
Scalable and Improved Algorithms for Individually
Fair Clustering

MohammadHossein Bateni
Google Research

bateni@google.com

Vincent Cohen-Addad
Google Research

cohenaddad@google.com

Alessandro Epasto
Google Research

aepasto@google.com

Silvio Lattanzi
Google Research

silviol@google.com

Abstract

We present scalable and improved algorithms for the individually fair (p, k)-
clustering problem introduced by Jung et al. [2020] and Mahabadi and Vakilian
[2020]. Given n points P in a metric space, let δ(x) for x ∈ P be the radius
of the smallest ball around x containing at least n/k points. A clustering is then
called individually fair if it has centers within distance δ(x) of x for each x ∈ P .
In this work, we present two main contributions. We first present local-search
algorithms improving prior work along cost and maximum fairness violation. Then
we design a fast local-search algorithm that runs in Õ(nk2) time and obtains a
bicriteria (O(1), 6) approximation. Finally we show empirically that not only is our
algorithm much faster than prior work, but it also produces lower-cost solutions.

1 Introduction

The (p, k)-clustering problems (with k-means, k-median and k-center as special cases) are widely
used in many unsupervised machine-learning tasks for exploratory data analysis, representative
selection, data summarization, outlier detection, social-network community detection and signal
processing, e.g., Lloyd [1982], MacQueen [1967], Chawla and Gionis [2013], Kleindessner et al.
[2019], Zhang et al. [2007], Bóta et al. [2015]. With such ubiquity of applications, it is fundamental
to design fair algorithms for such problems. In this paper we focus on the notion of individually fair
clustering Jung et al. [2020], which combines the `p cost objective with a k-center-based concept
of fairness: A minimum level of treatment should be guaranteed for every data point. To better
understand this formulation consider the case in which centers were chosen randomly. In this case
any subset of n/k points would expect to include one center. So each point desires to be assigned to a
center among its n/k closest points. This notion can be captured by considering a different radius δ(x)
for each x in the dataset and by adding the constraint that there should be a center within distance
δ(x) for each x. Satisfying such constraints amounts to (a special case of) the priority k-center
problem Plesník [1987], Alamdari and Shmoys [2017].

Shortly after Jung et al. [2020] proposes this problem and presents a a 2-approximation for it,
Mahabadi and Vakilian [2020] generalizes it to an optimization setting where an `p norm cost
function (such as k-means or k-median) is optimized within the space of individually fair solutions.
In fact, they devise a local-search algorithm with bicriteria (84, 7) approximation (for p = 1, that is
k-median).

In the past year, several attempts have been made to improve these results, theoretically and practically.
Chakrabarty and Negahbani [2021] uses LP rounding to improve the guarantee to (2p+2, 8), i.e.,

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.

cost guarantee of 16 for k-means and 8 for k-median. In simultaneous work, Humayun et al. [2021]
presents an SDP-based algorithm (without performance or runtime analysis), and Vakilian and
Yalçiner [2022] presents LP-based bicriteria guarantees (16p + ε, 3) for any p and (7.081 + ε, 3) for
p = 1.1

Three of the above—with the exception of Vakilian and Yalçiner [2022]—present experimental
studies corroborating the usefulness of the new algorithms. However, a major limitation of these
algorithms is their running times, having an exponent of at least 4 for the number of points n, making
them impractical for real-world datasets of interest. Therefore, as we explain in our empirical studies,
prior experiments ran only on small datasets of size at most 1000.

Our contributions. We have two main contributions. First we present a local-search algorithm for
the problem, complementing the state-of-the-art guarantees of prior published work. As in previous
work, we focus on p = 1 (k-median) for simplicity: Setting γ = 6 gives a bicriteria guarantee of
(3, 7), improving along both objectives the (84, 7) guarantee from Mahabadi and Vakilian [2020],
and the (8, 8) guarantee from Chakrabarty and Negahbani [2021]. As such, our algorithm is not
comparable to the (7.081, 3) guarantee of Vakilian and Yalçiner [2022] or the (8, 4) guarantee of
Alamdari and Shmoys [2017] (for the uniform radius special case), since our algorithm achieves a
better bound for the cost but a worse bound for the fairness constraint.
Theorem 1.1. Let γ > 4 and ε > 0. Assuming the problem is feasible (i.e., there exists an individually
fair solution), there is a polynomial-time algorithm for individually fair k-median with bicriteria

guarantee (αγ , γ + 1), where αγ = 3 +O(ε) for γ ≥ 6 and αγ =
2+ 4

γ−2

2− 4
γ−2

+O(ε) for 6 > γ > 4.

As mentioned, the previous algorithms (and our new result above) have poor runtime guarantees,
making them impractical for real-world datasets of interest. In fact, prior experiments focused on
samples of 1000 points only. To address this shortcoming, we design a fast local-search algorithm
using ideas from the algorithm above as well as from the fast k-means algorithm of Lattanzi and
Sohler [2019]. We focus on k-means, which is more commonly used in practice.

Theorem 1.2. There is an Õ(nk2)-time algorithm for individually fair k-means with a 6-
approximation for radii and an O(1)-approximation on costs.

This is the algorithm we implement for our empirical study. It uses local search with swaps of
size one, and incorporates ideas similar to Lattanzi and Sohler [2019] to find good swaps quickly.
Whereas our algorithm takes less than 60 minutes to process half a million points, prior methods
hit the one-hour mark2 with 4000–15000 points; see Figure 1a. Despite the worse approximation
guarantees, we observe in Section 5 that this algorithm outperforms prior algorithms on cost and
fairness objectives.

Note that our algorithms, and some of the prior work Mahabadi and Vakilian [2020], Chakrabarty
and Negahbani [2021], Vakilian and Yalçiner [2022], work for any vector δ of radius bounds. The
individually fair setting is only one application.

Additional Related work. There is an extensive literature on group fairness, where the goal is to
curb under- and over-representation in certain slices of the data (say, sensitive groups based on gender
or age group) Chierichetti et al. [2017], Rösner and Schmidt [2018], Bera et al. [2019], Ahmadian
et al. [2019, 2020b,a]. Another line of work concerns two generalizations of k-clustering problems to
`p norm and ordered median objectives Byrka et al. [2018], Chakrabarty and Swamy [2018, 2019],
Kalhan et al. [2019]: Create a (non-increasingly) sorted vector out of the distances of points to their
closest centers, and aim to minimize either the `p norm of this vector or the inner product of the vector
with some given weight vector w. Note that p = 1, 2, log n yields k-median, k-means and k-center
through the first generalization, whereas w = (1, 1, . . . , 1) and w = (1, 0, . . . , 0) yield k-median and
k-center objectives through the latter. Chlamtác et al. [2022] combines the two generalizations into
the notion of (p, q)-Fair Clustering problem, which is also a generalization of Socially Fair k-Median
and k-Means Ghadiri et al. [2021], Abbasi et al. [2021], Makarychev and Vakilian [2021]. Some of
the above results are also motivated from the standpoint of solution robustness—the main motivation

1We note that the original version of their manuscript (simultaneous to our work) presented a (8 + ε, 3)
guarantee, but they updated their results with a better guarantee only in March this year.

2Notice that the LP- or SDP-based algorithms require Ω(n2) space, so it is unclear whether those algorithms
can scale to larger datasets even with more runtime allowance, as they run out of memory around the same data
size.

2

stated in Humayun et al. [2021]. The widely popular k-means clustering implicitly assumes certain
uniform Gaussian distributions for the data Raykov et al. [2016], and is known to be sensitive to
sampling biases and outliers Wang et al. [2020]. Beyond enforcing individual fairness or cluster-
level consistency constraints (the focus of this work), researchers have tackled the above problem
from various angles such as resorting to kernel methods Dhillon et al. [2004], adding regularization
terms Georgogiannis [2016], and using trimming functions Georgogiannis [2016], Deshpande et al.
[2020], Dorabiala et al. [2021].

Organization. We start with some preliminaries in Section 2. Then in Section 3 we present our
local-search algorithm with improved cost and fairness guarantees. Section 4 outlines the faster
local-search algorithm, and proves bounds on its performance. Finally we present results of our
empirical study in Section 5.

2 Preliminaries

Let (X, dist) be a metric space, where X is a set of points and dist a distance function be-
tween the points in X . We define the distance between a point p and a set of points C as
dist(p, C) = minc∈C dist(p, c); if the set C is empty we define the distance to be ∞. Let
∆ = maxp,q dist(p, q)/minp 6=q dist(p, q) denote the aspect ratio of the instance.

Problem definition. Given a metric space (X, dist), the input to our problem is a tuple (A,C, k, δ),
where A ⊆ X is a set of points of the metric space called clients, C ⊆ X is a set of points of the
metric space called candidate centers, k is a positive integer and δ : A 7→ R+ is the desired serving
cost or radius of points. The goal is to output a set S ⊆ C that minimizes

∑
a∈A dist(a, S) under the

constraints that |S| ≤ k and ∀a ∈ A : dist(a, S) ≤ δ(a).

The element of a solution S ⊆ C are called centers or facilities. Given a set S of k centers, let cost(S)1

denote the k-median cost of the client set C for the centers S, i.e., cost(S)1 =
∑
c∈C dist(c, S).

