LEARNING CONCEPT BOTTLENECK MODELS FROM MECHANISTIC EXPLANATIONS

Anonymous authors

000

001

002 003 004

010 011

012

013

014

016

017

018

019

021

023

025

026027028

029

031

033

034

037

038

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Concept Bottleneck Models (CBMs) aim for ante-hoc interpretability by learning a bottleneck layer that predicts interpretable concepts before the decision. Stateof-the-art approaches typically select which concepts to learn via human specification, open knowledge graphs, prompting an LLM, or using general CLIP concepts. However, concepts defined a-priori may not have sufficient predictive power for the task or even be learnable from the available data. As a result, these CBMs often significantly trail their black-box counterpart when controlling for information leakage. To address this, we introduce a novel CBM pipeline named Mechanistic CBM (M-CBM), which builds the bottleneck directly from a black-box model's own learned concepts. These concepts are extracted via Sparse Autoencoders (SAEs) and subsequently named and annotated on a selected subset of images using a Multimodal LLM. For fair comparison and leakage control, we also introduce the Number of Contributing Concepts (NCC), a decision-level sparsity metric that extends the recently proposed NEC metric. Across diverse datasets, we show that M-CBMs consistently surpass prior CBMs at matched sparsity, while improving concept predictions and providing concise explanations. Our code is available at https://anonymous.4open.science/r/M-CBM-85D9.

1 Introduction

As AI systems become increasingly complex and embedded in high-stakes applications such as healthcare, autonomous driving, and defense, there is a growing demand for vision models that not only perform well but are also transparent and interpretable. To obtain explanations for AI decisions, we can generally take two approaches: (i) utilize post-hoc methods that try to gain insights into how black-box models produce their outputs, or (ii) develop inherently transparent models that can explain their decisions by design (i.e., ante-hoc explainability) (Xu et al., 2019). In computer vision, a promising ante-hoc approach to explainability are Concept Bottleneck Models (CBMs), which are trained to first predict an intermediate set of interpretable concepts and then use these concepts to predict the final output. Recent practice typically instantiates this concept set a-priori, either specified by human experts (Koh et al., 2020), based on knowledge graphs (Yuksekgonul et al., 2023), by prompting an LLM (Yang et al., 2023; Oikarinen et al., 2023; Srivastava et al., 2024), or using general concepts from pre-trained vision-language models (Rao et al., 2024). However, concepts defined a-priori may not have sufficient predictive power for the target task or even be learnable from the available data. As a result, state-of-the-art CBMs substantially underperform their black-box counterpart when controlling for information leakage. Beyond performance, a further reason not to fix concepts a-priori is that modern ML systems often equal or exceed human expertise, creating an opportunity to use interpretability to learn from machines. For example, Schut et al. (2025) extracted concepts learned by the chess engine AlphaZero (Silver et al., 2017) and were able to teach them to grandmasters. Furthermore, mechanistic interpretability has recently made significant progress in comprehensively extracting concepts from black-box models, in particular via Sparse Autoencoders (SAEs) (Bricken et al., 2023). Motivated by this, we ask whether CBMs built directly from a model's own learned concepts can serve as interpretable approximations of their black-box counterparts. Because these concepts originate in the backbone, we expect them to be learnable by construction and to have good predictive power. To test this, we develop a novel CBM pipeline, which we refer to as Mechanistic CBM (M-CBM), and compare it to state-of-the-art CBMs in both task accuracy and its ability to learn concepts, showing significant improvements.

2 RELATED WORK

055 056

057

058

060

061

062

063

064

065

066

067

068

069

070 071

072

073

074

075

076

077

079

080

081

083

084

085

087

880

089 090 091

092

093

094

095

096

098

100

101

102

103

104

105

106

107

Concept-based Explanations. Early approaches for explainable computer vision typically rely on saliency (Selvaraju et al., 2017) or attribution maps (Sundararajan et al., 2017) that show which regions or pixels of an image contribute the most to a decision. By contrast, concept-based methods aim to provide explanations in terms of higher-level, human-understandable concepts (e.g., stripes for a zebra). A seminal contribution to the field was TCAV (Kim et al., 2018), a method that investigates a model's sensitivity to a user-defined concept by collecting a set of example images representing that concept. Later, De Santis et al. (2025) extended TCAV with per-instance concept attributions and saliency maps indicating where the concept is recognized. However, both of these methods have practical limitations as they require users to manually collect concept examples. To address this, unsupervised approaches have also been proposed (Ghorbani et al., 2019; Zhang et al., 2021; Fel et al., 2023) to automatically discover influential concepts for a given class. These methods typically crop images of a class, randomly or via segmentation, and cluster the cropped patch activations to extract groups of semantically similar patches that correspond to a concept. However, with this approach, achieving completeness (i.e., extracting a concept set sufficient to recover the model's prediction) remains a nontrivial task (Yeh et al., 2020).

Mechanistic Interpretability. Mechanistic interpretability (MI) aims to comprehensively reverseengineer deep networks by converting their neurons and weights into interpretable features and algorithms, and it differentiates itself from concept-based approaches primarily for its ambition of completeness (Bereska & Gavves, 2024). A central challenge to this is polysemanticity, i.e., neurons often respond to unrelated features, so they cannot be mapped one-to-one with concepts (Olah et al., 2020). This could allow networks to learn far more features than there are neurons, which is known as the superposition hypothesis (Elhage et al., 2022). Recently, Bricken et al. (2023) showed this can be addressed post-hoc by disentangling features via Sparse Autoencoders (SAEs) that learn a sparse, overcomplete dictionary of monosemantic features that then reconstruct the original activations. The SAE reconstruction error also provides a quantitative proxy for completeness in a chosen layer. Given their effectiveness in both language (Gao et al., 2025) and vision (Gorton, 2024; Thasarathan et al., 2025), we also adopt SAEs for concept extraction in our pipeline (see Section 3 for more details on SAEs). Another emerging trend in MI is automated interpretability, i.e., using LLMs to generate natural language explanations for reverse-engineering neuron behavior. This was first applied to explain language model neurons (Bills et al., 2023), but then also proved effective to explain vision models (Rott Shaham et al., 2024). We also use a similar approach to assign names to concepts extracted via SAEs (Section 3). MI has also made progress in dissecting models into interpretable circuits (e.g., identifying algorithmic sub-structures within deep networks) via masking or patching procedures (Conmy et al., 2023). Those circuit-level analyses are currently not being used in our pipeline, but integrating them could be a promising future work.

