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Abstract— Understanding the dynamics of our world in 3D
is critical for the performance and robustness of robotics
applications. Although recent progress has married vision foun-
dation models and volumetric rendering to offer semantic 3D
representations, neither the inference time of large models nor
the update speed of volumetric representation meets the desired
update rate of real-time robotic manipulation. In this work, we
propose to inject “objectness” into a semantic representation
based on 3D Gaussians [1]. The Gaussians with the same
semantic labels can initialize and update together, leading
to fast updates in response to robot and object movements.
All necessary semantic information is extracted at the initial
step from pretrained foundation models, thus circumventing
the inference bottleneck of large models but still obtaining
semantic information. With only three camera views, our
proposed representation is able to capture a dynamic scene
at 30 Hz in real-time, which is sufficient for most manipulation
tasks. Leveraging the representation based on our object-aware
Gaussian splatting, we are able to solve language-conditioned
dynamic grasping, for which the robot grasps dynamically
moving objects specified by open vocabulary queries. We also
use the representation to train a visuomotor policy via behavior
cloning and show that the policy achieves comparable results
with image-based policies with pretrained encoders. Videos at
https://object-aware-gaussian.github.io
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Fig. 1: Object-aware Gaussian splatting. We propose a dynamic
and semantic 3D representation based on Gaussian Splatting [1].
The representation achieves an update rate of 30 Hz, and faithfully
represents robot and object movements with only three train-
ing views. We apply this representation to zero-shot language-
conditioned dynamic grasping and demonstrate its applicability to
visuomotor policy training.

I. INTRODUCTION

A pivotal element in robotic manipulation is the rep-
resentation of the scene. While 2D images are readily
accessible and significantly benefit from advancements in
vision foundation models [2], [3], [4], [5], they lack the
essential 3D understanding required for complex robotic
tasks. Recent strides in integrating semantic information

into neural 3D representations, such as Neural Radiance
Fields (NeRF)[6], have shown promise in enabling tasks like
language-conditioned grasping[7], [8]. Yet, these approaches
stumble when faced with dynamic scenes—an essential as-
pect of robotic applications.

The crux of the challenge lies in the resource-intensive
demands of constructing semantic 3D representations which
are already compute and memory-intensive for passive vision
applications. But robotics adds an additional axis of action,
making the representation space x× y× z× t where t is the
number of steps required to execute a task which easily scales
to 100s-1000s in the simplest of tasks as robots need to
be controlled at 10Hz frequency at least. This makes 3D
representation for robotics exponentially more demanding,
combined with the fact that this needs to be real time which
is an indispensable requirement for the dynamic world of
robotic manipulation.

However, a close examination of the robotic tasks reveals
a potential solution. Changes within a scene between up-
dates are predominantly localized, suggesting that a per-
step scene reconstruction may not only be inefficient but
also unnecessary. By transitioning to a locally updatable
scene representation, we can directly address the core of
the computational challenge. This pivot from continuous,
global reconstruction towards targeted, localized updates
dramatically curtails the overhead associated with keeping
a semantic and dynamic 3D representation, where the main
computation is completed at the initialization.

Gaussian splatting [1] emerges as a promising candidate
for dynamic 3D scene representation in this context. Origi-
nating from novel-view synthesis, this method employs a set
of 3D Gaussian primitives to model a scene. This explicit
and volumetric representation allows for local updates of the
constructed scene. Further, its reliance on rasterization for
rendering leverages parallel processing on GPUs, markedly
accelerating rendering speeds. Nonetheless, adapting Gaus-
sian splatting for robotics poses its own set of challenges.
While it offers a speed advantage, it lacks the semantic
understanding of the scene, and vitally, it still falls short
of meeting the real-time update requirements for robotics.

In response to these challenges, our work builds upon
static Gaussian splatting to bridge this gap. We address the
need for speed and semantic interpretation by embedding
”objectness” into the scene representation, thereby expediting
the update process. This approach allows for rapid, high-
frequency updates essential for dynamic robotic environ-
ments. This also allows a one-time extraction of 2D foun-
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dation models at the initial step for semantic information,
circumventing the inference bottleneck of large models.

We demonstrate the practicality of our method through
the task of language-conditioned dynamic grasping. In this
scenario, a robot employs our proposed representation to re-
actively grasp moving objects prompted by open-vocabulary
queries. We also showcase the potential of the representation
by integrating it into a visuomotor policy trained through
behavior cloning.