Similarly, we define the cost of the client set C for the centers S for the k-means problem as
cost(S)2 =

∑
c∈C dist(c, S)2. In both setting we denote with Optk the cost of an optimum solution

S∗. When it is clear from the context we will drop the index 1 or 2 from the notation for the cost.

A solution is an (α, β) bicriteria approximation if the k-median (or k-means) cost of the solution is at
most α times that of the optimum, while the k-center (or fairness) constraint is violated by at most β.

Algorithm 1: SEEDING

Require: A, δ(·), γ
1: S = ∅
2: while ∃p ∈ A : dist(p, S) > γδ(p) do
3: p∗ ← arg minp′∈{p∈A|dist(p,S)>γδ(p)} δ(p

′)
4: S ← S ∪ {p∗}
5: Output S

We describe the seeding procedure outlined in Algorithm 1 to initialize our local-search approach.
Lemma 2.1. If the problem is feasible, Algorithm 1 with parameter γ > 2 returns a set of points S
of size at most k such that each point p is at distance at most γδ(p) from the closest point in S, i.e.,
∀p ∈ A : dist(p, S) ≤ γδ(p).

Proof. The proof is similar to the proof of correctness of Gonzales’ algorithm for k-center Gonzalez
[1985] and of Hochbaum and Shmoys’ algorithm Hochbaum and Shmoys [1985]. Observe first that by
feasibility, there cannot be k+ 1 points p′1, . . . , p

′
k+1 such that the balls δ(p′i) are all pairwise disjoint

(since otherwise the optimum solution would need k + 1 centers to satisfy the δ(p′) constraints).

Let p1, . . . , pk∗ be the sequence of points picked by the algorithm. We have that δ(pi) ≤ δ(pj) for
any i ≤ j. Note that at the end of the algorithm, each point p is at distance at most δ(p) from one of
p1, . . . , pk∗ so what remains to be shown is that k∗ ≤ k. We claim that the collection of balls centered
at the pi and of radii δ(pi) are all pairwise disjoint and so if the problem is feasible, the algorithm
does not return more than k points (i.e.: k∗ ≤ k). Consider a pair i, j and without loss of generality
i > j. We have that pi is at distance at least γδ(pi) from pj by the definition of the algorithm. Since

3

γ > 2 and δ(pi) ≥ δ(pj), we have that δ(pi) + δ(pj) ≤ 2δ(pi) < γδ(pi) ≤ dist(pi, pj) and so the
ball of radius δ(pj) around pj cannot intersect the ball of radius δ(pi) around pi.

Algorithm 2: Anchored Local Search Algorithm
Require: A, C, δ(·), k and parameters γ, ε

1: A0 ← SEEDING(A, δ(·), γ)
2: S0 ←

⋃
a∈A0

{arg minx∈C dist(x, a)}
3: if |S0| > k or ∃a ∈ A0 : δ(a) < dist(a, S0) then
4: Output infeasible.
5: Define each p ∈ A0 as an anchor point, the ball B(p) centered at p of radius δ(p) as its anchor

zone.
6: while ∃S′ : |S′| ≤ k, |S′ \ S0|+ |S0 \ S′| ≤ 12/ε, S′ ∩B(p) 6= ∅∀p ∈ A0, and

cost(S′) < (1− ε/k)cost(S0) do
7: S0 ← S′

8: Output S0

3 Improved approximation guarantees

In this section we focus on the k-median problem and this section is dedicated to the proof of
Theorem 1.1. We analyze the performances of Algorithm 2.

We let OPT(c) = dist(c,OPT) and S0(c) = dist(c, S0) respectively denote the (k-median) cost
contribution of client c in solution OPT and in the solution S0 output by the algorithm.

Proof of Theorem 1.1. Let OPT denote the optimum solution, let S0 be the solution output by the
above algorithm. We start by arguing that all clients are at distance at most (γ + 1)δ from a center
of S0. Observe that since we assume the problem is feasible and by Lemma 2.1, each client is at
distance at most γδ from an anchor point.

Since S0 is constrained to contain a center in each anchor zone, an immediate application of the
triangle inequality implies that each client c is at distance at most (γ+1)δ(c) from the output solution.
We thus turn to the analysis of the (k-median) cost of the solution.

We follow the approach to analyse local search with a little twist to handle anchor points presented
in Gupta and Tangwongsan [2008], Cohen-Addad and Schwiegelshohn [2017].

Consider an anchor point p. By definition of the problem and the fact that it is feasible, we have
that there exists at least one center of OPT at distance less than δ(p) from p. Let OPTB(p) be such
a center (chosen arbitrarily among the ones at distance at most δ(p) from p), and call it an anchor
center. Similarly, let SB(p) denote a center of S0 in B(p) (there must be one by definition of the
algorithm).

We now turn to the analysis. Consider the following bipartite graph G with the two sets of vertices
being the centers of OPT and S0. Create an edge from each non-anchor center of OPT to the closest
center in S0. Vertices of S0 with positive degree are called leaders. For each anchor center OPTB(p)

of OPT, create an edge to the closest center in S0 that is located in the ball centered at p and of radius
γ
2 δ(p) (since γ ≥ 2, this is always possible).

Now create groups (Xi, Yi), where Xi ⊆ S0 and Yi ⊆ OPT as follows. For each center ` ∈ S0,
create a group ({`}, Y) where Y is the set of centers of OPT adjacent to `. Note that each center of
OPT belongs to exactly one group. Then, for each anchor center OPTB(p), consider the associated
anchor center of S0, namely SB(p). If SB(p) has degree 0 and the group (X,Y) containing OPTB(p)

has |Y | > 1, then add SB(p) to X .

Finally, add the centers of S0 not in any groups yet arbitrarily to the groups such that each group
(X,Y) has |X| = |Y |. Note that this is always possible since both the optimum and the local solution
contain k centers.

4

We finally partition the groups into subgroups that are pairs of centers (X,Y),X ⊆ S0 and Y ⊆ OPT.
We define the size of a subgroup (X,Y) as |X| + |Y |. Our partition of the groups into subgroups
will satisfy the following two properties: (1) each subgroup is of size at most 2/ε; and (2) for each
group (X,Y) of size larger than 2/ε, the leader `g of (X,Y) does not belong to any subgroup. Any
group (X,Y) such that |X| ≤ 1/ε becomes a subgroup. Then, for any other group g = (X,Y), let
`g be the leader. Partition X and Y into subsets X1, X2, . . . and Y1, Y2, . . . each of size 1/ε (except
possibly for one subset of X and one subset of Y); define subgroups (Xi, Yi) such that |Xi| = |Yi|.
Furthermore, consider the subgroup (Xj , Yj) containing `g and pick uniformly at random a center `r
in X −Xj and replace `g by `r in Xj , namely the subgroup becomes (Xj − {`g} ∪ {`r}, Yj). Note
that this random process is only introduced for the analysis – not in the algorithm itself.

We now define the swaps by merging some subgroups. We define pairs (X,Y) satisfying both (1)
|X| + |Y | ≤ 12/ε and (2) the solution S0 −X ∪ Y has one center in each anchor zone. By local
optimality, we will thus have that the cost of S0 −X ∪ Y is at least as large as (1− ε/k) times the
cost of S0.

Consider an anchor zone B. We want to make sure for any swap pair (X,Y) if SB(p) is in X , then
OPTB(p) ∈ Y , ensuring feasibility. To do so, consider the subgroup containing OPTB(p). If it does
not contain SB(p), this means that SB(p) is a leader, or that the subgroup of OPTB(p) is of the form
({`0}, {OPTB(p)}), for some center `0 ∈ S0. If SB(p) is a leader of a group of size larger than 2/ε,
then SB(p) is not in any subgroup and is therefore not in any set X of any subgroup (X,Y) and the
above property will thus be satisfied since the swap pairs are obtained from the subgroups. Otherwise,
if SB(p) is in a group of size smaller than 2/ε, then merge the subgroup of SB(p) with the subgroup
of OPTB(p). If SB(p) is not a leader, then OPTB(p) is in a subgroup g′ = ({`0}, {OPTB(p)}). In
which case, merge the subgroup g′ with the subgroup containing SB(p).

A swap pair X,Y is thus created for the subgroups resulting from the above merge process. By the
definition of the process, if SB(p) is in X , then OPTB(p) ∈ Y . Moreover, since for each subgroup
(A,B) we have |A| = |B| the resulting process guarantees that the resulting swap pairs (X,Y) are
such that |X| = |Y |. This ensures that the solution S0 −X ∪ Y is feasible for any swap pair X,Y
hence created. Next, to use local optimality, or in other words argue that the cost of any solution
S0 −X ∪ Y is at least as large as (1− ε/k) times the cost of S0, we have to show that the merge
process did not lead to subgroups X,Y such that |X|+ |Y | ≤ 12/ε.