Concept Bottleneck Models. Concept Bottleneck Models (CBMs) are self-explaining neural networks that learn a set of intermediate human-understandable concepts to solve a task. The term was first introduced by Koh et al. (2020), who trained CBMs using datasets with concept annotations. Later, Yuksekgonul et al. (2023) relaxed this requirement with post-hoc CBMs that learn a Concept Bottleneck Layer (CBL) using Concept Activation Vectors (CAVs) (Kim et al., 2018), only requiring manual selection of representative examples for each concept. Furthermore, when using a CLIP (Radford et al., 2021) backbone, it learns concepts directly from text sourced from the ConceptNet (Speer et al., 2017) knowledge graph. Yang et al. (2023) later showed benefits in generating the concept set with LLMs. Oikarinen et al. (2023) extended this paradigm also to non-CLIP backbones using CLIP-Dissect (Oikarinen & Weng, 2023) to map concept embeddings in CLIP to any backbone. A known problem, however, that exists across all CBMs is information leakage, i.e., the fact that the CBL inadvertently encodes hidden class-relevant patterns beyond the concept semantics, which can be quickly learned by the final predictor to improve its accuracy (Havasi et al., 2022). This issue is quite serious, as Yan et al. (2023) even showed that replacing concepts with random words can achieve similar accuracy. Information leakage also results in unsatisfying explanations, in which the most important concepts contribute significantly less than the sum of all other concepts, making the model basically a black-box. To address this, Srivastava et al. (2024) introduced the Number of Effective Concepts (NEC) as a metric to measure and control how many concepts CBMs use to make a prediction, effectively reducing information leakage. In this work,

Figure 1: Overview of the M-CBM pipeline. (1) Given a trained black-box backbone, we extract its features and learn sparse, disentangled concept directions using a Sparse Autoencoder (SAE). (2) A Multimodal LLM is prompted with examples of highly activating and non-activating images to assign concept names to each SAE neuron. (3) The MLLM then annotates a subset of the dataset containing an equal split of active and non-active examples, indicating the presence or absence of each concept in selected images. (4) Using these concept annotations, we train a Concept Bottleneck Layer (CBL) and a sparse linear classifier to predict target classes from the learned concepts.

we also follow this approach and use the Number of Contributing Concepts (NCC), a generalization of NEC, to control for leakage and explanation conciseness. More details on NEC and NCC are provided in Section 4. Srivastava et al. (2024) also introduced VLG-CBM, a CBM pipeline that uses GroundingDINO (Liu et al., 2025), an open-vocabulary object detector, to automatically annotate a dataset with LLM-generated concepts. The CBL is then trained on these annotations in a multilabel setting, allowing also for the evaluation of concept predictions, similar to the vanilla CBM by Koh et al. (2020). However, leakage still arises from the annotation being class-conditioned, as we show in Section 5. Another limitation of these CBM paradigms is that LLM-generated concept sets offer no guarantees that the proposed concepts have sufficient predictive power for the target task and are even learnable from the available data. Sometimes they can also be non-visual (Roth et al., 2023). We instead propose extracting and using the black-box model's own learned concepts, rather than guessing with an LLM. A first step in this direction within the literature is DN-CBM (Rao et al., 2024), which learns concepts from CLIP with an SAE and uses its hidden layer as CBL, naming the concepts by selecting the nearest CLIP text embeddings to the decoder vector. However, this paradigm can only be applied with CLIP as a backbone, limiting its accuracy across datasets, as we show in Section 6. Furthermore, CLIP dependence can still introduce non-visual concepts (e.g., "spicy", "loud"), making explanations less transparent (Srivastava et al., 2024; Yang et al., 2023).

3 METHODOLOGY

In this section, we introduce our methodology for transforming any black-box model into an interpretable-by-design CBM. Our approach, which we refer to as Mechanistic CBM (M-CBM), extracts human-interpretable concepts from a trained black-box model, assigns names and annotations using a Multimodal Large Language Model (MLLM), and then trains a sequential CBM (Koh et al., 2020) using these concepts. An overview of the whole pipeline is provided in Figure 1.

Concept Extraction. Given a black-box backbone ϕ trained on an arbitrary dataset \mathbb{D} , the first step of our methodology is to decompose the features learned by the model during training into a set of

interpretable concepts. To achieve this, we use the Sparse Autoencoder (SAE) approach, which was recently popularized in the mechanistic interpretability literature (Bereska & Gavves, 2024) and has proven effective to disentangle model features into interpretable concepts for both vision (Gorton, 2024; Thasarathan et al., 2025) and language models (Bricken et al., 2023; Huben et al., 2024).

An SAE is a neural network trained to reconstruct its input features while enforcing sparsity in the hidden representation (see step ① in Figure 1). In our case, the input features are the activations $\boldsymbol{a}^{(i)} = \phi(\boldsymbol{x}^{(i)}) \in \mathbb{R}^n$ of the backbone ϕ for each sample $\boldsymbol{x}^{(i)}$ in the training set \mathbb{D} . Following Bricken et al. (2023), the SAE subtracts an input bias \boldsymbol{b}_D and then passes the resulting vector to an encoder with weights \boldsymbol{W}_E , bias \boldsymbol{b}_E , and ReLU activation, obtaining the hidden layer $\boldsymbol{h} \in \mathbb{R}^m$:

$$\boldsymbol{h} = \operatorname{ReLU}\left(\boldsymbol{W}_{E}^{\top}(\boldsymbol{a} - \boldsymbol{b}_{D}) + \boldsymbol{b}_{E}\right)$$

