, i) indicates the input index that that is used for compute transition function dp(i),
while h(n, i) indicates all previous DP states that is required. After solving all subproblems, the
aggregation function AGG is used to combine all results and obtain the final answer. We consider a
general class of aggregation functions with the following form:

AGG({(i, dp(i)) : i ∈ In}) = u(□i∈Andp(i)), (25)

where An ⊂ In is a set of states that need to be aggregated, □ is an aggregation function such as
min, max, or

∑
, and u : Y → Z is any function where Z denotes the space of possible answers.

Now, we describe how to construct the DAG based on a DP problem.

Definition A.4. Given a DP problem with input sequence s(1), · · · , s(N), problem size n =
(|s(1)|, · · · , |s(N)|), and transition function specified in Eq. 24, we define the DAG Gdp formulated
by the solving process of DP as follows:

• There are n node at depth 0, while each node store the required input si used for solving
subproblem i ∈ n.

• for depth l > 0 , Each node (l, i) represents a solution dp(i) that satisfying for any j ∈
h(n, i), the depth of dp(j) is less than l.

• for the last depth L(dp), it contains a single node represents the output y of DP problem.

• The Adjacency list A is defined by Al
i = {(d(j), j)|j ∈ h(n, i)} ∪ {(0, j)|j ∈ g(n, i)}

for l = 1, . . . , L− 1, where d(j) is the depth of dp(j).

• Finally, we have A
L(dp)
0 = {(d(i), i)|i ∈ An}.

There is two elements worth further discussion. First, the d(i) define the depth of subproblem i in
the DAG, which should be the smallest iteration that the dp(i) can be obtained. In another word, the
d(i) is the smallest iteration while all dp(j), j ∈ h(n, i) are ready. L(dp) is the depth of DAG G,
which is the smallest iteration to obtain the final answer of DP problem.

A.2.2 LONGEST INCREASING SUBSEQUENCE PROBLEM AND AN EXAMPLE ON HOW
DAG-MOE CAN SIMULATE ITS SOLVING PROCESS.

In this section, we describe one representative DP problem: the longest increasing subsequence(LIS)
problem. The LIS problem aims to compute the length of the longest increasing subsequence given
an input sequence s ∈ Nn. Define s̃ as a subsequence of s if there exists indices 1 ≤ ii ≤ · · · ≤
i|s̃| ≤ n such that s̃k = sik holds for all k ∈ 1, . . . , |s̃|. A sequence s̃ is called increasing if
s̃1 ≤ · · · ≤ s|s̃|. The LIS problem aims to find an increasing subsequence of s with maximal length.
Let h(n, i) = {j|sj < si} be the predecessor index set include all element index j that satisfy
sj < si, the transition function of LIS problem can be written as:

dp(i) = 1 +max({dp(j)|j ∈ h(n, i)}), max(∅) = 0. (26)

The final solution can be obtained by:

y = max
i

({dp(i)|i = 1, . . . , n}) (27)

Here we show a small example with a sequence [3, 1, 2, 4] in top of Fig. 5. By iteratively performing
the transition function, we can obtain the final answer 3, as described in the left of Fig. 5. At the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Longest increasing subsequence (LIS) problem: given input sequence, output the length of LIS

Step-by-step DP solution: DAG structure of the DP solution:

Transition function: 𝑑𝑝 𝑖 = 1 + max 𝑑𝑝 𝑗 𝑗 ∈ ℎ(𝑛, 𝑖)}

𝒊 = 𝟏: 𝑠 1 = 3, ℎ 4, 1 = ∅
⟹ 𝑑𝑝 1 = 1

𝒊 = 𝟐: 𝑠 2 = 1, ℎ 4, 2 = ∅
⟹ 𝑑𝑝 2 = 1

𝒊 = 𝟑: 𝑠 3 = 2, ℎ 4, 3 = 2
⟹ 𝑑𝑝 3 = 1 + max{𝑑𝑝 2 } = 2

𝒊 = 𝟒: 𝑠 4 = 4, ℎ 4, 4 = 1, 2, 3 ⟹ 𝑑𝑝 4
= 1 + max{𝑑𝑝 1 , 𝑑𝑝 2 , 𝑑𝑝(3)} = 3

𝑦 = max𝑖{𝑑𝑝 𝑖 } = 3

𝑆[1] 𝑆[2] 𝑆[3] 𝑆[4]

𝑑𝑝(1) 𝑑𝑝(2)

𝑑𝑝(3)

𝑑𝑝(4)

𝑦

Input: 𝑠 = [3, 1, 2, 4] Output: 3

Figure 5: An example of LIS problem and corresponding DAG structure

same time, the process can be convert into a DAG model specify the computation, as shown in the
right part of Fig. 5.

