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Abstract

Latent variable models have become a go-to tool for analyzing biological data,
especially in the field of single-cell genomics. One remaining challenge is the
identification of individual latent variables related to biological pathways, more
generally conceptualized as disentanglement. Although versions of variational
autoencoders that explicitly promote disentanglement were introduced and applied
to single-cell genomics data, the theoretical feasibility of disentanglement from
independent and identically distributed measurements has been challenged. Recent
methods propose instead to leverage non-stationary data, as well as the sparse
mechanism assumption in order to learn disentangled representations, with a causal
semantic. Here, we explore the application of these methodological advances in
the analysis of single-cell genomics data with genetic or chemical perturbations.
We benchmark these methods on simulated single cell expression data to evaluate
their performance regarding disentanglement, causal target identification and out-
of-domain generalisation. Finally, by applying the approaches to a large-scale gene
perturbation dataset, we find that the model relying on the sparse mechanism shift
hypothesis surpasses contemporary methods on a transfer learning task.†

1 Introduction

Machine learning methods have been key to gaining insights from large, high-dimensional genomic
datasets, especially in single cell genomics [1]. Variational Auto-Encoders (VAEs, [2, 3]), a recent
approach in inferring complex data generative processes, are often well-suited for these applications,
because they allow for flexible model design, while keeping necessary changes to the inference
procedure relatively minimal. Many generative models have been proposed for analyzing diverse
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biological data modalities, including gene (RNA) expression, chromatin accessibility and quantitative
protein measurements [4, 5].

However, VAEs suffer from a key disadvantage due to the lack of interpretability, reflected as the
absence of direct correspondence between individual latent variables and biological processes [6].
While disentanglement-promoting VAEs (e.g., as in [7]) can help better relate the two in genomics [8],
these methods often compromise the quality of the latent variables for downstream tasks [9]. This is
in line with recent theoretical developments, showing that disentanglement, hereafter defined as the
recovery of ground truth latent variables, is impossible from independent and identically distributed
(i.i.d.) measurements [10].

Recent efforts in disentanglement instead focus on the assumption of non-stationary data [11],
where data must be (i) observed in different regimes, with known pairing between data points and
regimes, (ii) generated such that regimes are incurring changes in latent variables, and (iii) latent
variables are conditionally independent given the regime. In this configuration, latent recovery with a
conditional VAE [12] is theoretically possible. Follow-up work [13, 14] also draws connections to
causal representation learning [15], in which regimes may be seen as interventions on latent variables
with unknown targets.

Recent advances in biotechnology made non-stationary data increasingly available, especially in the
context of genetic or chemical perturbation screens with single cell genomic profiles as a readout [16,
17]. A recent Compositional Perturbation Autoencoder (CPA [18]) embedded perturbation profiles
in latent space of an auto-encoder, focusing of the prediction the effect of unseen combinations of
perturbations. However, this approach did not exploit the non-stationary assumption in its probabilistic
model. Thus, to the best of our knowledge, there are so far no applications of the principles exposed
in [11, 13] to these new data types.

Here, we propose to explore real-world applications of [11, 13]. The promise is that such models may
eventually yield representations of perturbations and cells that have the benefits of a causal model,
in being more mechanistically interpretable and more efficient for out-of-domain generalization.
Biologically, this means being able to identify biological processes (i.e., gene programs) that are
affected upon perturbations [19], to project new perturbation data onto an existing perturbation
atlas [20] with transfer learning [21].

After a brief presentation of recent advances in disentanglement (Section 2), we describe our mo-
tivation and effort in applying the introduced causal representation framework to gene expression
measurements from single-cell RNA-seq (scRNA-seq) experiments with perturbations (Section 3).
Then, we introduce a benchmarking tool for simulation of single-cell data with perturbation and
evaluation of algorithms for latent variable recovery (Section 4). Finally, we present an application
of the methods to a large-scale genetic screening experiment (Section 5) in which we show that the
model based on sparse mechanism shift assumption outperforms all methods by a significant margin
in a transfer learning task. Such results suggest that causal inference is a promising paradigm for
modeling the effects of perturbation in modern screenings data sets from molecular biology.