In the sparse hidden layer h, ideally, each neuron learns to recognize a distinct concept. A decoder with weights W_D and bias b_D then maps h back to the reconstructed features \hat{a} :

$$\hat{\boldsymbol{a}} = \boldsymbol{W}_D^{\top} \boldsymbol{h} + \boldsymbol{b}_D$$

where $W_E \in \mathbb{R}^{n \times m}$, $W_D \in \mathbb{R}^{m \times n}$, and typically for large datasets $m \gg n$ to account for the superposition hypothesis (Elhage et al., 2022), i.e., the fact that neural networks tend to learn more concepts than the neurons they have. The input and output biases b_D are opposite in sign and equal in magnitude. While Bricken et al. (2023) train SAEs with expansion factors (defined as m/n) ranging from 1x to 256x, we avoid going above 4x to keep the annotation step computationally feasible. To train the SAE, we minimize the following objective:

$$\mathcal{L}_{\text{SAE}} = \frac{1}{|\mathbb{D}|} \sum_{i=1}^{|\mathbb{D}|} \|\boldsymbol{a}^{(i)} - \hat{\boldsymbol{a}}^{(i)}\|_{2}^{2} + \lambda_{\text{SAE}} \|\boldsymbol{h}^{(i)}\|_{1}$$
(1)

where $\lambda_{\rm SAE} > 0$ is a hyperparameter that controls the strength of the sparsity penalty on the hidden representation. We also monitor the average ℓ_0 norm (i.e., the number of non-zero activations) to ensure $\ell_0 \ll n$, as recommended by Bricken et al. (2023).

SAE training often leaves many neurons in the hidden layer h dead (never activated for any training sample) or nearly dead (activate only very rarely). To ensure that our set of candidate concepts is both meaningful and computationally efficient for subsequent annotation, we perform a filtering step to remove such neurons. To define the threshold for identifying nearly dead neurons, we measure, for each unit in h, the number of training samples for which it is active. We then select a cutoff value such that removing all units below this threshold does not reduce the recovered cross-entropy loss of the black-box model, defined as $1 - \frac{\mathcal{L}_{\mathrm{BB}}(\hat{a}) - \mathcal{L}_{\mathrm{BB}}(a)}{\mathcal{L}_{\mathrm{BB}}(0) - \mathcal{L}_{\mathrm{BB}}(a)}$, by more than a tolerance of $\sim 1\%$. This procedure ensures that only neurons with negligible contribution to predictive performance are pruned. This metric was also used to evaluate SAE quality in prior work (Bricken et al., 2023; Rajamanoharan et al., 2024; Gao et al., 2025). More details on SAEs in Appendix B.

Concept Naming. After pruning, each remaining neuron in the SAE hidden layer h is treated as a candidate concept, where we denote by h_i the j-th hidden SAE neuron. To assign humaninterpretable names, we adopt an automated procedure inspired by recent work on mechanistic interpretability of language model neurons (Bills et al., 2023). For each candidate concept, we first select a set of inputs $x \in \mathbb{D}$ that maximally activate the corresponding neuron h_i . For these inputs, we also highlight the spatial regions that contribute the most to the activation, similarly to Rott Shaham et al. (2024). To compute these concept saliency maps, we use the method introduced by De Santis et al. (2025) (i.e., weighted average of feature maps using W_D as concept weights and followed by ReLU). To provide a contrastive signal, we additionally sample a set of non-activating examples, of which half are drawn at random from \mathbb{D} , and half are selected as the most cosine similar to the activating examples to enhance discrimination of fine-grained visual features. The paired examples are provided to an MLLM, GPT-4.1 in our experiments, which is prompted to produce a concise natural-language description of the concept that the neuron represented by h_i is responding to. At this stage, we also explicitly instruct the model not to use class names as concepts. Step (2) of Figure 1 shows an example of what the MLLM receives as input. In our experiments, we used 10 activating examples and 10 non-activating ones.

Finally, since we do not want duplicate or semantically equivalent concepts, we perform a merging step similar to Oikarinen et al. (2023), in which we embed all proposed textual names using a pretrained embedding model and merge those with very high cosine similarity (i.e., above 0.98). We

use OpenAI's text-embedding-3-large in our experiments. To make the embeddings context-aware, we also wrap each concept name in the following template before inserting it into the embedding model: "This is a visual concept in the context of $\{domain\}$: $\{concept\}$ ". The variable $\{concept\}$ contains the concept name, while $\{domain\}$ specifies the dataset domain (e.g., bird species, skin lesions). For simplicity, Figure 1 omits the merging step.

Dataset Annotation. With concept names assigned, we proceed to build a partially annotated dataset that can be used to train the Concept Bottleneck Layer (CBL). Let $\mathbb{C}=\{c_1,\ldots,c_K\}$ denote the final set of concepts. For each concept c_k , the goal is to obtain binary presence/absence labels on a subset of images $x\in\mathbb{D}$. Since exhaustive annotation of the full dataset is not computationally feasible at the time of writing this paper, we annotate up to 1000 samples per concept, drawn mainly from the training, but also from the test set (e.g., 20-30%) solely for a final CBL evaluation (results in Section 6). The annotation procedure is performed by prompting the MLLM with batches of 25 images arranged in a 5×5 grid for computational efficiency. The model is asked to indicate, for each of the 25 grid images, whether the concept is present or absent. See step ③ of Figure 1 for a high-level overview of the annotation procedure. Each call also includes a grid of the top-25 most activating images for the corresponding SAE neuron, which serve as a reference together with the textual concept name.

To select the subset of images for annotation, we first select up to 500 active samples per concept. The active set is defined as all inputs for which $h_j > 0$. From this set, we select samples whose activation lies above the 95th percentile of the set. If fewer than 500 samples exceed this percentile, we take the top-500 activations overall within the active set. If the neuron has fewer than 500 active samples in total, we take all available examples, rounding the number down to the nearest multiple of 25 to match the batch annotation protocol. For merged neurons, activations are normalized across the group and treated as a single unit when computing percentiles. We then select an equal number of non-active samples, of which half are drawn uniformly at random and half are chosen as the most cosine similar to the active samples, similarly to the naming procedure. Furthermore, to avoid biasing concepts toward particular classes, both active and non-active sets are stratified across class labels. Each batch of 25 images also contains a balanced mix of active and non-active examples. At the end of this annotation step, we obtain a set of around 1000 annotated samples for each concept, containing both presence and absence cases across both training and test data. An image may be annotated for more than one concept or for none. Formally, for each image $\boldsymbol{x}^{(i)} \in \mathbb{D}$, the annotation procedure creates a ternary vector of concept labels $\boldsymbol{z}^{(i)} \in \{-1,0,1\}^K$ with the following entries:

$$z_k^{(i)} = \begin{cases} 1 & \text{if } c_k \text{ is annotated as } present \text{ in } \boldsymbol{x}^{(i)} \\ 0 & \text{if } c_k \text{ is annotated as } absent \text{ in } \boldsymbol{x}^{(i)} \\ -1 & \text{if } c_k \text{ is } not \text{ annotated } \text{ for } \boldsymbol{x}^{(i)} \end{cases}$$
 (2)

Concept Bottleneck Model. After generating the concept labels, we proceed with training a sequential CBM (Koh et al., 2020). As shown in step 4 of Figure 1, the CBM has three components: (i) a frozen backbone ϕ that maps an input image to a feature vector, (ii) a Concept Bottleneck Layer (CBL) g that predicts the presence of K named concepts from those features in a multi-label setting, and (iii) a sparse linear classifier f that predicts the class from the concept outputs.