Now, suppose we have a DAG-style MoE which choose top-4 experts and the DAG structure in
the MoE block are exactly the same as the G(dp) of the LIS problem shown in Fig. 5. Then, if
we input the sequence into the model as ask the model to predict the answer at the next token x.
In the first attention block, Given an well-trained strong attention module, we can easily retrieve
all sequence into the x to produce representation x̂. Then, at the MoE block, given the universal
approximation ability of the MLP, it is also easy to let each expert to maintain only one element
in the sequence, which corresponding to the first depth of the graph G(dp) in Fig. 5. Next, we
aggregate the expert output given the G(dp) to produce the final answer. It is obvious that given
powerful AGG implementation and sufficient training, each AGG can approximate the mapping
from input to the solution of dp(i) and the final AGG can approximate the final answer based on
each dp(i). Thus, it is theoretical possible to directly simulate the overall solving process of the LIS
example in Fig. 5 with single DAG-style MoE layer.

A.3 PROOF OF THEOREM 3.3

Given all the definitions above, we are ready to prove the Theorem 3.3. The theorem is largely based
on the proof of Theorem 4.7 in (Feng et al., 2023). Thus, the proof will also under the Assumption
4.2-4.5 in (Feng et al., 2023), we omit it here and refer reader to the original paper for detailed
assumption. We restate Theorem 3.3 in the below:
Theorem A.5. For any integer n ∈ N, Consider any DP problem satisfying Assumption 4.2
to 4.5 in (Feng et al., 2023) with corresponding DAG G(dp) and problem size length less than
O(Klog(n)), there exists a log-precision constant depth transformer composed of (i) multi-head
attention block and (ii) at least one DAG-MoE block with top-K experts and number of iteration
L ≥ L(dp), with hidden dimension d and parameter size bounded by O(poly(n)) that can output
the correct DP answer.

Proof. Before proving, note that there are several major difference between the Theorem A.5 and
Theorem 4.7 in (Feng et al., 2023). First, Theorem 4.7 focus on DP problem with size n and prove
the transformer can solve it step by step with Chain-of-Though mechanism. The key here is that, by
iteratively execute the transformer, we can obtain O(n) length sequence to store all input states and
intermediate states, and then leverage the attention to pick the information used for the next step. In
Theorem A.5, what we want to show is that within a single DAG-style MoE block, we can simulate
the DP solving process with DAG. However, one limitation is that we only have K experts, which
is obtained from single input token. Given the log-precision limitation (See (Feng et al., 2023) for
detailed definition), it can only store log(n) amount of information, which is not possible to store
input with length of O(n). Therefore, we reduce the problem size to O(Klog(n)) so that we can

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

allow single representation to store all required information, like problem input. Next, we show the
proof sketch on how to construct DAG-MoE layer to implement the DAG of DP solving process.
Input format, we consider represent DP problem by a sequence of tokens:

s(1) | · · · | s(N) | final answer

Block 1. The first block contains several layers it function as simple COPY machine (see Lemma
C.7. in (Feng et al., 2023) for feasibility proof). Specifically, we use the attention module to select
and copy the first all O(Klog(n)) input sequence into the output token representation, with the each
slice of the representation store one input element. Given results from Feng et al. (2023), this can
be performed using attention and MLP.

Block 2. Once the token representation contains all input information, we use a single DAG-style
MoE layer to perform the DP process. Specifically, we let the structure of DAG in DAG-style
MoE to be exactly the same as G(dp) (which can be learned through carefully designed module
or predefined). Next, given a input token representation that store all input sequence, each top-K
expert is used to copy 1/K part of information from the input. This can be implement by set 1 on
the corresponding slice and 0 for other slice in the MLP weight. This formed the node at depth 0.
Note that in the Definition A.4, depth 0 has n node and each node only store 1 input. However, here
we take the advantage of the hidden representation and let each node to store log(n) input. Then, at
each depth, we simply perform the AGG to compute the solution of each subproblem dp(i) using
the following DAG-style computation:

xl
i = AGG(xk

j |(k, j) ∈ Al
i), (28)

where xl
i represent the solution of subproblem dp(i). Since here we define the AGG as an injective

function, we can implement it by sum/min/max + MLP, while the sum/min/max is used to aggre-
gate result from previous subproblem, while the MLP is used to compute the result for the current
problem. Given the assumption 4.2 to 4.5 in (Feng et al., 2023), it is sufficient for AGG to learn
such mapping from input to answer of subproblem dp(i). At the final depth L(dp), we perform the
following computation:

y = AGG{dp(i)|i ∈ An}, (29)
where AGG here can be implemented by u + □, which is typically MLP + sum/min/max. It is
easy to obvious that we can learn such mapping by well implemented AGG. We omit the detailed
implementation of each step here and refer reader to (Feng et al., 2023) example implementation.