Observe first that subgroups of size 2, e.g., subgroups of the form ({`′}, {OPTB(p)}), are merged
with at most one other group, i.e., the group containing SB(p). Hence this part of the operation only
yields swaps of size at most 6/ε. Next, we argue that each subgroup of size larger than 2 is only
merged with at most one other subgroup. Indeed, if a subgroup (Xi, Yi) of size larger than 2 is
merged with another subgroup (Xj , Yj), it means that the leader is a facility SB(p) for some anchor
point p and Yj contains OPTB(p). However, note that the leader `′ of (Xj , Yj) must be in the ball of
radius γ

2 δ(p) by definition of the swaps and the bipartite graph and so closer to p than to any other
anchor point by the correctness of Algorithm 1. Therefore, the only subgroup that can be merged to
the group containing SB(p) is the subgroup containing OPTB(p) and the sizes of the groups created is
at most twice larger than the subgroup sizes.

From the above discussion, we have that each swap pair (X,Y) is feasible, so by local optimality,
we have cost(S0 −X ∪ Y) ≥ (1− ε/k)cost(S0), since otherwise the algorithm would have made
another iteration and replaced S0 with S0 − X ∪ Y . To conclude the analysis of the cost of S0,
we bound the cost of the solution S0 − X ∪ Y for each swap pair (X,Y), adapting the analysis
of Gupta and Tangwongsan [2008]—here one can immediately adapt their analysis to obtain the
desired bounds for k-means. To do so, ∀a ∈ A, let OPTa (respectively Sa0) denote the center of
OPT (respectively S0) that is the closest to a. Observe that we have the following properties for the
collection of swap pairs defined above:

1. For each swap pair (X,Y), for each optimal center OPTa, let ra be the center of S0

closest to OPTa. If OPTa is not in Y , then there is a center ` /∈ X at distance at most
max(dist(OPTa, ra), 4

γ−2 dist(OPTa, ra)) from OPTa.

Indeed, this comes from the fact that each center OPTa adjacent to a center ` of S0 in the
bipartite graph satisfies, for any swap pair (X,Y), if ` ∈ X then OPTa ∈ Y (and by the
contrapositive, if OPTa /∈ Y then ` /∈ X). Now, observe that either ` is ra (namely the center

5

of S0 closest to OPTa), or in the case where OPTa is an anchored center of an anchor point p,
` is the closest center of S0 in the ball of radius γ

2 δ(p) centered at p. In this case, the closest
center OPTa in S0 is by triangle inequality at distance at least (γ2 −1)δ(p) from p. Moreover,
since S0 is feasible, there is a center of S0 at distance at most δ(p) from p, and by triangle
inequality at most 2δ(p) from OPTa. Thus, dist(OPTa, `) ≤ 2δ(p) ≤ 4

γ−2 dist(OPTa, ra)

as claimed (recall γ > 2).

2. Each center of OPT appears in exactly one pair (X,Y).

3. Each center of S0 appears in expectation in (1 + ε) pairs (X,Y). This is because when the
leader of a group is substituted randomly with another element of the group, each point of
the group has probability ε of being used as substitute and to appear in two pairs (X,Y)
(and probability (1− ε) of appearing in exactly one pair).

For each swap pair (X,Y), for each point a ∈ A, we bound ∆(a, (X,Y)) =
dist(a, S0 −X ∪ Y)− dist(a, S0).

For the swap (X,Y) where OPTa ∈ Y , we have OPTa ∈ S0 − X ∪ Y and so the contribu-
tion of a to the cost of S0−X∪Y is at most OPT(a). We thus have ∆(a, (X,Y)) ≤ OPT(a)−S0(a).

For the swaps (X,Y) where Sa0 ∈ X and OPTa 6∈ Y . For a fixed point a, the number of such
swaps is in expectation at most (1 + ε) by the above discussion. For such a swap, since OPTa 6∈
Y , the cost of a is at most the distance from a to the center ` of S0 that is at distance at most
max(dist(OPTa, ra), 4

γ−2 dist(OPTa, ra)) from OPTa and that is not in X by Property 1 above.

By triangle inequality, the distance from a to ` is at most
dist(a,OPTa) + dist(OPTa, `)

≤ dist(a,OPTa) + max

(
1,

4

γ − 2

)
dist(OPTa, ra)

≤ dist(a,OPTa) + max

(
1,

4

γ − 2

)
[dist(a, Sa0) + dist(a,OPTa)] ,

since ra is the center of S0 that is the closest to OPTa. We thus have ∆(a, (X,Y)) ≤ OPT(a) +
max(1, 4

γ−2)(S0(a) + OPT(a))− S0(a).

For the remaining swaps, the contribution of a is S0(a). ∆(a, (X,Y)) ≤ 0.

Next define mγ = max(1, 4
γ−2). Thus, for each point a ∈ A, we have

E[
∑

(X,Y)

∆(a, (X,Y))] ≤ (1 + ε)(2 +mγ)OPT(a)− S0(a)(2 + ε− (1 + ε)mγ),

where the expectation is over the random choices made to define the swaps. Thus,∑
a∈A

E[
∑

(X,Y)

∆(a, (X,Y))]

≤
∑
a∈A

(1 + ε)(2 +mγ)OPT(a)− (2 + ε− (1 + ε)mγ)S0(a).

By local optimality, we have for each (X,Y),
∑
a∈A ∆(a, (X,Y)) > −εcost(S0)/k. Summing the

above inequality over all swaps, we conclude −εcost(S0) ≤
∑
a∈A(1 + ε)(2 +mγ)OPT(a)− (2 +

ε− (1 + ε)mγ)S0(a) since the number of swaps is at most k.

Therefore the ratio is at most (1+O(ε))
2+max(1, 4

γ−2)

2−max(1, 4
γ−2)

, for γ > 4, and small enough ε, as desired.

4 Fast algorithm

In this section we focus on the k-means problem and we show how to modify the local-search
algorithm presented in Lattanzi and Sohler [2019] to obtain a bicriteria approximation for our

6

problem, Theorem 1.2. The key intuition is to use the concept of anchor zones introduced in the
previous section to allow only the swaps that preserve our fairness guarantees.

Algorithm 3: Scalable algorithm for individually fair k-means
Require: X , k, Z, γ

1: C ← ∅, S0 ← ∅
2: S0 ← SEEDING(X, δ(·), γ).
3: Define each point p ∈ S0 as an anchor point, and the ball B(p) of radius γδ(p) around p as an

anchor zone.
4: Let T ⊆ X \ S0 be a set of k − |S0| randomly selected points
5: S ← S0 ∪ T
6: for i← 2, 3, . . . , Z do
7: S ← CONSTRAINEDLOCALSEARCH++(X,S,B(·))
8: return S

Algorithm 4: CONSTRAINEDLOCALSEARCH++
Require: X , S, B(·)

1: Sample p ∈ X with probability cost({p},S)∑
q∈X cost({q},S)

2: Q← {q ∈ S|∀x ∈ S0 : (S \ {q} ∪ {p}) ∩B(x) 6= ∅}
3: q∗ ← arg minq∈Q cost(X,S \ {q} ∪ {p})
4: if cost(X,S \ {q∗} ∪ {p}) < cost(X,S) then
5: S ← S \ {q∗} ∪ {p}
6: return S

For simplicity of exposition in this section we consider the classic setting where A = C = X .

Toward this end, we need to change both the initialization and the swapping procedure of the local-
search algorithm to take into account the radius constraints. As for initialization, as in the previous
section, we first add a new center as long as there exists a point p at distance greater than γδ(p) from
the current set of centers. We refer to the obtained set of centers as S0. If |S0| is larger than k, then
we know that the input is infeasible; otherwise we add additional points as centers until we obtain a
set of k centers S. We say that a point is an anchor point if it is in S0. Furthermore we define the ball
B(p) of radius γδ(p) centered at p as the anchor zone for p.

As for the swaps, we select a random point q using D2-sampling as in Lattanzi and Sohler [2019]. If
there is a subset S′ obtained by swapping an element of S with q, such that (i) |S′| = k, (ii) every
anchor zone contains at least one point in S′, and (iii)

∑
p∈X dist(p, C)2 >

∑
p∈X dist(p, S′)2, then

we change our current solution from S to S′. Interestingly we show that after O(k log n∆) iterations,
the solution will have constant-factor expected approximation for cost and moreover it violates the
radius constraints by at most a factor of 2γ. See the pseudocode in Algorithm 3.

Now we show that our algorithm obtains a constant bicriteria approximation for individually fair
k-means3. Our proof uses many ingredients of the proof in Lattanzi and Sohler [2019] with careful
modifications to handle the additional constraints imposed by the algorithm4. In the remaining part
of this section we prove our main theorem focusing on the novel part of our proofs.

4.1 Analysis (Proof of Theorem 1.2)

As in Lattanzi and Sohler [2019], the main observation behind our proof is that every step of our
algorithm in expectation reduces the solution cost by a factor O

(
1− 1

k

)
. Considering that the cost

3In this section we do not optimize to obtain a small approximation factor; the main advantage of this
algorithm is its very practical running time. Nevertheless we show in Section 5 that our algorithm is more
efficient and obtains higher-quality result compared to prior work.

4An interesting open question is to use the more recent analysis of LOCALSEARCH++ by Choo et al. [2020]
to improve the running time of our algorithm to O(dnk2). However, it is not clear how to obtain the necessary
strong guarantees similar to the one in Lemma 12 of Choo et al. [2020].

7

of the initial solution is at most ∆2n, this implies that O(k log n∆) iterations suffice to obtain a
constant approximation.

