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ABSTRACT

Concept Bottleneck Models (CBMs) aim for ante-hoc interpretability by learning
a bottleneck layer that predicts interpretable concepts before the decision. State-
of-the-art approaches typically select which concepts to learn via human specifica-
tion, open knowledge graphs, prompting an LLM, or using general CLIP concepts.
However, concepts defined a-priori may not have sufficient predictive power for
the task or even be learnable from the available data. As a result, these CBMs of-
ten significantly trail their black-box counterpart when controlling for information
leakage. To address this, we introduce a novel CBM pipeline named Mechanistic
CBM (M-CBM), which builds the bottleneck directly from a black-box model’s
own learned concepts. These concepts are extracted via Sparse Autoencoders
(SAEs) and subsequently named and annotated on a selected subset of images
using a Multimodal LLM. For fair comparison and leakage control, we also intro-
duce the Number of Contributing Concepts (NCC), a decision-level sparsity met-
ric that extends the recently proposed NEC metric. Across diverse datasets, we
show that M-CBMs consistently surpass prior CBMs at matched sparsity, while
improving concept predictions and providing concise explanations. Our code is
available at https://anonymous.4open.science/r/M-CBM-85D9.

1 INTRODUCTION

As AI systems become increasingly complex and embedded in high-stakes applications such as
healthcare, autonomous driving, and defense, there is a growing demand for vision models that not
only perform well but are also transparent and interpretable. To obtain explanations for AI decisions,
we can generally take two approaches: (i) utilize post-hoc methods that try to gain insights into
how black-box models produce their outputs, or (ii) develop inherently transparent models that can
explain their decisions by design (i.e., ante-hoc explainability) (Xu et al., 2019). In computer vision,
a promising ante-hoc approach to explainability are Concept Bottleneck Models (CBMs), which
are trained to first predict an intermediate set of interpretable concepts and then use these concepts
to predict the final output. Recent practice typically instantiates this concept set a-priori, either
specified by human experts (Koh et al., 2020), based on knowledge graphs (Yuksekgonul et al.,
2023), by prompting an LLM (Yang et al., 2023; Oikarinen et al., 2023; Srivastava et al., 2024),
or using general concepts from pre-trained vision-language models (Rao et al., 2024). However,
concepts defined a-priori may not have sufficient predictive power for the target task or even be
learnable from the available data. As a result, state-of-the-art CBMs substantially underperform their
black-box counterpart when controlling for information leakage. Beyond performance, a further
reason not to fix concepts a-priori is that modern ML systems often equal or exceed human expertise,
creating an opportunity to use interpretability to learn from machines. For example, Schut et al.
(2025) extracted concepts learned by the chess engine AlphaZero (Silver et al., 2017) and were
able to teach them to grandmasters. Furthermore, mechanistic interpretability has recently made
significant progress in comprehensively extracting concepts from black-box models, in particular
via Sparse Autoencoders (SAEs) (Bricken et al., 2023). Motivated by this, we ask whether CBMs
built directly from a model’s own learned concepts can serve as interpretable approximations of
their black-box counterparts. Because these concepts originate in the backbone, we expect them to
be learnable by construction and to have good predictive power. To test this, we develop a novel
CBM pipeline, which we refer to as Mechanistic CBM (M-CBM), and compare it to state-of-the-art
CBMs in both task accuracy and its ability to learn concepts, showing significant improvements.
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2 RELATED WORK

Concept-based Explanations. Early approaches for explainable computer vision typically rely
on saliency (Selvaraju et al., 2017) or attribution maps (Sundararajan et al., 2017) that show which
regions or pixels of an image contribute the most to a decision. By contrast, concept-based methods
aim to provide explanations in terms of higher-level, human-understandable concepts (e.g., stripes
for a zebra). A seminal contribution to the field was TCAV (Kim et al., 2018), a method that in-
vestigates a model’s sensitivity to a user-defined concept by collecting a set of example images
representing that concept. Later, De Santis et al. (2025) extended TCAV with per-instance concept
attributions and saliency maps indicating where the concept is recognized. However, both of these
methods have practical limitations as they require users to manually collect concept examples. To
address this, unsupervised approaches have also been proposed (Ghorbani et al., 2019; Zhang et al.,
2021; Fel et al., 2023) to automatically discover influential concepts for a given class. These meth-
ods typically crop images of a class, randomly or via segmentation, and cluster the cropped patch
activations to extract groups of semantically similar patches that correspond to a concept. However,
with this approach, achieving completeness (i.e., extracting a concept set sufficient to recover the
model’s prediction) remains a nontrivial task (Yeh et al., 2020).

Mechanistic Interpretability. Mechanistic interpretability (MI) aims to comprehensively reverse-
engineer deep networks by converting their neurons and weights into interpretable features and
algorithms, and it differentiates itself from concept-based approaches primarily for its ambition of
completeness (Bereska & Gavves, 2024). A central challenge to this is polysemanticity, i.e., neurons
often respond to unrelated features, so they cannot be mapped one-to-one with concepts (Olah et al.,
2020). This could allow networks to learn far more features than there are neurons, which is known
as the superposition hypothesis (Elhage et al., 2022). Recently, Bricken et al. (2023) showed this can
be addressed post-hoc by disentangling features via Sparse Autoencoders (SAEs) that learn a sparse,
overcomplete dictionary of monosemantic features that then reconstruct the original activations. The
SAE reconstruction error also provides a quantitative proxy for completeness in a chosen layer.
Given their effectiveness in both language (Gao et al., 2025) and vision (Gorton, 2024; Thasarathan
et al., 2025), we also adopt SAEs for concept extraction in our pipeline (see Section 3 for more
details on SAEs). Another emerging trend in MI is automated interpretability, i.e., using LLMs
to generate natural language explanations for reverse-engineering neuron behavior. This was first
applied to explain language model neurons (Bills et al., 2023), but then also proved effective to
explain vision models (Rott Shaham et al., 2024). We also use a similar approach to assign names
to concepts extracted via SAEs (Section 3). MI has also made progress in dissecting models into
interpretable circuits (e.g., identifying algorithmic sub-structures within deep networks) via masking
or patching procedures (Conmy et al., 2023). Those circuit-level analyses are currently not being
used in our pipeline, but integrating them could be a promising future work.