B MORE DETAILS ON THE MODEL IMPLEMENTATION AND TRAINING

In this section, we provide more details on the model implementation and training.

B.1 PRETRAINING

We summarize the detailed configuration and hyperparameters for both DAG-MoE and baseline in
Table 3 and discuss details below.

Model configuration. For both the baseline MoE and DAG-MoE, we implement the model on top
of Llama3.1-8B (Dubey et al., 2024). We retain the tokenizer, vocabulary table, attention module,
and FFN design of Llama3.1-8B, but reduce the number of Transformer layers and the hidden di-
mension size due to resource constraints. The MoE module follows the standard token-choice router
from Switch Transformer (Fedus et al., 2022) with balance loss, except that expert scores are com-
puted with a Sigmoid function instead of SoftMax, as we find Sigmoid performs better in practice.
In addition, we apply router Z-loss to regularize the logits, following prior work in state-of-the-art
MoE models (Muennighoff et al., 2025; Zoph et al., 2022; Tian et al., 2025a). For DAG-MoE, we
incorporate the DAG learning module on top of the standard MoE block, varying both the graph
dimension dg and the depth L during evaluation. For the baseline MoE, we include a shared ex-
pert to ensure parameter parity with DAG-MoE. The shared expert adopts the same architecture as
other experts, and its hidden dimension dr is adjusted to match the additional parameters introduced
by the DAG learning module. Our implementation is based on the Hugging Face Transformers
library (Wolf et al., 2019).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: The model configuration and hyper-parameter setting for DAG-MoE and baseline
configuration DAG-MoE-s & MoE-s DAG-MoE-m & MoE-m DAG-MoE-l & MoE-l

model hidden size d 512 512 1024
number of layer 4 6 8

number of attention heads 32 32 32
number of key-value heads 8 8 8

number of experts N 32/64 32 32
expert hidden size dr 256/128 256 512

balance loss coefficient 0.01 0.01 0.01
Router Z loss coefficient 0.001 0.001 0.001

dropout ratio 0.0 0.0 0.0
optimizer adamW adamW adamW
adam β1 0.9 0.9 0.9
adam β2 0.999 0.999 0.999
adam ϵ 1e-8 1e-8 1e-8

weight decay 0.1 0.1 0.1
learning rate 5e-4 5e-4 3e-4
warmup steps 2000 2000 2000
decay ratios 0.2 0.2 0.2

learning rate scheduler WSD WSD WSD
batch size 256 256 512

Table 4: The statisic of pre-training data
Pile # sample # train token # val. token

12B 10,000,000 12,499,025,920 1,388,838,912
40B - 39,321,600,000 -

Data. We use Pile (Gao et al., 2020) as our pretraining corpus, which is a large-scale open source
lauange pretraining dataset. Specifically, we conduct two set of pretraining. For DAG-MoE-s and
DAG-MoE-m, we randomly sample a subset from Pile with 10 million samples and use 10% as
the evaluation set, which results in about 12B tokens for training and 1.3B for evaluation. For
DAG-MoE-l, we using data streaming to train the model on the Pile dataset with 37500 steps, results
in about 40B training tokens. The detailed data statistics can be found in Table 4. For pretraining,
we split the original sample into sub-samples with each sample of a sequence length of 2048. We
further include out-of-domain corpus for additional evaluation on DAG-MoE-l. Specifically, we add
FineWeb-Edu (Lozhkov et al., 2024), Wikipedia text (Thrush et al., 2022), and C4 (Raffel et al.,
2020). For each dataset, we randomly sample 500,000 samples as evaluation corpus.

Training. We train all models from scratch on the pretraining dataset. Optimization is performed
using AdamW with default settings, and the maximum learning rate is adjusted according to the
model size. Following prior works (Bae et al., 2025; Hu et al., 2024; Tian et al., 2025a), we employ
the WSD (warmup–stable–decay) scheduler, which not only improves convergence but also enables
checkpoint reuse during training. The warmup phase is fixed to 2,000 steps, and the decay ratio is
set to 20%. Training is conducted on the causal language modeling task with cross-entropy loss.
The coefficients for balance loss and Z-loss are set to 0.01 and 0.001, respectively. We apply a
weight decay of 0.1, and the global batch size is varied across models. All experiments are run with
DeepSpeed ZeRO-2 (Rajbhandari et al., 2020) on 8 NVIDIA A100 GPUs. Our implementation
builds on LlamaFactory (Zheng et al., 2024).

B.2 FINE-TUNING AND DOWNSTREAM EVALUATION

Model Configuration. For fine-tuning, we directly use the pretrained DAG-MoE-l and MoE-l as
the based model. For DAG-MoE-l, we set dg = 256 and L = 2 in the DAG learning module.
Correspondingly, for MoE-l, we add a shared expert with hidden size 512, results in both model
have 699M parameters. See Table 3 for the detailed model configuration.