To simplify the exposition we assume that every cluster in the optimal solution has non-zero cost.5

Next we state two lemmas outlining the algorithm’s analysis. Their proofs use ideas similar to those
in Lattanzi and Sohler [2019], and are deferred to supplementary materials.

Lemma 4.1. LetX be the set of points from a feasible instance, γ ≥ 3, and S a set of centers with cost
cost(X,S) > 2000Optk. With probability 1

1000 , for S′ = CONSTRAINEDLOCALSEARCH++(X,S),
we have cost(X,S′) ≤ (1− 1

100k)cost(X,S).

Lemma 4.2. Let X be the set of points from a feasible instance, and Ŝ a set of centers with
cost(X, Ŝ) ≤ γn∆(X)2. After running Z ≥ 200000k log(γn∆(X)) rounds of Algorithm 4 on Ŝ
outputs a solution S such that E[cost(X,S)] ∈ O(OPTk).

Here we show how to use the two lemma to prove Theorem 1.2.

Proof of Theorem 1.2. The algorithm returns infeasible only if it finds k + 1 disjoint individual
fairness balls. But in that case, the problem is infeasible (their fairness constraints cannot be satisfied
with k points).

Let Ŝ be the set S before calling CONSTRAINEDLOCALSEARCH++. In this set, every point p has
distance at most γδ(p) from a center so cost(X, Ŝ) ≤ γn(∆(X))2. Lemma 4.2 then shows that after
Z calls to CONSTRAINEDLOCALSEARCH++, we obtain a constant approximation.

Now we show that at any point in time during the execution of the algorithm maxp∈X dist(p, S) ≤
2γδ(p). The algorithm guarantees to keep at least one point in every anchor ball. Moreover every
point p is at distance at most γδ(p) from an anchor point p′ with δ(p) > δ(p′). The anchor ball B(p′)
must have a center c ∈ S, so dist(c, p′) ≤ γδ(p′). Thus by triangle inequality dist(c, p) ≤ 2γδ(p).

It takes O(dnk) time to compute the initial set Ŝ. In order to implement the local search, we need to
compute the cost of swapping the new sample point with an old center. This requires to iterate over
all clusters and for each cluster we need to compute the distance to all other centers and to check that
there is at least one center in each anchor ball. Thus, a local search step requires O(dkn+ dk) time
in the worst case, which leads to an overall running time of O(dnkZ). The Theorem follows.

5 Empirical analysis

In this section we evaluate empirically the algorithms presented and we compare them with state-
of-the-art methods from the literature. First, we describe our empirical methodology, and then we
provide the experimental results.

In our analysis, all datasets used are publicly available. We implemented our algorithms, as well
as the other baselines in Python, and we ran each instance of our experiments independently on a
standard single-core machine. We will make the code available as open-source before publication.

Datasets. We used several real-world datasets from the UCI Repository Dheeru and Karra Taniskidou
[2017] that are standard in the clustering literature. This includes: adult Kohavi et al. [1996]
n = 32561, d = 6, bank Moro et al. [2014] n = 45211, d = 3, diabetes Dheeru and Karra Taniskidou
[2017] n = 101766, d = 2 skin Bhatt and Dhall [2010], n = 245057, d = 4, shuttle6 n = 58000, d =
9, and covertype Blackard and Dean [1999], n = 581012, d = 54. For consistency with prior work,
for adult, bank and diabetes we use the same set of columns used in the analysis of Mahabadi and
Vakilian [2020]. We preprocess each dataset to have zero mean and unit standard deviation in every
dimension. All experiments use the Euclidean distance.

Algorithms. We consider the following algorithms.
– ICML20 Mahabadi and Vakilian [2020]: We implemented the algorithm following the recommen-
dation of the paper (i.e., using a single swap in the local search and a factor 3δ(p) instead of 6δ(p) in

5Note that this is w.l.o.g., since we can artificially increase the cost of every cluster by adding for each point
a copy at infinitesimal distance.

6Thanks to NASA for releasing the dataset.

8

2000 4000 6000 8000 10000 12000 14000
sample size

0

500

1000

1500

2000

2500

3000

3500

m
ea

n
tim

e
(s

ec
)

Sample size vs mean time for adult

(a) Time (secs)

2000 4000 6000 8000 10000 12000 14000
sample size

0

10000

20000

30000

40000

50000

60000

70000

m
ea

n
co

st

Sample size vs mean cost for adult

Greedy
ICML20
LSPP
NeurIPS21
NeurIPS21Sparsify

(b) Cost

2000 4000 6000 8000 10000 12000 14000
sample size

1.2

1.4

1.6

1.8

2.0

bo
un

d
ra

tio

Sample size vs max bound ratio for adult

(c) Bound ratio

Figure 1: Mean completion time, cost, and bound ratio for the algorithms on adult dataset subsampled
to different sizes, k = 10. The shades represent the 95% confidence interval (notice that some
algorithms are deterministic). Runs that did not complete in 1 hour are not reported.

the initialization). We set ε = 0.01 in the algorithm.
– NeurIPS21 Chakrabarty and Negahbani [2021]: We use the Python code provided by the authors.7
We use both the more accurate algorithm NeurIPS21 and the faster algorithm using sparsification
(NeurIPS21Sparsify).
– Greedy: Similarly to prior work we consider the execution of the greedy seeding algorithm as a
baseline.
– LSPP: We implemented our local-search algorithm with modifications similar to that of ICML20 (a
single swap and µ = 3 factor in seeding algorithm). We also modified the algorithm to run only a
fixed number of local-search iterations (namely 500) in all experiments. Moreover, we added at the
end of the algorithm the execution of an algorithm similar to Lloyd’s method, and as is typical, we
repeat for 20 iterations the following procedure: We assign each point to the nearest center. Then we
obtain the mean of the clusters. Notice that the mean minimizes the k-means cost, but it may not be a
feasible solution for the distance bound. For this reason, the next center is obtained by approximating
the closest feasible point to the mean, on the line between the current center and the mean. Though
this procedure does not alter the theoretical guarantees, it improves the results empirically.

Metrics. We focus on three key metrics: the k-means cost of clustering, the average runtime of
algorithm and the bound ratio maxp

dist(p,S)
δ(p) where S is the solution of the algorithm. We repeat each

experiment configuration 10 times and report the mean and standard deviation of the metrics.

Comparison with other baselines. In this section we report a comparison of our algorithm with the
other baselines. For all experiments, unless otherwise specified, we replicate the setting of individual
fairness Mahabadi and Vakilian [2020] for δ(p), by setting δ(p) as the distance to the n/k-th nearest
point.

Notice that the ICML20 algorithm evaluates, for each iteration of local search, all possible swaps of
one center with a non-center while NeurIPS21 and NeurIPS21Sparsify both depend on computing
all-pairs distances in O(dn2) time. This makes these algorithms not scalable to large datasets, unlike
our algorithm. Therefore all prior experiments Mahabadi and Vakilian [2020], Chakrabarty and
Negahbani [2021] used a subsample of ≈1000 elements from the datasets to run their algorithm. In
this section we use a similar approach for the sake of consistency.

In Figure 1a, 1b, 1c, we report the results of the various algorithms for different sizes of the sample
on the adult dataset, fixing k = 10. We allowed each algorithm to run for up to 1 hour. Notice in
Figure 1a, how our algorithm is orders of magnitude faster than the baselines even for very small
sample sizes. Even the faster NeurIPS21Sparsify variant is still much slower than our algorithm.

Moreover, while the running time of all baselines (except simple Greedy) increases significantly with
size, our algorithm scales much better and has a running time similar to the naive Greedy baseline.

7The code was obtained from https://github.com/moonin12/individually-fair-k-clustering
and adapted.

9

Then we focus on the k-means cost of the solution in Figure 1b. Notice that our algorithm (LSPP) has
a cost better than that of all baselines. Finally, Figure 1c shows the max ratio of distance of a point
p to centers vs δ(p). While ICML20 and LSPP have statistically comparable bounds (significantly
better than their worst case guarantees), NeurIPS21 and NeurIPS21Sparsify have slightly better
bounds.

dataset algorithm k-means cost bound ratio

adult Greedy 3832.6 (—) 2.0 (—)
ICML20 1854.9 (—) 1.2 (—)
NeurIPS21 2744.3(—) 1.1 (—)
NeurIPS21Sparsify 2745.5 (—) 1.2 (—)
LSPP 1726.0 (9.4) 1.2 (0)

bank Greedy 1081.8 (—) 1.8 (—)
ICML20 568.4 (—) 1.4 (—)
NeurIPS21 784.2 (—) 1.2 (—)
NeurIPS21Sparsify 761.2 (—) 1.2 (—)
LSPP 515.6 (7.3) 1.4 (0.1)

covtype Greedy 50629.8 (—) 1.3 (—)
ICML20 42121.5 (—) 1.1 (—)
NeurIPS21 47810.6 (—) 1.1(—)
NeurIPS21Sparsify 46078.6 (—) 1.1 (—)
LSPP 36080.8 (632) 1.0 (0.0)

diabetes Greedy 522.3 (—) 2.1 (—)
ICML20 267.0 (—) 1.1 (—)
NeurIPS21 N/A N/A
NeurIPS21Sparsify 299.8 (—) 1.1 (—)
LSPP 243.9 (8.5) 1.2 (0.2)

shuttle Greedy 2647.4 (—) 2.0 (—)
ICML20 1335.0 (—) 1.8 (—)
NeurIPS21 2494.8 (—) 1.0(—)
NeurIPS21Sparsify 2477.1 (—) 1.2 (—)
LSPP 1219.1 (31.3) 1.8 (0.1)

skin Greedy 584.3 (—) 2.7 (—)
ICML20 292.8(—) 2.3 (—)
NeurIPS21 379.4 (—) 1.1 (—)
NeurIPS21Sparsify 384.1 (—) 1.1 (—)
LSPP 325.1 (19.4) 2.6 (0.3)

Table 1: Cost and max bound ratio for all datasets
subsampled for 1000 elements and k = 10 (stddev in
parentheses for the LSPP randomized algorithm). N/A
indicates that the algorithm did not complete in 1 hour.