For each input $\boldsymbol{x}^{(i)}$ the frozen backbone produces n-dimensional features $\boldsymbol{a}^{(i)} = \phi(\boldsymbol{x}^{(i)}) \in \mathbb{R}^n$. The CBL $g: \mathbb{R}^n \to \mathbb{R}^K$ takes these features as input and outputs concept logits, then a sigmoid produces probabilities $\hat{\boldsymbol{z}}^{(i)} = \sigma(g(\boldsymbol{a}^{(i)})) \in [0,1]^K$. From the annotation pipeline, each image carries a ternary concept vector $\boldsymbol{z}^{(i)} \in \{-1,0,1\}^K$ indicating present (1), absent (0), or not annotated (-1). Since not every image-concept pair is labeled, we train g only on the entries we know. Let $\Omega = \{(i,k): z_k^{(i)} \in \{0,1\}\}$ be the set of annotated pairs. The CBL is optimized to minimize a masked Binary Cross-Entropy (BCE) loss that averages over Ω :

$$\mathcal{L}_{\text{CBL}} = \frac{1}{|\Omega|} \sum_{(i,k)\in\Omega} \text{BCE}\left(\hat{z}_k^{(i)}, z_k^{(i)}\right)$$
(3)

Entries with $z_k^{(i)} = -1$ are effectively ignored in the loss computation. Therefore, images without any concept annotation (all entries -1) are not used to train the CBL. Furthermore, since positives are often rarer than negatives, we weight each concept in the BCE by the ratio of its class imbalance.

To map concepts to classes, we follow prior work (Srivastava et al., 2024; Yuksekgonul et al., 2023; Oikarinen et al., 2023) and train a sparse linear classifier on concept logits (i.e., CBL's pre-sigmoid outputs), optimized using the GLM–SAGA solver (Wong et al., 2021). Since GLM–SAGA assumes standardized input features, we z-normalize (zero mean and unit variance) the concept logits and use these to predict the classes. With g frozen, we define a fully connected layer $f: \mathbb{R}^K \to \mathbb{R}^C$ with weights $\mathbf{W}_F \in \mathbb{R}^{K \times C}$ and bias $\mathbf{b}_F \in \mathbb{R}^C$, where C is the number of output classes, and minimize the following Cross-Entropy (CE) loss with an elastic-net (Zou & Hastie, 2005) penalty:

$$\mathcal{L}_{\text{CLF}} = \frac{1}{|\mathbb{D}|} \sum_{i=1}^{|\mathbb{D}|} \text{CE}\left(f \circ g \circ \phi(\boldsymbol{x}^{(i)}), \, \boldsymbol{y}^{(i)}\right) + \lambda_{\text{CLF}} R_{\alpha} \tag{4}$$

where $\mathbf{y}^{(i)}$ represents the one-hot ground-truth class label for sample $\mathbf{x}^{(i)}$ and $R_{\alpha}=(1-\alpha)\frac{1}{2}\|\mathbf{W}_F\|_2^2+\alpha\|\mathbf{W}_F\|_1$ denotes the elastic-net penalty. We use $\alpha=0.99$, and $\lambda_{\rm CLF}$ is tuned to obtain a target sparsity.

4 Number of Contributing Concepts (NCC)

Prior work has shown that sparse layers are more interpretable (Wong et al., 2021; Yuksekgonul et al., 2023; Oikarinen et al., 2023), and Srivastava et al. (2024) also showed that sparsity is inversely correlated with information leakage. They demonstrated that a dense linear classifier built on top of a random (i.e., untrained) CBL can recover black-box accuracy if the number of concepts K approaches or exceeds the backbone feature dimension n, but this effect decreases with higher sparsity. Related studies that use dense linear layers similarly report that when the concept set is large enough (e.g., $K \gtrsim n/2$), using random words as concepts can match the accuracy obtained with concepts defined by LLMs or humans (Yan et al., 2023).

While high sparsity improves interpretability and limits leakage, it naturally tends to correlate with lower accuracy (Wong et al., 2021; Oikarinen et al., 2023; Srivastava et al., 2024), making CBM comparison incomplete if only accuracy is reported. To address this, Srivastava et al. (2024) introduced an evaluation metric named NEC, which is defined as the average number (per-class) of non-zeros in the weights W_F of the final layer f. They train f at different regularization strengths $\lambda_{\rm CLF}$ and accuracies are compared at equal NEC. This is convenient for enabling a fair comparison between CBMs, but it also has limitations. Controlling NEC forces concise decision explanations, but it does so by linearly restricting the effective concept vocabulary as the number of classes decreases. For instance, with three classes, NEC=5 forces $K \leq 15$ (or even K = 5 if classification is binary) after training so that on average predictions are explained by ~ 5 concepts. However, in datasets with substantial intra-class diversity (e.g., peeled or in-field pineapples are the same class in ImageNet), a single class may require a rich concept vocabulary (i.e., larger K) to cover its different contexts, even though only a subset of them is needed to predict an individual image.

