
Skip Transformers: Efficient Inference through
Skip-Routing

Matthew Peroni
Operations Research Center

Massachusetts Institute of Technology
Cambridge, MA 02142
mperoni1@mit.edu

Dimitris Bertsimas
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142
dbertsim@mit.edu

Abstract

As the scale of Transformer-based language models continues to increase, there is a
growing need for methodological improvements in training and inference efficiency.
Recent developments, such as IA3 and LoRA, have successfully addressed training
efficiency for fine-tuning, but not inference efficiency. Inspired by recent work in
Sparse Mixture of Experts and conditional computation in neural networks, we
propose Skip Transformers, which modify the standard architecture by adding
routers after each self-attention block in the Transformer architecture that decide
whether to route each token embedding to the corresponding feed-forward neural
network (FFN), or to skip the FFN and pass the existing embedding through to
the next attention block. We refer to this process as skip-routing. Using a new
set of penalty terms in the loss function and a specific router weight initialization
scheme, we demonstrate empirically that adapting the Transformer architecture
with skip-routing during fine-tuning can improve computational efficiency at infer-
ence while maintaining or improving performance on downstream tasks. These
results, although preliminary, establish and motivate an exciting new direction for
developing sparsely-activated Transformer models that improve model performance
and inference efficiency.

1 Introduction

Growing empirical evidence has affirmed the scaling laws of Transformer-based language models
[Hoffmann et al., Kaplan et al., Vaswani et al.], leading to the proliferation of increasingly large,
densely-activated models [Brown et al., Wei et al., Touvron et al.]. In response to this trend, there has
been increasing interest and development in the area of Sparse Mixture of Experts (SMoE) [Shazeer
et al., Lepikhin et al., Fedus et al.], which aims to reduce the effective parameter count and required
compute resources at inference by relying on sparse network activation. Specifically, in the context of
Transformers, SMoE typically refers to widening the network by adding multiple feed-forward neural
networks (FFNs) at each attention block and then selecting a subset of these FFNs to process each
token embedding. In their work, Fedus et al. demonstrate empirically that routing can be learned over
a collection of FFN “experts” while only passing each token embedding through one expert at a time.
In this work, we investigate a special case of expert routing where, at each layer, a router decides
whether to pass each token embedding through the corresponding FFN or skip the FFN and preserve
the current token embedding. Importantly, skipping the FFNs yields a significant decrease in the
effective number of parameters during inference. In this work, we provide preliminary evidence that
this skip-routing can improve efficiency at inference while maintaining or improving performance on
downstream tasks. While efficient fine-tuning has been addressed recently with methods such as IA3
[Liu et al., a] and LoRA [Hu et al.], these methods do not improve inference efficiency.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

Although related to SMoE literature, we focus on the conditional computation aspect of this problem.
By conditional computation, we refer to the input-dependent, selective activation of neurons in a
neural network. In our implementation and experiments, we only consider one FFN “expert” per
attention layer and the choice between passing the token embeddings through this FFN or skipping
it. There is a natural extension to the case where there are multiple FFN experts, which we plan
to explore in future work. Techniques for conditional computation in neural networks, such as
those introduced in Bengio et al. [a], Davis and Arel, Bengio et al. [b], have demonstrated practical
success in increasing efficiency while maintaining model performance. Unlike standard pruning and
quantization methods [Liang et al.], conditional computation only reduces the effective parameter
count, while increasing the total parameter count, which we hypothesize makes this approach more
likely to improve efficiency at inference while maintaining or improving model performance.

There has been some previous work applying these conditional computation methods to Transformers
to improve efficiency at inference. For example, Hou et al. introduced the idea of filtering out
“unimportant” tokens as the input sequence passes through the attention layers. Such approaches tend
to struggle with longer sequence lengths, as this filtering process can eliminate important long-range
context. Further, this method always applies the same, static intermediate layer skipping, and only
considers global (cumulative loss) or static (term frequency) rules for determining token importance.
Other work, such as Dehghani et al. and Liu et al. [b] propose halting algorithms that process each
token through a variable number of attention blocks. These algorithms limit computation by selecting
a contiguous sequence of layers to skip. In contrast, our dynamic routing approach allows tokens
to be processed by any subsequence of FFN experts, routing the token embeddings at each layer
depending on the contextual representation of that token following the previous self-attention layer.