Concept Bottleneck Models. Concept Bottleneck Models (CBMs) are self-explaining neural net-
works that learn a set of intermediate human-understandable concepts to solve a task. The term
was first introduced by Koh et al. (2020), who trained CBMs using datasets with concept anno-
tations. Later, Yuksekgonul et al. (2023) relaxed this requirement with post-hoc CBMs that learn
a Concept Bottleneck Layer (CBL) using Concept Activation Vectors (CAVs) (Kim et al., 2018),
only requiring manual selection of representative examples for each concept. Furthermore, when
using a CLIP (Radford et al., 2021) backbone, it learns concepts directly from text sourced from the
ConceptNet (Speer et al., 2017) knowledge graph. Yang et al. (2023) later showed benefits in gener-
ating the concept set with LLMs. Oikarinen et al. (2023) extended this paradigm also to non-CLIP
backbones using CLIP-Dissect (Oikarinen & Weng, 2023) to map concept embeddings in CLIP to
any backbone. A known problem, however, that exists across all CBMs is information leakage,
i.e., the fact that the CBL inadvertently encodes hidden class-relevant patterns beyond the concept
semantics, which can be quickly learned by the final predictor to improve its accuracy (Havasi et al.,
2022). This issue is quite serious, as Yan et al. (2023) even showed that replacing concepts with
random words can achieve similar accuracy. Information leakage also results in unsatisfying ex-
planations, in which the most important concepts contribute significantly less than the sum of all
other concepts, making the model basically a black-box. To address this, Srivastava et al. (2024)
introduced the Number of Effective Concepts (NEC) as a metric to measure and control how many
concepts CBMs use to make a prediction, effectively reducing information leakage. In this work,
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Figure 1: Overview of the M-CBM pipeline. (1) Given a trained black-box backbone, we extract its
features and learn sparse, disentangled concept directions using a Sparse Autoencoder (SAE). (2)
A Multimodal LLM is prompted with examples of highly activating and non-activating images to
assign concept names to each SAE neuron. (3) The MLLM then annotates a subset of the dataset
containing an equal split of active and non-active examples, indicating the presence or absence of
each concept in selected images. (4) Using these concept annotations, we train a Concept Bottleneck
Layer (CBL) and a sparse linear classifier to predict target classes from the learned concepts.

we also follow this approach and use the Number of Contributing Concepts (NCC), a generalization
of NEC, to control for leakage and explanation conciseness. More details on NEC and NCC are
provided in Section 4. Srivastava et al. (2024) also introduced VLG-CBM, a CBM pipeline that uses
GroundingDINO (Liu et al., 2025), an open-vocabulary object detector, to automatically annotate a
dataset with LLM-generated concepts. The CBL is then trained on these annotations in a multilabel
setting, allowing also for the evaluation of concept predictions, similar to the vanilla CBM by Koh
et al. (2020). However, leakage still arises from the annotation being class-conditioned, as we show
in Section 5. Another limitation of these CBM paradigms is that LLM-generated concept sets offer
no guarantees that the proposed concepts have sufficient predictive power for the target task and are
even learnable from the available data. Sometimes they can also be non-visual (Roth et al., 2023).
We instead propose extracting and using the black-box model’s own learned concepts, rather than
guessing with an LLM. A first step in this direction within the literature is DN-CBM (Rao et al.,
2024), which learns concepts from CLIP with an SAE and uses its hidden layer as CBL, naming
the concepts by selecting the nearest CLIP text embeddings to the decoder vector. However, this
paradigm can only be applied with CLIP as a backbone, limiting its accuracy across datasets, as
we show in Section 6. Furthermore, CLIP dependence can still introduce non-visual concepts (e.g.,
“spicy”, “loud”), making explanations less transparent (Srivastava et al., 2024; Yang et al., 2023).

3 METHODOLOGY

In this section, we introduce our methodology for transforming any black-box model into an
interpretable-by-design CBM. Our approach, which we refer to as Mechanistic CBM (M-CBM),
extracts human-interpretable concepts from a trained black-box model, assigns names and annota-
tions using a Multimodal Large Language Model (MLLM), and then trains a sequential CBM (Koh
et al., 2020) using these concepts. An overview of the whole pipeline is provided in Figure 1.

Concept Extraction. Given a black-box backbone ϕ trained on an arbitrary dataset D, the first step
of our methodology is to decompose the features learned by the model during training into a set of
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interpretable concepts. To achieve this, we use the Sparse Autoencoder (SAE) approach, which was
recently popularized in the mechanistic interpretability literature (Bereska & Gavves, 2024) and has
proven effective to disentangle model features into interpretable concepts for both vision (Gorton,
2024; Thasarathan et al., 2025) and language models (Bricken et al., 2023; Huben et al., 2024).