2 Background

The goal of representation learning for a given random vector x ∈ Rd, is to learn a mapping to a
lower dimensional (latent) space z = (z1, . . . , zp) ∈ Rp, with p ≪ d. This paper is concerned with
recovering the latent variables that initially generated the data, and attributing a causal semantic to
the perturbations. Therefore, we now introduce non-linear Independent Component Analysis (ICA)
and its relationship to causal representation learning.

2.1 Non-linear Independent Component Analysis

ICA assumes that x is generated using p independent latent variables, called independent components
[22]. More precisely, observations x are generated as x = f(z) + ϵ with f a mixing function and
ϵ some exogenous noise. The ICA literature focuses on the identifiable case (e.g. if f is a linear
function, then the original z may be recovered). In the general case of a non-linear mixing function f ,
however, the model is unidentifiable from i.i.d. observations of x [23].

Given this negative result, several papers introduced identifiable forms [24, 25, 26, 27] of non-linear
ICA models, based on the assumption that components (zi)pi=1 are conditionally independent given

2



some additional auxiliary random variable a ∈ RK :

p(z | a) =
p∏

i=1

p
(
zi | a

)
. (1)

Examples of auxiliary variables a include the past components in the case of time series analysis or
some form of class label [26]. In this setting, latent recovery is possible up to a linear transformation
under sufficient conditions [26].

The iVAE framework [11] proposes a VAE approach [2, 3] for learning the parameters θ of a
generative model pθ(x | z, a)pθ(z | a), as well as ϕ, those of a variational approximation qϕ(z | x, a)
to the posterior pθ(z | x, a). The iVAE specifies pθ(z | a) = N (µa, I) as a Gaussian location
family with isotropic variance. As for the VAE, the parameters (θ, ϕ) of the iVAE are learned via
maximization of the evidence lower bound (ELBO):

log pθ(x | a) ≥ Eqϕ(z|x,a) log
pθ(x, z | a)
qϕ(z | x, a)

. (2)

2.2 Causal Inference from Unknown Interventions in Latent Space

Recent theoretical work [13, 14] proposed to investigate the assumption of sparse connections
between the individual auxiliary variables (al)Kl=1 and the latent components (zi)pi=1, encoded in
the form of a bipartite graph Ga = ({1, . . .K}, {1, . . . p}, E), where the edge set E encodes those
connections. In the case where a describes a discrete data regime (i.e., via one-hot encoding), the
sparsity of Ga corresponds to the sparsity of the mean vectors µa of pθ(z | a).
Compared to [11], the novel sparsity assumption allows for a new principle to achieve recovery of
latent units up to a permutation, a much stronger result than the iVAE. Perhaps as importantly, it
also allows for the interpretation of the graph Ga from a causal perspective. More precisely, [13]
considers the case where a ∈ {e1, e2, . . . , eK}, where each of el for l ∈ {1, . . . ,K} is a one-hot
vector encoding the l-th intervention, and each intervention has unknown targets on the set of latent
components of z. In that context, the unknown graph Ga describes which latent components are
targeted by the intervention, that is Ga

i,l = 1 if and only if the l-th intervention targets zi. In this
context the sparsity assumption corresponds precisely to the sparse mechanism shift hypothesis from
[15] i.e. that only a few mechanisms change at a time.

The VAE variant introduced in [13] (sparse VAE; sVAE) has an identical generative model as the
one from the iVAE, except for the prior pθ(z | a) for which we apply a (stochastic) binary mask
Ĝa to the location parameter via element-wise product. The estimation procedure follows the one
from iVAE with an addition of the regularization term α∥Ĝa∥1 to the ELBO, where α is a hyper
parameter. To allow gradient-based optimization, the binary masks are independently sampled from
Bernoulli distributions with probabilities sigmoid (γa

i ). We optimize for parameters γa using the
Gumbel-Softmax gradient estimator [28, 29].