We believe that the scene representation holds significant
potential for a wide range of applications within the field of
robotics.

II. DYNAMIC OBJECT-AWARE GAUSSIANS
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Fig. 2: Method Overview. We obtain object-wise segmentation
from 2D foundation models [4] at initial reconstruction. In the
following updates, objects are first initialized to an approximate
3D position, and then the displacement is optimized with photo-
metric loss. We also optimize for the displacements of individual
Gaussians to account for non-rigid transformations like the closing
of the robot gripper.

A. Problem Formulation and Initial Reconstruction

We seek to construct a semantic and dynamic 3D repre-
sentation St of the scene for each step t given views from a
few RGB-D cameras. For each camera c, we have the data
tuple (Ic,t ,Dc,t ,Ec,t ,Kc), where Ic,t is the RGB image, Dc,t is
the depth image, Ec,t represents the time-dependent camera
extrinsic, and Kc denotes the camera intrinsic. These cameras
may be static, affixed to the robot or other moving objects.
Our main challenge is to update the scene at a high frequency
(30 Hz).

Due to the requirement for update speed and limited
camera views in robotic applications, relying solely on spatial
information from the current time step is inadequate for ac-
curate reconstruction. Our proposed solution seeks not only
to reconstruct the scene St using spatial information but also
to enrich it with temporal information from previous time
steps. This is achieved by auto-regressively reconstructing St
from St−1, thereby implicitly utilizing information from all
previous time steps. By doing this, the scene representation
also naturally exhibits temporal continuity, possibly allowing
the agent to capture and reflect changes over time. This also
allows the computations, such as semantic extractions, at the
initial time step to be carried over.

We propose to use the 3D Gaussians [1] as our scene
representation: St is represented by a set of 3D Gaus-
sians, (xi,t ,Ri,si,ci,αi), where the Gaussian centers are time-
variant. At the initial time step, we initialize the scene with
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Fig. 3: Locality of Photometric Loss: Given a new observation
where the ground truth center of the Gaussian moves far away,
the gradients on the Gaussian centers become uninformative of the
desired position.

a dense point cloud obtained from the camera views. This
ensures the initial reconstruction is regularized even though
the views are few. We also obtain semantic features relevant
to the task from 2D foundation models.

Upon obtaining the initial scene S0, a naive approach for
progressing to S1 involves using the spatial parameters of S0
as initial values for xi,1, and then refining these parameters
with new observations (Ic,1,Ec,1,Kc). This method, however,
faces two primary issues: limited camera views at subsequent
time steps can lead to overfitting, such as moving excess
points from the background to incorrectly cover moving
foreground objects; and the approach is too slow for the
rapid updates required in robotics. To address these chal-
lenges, we introduce object-aware initialization and updates,
as illustrated in Fig. 2.

Incorporating objectness into the Gaussian scene repre-
sentation is a pivotal aspect of our method. Besides recon-
structing the geometric scene with 3D Gaussian Splatting, the
initial step in our approach also utilizes pretrained segmen-
tation models to obtain instance segmentation of the scene.
Specifically, we pick one camera view and its associated
RGB image Ic, and obtain a segmentation mask Mc. The
segmentation labels are then lifted into 3D space through
camera matrices and depth Dc, so that each point in the
point-cloud extracted, Pc, has a corresponding segmentation
label. Finally, the point clouds obtained from other views
inherit their respective segmentation labels from their nearest
neighbors in Pc. Thus, each 3D Gaussian is enhanced with
a segmentation label k, gi = (xi,t ,Ri,si,ci,αi, li), where li ∈
{1, . . . ,K} for K detected objects. We further label the back-
ground with li = 0. In theory, many off-the-shelf segmenters
is applicable for our purpose, but we obtain the segmentation
map through GroundedSAM [4], [9], [10], [2], [5] with
the language query ”object”. In the following sections, we
introduce how to use the segmentation information to rapidly
update the scene given dynamic movements.

B. Object-centric Initialization

Even though photometric loss provides great supervision
to construct detailed and precise static scenes, it crucially
relies on a good initialization of the 3D Gaussians. This is
because the loss is inherently local for two main reasons.
The scale of each Gaussian is limited and influences limited
volume, and thus gradients vanish quickly if the Gaussian is
initialized far away from the ground truth position. Further, to
allow for parallel rendering through rasterization, the image
is split into tiles and gradients cannot propagate across tiles.
In fact, even if the gradients propagate without vanishing, due



Fig. 4: Spatial-temporal representation with Gaussian splatting:
The locality of photometric loss prevents the Gaussians to move to
the desired position if the movement between updates is too large.
to the non-convex optimization landscape, the Gaussians are
likely to stuck in local minima, like moving objects below
the table in a table-top setting.