Recent work by Zeng et al. and Raposo et al. have also explored a similar idea about dynamic
skip-routing. In contrast to our work, both papers focus on pretraining transformer models and assume
each attention block has a fixed budget or “capacity” for the number of tokens it can process. While
this approach does provide a guarantee regarding the total load for each attention block, early results
from our work suggest that allowing the model to learn variations in the load distributions across
layers can improve performance on downstream tasks while achieving the same effective parameter
count. In addition, both papers consider a deterministic routing scheme, unlike our probabilistic
approach, which lessens the ability of these methods to serve as a form of regularization. The
architecture proposed by Raposo et al. skips both the attention layers and the FFNs, while our work
focuses exclusively on skipping the FFNs. By skipping the attention layers, the tokens that are not
skipped will only be modified by the other tokens that were also selected to be processed by the
attention mechanism. Similar to Hou et al., such an approach can lead to important context being
ignored in longer sequences. Since the FFNs are applied independently to each token, our approach
does not risk losing important context, while still addressing the most compute-intensive mechanism
in the transformer architecture.

In Section 2 we introduce our methodology for skip-routing, the corresponding Skip Transformer
architecture, and the related penalty terms and router weight initialization scheme. We then present
and discuss our preliminary experimental results in Section 3. The primary contributions of this work
are 1) introducing the Skip Transformer architecture and empirically validating its ability to improve
performance and efficiency at inference and 2) establishing an effective set of penalty terms and
weight initialization that yields improved performance for the Skip Transformer.

2 Skip Routing

At a high level, our approach consists of adding a router ri : Rd → [0, 1] to each layer i ∈ [Nl] that
will be applied to each token embedding xij ∈ Rd corresponding to token j ∈ [NT] separately to
determine which tokens should be passed through the layer’s FFN and which should be skipped. To
minimize the increase in total parameter count, we focus on routers that are normalized linear layers
with sigmoid activation. Formally, we define the routing functions as

ri(xij ;wi, τi) = σ

(
τi ·

wT
i xij

||wi|| · ||xij ||
+ βi

)
, (1)

where wi ∈ Rd and τi, βi ∈ R are learnable parameters, and σ is the sigmoid function. The
decision to use a normalized linear layer was inspired by Chi et al., who found that this helps avoid
representation collapse in similar SMoE systems. To determine which tokens are skipped, we sample

2

Figure 1: Overview of Skip Transformer Architecture.

from the Bernoulli distribution according to the outputs from the router. For token j at router i, we
define the skip mask si as

si(xij) ∼ Bernoulli(ri(xij ;wi, τi)).

This encourages exploration and adds a form of regularization similar to dropout, except that the
dropout in this case is input-dependent. For a given token embedding x and feed-forward net at layer
i, denoted by FFNi, we define the output of the layer as

f(x) =

{
x+ (1− ri(x)) · FFNi(x), si(x) = 0

ri(x) · x, si(x) = 1.

Notice that, unlike traditional SMoE approaches, we are choosing between using an expert or not,
so we must define what happens when an expert is skipped. While we could pass through the input
embedding, x, as is, this would not propagate information about the router through the computation
graph. Instead, we scale x by the router output, such that when ri(x) = 1, which notionally
corresponds to the router being fully confident that the FFN should be skipped, the input embedding
is passed through unchanged. We provide the pseudocode for the core operations of the router and
FFN in Algorithm 1.