3 A Sparse Mechanism Shift Model for Single Cell Measurements

Single-cell genomics data is of immense interest across diverse research areas of biology such as
development [30], autoimmunity [31], and cancer [32]. Due to the high-dimensional nature of the
measurements and the high level of noise, the proper modeling and interpretation of such data remains
a topic of active research [33].

The gene expression data matrix X = (X1, . . . , XN ) ∈ RN×G consists of i.i.d. observations of the
random vector X , with N the number of instances (cells), and G the number of genes. Individual
entries of this matrix xng count the number of transcripts aligned to gene g in cell n. Typically, latent
variable models are learned from gene expression measurements [5], and cell-level latent variables
z (embeddings) are later used in downstream tasks such as clustering, imputation, or differential
expression analysis [34].

One significant advance is the ability to actively intervene and change the properties of a single-cell
by some genetic [35] or chemical [36] perturbation. Each cell may be subjected to one or several
(simultaneous) perturbations. Assays capture this information alongside gene expression levels (often
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with sequencing of intervention-specific DNA barcodes), and report a summary of this readout as a
multiple treatment intervention design matrix I ∈ {0, 1}N×K , where K denotes the total number of
treatments.

Our goal is to leverage the perturbation information I in order to disentangle the latent variables z
and learn the sparse causal graph Ga that describes the (unknown) targets of each intervention. To do
this, we modify the sVAE [13] (as well as the iVAE [11]) to allow for proper modeling of scRNA-seq
data, following previous work [34]. Briefly, two important modifications are needed: (i) we choose a
negative binomial distribution as the likelihood model for the observations, and (ii) we incorporate a
scaling factor to the mean of the negative binomial for normalization purposes. The implementation
is performed within the scvi-tools codebase [37].

An appealing aspect of the sVAE model is the interpretability of Ga, indicating which latent variables
are affected by which perturbations. Ideally, this would help considering individual latent variables
as pathways and / or gene modules coordinately regulated by the perturbation, consistent with the
underlying organization of a cellular molecular circuits [38]. Another interesting benefit from the
causal semantic and the stronger disentanglement guarantees is that one can reasonably expect the
learned representations to perform better at downstream tasks such as transfer learning [15], a growing
use-case of deep generative models in single-cell genomics [21]. The presented modification of the
sVAE is to the best of our knowledge the first proposal to explicitly model cellular perturbations
as interventions on latent variables for the purpose of understanding causal mechanisms, while
incorporating a model of experimental noise from single cell RNA-Seq assays.

4 A Sandbox for Evaluation of Learned Representations
Simulations We simulate perturbation gene expression data as follows. We assume we have
measurements from N cells. Each of the cells, for example cell n ∈ [N ], has been exposed to a
perturbation/intervention an ∈ [K]. We use K = 100 interventions in our simulations, and sample
N = 100, 000 cells in total. The first 80 interventions form the training set, and the last 20 form the
test set. Each intervention a ∈ [K] is represented by a sparse perturbation embedding µa ∈ RK ,
where dz = 15 is the dimension of the embedding. For each intervention, we treat the number of
affected latent dimensions ta = {1, 2, 3} uniformly at random. The indices of affected dimensions
are also drawn without replacement from [p], encoded into a binary vector βa,. ∈ {0, 1}p. Finally,
each component µa,i of µa = (µa,1, . . . , µa,p) for i ∈ [p] is generated as:

ηa,i ∼
1

2
Normal(−5, 0.5) +

1

2
Normal(5, 0.5) (3)

µa,i ∼ (1− βa,i)δ0 + βa,iηa,i, (4)
where δ0 designates the Dirac delta distribution with mass at 0. For cell n, exposed to intervention
an, latent variable zn is generated as:

zn ∼ Normal(µa, I), (5)
where each individual component of zn encodes the activity of a pathway, shifted by the intervention.
Measurements xng from a single cell n and a gene g are generated from a count distribution:

xng ∼ Poisson (lnfg(zn)) , (6)
where ln is the library size fixed to 105, and the mixing function f is a neural network with three

hidden layers of 40 units, Leaky-ReLU activations with a negative slope of 0.2, and a softmax
non-linearity on the last layer to convert the outputs to counts [34]. The weight matrices of f are
sampled according to an isotropic Gaussian distribution, with orthogonal columns, to make sure f is
injective [13].

Metrics Based on the ground truth provided by our simulation framework, we may evaluate for
disentanglement, causal structure learning, or transferability. In particular, we report the MCC, a
metric for permutation equivalence proposed by [11] that measures the average Pearson (or Spearman)
correlation coefficients between pairs of ground truth and estimated latent variable, for the best
possible permutation. A high MCC means that we successfully identified the true parameters and
recovered the true sources. We also report R2 metric for assessing linear equivalence. To evaluate for
learned causal relationships, we report the precision, recall and F1 score of the learned adjacency
matrix of Ĝa compared to the ground truth Ga. Finally, to assess transferability, we report the
negative ELBO of data points from holdout perturbations after fine-tuning the embeddings, while
keeping the generative model fixed [39].
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Pearson MCC Spearman MCC R2 Precision Recall F1 val. ELBO test ELBO

VAE 0.46 0.40 0.82 0.13 0.10 0.11 322.16 346.29
βVAE 0.49 0.42 0.82 0.12 0.10 0.22 314.67 335.30
iVAE 0.47 0.39 0.85 0.27 0.22 0.24 314.71 335.37
sVAE 0.72 0.63 0.84 0.42 0.24 0.31 314.65 335.23

Table 1: Results on simulations for dz = 15.

Benchmark Methods Our set of benchmark methods consist of the sVAE, the iVAE, as well as the
vanilla VAE and the β-VAE [7]. We tune the hyper parameters of each method (number of epochs
and sparsity penalty) with UDR [40]. All experiments were run for 5 different random initialisations,
for dz ∈ [5, 10, 15, 20], da = 100 and 500 cells per treatment.

Results We report the results for disentanglement, causal target identification and transferability
in Table 1 for dz = 15. All methods have high R2, indicating linear disentanglement, but sVAE
outperforms all methods in terms of permutation recovery of latent variables, evaluated via MCC.
sVAE also performs favorably compared to other methods when evaluating the inferred causal graph
Ĝa. We include additional experimental results from our synthetic framework in Appendix A. In
terms of transferability, sVAE performs as well as other methods, with a slight advantage.

5 Transferability and Interpretability on a Large-scale Genetic Screen

val. ELBO test ELBO

VAE 1202.1 1181.5
β-VAE 1206.0 1185.9
iVAE 1149.6 1154.0
sVAE 1149.7 1149.9

Table 2: Results on the Norman
dataset.

We finally apply our benchmark models to real-world data, a
recent large-scale Perturb-seq experiment [35] where 105, 528
cells from an erythrocytic leukemia cell line (K562) were pro-
filed after interventions targeting one or two of 112 genes,
including cell cycle regulators, transcription factors, kinases,
phosphatases, and genes of unknown function. After quality
control and data filtering, we retained 96, 221 cells of undergo-
ing 212 different genetic interventions and 8, 907 unperturbed
(control) cells. Because of experimental limitations [19], we
observe signal only for a subset of several thousand genes (here,
d = 3, 000). The goal of the experiment was to understand
the mechanisms of genetic interactions and recover gene regulatory logics. In order to simulate an
out-of-domain scenario, we selected the top-30 interventions with the most significant effect on gene
expression, as assessed by the maximum mean discrepency [41] estimated with a linear kernel on a
PCA with dimension 50, and held out the corresponding cells as a test set.
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Figure 1: Model interpretation