However, in real-world tasks, the object movements be-
tween updates can be large, and thus solely relying upon
the photometric loss can be limited. Therefore, we pro-
pose to use object-centric initialization through template-
matching [11] to bootstrap the optimization. Given a camera
view (Ic,t ,Ec,t ,Kc) at time step t, we obtain the rendering
Irender
c,t−1 from the reconstructed scene St−1 from the view. The

rendering is off due to movements at step t, but by comparing
I′c,t−1 and It , we will have a good guess of how the objects
move. This process involves three steps. The first step is to
localize an object and extract the template. For each object
k, we render the scene where only the Gaussians with labels
li = k are visible from view c to obtain the center of the
object k, pk,t−1 = (uk,vk), and obtain a local crop of side
length 2l around the center

Tn = Irender
c,t−1 [un−l : un+l,vn−l,vn+l]

as the template. Then we match the template with the current
observation It to obtain the new center pn,t . Specifically, we
use cross-correlation for template matching which can be
efficiently computed on GPUs. Finally, the new center pn,t
is lifted to ray in 3D using the camera matrices. By finding
the intersection of the rays from two views or utilizing the
depth image Dc,t , we obtain an initialization of the new 3D
center of the object.

C. Object-centric Updates

The object-centric initialization helps overcome the local-
ity of the photometric loss. We then optimize the displace-
ments of each Gaussian to minimize the photometric loss.
However, optimizing each individual Gaussians freely can
still lead to overfitting or nonphysical deformation of objects
due to limited views and few number of updates. To regular-
ize the update, we introduce Dk as the group displacement for
each object k. We also introduce an individual displacement
δi for each Gaussian gi to account for rotations and non-rigid
transforms such as the closing of the robot gripper. At each
step, Dk is initialized as discussed in the previous section,
and δi is initialized with the value from the previous step to
carry on the momentum in the transformation.

Finally, an essential modification is made for background
Gaussians (labeled li = 0), which are kept fixed during
optimization. This constraint is instrumental in preventing the
model from overfitting by relocating background Gaussians
to improperly occlude or merge with foreground objects. It
ensures that the background remains stable and consistent
across updates, thereby focusing the optimization process
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Fig. 5: Dynamic Segmentation and Feature Maps. We show
the segmentation and feature map distilled from DINOv2 [5] at
different time steps and different views.

on accurately capturing and tracking the movement and
deformation of objects within the scene.

III. APPLICATION TO ROBOTICS

A. Dynamic Segmentation and Feature Field

With our formulation, we can naturally enrich each Gaus-
sian with semantic features, gi = (xi,Ri,si,ci,αi, li, fi), which
will be carried on through the real-time updates. The se-
mantic features can be extracted from 2D foundation models
through two approaches. If the dense per pixel 2D features
are available, the straightforward way is to directly project
from 2D space to 3D space at initialization, like the segmen-
tation labels. Alternatively, we can extract 2D features from
foundation models and distill the features into the Gaussians
through optimization.

The representation makes possible online dynamic seg-
mentation and feature extractions, as shown in Fig. 5.

B. Zero-shot Language-conditioned Dynamic Grasping

Our representation is readily applicable to zero-shot
language-conditioned dynamic grasping. In this setting, a
user issues a language query for the robot to grasp a specified
object without prior demonstrations. The task is complicated
by the possibility that the target object may be moving,
requiring the agent to adapt dynamically. At the initialization
stage, we extract a language-aligned feature fk for each
object k with CLIP [3]. Then, at query time, the user’s query
q is matched with the closest object query based on cosine
distance. At time t, we collect the centers of Gaussians
marked by li = kq, denoted as Pq. This collection forms
the basis for determining a viable grasp, parameterized by a
pose Tt . In particular, we randomly sample grasp poses near
the point-cloud Pq and take the grasp with the maximal
antipodal score. A motion planner is then used to direct the
robot to the pose specified by Tt .

C. Representation for Behavior Cloning Policies

Finally, we can use our representation to train visuomotor
policies through behavior cloning. Since the representation is
3D, semantic, and dynamic, it has great potential in training
sample-efficient behavior cloning policies.
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