Unlike SMoE approaches which encourage tokens to be load-balanced across the FFN experts, we
want to encourage tokens to skip the FFNs at each layer. Additionally, we want to encourage FFNs to
be skipped for any input sequence, incentivizing the model to create specialized FFNs for different
types of inputs. Suppose we have a batch size NB , fixed sequence length NT , and Nl layers. To
incentivize this behavior, we add the following penalty terms to the loss function,

ls(X;αs, sr) =
αs

Nl

∑
j∈Nl

(
1

NB ·NT

∑
k∈NB

∑
i∈NT

rj(xijk)− sr

)2

, (2)

lb(X;αb, sr) =
αb

Nb

∑
k∈NB

(
1

Nl ·NT

∑
j∈Nl

∑
i∈NT

rj(xijk)− sr

)2

, (3)

where αs, αb ∈ R are hyper-parameters to weight the relative importance of skipping the FFNs and
sr ∈ [0, 1] is the target skip-rate. The first term, ls, encourages each router to have an expected
skip-rate of sr while the second term, lb, encourages the routers to have a constant skip-rate across
samples. By encouraging a constant skip-rate across samples, the model’s computational requirements
at inference also becomes more stable. To discourage the routers from learning a constant output
ri(·) = sr, which would minimize ls and lr, we further add a penalty to incentivize variance in the
router output,

lv(X;αv) = −
αv

Nl

∑
j∈Nl

1

NB ·NT

∑
i∈NT

∑
k∈NB

(
rj(xijk)−

1

NB ·NT

∑
i∈NT

∑
k∈NB

rj(xijk)

)2

. (4)

Note that other, related penalty terms could be applied, which amount to rearranging the dimensions
along which we average the router outputs. In practice, we have found that this combination of
penalty terms leads to the best results in terms of performance and stability.

Router Initialization. In preliminary experiments, we observed that the initialization of router
weights, specifically the bias term, significantly impacts model performance. The router weights wi

3

are sampled from the Kaiming Uniform distribution, and we set τi = 1. Then, critically, for a fixed
target skip-rate sr, we set βi = σ−1(sr), where σ−1(sr) = log(sr)− log(1− sr) is the inverse of
the sigmoid function. To justify this, let us assume the token embeddings are centered such that
E[x] = 0. Then, given that wi are sampled from a uniform distribution with E[wi] = 0, since wi

and x are independent at initialization, we have E[wT
i x] = 0. Therefore, at initialization, we have

Ewi,x

[
wT

i x

||wi|| · ||x||
+ βi

]
= σ−1(sr).

Since the sigmoid function is nonlinear, E[ri(x;wi, τi)] ̸= σ(E[
wT

i x
||wi||·||x|| + βi]). However, the

sigmoid function is convex for x < 0, corresponding to sr < 0.5, in which case Jensen’s inequality
tells us that E[ri(x;wi, τi)] ≤ σ(σ−1(sr)) = sr, such that initializing the router in this way likely
provides an upper bound on the initial skip-rate. Empirically, we find that with this initialization
technique, E[ri(x;wi, τi)] ≈ sr. In our experiments, initializing the expected router output close to
the target skip rate yields the best model performance by a significant margin.

Computational Efficiency. To estimate the skip-rate necessary to improve the computational
efficiency of the model, we can reason about the expected number of floating point operations
(FLOPs) required for a forward pass of the FFN, and compare that to the skip-router approach.
Matrix multiplication dominates the cost of computing the forward pass of a FFN. In the case of a
single hidden layer FFN with input dimension d, hidden dimension h, and output dimension d, for a
single vector input x ∈ Rd, the number of operations required for the matrix-vector multiplication
is 4hd − 2d. Similarly, the vector-vector multiplication required for the router, represented by a
single linear layer ri : Rd → R, is 2d− 1. Since we are in a probabilistic setting, skipping FFNs by
sampling from a Bernoulli distribution, we can reason about the expected number of operations for
each router and FFN pair. Assuming the probability of skipping the FFN is s, the expected FLOPs
for the skip layer is given by

s · (2d− 1) + (1− s) · (4hd− 1).