We applied each studied method to this dataset. Without ground
truth, we use datapoints from held-out interventions to evaluate the
models after transfer learning. We report the negative ELBO for all
models, evaluated on a validation data set (including additional cells
with the same perturbations as in the training data), as well on the
held-out perturbations (test set) in Table 2. Both iVAE and sVAE are
providing a large improvement in terms of data fit compared to VAE
and β-VAE, for both metrics. While the iVAE provides the best fit
in terms of the validation data set, with a thin margin, it fits the test
set poorly compared to sVAE. This suggests that sVAE has stronger
transfer capabilities than other methods, and learns a more causal
representation of the data.

We also performed a preliminary biological interpretation of the
sVAE model. We first visualized the effect of perturbations in latent
space in the form of a weighted adjacency matrix Wij for Ga, where
the weight encodes the shift in the mean of the corresponding latent
component zi for perturbation j (Figure 2). For visual convenience
we focused on a subset of perturbations and latent components to
retain the most informative data. First, many perturbations have
similar effects on latent variables, as it has been observed previously
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Figure 2: Perturbation effects on latent components (subset of perturbations, and components).

at the level of individual genes and programs [19]. This can be interpreted as the perturbed genes being
a part of the same pathway. Indeed, perturbations involving the same gene (in different combinations)
grouped together by their shared effect on latent factors, as did those involving different genes from
related pathways (e.g. FOXO and homeobox TFs affecting cell differentiation), whereas perturbations
in genes from different pathways had different effects (e.g. IRF1 vs. CEBP family TFs). Second, we
investigated how statistics of the number of perturbed latent variables and / or of the effect size was
changing according to whether one or two genes were targeted in the cell (Figure 1a). The distribution
of both statistics is significantly higher for double vs. single gene perturbations, as overall expected.

Third, we sought to assess whether the learned latent variables are reflective of known patterns in
genetic interactions. Two examples of genetic interactions are pointed out in Figure 1b. In the first one,
we may notice that the latent shift for the perturbation that involved a combination of perturbations in
CEBPA and KLF1 has a pattern mostly similar to the shift of a single gene perturbation CEBPA, as
previously reported [35]. This is an example of a dominant interaction, already visible in Figure 2, in
other combinations (e.g., DUSP9, ETS2). In the second example (CLB, CNN1), the sparsity pattern
identifies two latent variables (number 39 and 99; black rectangle) with a shift that did not appear
in any of the individual perturbations. We applied Integrated Gradients [42] to each of those two
components of the encoder network to obtain a list of 50 most important genes, and used EnrichR [43]
to obtain an associated gene signature. A positive change in latent variable 99 was associated with
hemoglobin alpha binding, and hydrogen peroxyde metabolic process, both important in the context
of erythocytes (the source cell line). Latent variable 39 was associated with RNA binding.

6 Discussion

We propose to explicitly model perturbations in single-cell genomics as interventions on a latent
space, with a causal semantic. This naturally leads to our application of the sVAE [13] and iVAE [11]
framework to disentangle the latent space of single cell data by leveraging additional knowledge of
perturbations. We provided a benchmarking framework for assessing the performance of the learned
representations in terms of level of disentanglement, causal target identification, as well as transfer
learning. In simulated data, both approaches outperform the β-VAE and the vanilla VAE, with a
strong advantage for sVAE, explicitly assuming sparsity in mechanism shifts for each perturbation.
We also applied all methods to a real dataset, and our preliminary analysis suggests that sparsity may
help in transfer learning, interpretability, as well as capturing genetic interactions. Importantly, we
see in Figure 2 that multiple latent variables are affected by each intervention, which suggests more
informative constraints to the model could be added to further improve its interpretability (e.g., [44]).