An SAE is a neural network trained to reconstruct its input features while enforcing sparsity in the
hidden representation (see step 1⃝ in Figure 1). In our case, the input features are the activations
a(i) = ϕ(x(i)) ∈ Rn of the backbone ϕ for each sample x(i) in the training set D. Following
Bricken et al. (2023), the SAE subtracts an input bias bD and then passes the resulting vector to an
encoder with weights WE , bias bE , and ReLU activation, obtaining the hidden layer h ∈ Rm:

h = ReLU
(
W⊤

E (a− bD) + bE
)

In the sparse hidden layer h, ideally, each neuron learns to recognize a distinct concept. A decoder
with weights WD and bias bD then maps h back to the reconstructed features â:

â = W⊤
Dh+ bD

where WE ∈ Rn×m, WD ∈ Rm×n, and typically for large datasets m ≫ n to account for the
superposition hypothesis (Elhage et al., 2022), i.e., the fact that neural networks tend to learn more
concepts than the neurons they have. The input and output biases bD are opposite in sign and equal
in magnitude. While Bricken et al. (2023) train SAEs with expansion factors (defined as m/n)
ranging from 1x to 256x, we avoid going above 4x to keep the annotation step computationally
feasible. To train the SAE, we minimize the following objective:

LSAE =
1

|D|

|D|∑
i=1

∥a(i) − â(i)∥22 + λSAE∥h(i)∥1 (1)

where λSAE > 0 is a hyperparameter that controls the strength of the sparsity penalty on the hidden
representation. We also monitor the average ℓ0 norm (i.e., the number of non-zero activations) to
ensure ℓ0 ≪ n, as recommended by Bricken et al. (2023).

SAE training often leaves many neurons in the hidden layer h dead (never activated for any training
sample) or nearly dead (activate only very rarely). To ensure that our set of candidate concepts is
both meaningful and computationally efficient for subsequent annotation, we perform a filtering step
to remove such neurons. To define the threshold for identifying nearly dead neurons, we measure,
for each unit in h, the number of training samples for which it is active. We then select a cutoff
value such that removing all units below this threshold does not reduce the recovered cross-entropy
loss of the black-box model, defined as 1 − LBB(â)−LBB(a)

LBB(0)−LBB(a) , by more than a tolerance of ∼ 1%.
This procedure ensures that only neurons with negligible contribution to predictive performance are
pruned. This metric was also used to evaluate SAE quality in prior work (Bricken et al., 2023;
Rajamanoharan et al., 2024; Gao et al., 2025). More details on SAEs in Appendix B.

Concept Naming. After pruning, each remaining neuron in the SAE hidden layer h is treated
as a candidate concept, where we denote by hj the j-th hidden SAE neuron. To assign human-
interpretable names, we adopt an automated procedure inspired by recent work on mechanistic in-
terpretability of language model neurons (Bills et al., 2023). For each candidate concept, we first
select a set of inputs x ∈ D that maximally activate the corresponding neuron hj . For these in-
puts, we also highlight the spatial regions that contribute the most to the activation, similarly to
Rott Shaham et al. (2024). To compute these concept saliency maps, we use the method introduced
by De Santis et al. (2025) (i.e., weighted average of feature maps using WD as concept weights and
followed by ReLU). To provide a contrastive signal, we additionally sample a set of non-activating
examples, of which half are drawn at random from D, and half are selected as the most cosine simi-
lar to the activating examples to enhance discrimination of fine-grained visual features. The paired
examples are provided to an MLLM, GPT-4.1 in our experiments, which is prompted to produce a
concise natural-language description of the concept that the neuron represented by hj is responding
to. At this stage, we also explicitly instruct the model not to use class names as concepts. Step 2⃝
of Figure 1 shows an example of what the MLLM receives as input. In our experiments, we used 10
activating examples and 10 non-activating ones.

Finally, since we do not want duplicate or semantically equivalent concepts, we perform a merging
step similar to Oikarinen et al. (2023), in which we embed all proposed textual names using a pre-
trained embedding model and merge those with very high cosine similarity (i.e., above 0.98). We
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use OpenAI’s text-embedding-3-large in our experiments. To make the embeddings context-aware,
we also wrap each concept name in the following template before inserting it into the embedding
model: “This is a visual concept in the context of {domain}: {concept}”. The variable {concept}
contains the concept name, while {domain} specifies the dataset domain (e.g., bird species, skin
lesions). For simplicity, Figure 1 omits the merging step.

Dataset Annotation. With concept names assigned, we proceed to build a partially annotated
dataset that can be used to train the Concept Bottleneck Layer (CBL). Let C = {c1, . . . , cK} denote
the final set of concepts. For each concept ck, the goal is to obtain binary presence/absence labels
on a subset of images x ∈ D. Since exhaustive annotation of the full dataset is not computationally
feasible at the time of writing this paper, we annotate up to 1000 samples per concept, drawn mainly
from the training, but also from the test set (e.g., 20-30%) solely for a final CBL evaluation (results
in Section 6). The annotation procedure is performed by prompting the MLLM with batches of 25
images arranged in a 5 × 5 grid for computational efficiency. The model is asked to indicate, for
each of the 25 grid images, whether the concept is present or absent. See step 3⃝ of Figure 1 for a
high-level overview of the annotation procedure. Each call also includes a grid of the top-25 most
activating images for the corresponding SAE neuron, which serve as a reference together with the
textual concept name.

To select the subset of images for annotation, we first select up to 500 active samples per concept.
The active set is defined as all inputs for which hj > 0. From this set, we select samples whose
activation lies above the 95th percentile of the set. If fewer than 500 samples exceed this percentile,
we take the top-500 activations overall within the active set. If the neuron has fewer than 500 active
samples in total, we take all available examples, rounding the number down to the nearest multiple
of 25 to match the batch annotation protocol. For merged neurons, activations are normalized across
the group and treated as a single unit when computing percentiles. We then select an equal number
of non-active samples, of which half are drawn uniformly at random and half are chosen as the
most cosine similar to the active samples, similarly to the naming procedure. Furthermore, to avoid
biasing concepts toward particular classes, both active and non-active sets are stratified across class
labels. Each batch of 25 images also contains a balanced mix of active and non-active examples. At
the end of this annotation step, we obtain a set of around 1000 annotated samples for each concept,
containing both presence and absence cases across both training and test data. An image may be
annotated for more than one concept or for none. Formally, for each image x(i) ∈ D, the annotation
procedure creates a ternary vector of concept labels z(i) ∈ {−1, 0, 1}K with the following entries:

z
(i)
k =


1 if ck is annotated as present in x(i)

0 if ck is annotated as absent in x(i)

−1 if ck is not annotated for x(i)

(2)

Concept Bottleneck Model. After generating the concept labels, we proceed with training a se-
quential CBM (Koh et al., 2020). As shown in step 4⃝ of Figure 1, the CBM has three components:
(i) a frozen backbone ϕ that maps an input image to a feature vector, (ii) a Concept Bottleneck Layer
(CBL) g that predicts the presence of K named concepts from those features in a multi-label setting,
and (iii) a sparse linear classifier f that predicts the class from the concept outputs.