The first term corresponds to the case where the FFN is skipped, and we only incur the cost of the
router. The second term corresponds to the case where the FFN is used, and we incur the cost of both
the router and the FFN. The expected difference in FLOPs between the standard FFN and the skip
layer is then

4hd− 2d− (s · (2d− 1) + (1− s) · (4hd− 1)) = 2sd(2h− 1)− 2d+ 1.

With this, we can find the skip-rate s necessary for the skip-layer to be more efficient than the standard
FFN in expectation to be

s >
2d− 1

4hd− 2d
.

We can simplify the expression by adding one to the numerator, creating the marginally looser
sufficient condition s > 1

2h−1 . Therefore, the skip-rate required for the skip layer to be more efficient
than the baseline architecture is inversely proportional to the hidden dimension of the expert FFNs.
For example, BERT-base uses h = 3072, so we can estimate that as long as s > 1

6143 ≈ 0.0002,
corresponding to a 0.02% skip-rate, the skip-transformer will improve efficiency. Therefore, even for
relatively small transformer models, the skip rate only needs to be marginal to improve efficiency,
due to the high dimensionality of the FFN hidden layer. Using our results from our IMDb experiment
in Section 3, suppose s = 0.10, the sequence length is 512, and there are 12 router-FFN blocks. Then
the Skip Transformer would save approximately 6 GFLOPs at inference time per input sequence.

3 Experimental Results

For our experiments, we use the original pretrained BERT model, BERT-base, as introduced in Devlin
et al., to initialize the weights of our models. All weights, including the FFNs, are initialized from
the pretrained BERT-base model. For BERT-base, we have d = 768, h = 3072, and Nl = 12,
such that there are 56 million parameters for the FFNs. The max sequence length is NT = 512 and
during training, when processing a batch of sequences, we apply the attention mask to the router such
that all padding tokens are excluded from being considered by the router and in the corresponding
skip statistics. To initialize router weights, wi is sampled from the Kaiming Uniform distribution,

4

Model IMDb Emotion CoLA MRPC
BERT-Base 93.4 93.0 81.7 85.5

Skip-BERT (sr = 0.3) 93.1± 0.2 93.1± 0.2 79.9± 0.3 84.1± 0.2
Skip-BERT (sr = 0.1) 93.7± 0.1 93.4± 0.1 82.2± 0.1 87.3± 0.1

Skip-BERT (sr = 0.05) 94.0± 0.2 92.9± 0.3 83.6± 0.2 86.7± 0.1
Skip-BERT (αv = 0) 93.1± 0.1 92.5± 0.1 83.0± 0.1 85.7± 0.1

Table 1: Out-of-sample accuracy for the Skip-BERT models across downstream tasks, varying
skip-rates (sr), with and without the lv penalty. Accuracy for CoLA and MRPC reported for the Dev
validation dataset.

(a) sr = 0.3 (b) sr = 0.1

Figure 2: Skip-rate per router for the IMDb dataset. The blue dots represent the mean router output
over the test set and the bars indicate two standard deviations.

τi = 1, and βi = σ−1(sr) for all i ∈ [Nl]. We set αs = αb = αv = 1 for our experiments.
In our experiments, we train the entire model and do not freeze any weights. We refer to these
Skip Transformer models as Skip-BERT. We benchmark the Skip-BERT models with varying target
skip-rates, sr, against the corresponding BERT-base model, fine-tuned using the Adam optimizer
[Kingma and Ba] for both and matching the initial learning rates for each experiment. Both the
Skip-BERT and BERT-base model are trained for five epochs for each experiment, and we use a
batch size of 32 for all experiments. We do not apply a weight decay penalty for either Skip-BERT
or BERT-base. We use this encoder-only architecture to fine-tune for contextual natural language
understanding classification tasks.