Effect of k. A similar overall picture appears in
Figure 2a, 2b, where we report the results of the
various algorithms for different k’s on a sample
of 1000 elements in the adult dataset. Notice the
statistically significant improvement in cost in
Figure 2a and the comparable or slighly higher
bound ratio in Figure 2b. The results observed
before are confirmed in all datasets, as shown in
Table 1, where we report the cost and bound ra-
tio for all datasets, subsampled to 1000 elements,
and k = 10.

Experiments on the full datasets. The scala-
bility of our algorithm allows us to run it on the
full datasets with up to 1/2 million elements8, or-
ders of magnitude larger than the datasets used
in prior work. In this section, we run our algo-
rithm and the fast Greedy baseline on all com-
plete datasets, using k = 10. Our algorithm
completed all runs in less than 60 minutes.

In order to compare with all the slower
baselines we allow ICML20, NeurIPS21 and
NeurIPS21Sparsify to run on a subsample of the
data containing 4000 points (but we evaluate the
solution on the entire dataset). This of course
has no theoretical guarantee and can perform
especially poorly in case of outliers.

For this large-scale experiment, the input bound
δ(p) for each point p is set using the n/k-th clos-
est point in a random sample of 1000 elements.
In all but one dataset, our algorithm has a signif-
icantly lower k-means cost than that all other baselines. Similarly to above results, our algorithm has
similar or better ratio bound than that of ICML20 (with the sampling heuristic), while the ratio bound
of NeurIPS21 and NeurIPS21Sparsify is sometimes lower. In any instance our algorithm has much
better ratio that the worst-case theoretical guarantees. The results are reported in the supplementary
materials.

The less scalable algorithms still provide decent results via sampling the dataset. This will not be
necessarily the case though. In particular, sampling will inevitably remove underrepresented groups.
Consider a dataset with two (or more) slices corresponding to different countries or groups, with
similar characteristics yet different populations. If the subsets appear in different parts of the space,
the sampling procedure will fail to take into account (many features from) the smaller countries or
groups, defeating the purpose of these algorithms—individual fairness.

6 Conclusions

After improving state of the art for individually fair clustering (in terms of theoretical cost and fairness
guarantees), we present a scalable local-search algorithm that, despite inferior theoretical guarantees,
performs very well in practice.

8A implementation in C++ would scale this up further, but we wanted to be consistent in comparison to prior
work.

10

References
M. Abbasi, A. Bhaskara, and S. Venkatasubramanian. Fair clustering via equitable group representa-

tions. In M. C. Elish, W. Isaac, and R. S. Zemel, editors, FAccT, pages 504–514. ACM, 2021. doi:
10.1145/3442188.3445913. URL https://doi.org/10.1145/3442188.3445913.

S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian. Clustering without over-representation. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 267–275, 2019.

S. Ahmadian, A. Epasto, M. Knittel, R. Kumar, M. Mahdian, B. Moseley, P. Pham, S. Vassilvitskii,
and Y. Wang. Fair hierarchical clustering. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, NeurIPS, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/f10f2da9a238b746d2bac55759915f0d-Abstract.html.

S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian. Fair correlation clustering. In S. Chi-
appa and R. Calandra, editors, AISTATS, volume 108 of Proceedings of Machine Learning
Research, pages 4195–4205. PMLR, 2020b. URL http://proceedings.mlr.press/v108/
ahmadian20a.html.

S. Alamdari and D. B. Shmoys. A bicriteria approximation algorithm for the k-center and k-median
problems. In WAOA, 2017.

S. K. Bera, D. Chakrabarty, N. Flores, and M. Negahbani. Fair algorithms for clustering. In
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 4955–4966, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html.

R. Bhatt and A. Dhall. Skin segmentation dataset. UCI Machine Learning Repository, 2010.

J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and electronics in
agriculture, 24(3):131–151, 1999.

J. Byrka, K. Sornat, and J. Spoerhase. Constant-factor approximation for ordered k-median. In
I. Diakonikolas, D. Kempe, and M. Henzinger, editors, STOC, pages 620–631. ACM, 2018. doi:
10.1145/3188745.3188930. URL https://doi.org/10.1145/3188745.3188930.

A. Bóta, M. Krész, and B. Zaválnij. Adaptations of the k-means algorithm to community detection in
parallel environments. In 2015 17th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), pages 299–302, 2015. doi: 10.1109/SYNASC.2015.54.

D. Chakrabarty and M. Negahbani. Better algorithms for individually fair k-clustering. In NeurIPS,
2021. to appear.

D. Chakrabarty and C. Swamy. Interpolating between k-median and k-center: Approximation
algorithms for ordered k-median. In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella,
editors, ICALP, volume 107 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi: 10.4230/LIPIcs.ICALP.2018.29. URL https://doi.org/10.4230/
LIPIcs.ICALP.2018.29.

D. Chakrabarty and C. Swamy. Approximation algorithms for minimum norm and ordered op-
timization problems. In M. Charikar and E. Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, pages 126–137. ACM, 2019. doi: 10.1145/3313276.3316322. URL https:
//doi.org/10.1145/3313276.3316322.

S. Chawla and A. Gionis. k-means-: A unified approach to clustering and outlier detection. In
Proceedings of the 13th SIAM International Conference on Data Mining, May 2-4, 2013. Austin,
Texas, USA, pages 189–197. SIAM, 2013. doi: 10.1137/1.9781611972832.21. URL https:
//doi.org/10.1137/1.9781611972832.21.

11

F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii. Fair clustering through fairlets. In
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5029–5037, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
978fce5bcc4eccc88ad48ce3914124a2-Abstract.html.

E. Chlamtác, Y. Makarychev, and A. Vakilian. Approximating fair clustering with cascaded norm
objectives. In SODA, 2022. URL https://arxiv.org/abs/2111.04804.

D. Choo, C. Grunau, J. Portmann, and V. Rozhon. k-means++: few more steps yield constant
approximation. In International Conference on Machine Learning, pages 1909–1917. PMLR,
2020.

V. Cohen-Addad and C. Schwiegelshohn. On the local structure of stable clustering instances. In
C. Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 49–60. IEEE Computer Society, 2017. doi:
10.1109/FOCS.2017.14. URL https://doi.org/10.1109/FOCS.2017.14.

A. Deshpande, P. Kacham, and R. Pratap. Robust k-means++. In R. P. Adams and V. Gogate, editors,
Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2020,
virtual online, August 3-6, 2020, volume 124 of Proceedings of Machine Learning Research, pages
799–808. AUAI Press, 2020. URL http://proceedings.mlr.press/v124/deshpande20a.
html.

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts.
In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors, Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington,
USA, August 22-25, 2004, pages 551–556. ACM, 2004. doi: 10.1145/1014052.1014118. URL
https://doi.org/10.1145/1014052.1014118.

O. Dorabiala, J. N. Kutz, and A. Y. Aravkin. Robust trimmed k-means. CoRR, abs/2108.07186, 2021.
URL https://arxiv.org/abs/2108.07186.

D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for
k-means, PCA and projective clustering. CoRR, abs/1807.04518, 2018.

A. Georgogiannis. Robust k-means: a theoretical revisit. In D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2883–2891, 2016. URL https://proceedings.neurips.cc/paper/
2016/hash/80a8155eb153025ea1d513d0b2c4b675-Abstract.html.

M. Ghadiri, S. Samadi, and S. S. Vempala. Socially fair k-means clustering. In M. C. Elish, W. Isaac,
and R. S. Zemel, editors, FAccT, pages 438–448. ACM, 2021. doi: 10.1145/3442188.3445906.
URL https://doi.org/10.1145/3442188.3445906.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293–306, 1985.

A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location.
CoRR, abs/0809.2554, 2008. URL http://arxiv.org/abs/0809.2554.

D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem. Math. Oper.
Res., 10(2):180–184, 1985. doi: 10.1287/moor.10.2.180. URL https://doi.org/10.1287/
moor.10.2.180.

A. I. Humayun, R. Balestriero, A. Kyrillidis, and R. Baraniuk. No more than 6ft apart: robust
k-means via radius upper bounds, 2021. URL https://people.bengali.ai/wp-content/
uploads/2021/11/Robust_Kmeans_ICASSP.pdf. under submission.

12

C. Jung, S. Kannan, and N. Lutz. Service in your neighborhood: Fairness in center location. In
A. Roth, editor, FORC, volume 156 of LIPIcs, pages 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi: 10.4230/LIPIcs.FORC.2020.5. URL https://doi.org/10.4230/
LIPIcs.FORC.2020.5.