With this in mind, we introduce a generalization of NEC, named Number of Contributing Concepts (NCC), which does not impose a hard cap on K but still enforces concise explanations by measuring sparsity at decision-level using concept contributions rather than weights count. To measure the contribution of concept k, for class r and image i, we must consider the magnitude of both the concept logit $g(\boldsymbol{a}^{(i)})]_k$ and its weight $[\boldsymbol{W}_F]_{k,r}$ towards class r. We then define the absolute contribution of a concept to a class as $u_{k,r}^{(i)} = \lfloor [g(\boldsymbol{a}^{(i)})]_k \cdot [\boldsymbol{W}_F]_{k,r} \rfloor$. Ideally, we want the model to recognize a class with only a small subset of concepts that cover the vast majority of the total absolute contribution, or, in other words, explain the vast majority of the decision. Let $u_{(s),r}^{(i)}$ denote the s-th largest absolute contributing concept, and fixed coverage level $\tau \in [0,1]$. We define NCC as:

$$NCC_{\tau} = \frac{1}{|\mathbb{D}|C} \sum_{i=1}^{|\mathbb{D}|} \sum_{r=1}^{C} \min \left\{ \kappa \in \{0, \dots, K\} : \sum_{s=1}^{\kappa} u_{(s),r}^{(i)} \ge \tau \sum_{k=1}^{K} u_{k,r}^{(i)} \right\}$$

Intuitively, NCC $_{\tau}$ is the average number of concepts required to explain at least a τ fraction of the prediction of a class. For example, an NCC=5 with $\tau=0.95$, means that, on average, just 5 concepts explain $\geq 95\%$ of the decision. For controlling NCC, we fix a τ and follow the approach of Srivastava et al. (2024), training f at different $\lambda_{\rm CLF}$ and compare CBM accuracies at equal NCC levels. In practice, targeting a lower NCC generally means trading accuracy for explanation conciseness and vice versa.

5 EXPERIMENTAL SETUP

Baselines. We compare M-CBM with three state-of-the-art CBMs: LF-CBM (Oikarinen et al., 2023), VLG-CBM (Srivastava et al., 2024), and DN-CBM (Rao et al., 2024). For VLG-CBM, we compare with a class-agnostic annotation variant, which we refer to as VLG-CBM_{CA}, rather than the original pipeline. In the original VLG-CBM, concepts are assigned to classes before annotation and are annotated only on images of their assigned classes. While this design reduces annotation cost, coupling concepts to classes can introduce substantial information leakage. We verify this on CUB in Figure 2. Using random words as concepts, VLG-CBM reaches black-box level accuracy already at around NCC=1.5, showing that in this setup, performance is insensitive to both sparsity and concept semantics. Intuitively, this happens because learning a concept that is labeled as positive only on images of a class is nearly equivalent to learning that class directly. When we remove class conditioning by annotating each concept across all images (VLG-CBM_{CA}), accuracy drops substantially for both random and real concepts, and the expected interpretability-accuracy trade-off reappears. We performed the same experiment with our M-CBM, and the performance of substituting concepts with random words is similar to using random words in VLG-CBM_{CA}. However, when real concepts are used, our M-CBM outperforms VLG-CBM_{CA} at high sparsity (NCC=3 to 5), while for low sparsity (NCC=10+), accuracy becomes similar to random due to information leakage. Further implementation details for this experiment are provided in Appendix C.

Figure 2: Accuracy vs. NCC ($\tau=0.95$) on CUB. (a) With class-conditioned annotation, VLG-CBM reaches near black-box accuracy with NCC=1.5 (i.e., using only 1 to 2 concepts per prediction). The same happens using random concept names, showing evidence of leakage. (b) Making annotation class-agnostic (VLG-CBM_{CA}) restores the accuracy–interpretability trade-off, with real concepts slightly beating random words at low NCC. (c) M-CBM outperforms both VLG-CBM_{CA} and the random baselines at low NCC, while leakage comes back in both methods as NCC increases.

Setup. We evaluate on three standard image classification datasets that vary in domain and class count: CUB (Wah et al., 2011), ISIC2018 (Codella et al., 2019; Tschandl et al., 2018), and ImageNet (Deng et al., 2009). CUB contains $\sim 6k$ training images and $\sim 5.8k$ test images of 200 fine-grained bird species. As backbone for this dataset, we use the pre-trained ResNet18 from *pytorchcv*. ISIC2018 contains dermatoscopic images of pigmented lesions categorized in 7 classes, split into $\sim 10k$ train, 193 validation, and $\sim 1.5k$ test. Given a pronounced class imbalance, we report both accuracy and balanced accuracy for this dataset. Given the lack of public pre-trained models, we train a ResNet50 (weighting each class by its imbalance ratio) and use it as a backbone. ImageNet includes 1k classes with $\sim 1.3M$ training and 50k test images for general image classification. As backbone, we use the pre-trained ResNet50 from *torchvision*. Furthermore, for ImageNet and CUB, we extract 10% from the train and use it as a validation set. Regarding DN-CBM, since it only supports a CLIP backbone, we use the same CLIP-RN50 backbone for all datasets. As discussed in Section 4, we compare under the same NCC. We use $\tau = 0.95$ and measure accuracies at NCC=5 and NCC=avg, with the latter being the average of the levels: 5, 10, 15, 20, 25, 30.

Compute Resources. We trained all neural components (SAE, CBL, and GLM-SAGA) on an HPC cluster using an NVIDIA H200 on a multi-core node (32 cores and 512GB of RAM). On CUB and ISIC2018, each stage takes 5-20 minutes, while 3-5 hours for ImageNet. The dominant step in terms of cost and runtime is the annotation with GPT-4.1 API, which takes around 2 minutes and costs USD 0.14 per concept. Concept naming was lighter, taking around 10-20 seconds and USD 0.02 per concept, while concept merging costs were negligible. These costs scale linearly with the concept number, which was 278, 73 and 2648 respectively for CUB, ISIC2018 and ImageNet.

6 RESULTS AND DISCUSSION

Accuracy Comparison. We report results in Table 1. Our M-CBM consistently achieves the highest accuracy across datasets and NCC values. An expected interpretability-accuracy trade-off is also visible across all methods, as accuracy always increases when NCC is higher (i.e., explanations are less concise). DN-CBM consistently performs poorly, especially at NCC=5, indicating that a small subset of generic CLIP concepts may be insufficient to predict a class across datasets. VLG-CBM_{CA} shows better accuracy than LF-CBM and DN-CBM, but annotating per-concept the entire dataset with GroundingDINO makes it computationally prohibitive at ImageNet scale (~ 300 GPU-days). In contrast, M-CBM uses SAE activations to pre-select candidate images per concept, so that we only need to annotate $\sim 1k$ images per concept. We exclude class-conditioned VLG-CBM from the comparison, as due to leakage, it is effectively a black-box (see Section 5).