We fine-tune the Skip-BERT models on the IMDb sentiment classification dataset, introduced by
Maas et al. [2011], which is a binary classification task, split into training and evaluation datasets
of size n = 25k. We also fine-tune our models on the Emotion Recognition dataset introduced by
Saravia et al. [2018], which is a collection of n = 20k English Twitter messages labeled with 6
different emotions (anger, fear, joy, love, sadness, and surprise). The dataset is split 80/10/10 into
training, validation, and test sets. We also evaluate our skip transformer architecture on several tasks
from the GLUE Benchmark [Wang et al.], specifically the CoLA and MRPC datasets, which cover
paraphrasing and grammar tasks. As this work is preliminary and under development, for the GLUE
tasks, we report accuracy on the Dev validation datasets. We summarize our results in Table 1.

We observe that across tasks, the Skip-BERT models match or outperform the BERT-base model. In
general, as expected, decreasing the skip-rate sr corresponds to an increase in model performance. For
the CoLA task, we observe that a skip-rate around sr = 0.05 actually improves model performance
significantly. However, similar to traditional dropout, there seems to be an optimal skip-rate for
some tasks, below which performance begins to decrease again. For example, we observed for the
Emotion dataset that sr = 0.1 seems to be about optimal, and dropping below to sr = 0.05 decreases
model performance. In Figure 2 we provide a visualization of the mean and variance of the skip rate
across routers for the IMDb dataset. When αv = 1, as in our experiments, the variance of the router
output is relatively small, especially for the first ten routers of the Skip-BERT model for IMDb with
sr = 0.1. Interestingly, the variance and average skip-rate seem to shift significantly for the last two
routers, suggesting that the model has learned a uniform routing distribution for the earlier layers,
then focuses on the specific inputs and increases the variance in the skip-rate for the last few layers.

5

The skip-rate consistently drops at the final layer across tasks and skip-rates, suggesting that it is
often important to transform the token embeddings right before the final classification layer. The last
row of 1 gives the model accuracy when the best skip-rate is selected and we set αv = 0, removing
the variance penalty. It can be seen that removing this penalty term negatively impacts performance
on downstream tasks, demonstrating the importance of encouraging variance in the router outputs. In
future work, we plan to investigate the impact of encouraging variance in the router outputs between
layers, to explore whether varying “budgets” for each FFN leads to better performance.

4 Conclusion

In this work, we provide early empirical evidence that conditional computation in Transformers via
skip-routing can maintain or even improve model performance on downstream tasks while improving
efficiency at inference time. We introduce an effective incentive scheme through new penalty terms
in the loss function and router weight initialization, significantly impacting model performance.
This work integrates well with related developments in SMoEs, as one could extend this work to
incorporate routing between multiple FFN experts, or skipping them all. While the focus of this
paper is on fine-tuning, an exciting future direction would be to use the Skip Transformer architecture
for pre-training as well, potentially leading to further, more generalizable skip-routing. The Skip
Transformer, as presented in this work, provides an exciting new direction for sparsely-activate
Transformer models that have the potential to improve inference efficiency while preserving model
performance.

Acknowledgments and Disclosure of Funding

Use unnumbered first level headings for the acknowledgments. All acknowledgments go at the
end of the paper before the list of references. Moreover, you are required to declare funding
(financial activities supporting the submitted work) and competing interests (related financial activities
outside the submitted work). More information about this disclosure can be found at: https:
//neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure.

Do not include this section in the anonymized submission, only in the final paper. You can use
the ack environment provided in the style file to autmoatically hide this section in the anonymized
submission.

References
Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in

neural networks for faster models, a. URL http://arxiv.org/abs/1511.06297.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation, b. URL http://arxiv.org/abs/1308.3432.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. URL http://arxiv.
org/abs/2005.14165.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Sak-
sham Singhal, Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu
Wei. On the representation collapse of sparse mixture of experts. 35:34600–
34613. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/
df4f371f1f89ec8ba5014b3310578048-Abstract-Conference.html.