For each input x(i) the frozen backbone produces n-dimensional features a(i) = ϕ(x(i)) ∈ Rn. The
CBL g : Rn→RK takes these features as input and outputs concept logits, then a sigmoid produces
probabilities ẑ(i) = σ(g(a(i))) ∈ [0, 1]K . From the annotation pipeline, each image carries a
ternary concept vector z(i) ∈ {−1, 0, 1}K indicating present (1), absent (0), or not annotated (−1).
Since not every image-concept pair is labeled, we train g only on the entries we know. Let Ω =

{(i, k) : z
(i)
k ∈ {0, 1}} be the set of annotated pairs. The CBL is optimized to minimize a masked

Binary Cross-Entropy (BCE) loss that averages over Ω:

LCBL =
1

|Ω|
∑

(i,k)∈Ω

BCE
(
ẑ
(i)
k , z

(i)
k

)
(3)

Entries with z
(i)
k = −1 are effectively ignored in the loss computation. Therefore, images without

any concept annotation (all entries −1) are not used to train the CBL. Furthermore, since positives
are often rarer than negatives, we weight each concept in the BCE by the ratio of its class imbalance.
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To map concepts to classes, we follow prior work (Srivastava et al., 2024; Yuksekgonul et al., 2023;
Oikarinen et al., 2023) and train a sparse linear classifier on concept logits (i.e., CBL’s pre-sigmoid
outputs), optimized using the GLM–SAGA solver (Wong et al., 2021). Since GLM–SAGA assumes
standardized input features, we z-normalize (zero mean and unit variance) the concept logits and
use these to predict the classes. With g frozen, we define a fully connected layer f : RK→RC with
weights WF ∈ RK×C and bias bF ∈ RC , where C is the number of output classes, and minimize
the following Cross-Entropy (CE) loss with an elastic-net (Zou & Hastie, 2005) penalty:

LCLF =
1

|D|

|D|∑
i=1

CE
(
f ◦ g ◦ ϕ(x(i)), y(i)

)
+ λCLF Rα (4)

where y(i) represents the one-hot ground-truth class label for sample x(i) and Rα = (1 −
α) 1

2∥WF ∥22 + α ∥WF ∥1 denotes the elastic-net penalty. We use α = 0.99, and λCLF is tuned
to obtain a target sparsity.

4 NUMBER OF CONTRIBUTING CONCEPTS (NCC)

Prior work has shown that sparse layers are more interpretable (Wong et al., 2021; Yuksekgonul
et al., 2023; Oikarinen et al., 2023), and Srivastava et al. (2024) also showed that sparsity is in-
versely correlated with information leakage. They demonstrated that a dense linear classifier built
on top of a random (i.e., untrained) CBL can recover black-box accuracy if the number of concepts
K approaches or exceeds the backbone feature dimension n, but this effect decreases with higher
sparsity. Related studies that use dense linear layers similarly report that when the concept set is
large enough (e.g., K ≳ n/2), using random words as concepts can match the accuracy obtained
with concepts defined by LLMs or humans (Yan et al., 2023).

While high sparsity improves interpretability and limits leakage, it naturally tends to correlate with
lower accuracy (Wong et al., 2021; Oikarinen et al., 2023; Srivastava et al., 2024), making CBM
comparison incomplete if only accuracy is reported. To address this, Srivastava et al. (2024) in-
troduced an evaluation metric named NEC, which is defined as the average number (per-class) of
non-zeros in the weights WF of the final layer f . They train f at different regularization strengths
λCLF and accuracies are compared at equal NEC. This is convenient for enabling a fair comparison
between CBMs, but it also has limitations. Controlling NEC forces concise decision explanations,
but it does so by linearly restricting the effective concept vocabulary as the number of classes de-
creases. For instance, with three classes, NEC=5 forces K ≤ 15 (or even K = 5 if classification
is binary) after training so that on average predictions are explained by ∼ 5 concepts. However, in
datasets with substantial intra-class diversity (e.g., peeled or in-field pineapples are the same class in
ImageNet), a single class may require a rich concept vocabulary (i.e., larger K) to cover its different
contexts, even though only a subset of them is needed to predict an individual image.