S. Kalhan, K. Makarychev, and T. Zhou. Correlation clustering with local objectives.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
785ca71d2c85e3f3774baaf438c5c6eb-Paper.pdf.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A local
search approximation algorithm for k-means clustering. In F. Hurtado, V. Sacristán, C. Bajaj,
and S. Suri, editors, Proceedings of the 18th Annual Symposium on Computational Geometry,
Barcelona, Spain, June 5-7, 2002, pages 10–18. ACM, 2002. doi: 10.1145/513400.513402. URL
https://doi.org/10.1145/513400.513402.

M. Kleindessner, P. Awasthi, and J. Morgenstern. Fair k-center clustering for data summarization. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 3448–3457. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/kleindessner19a.html.

R. Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Kdd,
volume 96, pages 202–207, 1996.

S. Lattanzi and C. Sohler. A better k-means++ algorithm via local search. In International Conference
on Machine Learning, pages 3662–3671. PMLR, 2019.

S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–136, 1982. doi:
10.1109/TIT.1982.1056489. URL https://doi.org/10.1109/TIT.1982.1056489.

J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In
L. M. L. Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. University of California Press, 1967.

S. Mahabadi and A. Vakilian. Individual fairness for k-clustering. In ICML, volume 119 of
Proceedings of Machine Learning Research, pages 6586–6596. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/mahabadi20a.html.

Y. Makarychev and A. Vakilian. Approximation algorithms for socially fair clustering. In M. Belkin
and S. Kpotufe, editors, Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder,
Colorado, USA, volume 134 of Proceedings of Machine Learning Research, pages 3246–3264.
PMLR, 2021. URL http://proceedings.mlr.press/v134/makarychev21a.html.

S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the success of bank telemarketing.
Decision Support Systems, 62:22–31, 2014.

J. Plesník. A heuristic for the p-center problems in graphs. Discret. Appl. Math., 17(3):263–268, 1987.
doi: 10.1016/0166-218X(87)90029-1. URL https://doi.org/10.1016/0166-218X(87)
90029-1.

Y. P. Raykov, A. Boukouvalas, F. Baig, and M. A. Little. What to do when k-means clustering
fails: A simple yet principled alternative algorithm. PLOS ONE, 11(9):1–28, 09 2016. doi:
10.1371/journal.pone.0162259. URL https://doi.org/10.1371/journal.pone.0162259.

C. Rösner and M. Schmidt. Privacy preserving clustering with constraints. In I. Chatzigiannakis,
C. Kaklamanis, D. Marx, and D. Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 96:1–96:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ICALP.2018.96. URL https://doi.org/10.4230/LIPIcs.ICALP.2018.96.

A. Vakilian and M. Yalçiner. Improved approximation algorithms for individually fair clustering. In
AISTATS, 2022. to appear.

13

X. Wang, S. Fan, K. Kuang, C. Shi, J. Liu, and B. Wang. Decorrelated clustering with data selection
bias. In C. Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 2177–2183. ijcai.org, 2020. doi: 10.24963/ijcai.2020/301.
URL https://doi.org/10.24963/ijcai.2020/301.

S. Zhang, R.-S. Wang, and X.-S. Zhang. Identification of overlapping community structure in complex
networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications,
374:483–490, 2007.

14

A Proof of Section 4

The proof in this section follow closely the structure of the proofs in Lattanzi and Sohler [2019] with
some modification to carefully handle the anchor zones constraints.

A.1 Proof of Lemma 4.2

Proof. By Lemma 4.1 we know that if before any call of CONSTRAINEDLOCALSEARCH++ the cost
of the centers is bigger than 2000Optk then with probability 1

1000 we reduce the cost by a (1− 1
100k)

multiplicative factor.

Now consider another random process Y with initial value equal to cost(X, Ŝ), which for Z =
100000k log n∆(X)2 iterations, it reduces the value by a

(
1− 1

100k

)
multiplicative factor with

probability 1/1000, and finally increases the value by an additive 2000Optk. It is not hard to see that
the final value of Y stochastically dominates the cost of the solution our algorithm produces. So the
final expected value of Y is larger than the expected value of cost(X,S) conditioned on the initial
clustering Ŝ. Furthermore,

E[Y] = 2000Optk + cost(X, Ŝ)·
Z∑
i=0

(
Z

i

)(
1

1000

)i(
999

1000

)Z−i(
1− 1

100k

)i
= cost(X, Ŝ)

(
1− 1

100000k

)Z
+ 2000Optk

≤ cost(X, Ŝ)

n∆(X)2
+ 2000Optk.

This implies that E[cost(X,S)|Ŝ] ≤ cost(X,Ŝ)
n∆(X)2 + 2000Optk. Our upper-bound on the cost of Ŝ is

deterministic, hence E[cost(X,S)] ≤ cost(X,Ŝ)
n∆(X)2 + 2000Optk ≤ 2001Optk.

A.2 Proof of Lemma 4.1

Before proving the lemma we recall two well-known results. The following lemma is folklore:
Lemma A.1. LetX ⊆ Rd be a set of points and let c ∈ Rd be a center. Then we have cost(X, {c}) =
|X| · ‖c− µ(X)‖2 + cost(X,µ(X)).

We will also use the following lemma (rephrased from Corollary 21 in Feldman et al. [2018]).
Lemma A.2. Let ε > 0. Let p, q ∈ Rd and let C ⊆ Rd be a set of k centers. Then |cost({p}, C)−
cost({q}, C)| ≤ ε · cost({p}, C) + (1 + 1

ε)‖p− q‖2.

We assume that the optimal solution S∗ = {c∗1, . . . , c∗k} is unique (this can be enforced using proper
tie breaking) and use X∗1 , . . . , X

∗
k to denote the corresponding optimal partition. We will also use

S = {c1, . . . , ck} to refer to our current clustering with corresponding partition X1, . . . , Xk. When
the indices are not relevant, we will drop the index and write, for example, c ∈ S.

We use notations and proof strategy similar to Kanungo et al. [2002]. We start by partitioning the
optimal centers into anchor centers, A∗, and unconstrained centers, U∗. An optimal center is in A∗
if it is the closest optimal center to an anchor point (breaking ties arbitrarily), the remaining centers
form the set of unconstrained centers. We say that an optimal center c∗ ∈ U∗ is captured by a center
c ∈ S if c is the nearest center to c∗ among all centers in S. Also we say that an optimal center
c∗ ∈ A∗ with corresponding anchor point a is captured by a center c ∈ S if c is the nearest center to
c∗ among all centers in the anchor zone defined by a. Note that a center c ∈ S may capture more
than one optimal center and every optimal center is captured by exactly one center from S (ties are
broken arbitrarily). Some center in c may not capture any optimal center. Similarly to Kanungo
et al. [2002] we call these centers lonely and we denote them with L. Finally, let H be the index set

15

of centers capturing exactly one cluster. W.l.o.g., we assume that for h ∈ H we have that ch ∈ S
captures c∗h ∈ S∗, i.e., the indices of the clusters with a one-to-one correspondence are identical.

Note that the above definition is slightly different from the classic definition in Kanungo et al. [2002].
In fact, an optimal center may not be captured by its closest center but by its closest center in the
anchor zone. Nevertheless we can show that it is still possible to recover a similar result to the one
in Lattanzi and Sohler [2019] in this setting.

Note one useful proposition of our definition.
Proposition A.3. Let c∗ ∈ A∗ be an optimal center with corresponding anchor point a, and let
c′ be the closest point in S to c∗, and let c∗ be captured by the center c ∈ S. Then dist(c∗, c) ≤
µ+1/µ−1dist(c∗, c′)

Proof. If c′ is within distance µδ(a) to a, the lemma follows from dist(c∗, c) = dist(c∗, c′) by
definition of c and anchor ball. Otherwise we know that c∗ is at distance at most δ from a, c is at
distance at most µδ from a, and c′ is at distance at least µδ from a. The lemma follows from the
triangle inequality.

We will use the above definition as in Lattanzi and Sohler [2019]. Intuitively, if a center c captures
exactly one cluster of the optimal solution, we think of it as a candidate center for this cluster. In this
case, if c is far away from the center of this optimal cluster, we argue that with good probability we
sample a point close to the center. In order to analyze the change of cost, we will argue that we can
assign all points in the cluster of c that are not in the captured optimal cluster to a different center
without increasing their contribution by too much. This will be called the reassignment cost and is
formally defined in the definition below. We will show that with good probability we sample from a
cluster such that the improvement for the points in the optimal cluster is significantly bigger than the
reassignment cost.

If a center is lonely, we think of it as a center that can be moved to a different cluster. Again, we will
argue that with high probability we can sample points from other clusters such that the reassignment
cost is much smaller than the improvement for this cluster.

Now we start to analyze the cost of reassignment of the points due to a center swap.