Andrew Davis and Itamar Arel. Low-rank approximations for conditional feedforward computation
in deep neural networks. URL http://arxiv.org/abs/1312.4461.

6

https://neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure
https://neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure
http://arxiv.org/abs/1511.06297
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper_files/paper/2022/hash/df4f371f1f89ec8ba5014b3310578048-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/df4f371f1f89ec8ba5014b3310578048-Abstract-Conference.html
http://arxiv.org/abs/1312.4461

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. URL https://openreview.net/forum?id=HyzdRiR9Y7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. URL http://arxiv.org/abs/1810.
04805.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. 23(120):1–39. ISSN 1533-7928. URL http://jmlr.
org/papers/v23/21-0998.html.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. URL http://arxiv.org/abs/2203.15556.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
Zhou. Token dropping for efficient BERT pretraining. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 3774–3784. Association for
Computational Linguistics. doi: 10.18653/v1/2022.acl-long.262. URL https://aclanthology.
org/2022.acl-long.262.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. URL https://arxiv.
org/abs/2106.09685v2.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
URL http://arxiv.org/abs/2001.08361.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. URL http:
//arxiv.org/abs/1412.6980.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling giant models with con-
ditional computation and automatic sharding. URL https://openreview.net/forum?id=
qrwe7XHTmYb.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey. 461:370–403. ISSN 0925-2312. doi: 10.
1016/j.neucom.2021.07.045. URL https://www.sciencedirect.com/science/article/
pii/S0925231221010894.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning, a.
URL https://arxiv.org/abs/2205.05638v2.

Yijin Liu, Fandong Meng, Jie Zhou, Yufeng Chen, and Jinan Xu. Faster depth-adaptive transformers.
35(15):13424–13432, b. ISSN 2374-3468. doi: 10.1609/aaai.v35i15.17584. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/17584. Number: 15.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. URL http://arxiv.org/abs/2404.02258.

7

https://openreview.net/forum?id=HyzdRiR9Y7
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://arxiv.org/abs/2203.15556
https://aclanthology.org/2022.acl-long.262
https://aclanthology.org/2022.acl-long.262
https://arxiv.org/abs/2106.09685v2
https://arxiv.org/abs/2106.09685v2
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://arxiv.org/abs/2205.05638v2
https://ojs.aaai.org/index.php/AAAI/article/view/17584
https://ojs.aaai.org/index.php/AAAI/article/view/17584
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/2404.02258

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER: Contex-
tualized affect representations for emotion recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 3687–3697, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1404.
URL https://www.aclweb.org/anthology/D18-1404.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. URL
http://arxiv.org/abs/1701.06538.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language
models. URL http://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. URL http://arxiv.org/abs/1706.
03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pages 353–355. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446.
URL http://aclweb.org/anthology/W18-5446.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. URL
http://arxiv.org/abs/2109.01652.

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao Lei, Zhifeng Chen, and Claire Cui. Learning
to skip for language modeling. URL http://arxiv.org/abs/2311.15436.

8

https://www.aclweb.org/anthology/D18-1404
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://aclweb.org/anthology/W18-5446
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2311.15436

Supplementary Material

Algorithm 1 Encoder Skip-Layer Pseudocode (Pytorch)

Input: hidden_states, attention_mask
attention_output← self_attention(hidden_states, attention_mask)
router_output← router(attention_output)
skip_mask← bernoulli(router_output)
ffn_indices← skip_mask == 0.
intermediate_states← dense_in(attention_output[ffn_indices])
intermediate_states← intermediate_act_fn(intermediate_states)
output_states← dense_out(intermediate_states)
attention_output[ffn_indices] ← output_states ∗ (1 - router_output[ffn_indices]) + atten-
tion_output[ffn_indices]
attention_output[∼ffn_indices]← router_output[∼ffn_indices] * attention_output[∼ffn_indices]
attention_output← LayerNorm(attention_output)
return attention_output

9

	Introduction
	Skip Routing
	Experimental Results
	Conclusion