With this in mind, we introduce a generalization of NEC, named Number of Contributing Concepts
(NCC), which does not impose a hard cap on K but still enforces concise explanations by measuring
sparsity at decision-level using concept contributions rather than weights count. To measure the con-
tribution of concept k, for class r and image i, we must consider the magnitude of both the concept
logit g(a(i))]k and its weight [WF ]k,r towards class r. We then define the absolute contribution of
a concept to a class as u(i)

k,r =
∣∣ [g(a(i))]k · [WF ]k,r

∣∣. Ideally, we want the model to recognize a
class with only a small subset of concepts that cover the vast majority of the total absolute contribu-
tion, or, in other words, explain the vast majority of the decision. Let u(i)

(s),r denote the s-th largest
absolute contributing concept, and fixed coverage level τ ∈ [0, 1]. We define NCC as:

NCCτ =
1

|D|C

|D|∑
i=1

C∑
r=1

min
{
κ ∈ {0, . . . ,K} :

κ∑
s=1

u
(i)
(s),r ≥ τ

K∑
k=1

u
(i)
k,r

}
Intuitively, NCCτ is the average number of concepts required to explain at least a τ fraction of
the prediction of a class. For example, an NCC=5 with τ = 0.95, means that, on average, just 5
concepts explain ≥ 95% of the decision. For controlling NCC, we fix a τ and follow the approach
of Srivastava et al. (2024), training f at different λCLF and compare CBM accuracies at equal
NCC levels. In practice, targeting a lower NCC generally means trading accuracy for explanation
conciseness and vice versa.
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5 EXPERIMENTAL SETUP

Baselines. We compare M-CBM with three state-of-the-art CBMs: LF-CBM (Oikarinen et al.,
2023), VLG-CBM (Srivastava et al., 2024), and DN-CBM (Rao et al., 2024). For VLG-CBM, we
compare with a class-agnostic annotation variant, which we refer to as VLG-CBMCA, rather than the
original pipeline. In the original VLG-CBM, concepts are assigned to classes before annotation and
are annotated only on images of their assigned classes. While this design reduces annotation cost,
coupling concepts to classes can introduce substantial information leakage. We verify this on CUB
in Figure 2. Using random words as concepts, VLG-CBM reaches black-box level accuracy already
at around NCC=1.5, showing that in this setup, performance is insensitive to both sparsity and con-
cept semantics. Intuitively, this happens because learning a concept that is labeled as positive only
on images of a class is nearly equivalent to learning that class directly. When we remove class condi-
tioning by annotating each concept across all images (VLG-CBMCA), accuracy drops substantially
for both random and real concepts, and the expected interpretability–accuracy trade-off reappears.
We performed the same experiment with our M-CBM, and the performance of substituting concepts
with random words is similar to using random words in VLG-CBMCA. However, when real con-
cepts are used, our M-CBM outperforms VLG-CBMCA at high sparsity (NCC=3 to 5), while for
low sparsity (NCC=10+), accuracy becomes similar to random due to information leakage. Further
implementation details for this experiment are provided in Appendix C.

(a) VLG-CBM (b) VLG-CBMCA (c) M-CBM (Ours)

Figure 2: Accuracy vs. NCC (τ = 0.95) on CUB. (a) With class-conditioned annotation, VLG-CBM
reaches near black-box accuracy with NCC=1.5 (i.e., using only 1 to 2 concepts per prediction). The
same happens using random concept names, showing evidence of leakage. (b) Making annotation
class-agnostic (VLG-CBMCA) restores the accuracy–interpretability trade-off, with real concepts
slightly beating random words at low NCC. (c) M-CBM outperforms both VLG-CBMCA and the
random baselines at low NCC, while leakage comes back in both methods as NCC increases.

Setup. We evaluate on three standard image classification datasets that vary in domain and class
count: CUB (Wah et al., 2011), ISIC2018 (Codella et al., 2019; Tschandl et al., 2018), and Im-
ageNet (Deng et al., 2009). CUB contains ∼ 6k training images and ∼ 5.8k test images of 200
fine-grained bird species. As backbone for this dataset, we use the pre-trained ResNet18 from py-
torchcv. ISIC2018 contains dermatoscopic images of pigmented lesions categorized in 7 classes,
split into ∼ 10k train, 193 validation, and ∼ 1.5k test. Given a pronounced class imbalance, we
report both accuracy and balanced accuracy for this dataset. Given the lack of public pre-trained
models, we train a ResNet50 (weighting each class by its imbalance ratio) and use it as a backbone.
ImageNet includes 1k classes with ∼1.3M training and 50k test images for general image classifi-
cation. As backbone, we use the pre-trained ResNet50 from torchvision. Furthermore, for ImageNet
and CUB, we extract 10% from the train and use it as a validation set. Regarding DN-CBM, since
it only supports a CLIP backbone, we use the same CLIP-RN50 backbone for all datasets. As dis-
cussed in Section 4, we compare under the same NCC. We use τ = 0.95 and measure accuracies at
NCC=5 and NCC=avg, with the latter being the average of the levels: 5, 10, 15, 20, 25, 30.

Compute Resources. We trained all neural components (SAE, CBL, and GLM-SAGA) on an
HPC cluster using an NVIDIA H200 on a multi-core node (32 cores and 512GB of RAM). On CUB
and ISIC2018, each stage takes 5-20 minutes, while 3-5 hours for ImageNet. The dominant step
in terms of cost and runtime is the annotation with GPT-4.1 API, which takes around 2 minutes
and costs USD 0.14 per concept. Concept naming was lighter, taking around 10-20 seconds and
USD 0.02 per concept, while concept merging costs were negligible. These costs scale linearly with
the concept number, which was 278, 73 and 2648 respectively for CUB, ISIC2018 and ImageNet.
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6 RESULTS AND DISCUSSION

Accuracy Comparison. We report results in Table 1. Our M-CBM consistently achieves the high-
est accuracy across datasets and NCC values. An expected interpretability-accuracy trade-off is also
visible across all methods, as accuracy always increases when NCC is higher (i.e., explanations are
less concise). DN-CBM consistently performs poorly, especially at NCC=5, indicating that a small
subset of generic CLIP concepts may be insufficient to predict a class across datasets. VLG-CBMCA
shows better accuracy than LF-CBM and DN-CBM, but annotating per-concept the entire dataset
with GroundingDINO makes it computationally prohibitive at ImageNet scale (∼ 300 GPU-days).
In contrast, M-CBM uses SAE activations to pre-select candidate images per concept, so that we
only need to annotate ∼1k images per concept. We exclude class-conditioned VLG-CBM from the
comparison, as due to leakage, it is effectively a black-box (see Section 5).