The hypotheses from the sVAE model in its current state present, however, two major limitations for
biological applications. First, although it may be reasonable to expect that genetic (and often chemical)
interventions directly trigger a sparse subset of a cell’s circuitry (e.g., blocking a single pathway [19]),
there are important molecular feedback mechanisms that can induce indirect downstream effects
in other pathways, especially as increasing time passes from the initial perturbation [45]. Because
many experiments measure gene expression from hours to days after intervention, sparsity may be a
limiting assumption without resolving interactions between pathways (e.g., as in more traditional
causal discovery learning methods [46, 47, 48, 49]). This issue could be resolved in the future
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with the potential availability of time-resolved single-cell perturbation experiments. Second, perfect
disentanglement requires the intervention to at least cover all of the latent variables in the model
(see precise conditions in [13, 14]), but because experiments only focus on subsets of perturbations
(due to cost and labor limitations), not all latent variables may be impacted. More comprehensive
perturbation atlases, such as recent genome-wide screens [50] or combinatorial screens, may help
mitigate this issue, as does the fact that many different interventions in biological systems converge
on the same processes.
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Appendices
A Additional results from synthetic experiments

For quantitative comparison of the considered baseline methods, we leverage the availability of
ground truth latent variables in simulated data sets. In the proposed sandbox in section 4, we have
control over: the size of the effect for interventions - ea, the sparsity of the interventions - ta, as well as
the dimensionality of the latent and auxiliary variables. The aim of this paper is to evaluate the extent
to which sparse, identifiable methods provide disentangled, or ultimately “generalizable/transferable”
representations. To systematically assess the quality i.e. transferability of the learned representations,
we propose the following scenarios:

• transfer to unseen, in-domain interventions (hold-out interventions form a data set with same
level of sparsity and effect size);

• transfer to unseen out-of domain interventions (hold-out interventions form a data set with
different level of sparsity or effect size).

A.1 In-domain interventions

The results included in the main section of the paper correspond to the in-domain scenario. Namely,
we generate a sample data set with sparse interventions, we train each baseline on cells affected by
only 80 of those interventions, and we evaluate on the hold out, not seen 20 interventions. Here, we
extend this results to different dimensionality of the latent variable. In Table 4, we include the results
for in-domain interventions with same levels of sparsity in both train and test sets. That is, we train a
model on a data set where a fraction s′ of all possible edges in Ga are included, and we test on a data
set with same sparsity.

pMCC VAE iVAE sVAE βVAE
dz = 5 0.59± 0.12 0.69± 0.09 0.71 ± 0.09 0.63± 0.06
dz = 10 0.55± 0.10 0.66± 0.13 0.72 ± 0.13 0.58± 0.03
dz = 15 0.56± 0.09 0.68± 0.11 0.72 ± 0.08 0.58± 0.08
dz = 20 0.47± 0.01 0.59± 0.03 0.70 ± 0.09 0.55± 0.08

Table 3: Pearson MCC scores on hold out interventions with respect to the number of latent space
dimensions.

Our experiments for the in-domain interventions provide the following takeaways:

• observing the ELBO scores, the sparser the ground truth latent model is, the more difficult it
is to fit it for all baselines

• observing the MCC scores, disentanglement is easier to achieve in smaller dimensionality
of the latent space and when sparse shifts are present

• observing the area under the Precision recall curve (AUC PR), we notice that the identifiable
methods iVAE and sVAE are more successful in recovering the causal structure model then
their unsupervised counterparts

A.2 Out-of-domain interventions

Here, we use the flexibility of our sandbox to simulate different scenarios to mimic different interven-
tions regarding change in effect size from train to test set, or change in sparsity of the bipartite graph
Ga.

In Table 6, we include the results for out-of-domain interventions with different levels of sparsity
between train and test sets. That is, we train a model on a data set where s′ of all possible edges in
Ga are included, and we test on a data set with reduced sparsity, s′′, s.t. s′′ ≥ s′.