We would like to argue that reassigning the points currently assigned to a cluster center with index
from H or L to other clusters is small. As discussed above, for h ∈ H , we will assign all points
from Xh that are not in X∗h to other centers. For l ∈ L we will consider the cost of assigning all
points in Xi to other clusters. We use the following definition to capture the cost of this reassignment
introduced in Lattanzi and Sohler [2019].
Definition A.4. Let X ⊆ Rd be a point set and S ⊆ Rd be a set of k cluster centers and let H be the
subset of indices of cluster centers from S = {c1, . . . , ck} that capture exactly one cluster center of
an optimal solution S∗ = {c∗1, . . . , c∗k}. Let Xi, X

∗
i , 1 ≤ i ≤ k, be the corresponding clusters. Let

h ∈ H be an index with cluster Xh and w.l.o.g. let X∗h be the cluster in the optimal solution captured
by ch. The reassignment cost of ch is defined as

reassign(X,S, ch) = cost(X \X∗h, S \ {ch})− cost(X \X∗h, S).

For ` ∈ L we define the reassignment cost of c` as

reassign(X,S, c`) = cost(X,S \ {c`})− cost(X,S).

We will now prove the following bound on reassignment costs. We note that this proof is similar to
the proof in Lattanzi and Sohler [2019] but it includes key differences to handle the fact that optimal
centers may not be assigned to the closest center in the current solution.
Lemma A.5. For r ∈ H ∪ L we have

reassign(X,S, cr) ≤
13

100
cost(Xr, S) + 332cost(Xr, S

∗).

Proof. We only present the case r ∈ H . The case r ∈ L is almost identical (in fact, simpler). We
observe that reassign(X,S, cr) = cost(Xr \ X∗r , S \ {r}) − cost(Xr \ X∗r , S) since vertices in
clusters other than Xr will still be assigned to their current center. If r ∈ H , we assign every point

16

in Xr ∩X∗i , i 6= r, to the center that captured the center of X∗i . While this assignment may not be
optimal, its cost provides an upper bound on the cost of reassigning the points: We move every point
in Xr ∩X∗i , i 6= r, to the center of X∗i . Now the closest center of S to these points is a center with
distance close to the one that captured the center of X∗i , which, for points not in X∗r , cannot be r,
since r is in H . The fact that the squared moved distance of each point equals its contribution to the
optimal solution allows us to get an upper bound on the cost change using Lemma A.2. After this, we
move the points back to their original location while keeping their cluster assignments fixed. Again
we can use the bound on the overall moved distance together with Lemma A.2 to obtain a bound on
the change of cost. Combining the two gives an upper bound on the increase of cost that comes from
reassigning the points. Details follow.

Let Qr be the (multi)set of points obtained from Xr \X∗r by moving each point in X∗i ∩Xr, i 6= r, to
c∗i . We apply Lemma A.2 with ε = 1/100 to get an upper bound for the change of cost with respect
to S that results from moving the points to Qr. For p ∈ Xr \X∗r let qp ∈ Qr be the point of Qr to
which p has been moved. We have:

|cost({p}, S)− cost({qp}, S)|

≤ 1

100
cost({p}, S) + 101 · cost({p}, S∗).

Summing up over all points in Xr \X∗r yields

|cost(Xr \X∗r , S)− cost(Qr, S)|

≤ 1

100
cost(Xr \X∗r , S) + 101 · cost(Xr \X∗r , S∗).

Let Qr,i be the points in Qr that are nearest to center ci ∈ S and let Xr,i be the set of their original
locations. For p ∈ Xr,i that has been moved to qp ∈ Qr,i with qp let c′i be the closest point to qp
not equal to r. Note that the only case in which ci 6= c′i is when ci = r. Furthermore, qp is not
captured by r because r captures c∗r and is in H . So by Proposition A.3 we know cost({qp}, {c′i}) ≤
µ+1
µ−1 cost({qp}, {ci}). Thus we have:

|cost({qp}, {ci})− cost({p}, {c′i})|
= |cost({qp}, {ci})− cost({qp}, {c′i})|
+ |cost({qp}, {c′i})− cost({p}, {c′i})|

≤ 2

µ− 1
cost({qp}, {ci}) +

1

100
cost({qp}, {c′i})

+ 101 · cost({p}, {qp})

≤ 1

µ− 1

(
2 +

µ+ 1

100

)
cost({qp}, {ci})

+ 101 · cost({p}, {qp}),

where in the first inequality we used Lemma A.2 with ε = 1/100.

Summing up over all points in Xr \X∗r and the corresponding points in Qr yields

|cost(Qr, S)−
∑
i

cost(Xr,i, S \ {r})|

≤ 1

µ− 1

(
2 +

µ+ 1

100

)
cost(Qr, S) +

101 · cost(Xr \X∗r , S∗)

≤ 26

25

(
11

100
cost(Xr \X∗r , S) +

101 · cost(Xr \X∗r , S∗)
)

+

101 · cost(Xr \X∗r , S∗)

≤ 3

25
cost(Xr, S) + 231 · cost(Xr, S

∗),

17

where the second inequality uses the bound on µ ≥ 3. Hence,

reassign(X,S, cr)

= |cost(Xr \X∗r , S)−
∑
i

cost(Xr,i, S \ {r}|

≤ |cost(Xr \X∗r , S)− cost(Qr, S)|+
|cost(Qr, S)−

∑
i

cost(Xr,i, S \ {r})|

≤ 13

100
cost(Xr, S) + 332cost(Xr, S

∗).

Now that we have a good bound on the reassignment cost we make a case distinction. Recall that we
assume that for every h ∈ H the optimal center captured by ch is c∗H , i.e., the indices are identical.
We first consider the case that

∑
h∈H cost(X∗h, S) > 1

3 cost(X,S).

With the previous lemma at hand, we can focus on the centers h ∈ H where replacing h by an
arbitrary point close to the optimal cluster center of the optimal cluster captured by h improves the
cost of the solution significantly. As in Lattanzi and Sohler [2019] we call such clusters good and
make this notion precise in the following definition.

Definition A.6. A cluster index h ∈ H is called good if

cost(X∗h, S)− reassign(X,S, ch)− 9cost(X∗h, {c∗h}) >
1

100k
· cost(X,S).

The above definition estimates the gain of replacing ch by a point close to the center of X∗h by
considering a clustering that reassigns the points in Xh that do not belong to X∗h and assigns all
points in X∗h to the new center. Now we want to show that we have a good probability to sample a
good cluster. In particular, we first argue that the sum of cost of good clusters is large. We note that
the following proof is a simple adaptation of Lattanzi and Sohler [2019].

Lemma A.7. If 3
∑
h∈H cost(X∗h, S) > cost(X,S) ≥ 2000Optk, then∑

h∈H,h is good

cost(X∗h, S) ≥ 9

400
cost(X,S).

Proof. We have
∑
h∈H cost(X∗h, C) ≥ 1

3 cost(X,S) and by the definition of good and Lemma A.5∑
h∈H,h is not good

cost(X∗h, S) ≤
∑
h∈H

reassign(X,S, ch) +

9Optk +
1

100
cost(X,S)

≤ 14

100
cost(X,S) + 341Optk.

Using that cost(X,S) ≥ 2000Optk we obtain that∑
h∈H,h is not good

cost(X∗h, S) ≤ 621

2000
· cost(X,S).

So
∑
h∈H,h is good cost(X∗h, S) ≥ 9

400 · cost(X,S). The lemma follows.

Now we present a lemma from Lattanzi and Sohler [2019] that whenever a cluster has high cost
w.r.t. C, it suffices to consider the points close to the optimal center to get an approximation of the
cost of the cluster. We will then use this fact to argue that we sample with good probability a point
close to the center.

18

Lemma A.8 (Lemma 6 from Lattanzi and Sohler [2019] restated). Let Q ⊆ Rd be a point set and let
S ⊆ Rd be a set of k centers and let α ≥ 9. If cost(Q,S) ≥ α · cost(Q, {µ(Q)}) then

cost(R,S) ≥
(
α− 1

8

)
· cost(Q, {µ(Q)}),

where R ⊆ Q is the subset of Q at squared distance at most 2
|Q| · cost(Q, {µ(Q)}) from µ(Q).

Now we can argue that sampling according to sum of squared distances will provide us with constant
probability with a good center. Consider any index h ∈ H with h being good. We will apply
Lemma A.8 with Q = X∗h and α = cost(Q,S)/cost(Q,µ(Q)). Note that by the definition of
good, we have that α ≥ 9. Now let us define R∗h to be the set R guaranteed by Lemma A.8. We
have cost(R∗h, S) ≥ α−1

8 cost(X∗h, {c∗h}) = α−1
8α cost(X∗h, S) ≥ 1

9 cost(X∗h, S) by our choice of α
(observe that c∗h equals µ(X∗h)). Since the sum of squared distances of points in good clusters is at least
9/400cost(X,S) by Lemma A.7, we conclude that

∑
h∈H,h is good cost(R∗h, S) ≥ 9

9·400 cost(X,S).
Thus, the probability to sample a point from

∑
h∈H,h is good cost(R∗h, S) is more than 1/400. By the

definition of good, if we sample such a point c ∈ R∗h we can swap it with ch to get a new clustering
of cost at most cost(X,S \ {ch} ∪ {c}) ≤ cost(X,S) − cost(X∗h, S) + reassign(X,S, {ch}) +
cost(X∗h, {c}). By Lemma A.1 we know that cost(X∗h, {c}) ≤ 9cost(X∗h, {c∗h}). Hence, with
probability at least 1/400 the new clustering has cost at most

cost(X,S)− (cost(X∗h, S)− reassign(X,H, ch)

−9cost(X∗h, {c∗h})

≤ (1− 1

100k
) · cost(X,S).