Table 1: Accuracy comparison at NCC=5 and NCC=avg with best model in bold. The results for
M-CBM are averaged over 3 seeds with same annotations. N/A denotes computationally unfeasible.

Dataset CUB ISIC2018 ImageNet

Metrics Accuracy Accuracy Balanced Accuracy Accuracy

Black-box 76.67% 79.37% 75.37% 76.15%

Sparsity NCC=5 NCC=avg NCC=5 NCC=avg NCC=5 NCC=avg NCC=5 NCC=avg

LF-CBM 58.08% 71.09% 61.44% 67.55% 64.29% 67.30% 62.20% 69.08%
DN-CBM 38.21% 48.98% 35.38% 54.61% 39.85% 52.85% 46.71% 57.24%
VLG-CBMCA 69.12% 72.25% 64.55% 72.61% 64.63% 70.80% N/A N/A
M-CBM
(Ours)

73.70%
± 0.13%

74.18%
± 0.06%

72.75%
± 0.10%

75.51%
± 0.08%

70.14%
± 0.09%

71.54%
± 0.05%

72.18%
± 0.21%

73.64%
± 0.15%

Evaluating Concept Prediction. We assess how well each method can learn its own concepts by
also annotating the test set. Because these labels are not ground truth, high scores do not guarantee
that the model is learning the concepts as intended, but only that they are at least internally consis-
tent and learnable. Especially for ISIC2018, we found that LLM-generated concept sets are often
non-visual (e.g., “warm to the touch”) or not in the data (e.g., “medical report”). Since M-CBM uses
concepts extracted from the backbone, we expect some benefits in the concept predictions, which is
what we see in Table 2. Another factor that could contribute to the lower performance is the capa-
bility of GroundingDINO to annotate correctly, which may be inferior to asking GPT-4.1, especially
for medical images. However, due to a lack of ground truth, this remains challenging to quantify.

Table 2: ROC-AUC evaluation of concept predictions on test set. Each method is evaluated on its
own concepts. We report the macro-average across concepts and the average of the worst 10%.

Dataset CUB ISIC2018 ImageNet

Metrics ROC-AUC ROC-AUC ROC-AUC

Macro Worst-10% Macro Worst-10% Macro Worst-10%

VLG-CBMCA 62.03% 45.60% 73.37% 52.92% N/A N/A
M-CBM (Ours) 90.04% 79.05% 80.57% 66.98% 88.90% 78.36%

Explanations. We illustrate the behavior of M-CBMs through global (class-level) and local
(instance-level) explanations, using models at NCC=5. Using the final layer weights WF , we can
visualize how concepts globally contribute to classes. In Figure 3, we show these weights using
Sankey diagrams, with “NOT concept” indicating a negative weight. For clarity, we include only
concepts with |WF | > 0.1. On ImageNet, the model’s behavior aligns with intuition. The classes
“Modem” and “Radio” share concepts related to ports/switches and antennas, while they are mainly
differentiated by the presence of indicator lights for class “Modem” versus control knobs for class
“Radio”. On ISIC2018, the model learns a richer concept set for “Melanocytic nevus” than for
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(a) ImageNet (b) ISIC 2018

Figure 3: Sankey plots of concept–class weights of our M-CBM at NCC=5. Concepts on the left
and classes on the right. Concepts with negative weights are labeled as “NOT concept”.

“Dermatofibroma”, which could be explained by the large class imbalance. Still, the few concepts
learned for “Dermatofibroma” are consistent with dermatological literature (Zaballos et al., 2006).
Some minor concepts for “Melanocytic nevus”, such as skin-tone–related terms, are less clear. This
likely arises from the concept naming (step 2⃝), where visually highlighting the concept (in this case,
the skin around the nevus) in the image can introduce mild artifacts that GPT-4.1 over-interpreted.
CBMs can also explain individual predictions by showing, for an input x(i), the contribution of con-
cepts to a class r. This contribution is computed directly by multiplying the logit of the k-th concept
g(a(i))]k with its corresponding weight [WF ]k,r towards class r. Concepts with a negative logit are
indicated as “NOT concept”. We show two examples in Figure 4, including a correct CUB predic-
tion and a misclassification on ISIC, where the model incorrectly sees “clustered blue-gray ovoid
nests”, leading to a “Basal Cell Carcinoma” prediction. Zeroing this concept flips the decision to the
correct class. In both cases, we see that the decision is largely explained by the top 4-5 concepts.

1. clustered blue-gray ovoid nests (+3.32)
2. central dark blotch (-0.17)
3. pink or light red papule/nodule with a central depression

or ulceration (+0.15)
4. NOT pink lesion with multiple red and brown ulcerated or

crusted areas (-0.13)
5. Sum of all 68 other concepts (+0.03)

1. yellow bird with black facial mask around eyes (+4.8)
2. black mask around yellow face (+4.34)
3. bright yellow plumage with black cap (+1.28)
4. yellow upperpart with black body and beak (+0.38)
5. olive-green upperparts (+0.12)
6. Sum of all 273 other concepts (+0.05)

(a) Correctly predicted Hooded Warbler

1. clustered blue-gray ovoid nests (+3.32)
2. central dark blotch (-0.17)
3. pink or light red papule/nodule with a central depression

or ulceration (+0.15)
4. NOT pink lesion with multiple red and brown ulcerated or

crusted areas (-0.13)
5. Sum of all 68 other concepts (+0.03)

1. yellow bird with black facial mask around eyes (+4.8)
2. black mask around yellow face (+4.34)
3. bright yellow plumage with black cap (+1.28)
4. yellow upperpart with black body and beak (+0.38)
5. olive-green upperparts (+0.12)
6. Sum of all 273 other concepts (+0.05)

(b) Melanocytic Nevus wrongly predicted as BCC

Figure 4: Per-image explanations of M-CBM at NCC=5 for a correct prediction in CUB (a) and a
misclassification in ISIC 2018 (b). Concepts with negative logit are labeled as “NOT concept”.