Table 1: Accuracy comparison at NCC=5 and NCC=avg with best model in bold. The results for M-CBM are averaged over 3 seeds with same annotations. N/A denotes computationally unfeasible.

Dataset	CUB		ISIC2018				ImageNet	
Metrics	Accuracy		Accuracy		Balanced Accuracy		Accuracy	
Black-box	76.	67%	79.	37%	75.37%		76.15%	
Sparsity	NCC=5	NCC=avg	NCC=5	NCC=avg	NCC=5	NCC=avg	NCC=5	NCC=avg
LF-CBM DN-CBM VLG-CBM _{CA} M-CBM (Ours)	$ \begin{array}{c c} 58.08\% \\ 38.21\% \\ 69.12\% \\ \textbf{73.70\%} \\ \pm 0.13\% \end{array} $	71.09% 48.98% 72.25% 74.18% ± 0.06%	61.44% 35.38% 64.55% 72.75% ± 0.10%	67.55% 54.61% 72.61% 75.51% ± 0.08%	64.29% 39.85% 64.63% 70.14% ± 0.09%	67.30% 52.85% 70.80% 71.54% ± 0.05%	62.20% 46.71% N/A 72.18% ± 0.21%	69.08% 57.24% N/A 73.64% ± 0.15%

Evaluating Concept Prediction. We assess how well each method can learn its own concepts by also annotating the test set. Because these labels are not ground truth, high scores do not guarantee that the model is learning the concepts as intended, but only that they are at least internally consistent and learnable. Especially for ISIC2018, we found that LLM-generated concept sets are often non-visual (e.g., "warm to the touch") or not in the data (e.g., "medical report"). Since M-CBM uses concepts extracted from the backbone, we expect some benefits in the concept predictions, which is what we see in Table 2. Another factor that could contribute to the lower performance is the capability of Grounding DINO to annotate correctly, which may be inferior to asking GPT-4.1, especially for medical images. However, due to a lack of ground truth, this remains challenging to quantify.

Table 2: ROC-AUC evaluation of concept predictions on test set. Each method is evaluated on its own concepts. We report the macro-average across concepts and the average of the worst 10%.

CUB		ISI	C2018	ImageNet	
ROC-AUC		ROC-AUC		ROC-AUC	
Macro	Worst-10%	Macro	Worst-10%	Macro	Worst-10%
62.03% 90.04 %	45.60% 79.05 %	73.37% 80.57 %	52.92% 66.98 %	N/A 88.90%	N/A 78.36 %
	ROO	ROC-AUC Macro Worst-10% 62.03% 45.60%	ROC-AUC ROC Macro Worst-10% Macro 62.03% 45.60% 73.37%	ROC-AUC Macro Worst-10% Macro Worst-10% 62.03% 45.60% 73.37% 52.92%	ROC-AUC ROC-AUC ROC Macro Worst-10% Macro Worst-10% Macro 62.03% 45.60% 73.37% 52.92% N/A

Explanations. We illustrate the behavior of M-CBMs through global (class-level) and local (instance-level) explanations, using models at NCC=5. Using the final layer weights W_F , we can visualize how concepts globally contribute to classes. In Figure 3, we show these weights using Sankey diagrams, with "NOT concept" indicating a negative weight. For clarity, we include only concepts with $|W_F| > 0.1$. On ImageNet, the model's behavior aligns with intuition. The classes "Modem" and "Radio" share concepts related to ports/switches and antennas, while they are mainly differentiated by the presence of indicator lights for class "Modem" versus control knobs for class "Radio". On ISIC2018, the model learns a richer concept set for "Melanocytic nevus" than for

Figure 3: Sankey plots of concept—class weights of our M-CBM at NCC=5. Concepts on the left and classes on the right. Concepts with negative weights are labeled as "NOT concept".

"Dermatofibroma", which could be explained by the large class imbalance. Still, the few concepts learned for "Dermatofibroma" are consistent with dermatological literature (Zaballos et al., 2006). Some minor concepts for "Melanocytic nevus", such as skin-tone-related terms, are less clear. This likely arises from the concept naming (step 2), where visually highlighting the concept (in this case, the skin around the nevus) in the image can introduce mild artifacts that GPT-4.1 over-interpreted. CBMs can also explain individual predictions by showing, for an input $x^{(i)}$, the contribution of concepts to a class r. This contribution is computed directly by multiplying the logit of the k-th concept $g(a^{(i)})|_k$ with its corresponding weight $[W_F]_{k,r}$ towards class r. Concepts with a negative logit are indicated as "NOT concept". We show two examples in Figure 4, including a correct CUB prediction and a misclassification on ISIC, where the model incorrectly sees "clustered blue-gray ovoid nests", leading to a "Basal Cell Carcinoma" prediction. Zeroing this concept flips the decision to the correct class. In both cases, we see that the decision is largely explained by the top 4-5 concepts.

Figure 4: Per-image explanations of M-CBM at NCC=5 for a correct prediction in CUB (a) and a misclassification in ISIC 2018 (b). Concepts with negative logit are labeled as "NOT concept".

7 CONCLUSION AND LIMITATIONS

We presented Mechanistic CBMs (M-CBM), a novel paradigm for training CBMs using concepts learned directly from a black-box backbone and automatically annotated by an MLLM. With this approach, we substantially improve over the state-of-the-art, both in terms of task accuracy and concept predictions. We are also able to keep explanations concise by controlling final layer sparsity to achieve a target Number of Contributing Concepts (NCC). One limitation general to all CBMs is that we still lack a systematic way to assess whether concepts are learned as intended and not via spurious correlations. This is because the final layer is interpretable, but the concept prediction remains a black-box. The other main limitation compared to baselines is that M-CBM is less plug-and-play, requiring some supervision at the SAE stage to ensure good reconstruction and that the extracted concepts are interpretable (see Appendix B). Despite limitations, given that, due to computational constraints, we annotate only a small subset of images, there might be great potential for improvement with the advancements of MLLMs in both performance and efficiency.