Data. For fine-tuning, we incorporate multiple datasets, including Alpaca (Taori et al., 2023), Open-
Platypus (Lee et al., 2023), SlimOrca (Mukherjee et al., 2023), MathInstruct (Yue et al., 2023),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Open-r1-math, and MetaMathQA (Yu et al., 2023). We didn’t do any down/up sampling for each
dataset. All datasets are obtained from Huggingface.

Training. We train the model with 3 epoch on all the data with constant learning rate 2e − 5.
The coefficient for balance loss and Z-loss are the same as pretraining, while we set the weight
decay to 0 to allow model to adjust its behavior given fine-tuning tasks. For fine-tuning, we set
batch size to 256, which results in total 15435 steps for 3 epoch. All experiments are run with
DeepSpeed ZeRO-2 Rajbhandari et al. (2020) on 8 NVIDIA A100 GPUs. Our implementation
builds on LlamaFactory Zheng et al. (2024).

Evaluation. After fine-tuning, we evaluate both the DAG-MoE-l and MoE-l on downstream tasks
including PIQA (Bisk et al., 2020), ARC-e (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
GPQA (Rein et al., 2024), Lambada (Paperno et al., 2016), MMLU (Hendrycks et al., 2009), and
BBH (Suzgun et al., 2022). PIQA (Bisk et al., 2020) tests physical commonsense by asking models
to choose the more plausible solution to everyday tasks. ARC-e (Clark et al., 2018) is the “Easy”
subset of the AI2 Reasoning Challenge, consisting of grade-school science multiple-choice ques-
tions. HellaSwag (Zellers et al., 2019) evaluates grounded commonsense by requiring selection of a
plausible continuation for a short scenario. GPQA (Rein et al., 2024) measures expert-level knowl-
edge and reasoning with graduate-difficulty multiple-choice questions. Lambada (Paperno et al.,
2016) assesses broad-context language modeling via last-word prediction that requires understand-
ing a long passage. MMLU (Hendrycks et al., 2009) benchmarks multi-task language understand-
ing across 57 academic subjects in a few-shot multiple-choice format. BBH (Suzgun et al., 2022)
(Big-Bench Hard) comprises 23 challenging reasoning tasks probing compositionality, logic, and
algorithmic generalization. For HellaSwag, we use 10-shot setting; For MMLU, we use 5-shot set-
ting; For all other benchmarks, we adopt 0-shot setting without CoT. The evaluation is conducted
through Opencompass (Contributors, 2023).

C ADDITIONAL DISCUSSION ON THE EXPERIMENTS

C.1 PRETRAINING OF DAG-MOE-L

3000 4000 5000 6000 7000 8000 9000
Steps

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Lo
ss

MoE-l
DAG-MoE-l

Figure 6: Pretraining loss curve of DAG-MoE-l and MoE-l

In this section, we provide additional discussion on the pretraining of DAG-MoE-l. Specifically,
we present the pretraining loss curves for both DAG-MoE-l and MoE-l from 1,000 to 10,000 steps
in Fig. 6. We observe that DAG-MoE-l exhibits substantially faster early-stage convergence, evi-
denced by a large loss gap at the beginning of training, which supports the claim that DAG-MoE

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

offers greater flexibility than standard MoE. As training progresses, however, the gap narrows and
stabilizes toward the end. We hypothesize that this occurs because both models are relatively small
and reach similar optima at this data scale. We plan to evaluate DAG-MoE at larger model sizes and
with larger training corpora in future work.

D LLM USAGE

We used large language models solely for writing assistance and polishing (grammar, clarity, and
style). All technical ideas, experiments, and analyses were designed and executed by the authors.

21

	Introduction
	Preliminaries
	DAG-MoE: Harnessing the power of Structure in MoE
	From simple mixture to structural-guided aggregation
	A general formulation of DAG-style MoE and theoretical analysis
	DAG-MoE: learning optimal DAG between experts

	Related Works
	Experiments
	Experimental settings
	Pretraining evaluation results
	Fine-tuning evaluation results

	Conclusions and Limitations
	Reproducibility statement
	Detailed Proofs of All Theorems
	Detailed proofs for expressiveness of DAG-MoE
	Detailed discussion on dynamic programming.
	Definition of dynamic programming.
	Longest increasing subsequence problem and an example on how DAG-MoE can simulate its solving process.

	proof of Theorem 3.3

	More details on the model implementation and training
	Pretraining
	Fine-tuning and downstream evaluation

	Additional Discussion on the experiments
	Pretraining of DAG-MoE-l

	LLM usage