7 CONCLUSION AND LIMITATIONS

We presented Mechanistic CBMs (M-CBM), a novel paradigm for training CBMs using concepts
learned directly from a black-box backbone and automatically annotated by an MLLM. With this
approach, we substantially improve over the state-of-the-art, both in terms of task accuracy and con-
cept predictions. We are also able to keep explanations concise by controlling final layer sparsity
to achieve a target Number of Contributing Concepts (NCC). One limitation general to all CBMs
is that we still lack a systematic way to assess whether concepts are learned as intended and not
via spurious correlations. This is because the final layer is interpretable, but the concept predic-
tion remains a black-box. The other main limitation compared to baselines is that M-CBM is less
plug-and-play, requiring some supervision at the SAE stage to ensure good reconstruction and that
the extracted concepts are interpretable (see Appendix B). Despite limitations, given that, due to
computational constraints, we annotate only a small subset of images, there might be great potential
for improvement with the advancements of MLLMs in both performance and efficiency.
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A APPENDIX OVERVIEW

In the appendix, we provide:

B. Details on training SAEs

C. Details on random words CBMs

D. Visualizations of CBL neurons

E. More examples of explanations

B DETAILS ON TRAINING SAES

In this section, we detail how we trained and evaluated SAEs for concept extraction. We did not find
a single hyperparameter configuration that worked uniformly across datasets or backbones. Some
dataset-specific adjustments were typically required. Following Bricken et al. (2023), we relied
on a mix of quantitative and qualitative proxies to judge whether an SAE was “good enough” for
downstream concept use. Specifically, we tracked the following metrics:

1. L2 reconstruction loss. We want the reconstruction loss to be low to ensure we extract a
comprehensive set of concepts.

2. Average ℓ0. We aim for a number significantly lower than the backbone dimensionality to
ensure concepts are disentangled.

3. Feature density histograms. It shows how many hidden neurons fire at different activa-
tion frequencies across the training set. In the ideal scenario, neurons are either dead or
represent interpretable concepts, so we look for a histogram with two clusters, one with
very low density representing dead or noisy features and one with higher density, which
should represent the actual concepts.
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4. Recovered cross-entropy loss. We ideally want the extracted concepts to recover model
performance, so we know they have predictive power.

5. Recovered accuracy. Same as 4. For ISIC2018, we also consider balanced accuracy.

6. Manual inspection. Inspecting top-activating images for random neurons in the high-
density cluster to assess whether the learned concepts seem interpretable. Empirically, we
found that when all other metrics are healthy, most concepts are interpretable, although this
cannot be guaranteed.

In Table 3, we provide the training hyperparameters for the SAEs used in the paper, while in Table
4, we show the results in terms of the evaluation metrics we monitored. In Figure 5, we provide the
Feature Density Histograms for each SAE. We can see that low-density neurons are generally well
separated from high-density neurons. Furthermore, most of the low-density neurons are dead, i.e.,
never activating. Some neurons are neither dead nor high-density, and these are typically noisy and
not very important for the task. As explained in Section 3, we perform a filtering step to remove
these neurons before naming and annotation. In Figure 6, we show how choosing a different feature
density cut-off impacts recovered loss, accuracy, and the number of neurons kept. We highlight the
cut-off we used with a red star symbol. As we see, removing neurons with very low density has little
impact on cross-entropy loss and accuracy. After pruning, recovered loss and accuracy for CUB
become 89.40% and 98.41%. For ISIC2018, recovered loss and balanced accuracy become 99.41%
and 96.84%. For ImageNet recovered loss and accuracy become 97.63% and 96.60%.

Table 3: Training hyperparameters for the SAEs used in the paper.

Hyperparameter CUB ISIC2018 ImageNet

Backbone layer dimension 512 2048 2048
Expansion factor 1× 0.25× 4×
Optimizer Adam Adam Adam
Learning rate 1× 10−4 1× 10−4 1× 10−3

L1 coefficient (λSAE) 2× 10−3 5× 10−4 1× 10−3

Epochs 1000 1000 1000
Patience for early stopping 50 50 50

Table 4: Quantitative evaluation metrics for the SAEs we used in the concept extraction phase.
These are computed on the validation set, except for ℓ0, which is computed on the training set.

Metric CUB ISIC2018 ImageNet

L2 reconstruction loss 0.0231 0.0066 0.0462
Average ℓ0 7.66 17.14 39.23
Recovered loss (CE) 89.49% 99.58 97.74%
Recovered accuracy 98.39% acc: 96.08%, bal. acc: 96.84% 96.68%

C DETAILS ON RANDOM WORDS CBMS

In this section, we provide additional details on how we implemented the experiments with random
words for VLG-CBM, VLG-CBMCA, and M-CBM. For each method, we replace every concept
name with a random, semantically meaningless text while preserving the cardinality of the original
concept sets and their class-conditioned assignment for vanilla VLG-CBM. We draw words from the
NLTK’s words corpus, filtered to lowercase alphabetic strings of length 3–8, and added the prefix
“bird ” so that the result is a short phrase like “bird pizza”. The prefix helps maintain min-
imum image relevance so that models like GroundingDINO or GPT4.1 are more likely to annotate
the random concepts as positive in some of the images. For VLG-CBM, the annotation is done using
their official codebase without modifications, while for VLG-CBMCA, we remove class conditioning
and annotate each (random) concept across all images. Because GroundingDINO accepts at most
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(a) CUB (b) ISIC 2018 (c) ImageNet

Figure 5: Feature density histogram for CUB, ISIC2018 and ImageNet. Purple indicates dead neu-
rons (never active in the training set). Yellow indicates neurons that were pruned due to low density
and little to no impact on recovered loss. Green indicates neurons that are kept as concepts for the
subsequent steps.