REFERENCES

- Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety a review. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=ePUVetPKu6. Survey Certification, Expert Certification.
- Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language models. https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html, 2023.
- Trenton Bricken, Adly Templeton, Ben Chen, Jack Lindsey, Adam Jermyn, Shan Carter, Tom Henighan, Adam Pearce, and Chris Olah. Towards monosemanticity: Decomposing language models with dictionary learning. https://transformer-circuits.pub/2023/monosemantic-features, 2023. Transformer Circuits Thread, Anthropic.
- Noel Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi, Stephen Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, Harald Kittler, and Allan Halpern. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic), 2019. URL https://arxiv.org/abs/1902.03368.
- Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=89ia77nZ8u.
- Antonio De Santis, Riccardo Campi, Matteo Bianchi, and Marco Brambilla. Visual-tcav: Concept-based attribution and saliency maps for post-hoc explainability in image classification, 2025. URL https://arxiv.org/abs/2411.05698.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
- Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposition, 2022. URL https://arxiv.org/abs/2209.10652.
- Thomas Fel, Agustin Picard, Louis Béthune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2711–2721, June 2023.
- Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=tcsZt9ZNKD.
- Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based explanations. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
- Liv Gorton. The missing curve detectors of inceptionv1: Applying sparse autoencoders to inceptionv1 early vision. In *ICML 2024 Workshop on Mechanistic Interpretability*, 2024. URL https://openreview.net/forum?id=IGnoozsfj1.
- Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=F76bwRSLeK.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 2668–2677. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/kim18d.html.

- Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy Liang. Concept bottleneck models. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 5338–5348. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/koh20a.html.
- Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), *Computer Vision ECCV 2024*, pp. 38–55, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-72970-6.
- Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron representations in deep vision networks. *International Conference on Learning Representations*, 2023.
- Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottle-neck models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=FlCg47MNvBA.
- Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001. https://distill.pub/2020/circuits/zoom-in.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/radford21a.html.
- Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János Kramár, Rohin Shah, and Neel Nanda. Improving sparse decomposition of language model activations with gated sparse autoencoders. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 775–818. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/01772a8b0420baec00c4d59fe2fbace6-Paper-Conference.pdf.
- Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-agnostic concept bottlenecks via automated concept discovery. In European Conference on Computer Vision, 2024.
- Karsten Roth, Jae Myung Kim, A. Sophia Koepke, Oriol Vinyals, Cordelia Schmid, and Zeynep Akata. Waffling around for performance: Visual classification with random words and broad concepts. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15700–15711, 2023. doi: 10.1109/ICCV51070.2023.01443.
- Tamar Rott Shaham, Sarah Schwettmann, Franklin Wang, Achyuta Rajaram, Evan Hernandez, Jacob Andreas, and Antonio Torralba. A multimodal automated interpretability agent. In *Forty-first International Conference on Machine Learning*, 2024.

Lisa Schut, Nenad Tomašev, Thomas McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim. Bridging the human—ai knowledge gap through concept discovery and transfer in alphazero. *Proceedings of the National Academy of Sciences*, 122(13):e2406675122, 2025. doi: 10.1073/pnas.2406675122. URL https://www.pnas.org/doi/abs/10.1073/pnas.2406675122.

- Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, October 2017. doi: 10.1109/iccv.2017.74. URL http://dx.doi.org/10.1109/ICCV.2017.74.
- David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.
- Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of general knowledge. *Proceedings of the AAAI Conference on Artificial Intelligence*, 31(1), Feb. 2017. doi: 10.1609/aaai.v31i1.11164. URL https://ojs.aaai.org/index.php/AAAI/article/view/11164.
- Divyansh Srivastava, Ge Yan, and Tsui-Wei Weng. Vlg-cbm: Training concept bottle-neck models with vision-language guidance. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 79057–79094. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/90043ebd68500f9efe84fedf860a64f3-Paper-Conference.pdf.
- Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *Proceedings of the 34th International Conference on Machine Learning Volume 70*, ICML'17, pp. 3319–3328. JMLR.org, 2017.
- Harrish Thasarathan, Julian Forsyth, Thomas Fel, Matthew Kowal, and Konstantinos G. Derpanis. Universal sparse autoencoders: Interpretable cross-model concept alignment. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=UoaxRN880R.
- Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. *Scientific Data*, 5:180161, 2018. doi: 10.1038/sdata.2018.161. URL https://www.nature.com/articles/sdata2018161.
- C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.
- Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for debuggable deep networks. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 11205–11216. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/wong21b.html.
- Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu. *Explainable AI: A Brief Survey on History, Research Areas, Approaches and Challenges*, pp. 563–574. 09 2019. ISBN 978-3-030-32235-9. doi: 10.1007/978-3-030-32236-6_51.
- An Yan, Yu Wang, Yiwu Zhong, Chengyu Dong, Zexue He, Yujie Lu, William Yang Wang, Jingbo Shang, and Julian McAuley. Learning Concise and Descriptive Attributes for Visual Recognition. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3067–3077, Los Alamitos, CA, USA, October 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.00287. URL https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00287.

- Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable im-age classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19187–19197, 2023. Chih-Kuan Yeh, Been Kim, Sercan Ö. Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar. On completeness-aware concept-based explanations in deep neural networks. In *Proceedings of* the 34th International Conference on Neural Information Processing Systems, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
 - Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=nA5AZ8CEyow.
 - P. Zaballos, Á. Llambrich, M. Ara, Z. Olazarán, J. Malvehy, and S. Puig. Dermoscopic findings of haemosiderotic and aneurysmal dermatofibroma: report of six patients. *British Journal of Dermatology*, 154(2):244–250, 02 2006. ISSN 0007-0963. doi: 10.1111/j.1365-2133.2005.06844.x. URL https://doi.org/10.1111/j.1365-2133.2005.06844.x.
 - Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A. Ehinger, and Benjamin I. P. Rubinstein. Invertible concept-based explanations for cnn models with non-negative concept activation vectors. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(13):11682–11690, May 2021. doi: 10.1609/aaai.v35i13.17389. URL https://ojs.aaai.org/index.php/AAAI/article/view/17389.
 - Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 67(2):301–320, 03 2005. ISSN 1369-7412. doi: 10.1111/j.1467-9868.2005.00503.x. URL https://doi.org/10.1111/j.1467-9868.2005.00503.x.