Similarly, we include results for different effect sizes. We train all models on a smaller effect
interventions e′ and test on interventions with larger effects e′′.
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s′ = 0.2 s′ = 0.5 s′ = 0.9
pMCC ELBO PR AUC pMCC ELBO PR AUC pMCC ELBO PR AUC

VAE 0.59 310.32 0.15 0.54 309.14 0.7 0.61 306.51 0.72
bVAE 0.17 411.86 0.15 0.26 411.07 0.48 0.19 407.76 0.72
iVAE 0.69 308.55 0.28 0.6 304.60 0.62 0.63 300.64 0.78
sVAE 0.78 308.33 0.42 0.63 306.10 0.61 0.6 305.35 0.82

Table 4: Results for transferability for in-domain interventions at different levels of sparsity s of the
adjacency matrix Ga. The effect size and latent dimension are kept fixed: ea = 5 for all interventions
and dz = 10. Results in bold are best per metric.

e′ = 1 e′ = 2 e′ = 5
pMCC ELBO PR AUC pMCC ELBO PR AUC pMCC ELBO PR AUC

VAE 0.72 297.67 0.19 0.62 297.22 0.20 0.72 294.48 0.19
bVAE 0.62 335.95 0.19 0.78 335.12 0.19 0.82 325.48 0.59
iVAE 0.74 297.09 0.59 0.61 295.92 0.19 0.7 291.10 0.59
sVAE 0.73 297.24 0.59 0.62 295.95 0.59 0.7 291.07 0.59

Table 5: Results for transferability for in-domain interventions for different sizes of the shift effect
e. The sparsity size and latent dimension are kept fixed: sa = 0.2 for all interventions and dz = 5.
Results in bold are best per metric.

s′ = 0.2 → s′′ = 0.5 s′ = 0.5 → s′′ = 0.7 s′ = 0.7 → s′′ = 0.99
pMCC ELBO PR AUC pMCC ELBO PR AUC pMCC ELBO PR AUC

VAE 0.36 412,03 0.33 0.28 408.89 0.56 0.23 404.88 0.72
bVAE 0.17 411.86 0.33 0.26 411.07 0.56 0.28 392.47 0.82
iVAE 0.31 405.58 0.41 0.26 397.08 0.64 0.21 392.79 0.77
sVAE 0.33 406.11 0.4 0.25 397.18 0.64 0.27 392.05 0.82

Table 6: Results for transferability for out-of-domain interventions at different levels of sparsity
s of the adjacency matrix Ga. The effect size and latent dimension are kept fixed: ea = 5 for all
interventions and dz = 10. Results in bold are best per metric.

e′ = 1 → e′′ = 3 e′ = 2 → e′′ = 5 e′ = 5 → e′′ = 7
pMCC ELBO PR AUC pMCC ELBO PR AUC pMCC ELBO PR AUC

VAE 0.39 410.82 0.34 0.47 411.45 0.26 0.39 412.49 0.3
bVAE 0.47 422.86 0.34 0.46 424.96 0.26 0.29 422.07 0.3
iVAE 0.47 409.19 0.44 0.52 407.95 0.59 0.33 403.81 0.6
sVAE 0.46 409.48 0.61 0.52 408.06 0.6 0.32 403.47 0.6

Table 7: Results for transferability for out-of-domain interventions for different sizes of the shift
effect e. The sparsity size and latent dimension are kept fixed: sa = 0.2 for all interventions and
dz = 5. Results in bold are best per metric.
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Our experiments for the out-of-domain interventions provide the following takeaways:

• observing the ELBO scores, the more sparse the ground truth latent model in the transfer
domain, the more difficult it is to fit it for all baselines

• observing the MCC scores, disentanglement, or identifiability of the true latent variables is
not possible in the ood interventions.

• observing the area under the Precision recall curve (AUC PR), we notice that the identifiable
methods iVAE and sVAE are more successful in recovering the causal structure model then
their unsupervised counterparts.

• it is possible to leverage representations/models learned on sparser interventions, to recover
a causal structures in data sets with denser interventions (PR AUC, last column).
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