(a) CUB

(b) ISIC 2018

(c) ImageNet

Figure 6: Effect of pruning by activation-count threshold for CUB, ISIC2018, and ImageNet. Higher
thresholds typically reduce recovered performance, but when discarding low-density neurons, the
reduction tends to be negligible. The point highlighted by a red star indicates the cutoff used in our
experiments.

256 input tokens, we batch concept lists and run multiple passes until all concepts are processed. For
M-CBM, we follow our standard pipeline but substitute random names before annotation. Further-
more, when annotating random concepts, we omit reference grids of top-activating images to avoid
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Figure 7: Examples of VLG-CBM explanations where replacing all concept names with random
ones still yields correct predictions using just 1–2 concepts, illustrating how class-conditioned an-
notation can leak class-specific information unrelated to concept semantics.

leaking information about the original concepts. Figure 7 illustrates how, under class-conditioned
annotation, VLG-CBM can effortlessly predict correctly using only 1–2 random concepts.

D VISUALIZATIONS OF CBL NEURONS

In Figures 8, 9, and 10 we show the top–5 activating test images for representative concepts on
CUB, ISIC2018, and ImageNet, respectively. These visualizations qualitatively assess whether CBL
concepts align with their intended semantics and, when paired with model explanations, help convey
what the model is actually seeing in the image that influences a prediction.

E MORE EXAMPLES OF EXPLANATIONS

In this section, we provide additional examples of local explanations of our M-CBMs at NCC=5.
The explanations are shown in Figures 11, 12, and 13 respectively from the CUB, ISIC2018, and
ImageNet test sets.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Bird held in human hand (b) White eyebrow stripe

(c) Birds on water (d) Black cap with white body

(e) Bird in leafy background (f) Very long forked tail

(g) Red berries on branches (h) Black head with bright orange breast

(i) White patch on black back (j) Black mask around yellow face

(k) Reddish-brown throat patch (l) White fan-shaped head patch

(m) Iridescent green-blue plumage (n) White wing bars on dark wings

(o) Yellow chest with black v-shaped mark (p) Dark, slender waterbird with long neck

(q) All-white plumage (r) Black and white longitudinal stripes

(s) Birds perched on rocks (t) Large orange-yellow beak

Figure 8: Top-5 activating images for CUB concepts
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(a) Blue-white veil (b) Peripheral pigment network

(c) Dark brown homogeneous patch (d) Pink-white structureless area

(e) Red to purple homogeneous area (f) Clustered blue-gray ovoid nests

(g) Small, dark brown dot or globule (h) Scalp lesion with surrounding hair

(i) Clustered pink-to-red vascular network (j) Pink scaly plaque with white and brown dots

(k) Elongated pink structure with homogeneous tex-
ture (l) Parallel lines or streaks within a pigmented lesion

(m) Pink-to-light red, structureless, scaly or erythema-
tous plaque

(n) Pink or light red papule/nodule with a central de-
pression or ulceration

(o) Atypical irregular dark brown to black blotches
with asymmetric borders and variegated pigmentation

(p) Pinkish-white structureless areas with multiple
small circular or target-like brownish spots (milia-like
cysts and comedo-like openings)

(q) Clustered white-to-pink round structures (milky or
keratotic dots) on a pink background

(r) Dark, structureless central area with irregular, dif-
fuse pigmentation

(s) Irregular brown blotches (t) Asymmetric patch with variegated pigmentation

Figure 9: Top-5 activating images for ISIC2018 concepts
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(a) Tiger stripes (b) Hairless dog skin

(c) Sunset over water (d) Exposed human skin

(e) Colorful umbrella canopy (f) Hexagonal grid structure

(g) Hands using laptop keyboard (h) Wooden stick held by a hand

(i) Intricate lace or crochet pattern (j) Yellow banana peel with brown spots

(k) Animal swimming at the water surface (l) Pairs of footwear placed side by side

(m) Erupting lava and glowing volcanic ejecta (n) Person holding an object near their mouth

(o) Canon logo text on a circular black surface (p) Printed text and logos on white plastic bags

(q) Set dining tables with tablecloths and chairs (r) Dimpled white spherical surface with printed text

(s) Creamy pasta with visible bacon or pancetta pieces
and black pepper

(t) Person bending forward wearing a light-colored
shirt

Figure 10: Top-5 activating images for ImageNet concepts
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(a) Correctly predicted Barn Swallow

(b) Correctly predicted Blue headed Vireo with significant negative reasoning.

(c) Correctly predicted Crested Auklet

(d) Correctly predicted Artic Tern

(e) Correctly predicted Red headed Woodpecker

(f) Correctly predicted Loggerhead Shrike

Figure 11: Examples of local explanations from CUB test set.
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(a) Melanocytic nevus wrongly predicted as Basal Cell Carncinoma.

(b) Melanocytic nevus wrongly predicted as Melanoma.

(c) Correctly predicted Vacular lesion

(d) Correctly predicted Actinic keratosis / Bowen’s disease (intraepithelial carcinoma)

(e) Correctly predicted Melanocytic nevus

(f) Correctly predicted Melanoma

Figure 12: Examples of local explanations from ISIC2018 test set.
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(a) Correctly predicted Dock

(b) Projectile wrongly predicted as Vault.

(c) Correctly predicted Snorkel

(d) Pitcher wrongly predicted as Piggy bank.

(e) Correctly predicted Waffle iron

(f) Racer wrongly predicted as Tow truck.

Figure 13: Examples of local explanations from ImageNet test set.
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