A APPENDIX OVERVIEW

In the appendix, we provide:

- B. Details on training SAEs
- C. Details on random words CBMs
- D. Visualizations of CBL neurons
- E. More examples of explanations

B DETAILS ON TRAINING SAES

In this section, we detail how we trained and evaluated SAEs for concept extraction. We did not find a single hyperparameter configuration that worked uniformly across datasets or backbones. Some dataset-specific adjustments were typically required. Following Bricken et al. (2023), we relied on a mix of quantitative and qualitative proxies to judge whether an SAE was "good enough" for downstream concept use. Specifically, we tracked the following metrics:

- L2 reconstruction loss. We want the reconstruction loss to be low to ensure we extract a
 comprehensive set of concepts.
- 2. Average ℓ_0 . We aim for a number significantly lower than the backbone dimensionality to ensure concepts are disentangled.
- 3. Feature density histograms. It shows how many hidden neurons fire at different activation frequencies across the training set. In the ideal scenario, neurons are either dead or represent interpretable concepts, so we look for a histogram with two clusters, one with very low density representing dead or noisy features and one with higher density, which should represent the actual concepts.

- Recovered cross-entropy loss. We ideally want the extracted concepts to recover model performance, so we know they have predictive power.
- 5. **Recovered accuracy**. Same as 4. For ISIC2018, we also consider balanced accuracy.
- Manual inspection. Inspecting top-activating images for random neurons in the highdensity cluster to assess whether the learned concepts seem interpretable. Empirically, we found that when all other metrics are healthy, most concepts are interpretable, although this cannot be guaranteed.

In Table 3, we provide the training hyperparameters for the SAEs used in the paper, while in Table 4, we show the results in terms of the evaluation metrics we monitored. In Figure 5, we provide the Feature Density Histograms for each SAE. We can see that low-density neurons are generally well separated from high-density neurons. Furthermore, most of the low-density neurons are dead, i.e., never activating. Some neurons are neither dead nor high-density, and these are typically noisy and not very important for the task. As explained in Section 3, we perform a filtering step to remove these neurons before naming and annotation. In Figure 6, we show how choosing a different feature density cut-off impacts recovered loss, accuracy, and the number of neurons kept. We highlight the cut-off we used with a red star symbol. As we see, removing neurons with very low density has little impact on cross-entropy loss and accuracy. After pruning, recovered loss and accuracy for CUB become 89.40% and 98.41%. For ISIC2018, recovered loss and balanced accuracy become 99.41% and 96.84%. For ImageNet recovered loss and accuracy become 97.63% and 96.60%.

Table 3: Training hyperparameters for the SAEs used in the paper.

Hyperparameter	CUB	ISIC2018	ImageNet
Backbone layer dimension	512	2048	2048
Expansion factor	$1 \times$	$0.25 \times$	$4 \times$
Optimizer	Adam	Adam	Adam
Learning rate	1×10^{-4}	1×10^{-4}	1×10^{-3}
L1 coefficient (λ_{SAE})	2×10^{-3}	5×10^{-4}	1×10^{-3}
Epochs	1000	1000	1000
Patience for early stopping	50	50	50

Table 4: Quantitative evaluation metrics for the SAEs we used in the concept extraction phase. These are computed on the validation set, except for ℓ_0 , which is computed on the training set.

Metric	CUB	ISIC2018	ImageNet
L2 reconstruction loss	0.0231	0.0066	0.0462
Average ℓ_0	7.66	17.14	39.23
Recovered loss (CE)	89.49%	99.58	97.74%
Recovered accuracy	98.39%	acc: 96.08%, bal. acc: 96.84%	96.68%

C DETAILS ON RANDOM WORDS CBMS

In this section, we provide additional details on how we implemented the experiments with random words for VLG-CBM, VLG-CBM_{CA}, and M-CBM. For each method, we replace every concept name with a random, semantically meaningless text while preserving the cardinality of the original concept sets and their class-conditioned assignment for vanilla VLG-CBM. We draw words from the NLTK's words corpus, filtered to lowercase alphabetic strings of length 3–8, and added the prefix "bird" so that the result is a short phrase like "bird pizza". The prefix helps maintain minimum image relevance so that models like GroundingDINO or GPT4.1 are more likely to annotate the random concepts as positive in some of the images. For VLG-CBM, the annotation is done using their official codebase without modifications, while for VLG-CBM_{CA}, we remove class conditioning and annotate each (random) concept across all images. Because GroundingDINO accepts at most

Figure 5: Feature density histogram for CUB, ISIC2018 and ImageNet. Purple indicates dead neurons (never active in the training set). Yellow indicates neurons that were pruned due to low density and little to no impact on recovered loss. Green indicates neurons that are kept as concepts for the subsequent steps.

Figure 6: Effect of pruning by activation-count threshold for CUB, ISIC2018, and ImageNet. Higher thresholds typically reduce recovered performance, but when discarding low-density neurons, the reduction tends to be negligible. The point highlighted by a red star indicates the cutoff used in our experiments.

256 input tokens, we batch concept lists and run multiple passes until all concepts are processed. For M-CBM, we follow our standard pipeline but substitute random names before annotation. Furthermore, when annotating random concepts, we omit reference grids of top-activating images to avoid

Figure 7: Examples of VLG-CBM explanations where replacing all concept names with random ones still yields correct predictions using just 1–2 concepts, illustrating how class-conditioned annotation can leak class-specific information unrelated to concept semantics.

leaking information about the original concepts. Figure 7 illustrates how, under class-conditioned annotation, VLG-CBM can effortlessly predict correctly using only 1–2 random concepts.

D VISUALIZATIONS OF CBL NEURONS

In Figures 8, 9, and 10 we show the top–5 activating test images for representative concepts on CUB, ISIC2018, and ImageNet, respectively. These visualizations qualitatively assess whether CBL concepts align with their intended semantics and, when paired with model explanations, help convey what the model is actually seeing in the image that influences a prediction.

E MORE EXAMPLES OF EXPLANATIONS

In this section, we provide additional examples of local explanations of our M-CBMs at NCC=5. The explanations are shown in Figures 11, 12, and 13 respectively from the CUB, ISIC2018, and ImageNet test sets.

Figure 8: Top-5 activating images for CUB concepts

Figure 9: Top-5 activating images for ISIC2018 concepts

Figure 10: Top-5 activating images for ImageNet concepts

Figure 11: Examples of local explanations from CUB test set.

Figure 12: Examples of local explanations from ISIC2018 test set.

Figure 13: Examples of local explanations from ImageNet test set.