To check that the swap is feasible we only need to make sure that the swap is feasible if {c∗h} ∈
A∗. Otherwise we already that the anchor balls are covered by other centers. If {c∗h} ∈ A∗,
let a be the anchor point corresponding to c∗h. Note that from the definition of good cluster that
cost(X∗h, S)− 9cost(X∗h, {c∗h}) > 0 so by Lemma A.1 we have d({c∗h}, S) ≥ 9d({c∗h}, c). So given
that the radius of the anchor ball is 3δ(a) and the distance between c∗h and a is bounded by δ(a) by
triangle inequality we have that c is inside the anchor ball. This proves our lemma in the first case.

In the second case, we have
∑
h∈H cost(X∗h, S) < 1/3cost(X,S). Now let R = {1, . . . , k} \H , so

we get
∑
r∈R cost(X∗r , S) ≥ 2/3cost(X,S). Observe that R equals the index set of optimal cluster

centers that were captured by centers that capture more than one optimal center. This is because every
optimal center is captured by one center and R does not include H . In this case, if the index of a
center of our current solution is in R \ L we cannot easily move the cluster center without having
impact on other clusters. What we do instead is to use the centers in L as candidate centers for a swap.
Note that those swaps are always feasible because inside each anchor ball we have also a center not
in L. Similar to the case above we will argue that we can swap a center from L with a point that is
close to an optimal center of a cluster X∗r for some r ∈ R.

Recall that we have already bounded the cost of reassigning a center in L so we just need to argue
that the probability of sampling a good center is high enough.

In particular, we focus on the centers r ∈ R and swap an arbitrary center ` ∈ L with an arbitrary point
close to one of the centers in R to improve the cost of the solution. Slightly overloading notation, we
call such cluster centers good and make this notion precise in the following definition.

Definition A.9. A cluster index i ∈ {1, . . . , k} is called good, if there exists a center ` ∈ L such that

cost(X∗i , S)− reassign(X,S, `)− 9cost(X∗i , {c∗i }) >
1

100k
· cost(X,S).

The above definition estimates the cost of removing ` and inserting a new cluster center close to the
center of X∗i by considering a clustering that reassigns the points in X∗i and assigns all points in X∗i
to the new center. In the following we will now argue that the sum of cost of good clusters is large,
this will be useful to show that the probability of sampling such a cluster is high enough.

19

Lemma A.10. If 3
∑
h∈H cost(X∗h, S) ≤ cost(X,S) and cost(X,S) ≥ 2000Optk we have∑

r∈R,r is good

cost(X∗r , S) ≥ 1

20
cost(X,S).

Proof. We have
∑
r∈R cost(X∗r , S) ≥ 2/3cost(X,S). Note that |R| ≤ 2|L|. By the definition of

good and Lemma A.5 ∑
r∈R,r is not good

cost(X∗r , S)

≤ 2|L|min
`∈L

reassign(X,S, `) + 9Optk

+
1

100
cost(X,S)

≤ 2
∑
`∈L

reassign(X,S, `) + 9Optk

+
1

100
cost(X,S)

≤ 27

100
cost(X,S) + 673Optk.

Using that
∑
i∈{1,...,k} cost(X∗i , S) ≥ 2000Optk we obtain that∑

r∈R,r is not good

cost(X∗r , S) ≤ 1213

2000
cost(X,S)

Now the bound follows by combining the previous inequality with
∑
r∈R cost(X∗r , S) ≥

2/3cost(X,S).

Note that also in this case we can now argue similarly as in the other case that sampling according
to sum of squared distances will provide us with constant probability with a good center using
Lemma A.8. In fact, since the sum of squared distances of points in good centers is at least
1/20cost(X,S) by Lemma A.10, it follows together with Lemma A.8 that we sample a point from
a good cluster X∗r that is within distance two times the average cost of the cluster with probability

1
1000 . By the definition of good, we know that such a point improves the cost of the current clustering
by at least a factor of (1− 1

100k). Thus, Lemma 4.1 follows.

B Additional experimental results

As we mentioned before, our algorithm is the only one that runs on the big datasets within reasonable
time (and memory).

In order to compare with all the slower baselines we allow ICML20, NeurIPS21 and
NeurIPS21Sparsify to run on a subsample of the data containing 4000 points (but we evaluate
the solution on the entire dataset). This of course has no theoretical guarantee and can perform
especially poorly in case of outliers.

For this large-scale experiment, the input bound δ(p) for each point p is set using the n/k-th closest
point in a random sample of 1000 elements.

The results in Table 2 shows that in all but one dataset, our algorithm has a significantly lower
k-means cost than that all other baselines. Similarly to above results, our algorithm has similar
or better ratio bound than that of ICML20 (with the sampling heuristic), while the ratio bound of
NeurIPS21 and NeurIPS21Sparsify is sometimes lower. In any instance our algorithm has much
better ratio that the worst-case theoretical guarantees.

Standard deviation of the metrics in large datasets. In Table 3 we report the standard deviation
for the metrics in Table 2. Notice that in this experiment, the input to ICML20, NeurIPS21 and

20

dataset algorithm k-means cost bound ratio

adult Greedy 1.56E+05 1.8
ICML20 6.59E+04 1.4
NeurIPS21 1.14E+05 1.2
NeurIPS21Sparsify 1.02E+05 1.2
LSPP 6.14E+04 1.4

bank Greedy 8.57E+04 1.9
ICML20 3.23E+04 1.6
NeurIPS21 5.68E+04 1.2
NeurIPS21Sparsify 5.70E+04 1.2
LSPP 3.02E+04 1.6

covtype Greedy 3.33E+07 1.3
ICML20 2.84E+07 1.1
NeurIPS21 2.76E+07 1.1
NeurIPS21Sparsify 2.80E+07 1.1
LSPP 2.50E+07 1.1

diabetes Greedy 6.60E+04 2.7
ICML20 3.00E+04 1.3
NeurIPS21 N/A N/A
NeurIPS21Sparsify 3.36E+04 1.2
LSPP 2.66E+04 1.4

shuttle Greedy 4.89E+05 2.3
ICML20 1.91E+05 2.0
NeurIPS21 2.60E+05 1.0
NeurIPS21Sparsify 2.72E+05 1.1
LSPP 1.79E+05 2.1

skin Greedy 1.80E+05 2.1
ICML20 7.47E+04 1.8
NeurIPS21 9.36E+04 1.1
NeurIPS21Sparsify 1.03E+05 1.1
LSPP 9.27E+04 3.1

Table 2: Mean Cost and max bound ratio for all full-sized datasets and k=10 with ICML20, NeurIPS21 and
NeurIPS21Sparsify ran on a sample of 4000 points.

dataset algorithm cost stddev bound ratio stddev

adult ICML20 6.81E+02 1.00E-01
NeurIPS21 1.34E+04 0.00E+00
NeurIPS21Sparsify 7.65E+03 0.00E+00
LSPP 8.84E+02 0.00E+00

bank ICML20 1.04E+03 1.00E-01
NeurIPS21 5.95E+03 0.00E+00
NeurIPS21Sparsify 6.57E+03 0.00E+00
LSPP 6.85E+02 1.00E-01

covtype ICML20 2.23E+05 0.00E+00
NeurIPS21 1.85E+05 0.00E+00
NeurIPS21Sparsify 3.83E+05 0.00E+00
LSPP 4.51E+05 0.00E+00

diabetes ICML20 8.19E+02 2.00E-01
NeurIPS21 N/A N/A
NeurIPS21Sparsify 1.22E+03 1.00E-01
LSPP 9.58E+02 1.00E-01

shuttle ICML20 1.25E+04 2.00E-01
NeurIPS21 6.57E+03 0.00E+00
NeurIPS21Sparsify 1.37E+04 0.00E+00
LSPP 1.05E+04 3.00E-01

skin ICML20 3.51E+03 3.00E-01
NeurIPS21 1.60E+03 1.00E-01
NeurIPS21Sparsify 1.31E+04 0.00E+00
LSPP 4.80E+02 2.00E-01

Table 3: Standard deviation of cost and max bound ratio for all full-sized datasets and k=10 with ICML20,
NeurIPS21 and NeurIPS21Sparsify ran on a sample of 4000 points .

21

NeurIPS21Sparsify algorithms are run on a random subsample, so this makes the algorithm non-
deterministic. Notice that our algorithm has statistically significantly lower cost than the other
baselines in almost all datasets.

5 10 15 20 25 30 35 40
k

1000

1500

2000

2500

3000

3500

4000

m
ea

n
co

st

k vs mean cost for adult@1000
Greedy
ICML20
LSPP
NeurIPS21
NeurIPS21Sparsify

(a) Cost

5 10 15 20 25 30 35 40
k

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

m
ax

-fa
irn

es
s-

co
st

k vs mean max bound ratio for adult@1000

(b) Bound ratio

Figure 2: Mean completion cost and bound ratio for the algorithms on adult dataset subsampled to
1000 elements and different k’s. The shades represent the 95% confidence interval.

22

