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Abstract

Graph Neural Networks (GNNs) have recently
shown great promise for modeling chemical sys-
tems. However, beyond the accuracy and per-
formance of these models, understanding their
underlying mechanisms is also crucial. While
many general GNN explainers exist, incorporat-
ing domain-specific knowledge can enhance the
development of explainers tailored to chemical
applications. In this study, we developed an ap-
proach based on the well-established concept of
group contributions, providing additional expla-
nations without compromising model accuracy.
Our results indicate that different GNN models
may learn distinct patterns from the molecules.
Furthermore, by applying a custom loss function,
we successfully aligned the learning process of
the models with desired group contributions while
maintaining the overall model performance.

1. Introduction
The ability to predict chemical properties has long been a
desire in both academic and industrial contexts. Recently,
Artificial Intelligence (AI) and Machine Learning (ML) have
shown considerable promise in chemistry (Janet & Kulik,
2020; Anstine & Isayev, 2023). Graph Neural Networks
(GNNs) hold tremendous potential in this field, as they nat-
urally align with the intrinsic graph structure of a molecule.
Numerous GNN-based models have reached state-of-the-art
accuracy (Bihani et al., 2024).

However, as models become more accurate, other impor-
tant debates have emerged. Some argue that ML models
merely capture correlations within the data without under-
standing the underlying chemical principles. Due to the
nature of ML models and their reliance on numerous non-
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linear operations, their internal workings are often complex
and challenging for humans to interpret. In light of these
discussions, it is crucial to focus not only on the accuracy
and performance of models but also on understanding their
mechanisms.

Explainable Artificial Intelligence (XAI) plays a vital role
in this context. XAI is dedicated to developing methods that
clarify how models function and justify their predictions.
XAI tools serve three essential functions in the field of chem-
istry. First, they foster trust among skeptical users. Second,
by elucidating the model’s mechanisms, they enable spe-
cialists to use their knowledge of chemistry to improve and
refine the models. Third, they facilitate informed decision-
making and help justify the validity of the choices resulting
from model predictions. While various XAI techniques for
explaining GNN models exist (Yuan et al., 2022; Li et al.,
2022; Kakkad et al., 2023), many are too general and require
customization for specific model applications. A critical
discussion centers on the potential benefits of developing ex-
plainers that utilize domain-specific knowledge to craft more
relevant explanations. Additionally, this can help establish a
more accurate ground truth for what an explanation should
entail. Recognizing this possibility, some researchers have
begun exploring this avenue by creating explainers leverag-
ing from chemical knowledge (Jiménez-Luna et al., 2020;
Rodrı́guez-Pérez & Bajorath, 2021; Wellawatte et al., 2023)

In our study, we revisited an established concept in chem-
istry, group contribution (GC) methods (Gani, 2019), to
explain GNN models. GC methods segment molecules into
groups and calculate the molecule’s properties by summing
each group’s contribution. Typically, these contributions are
estimated using linear regression, a simple and transparent
model. Since the groups represent parts of the molecule that
chemists are familiar with, they are intuitively understood
within the chemical community. By altering the aggregation
approach of the GNN models, we successfully extracted
group contributions in addition to the predictions. Our ob-
jective was to implement these modifications with minimal
changes to the original models, ensuring that their accuracy
was preserved while simultaneously providing interpretabil-
ity. Fig. 1 presents a schematic of our approach, illustrating
how these modifications were integrated into the existing
model framework.
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Figure 1. Schematic of a classical GNN approach (A) and our approach (B). In both approaches, a molecule is represented using a graph
where each node is associated with a vector. During the message-passing process, the vectors are updated based on the neighborhood
information. In the classical GNN approach (A), all vectors are aggregated after the message-passing process. In our approach (B), the
vectors are aggregated based on the information about the groups.

2. Related work
Rasmussen et al. (Rasmussen et al., 2022) employed pertur-
bation methods to determine the contributions of different
molecular fragments to the predicted octanol-water parti-
tion coefficient (LogP). They have used the contributions of
Crippen’s LogP model, a type of GC method, to benchmark
the contributions of the fragments they obtained with the
ML models. Inspired by their approach, we have extended
this investigation to other chemical properties, specifically
the enthalpy of formation and the HOMO-LUMO gap.

Chen et al. (Chen et al., 2022) leveraged the GC concept
to build their model using a GNN architecture based on
2D graphs. They incorporated GC and a GC benchmark to
enhance model accuracy. While their focus was on develop-
ing a new model based on 2D graphs, we have focused on
explaining the state-of-the-art 3D-based models.

Wu et al. (Wu et al., 2023) employed a masking strategy to
evaluate the contribution of different molecular fragments,
including BRICS substructures, Murcko substructures, and
functional groups. They used these masks to identify sub-
structures that significantly influence model predictions.
While masking is effective in determining the importance of
different nodes in a graph, our approach diverges by avoid-
ing modifications to the inputs. Instead, our aim is to derive
explanations directly within the prediction process itself.

Aouichaoui et al. (Aouichaoui et al., 2023) have developed a
model learning embeddings at three levels: node, group, and
junction tree. They concatenate these embeddings and use a
multilayer perceptron for predictions. With their junction
tree level, they were able to explain the predictions and
obtain the influences of the different groups. Instead of a
multi-level process, we directly use readouts to get scalars
for each group and sum them for the final prediction.

Walter et al. (Walter et al., 2024) utilized an attention-based
method to investigate which parts of a molecule contribute
most to a given prediction. Their focus was on fingerprint-
based models for classification tasks. In contrast, our work
centers on GNN models for regression tasks, highlighting
different methodological and application focuses.

Our work introduces a novel application of GC methods
to explain established GNNs. The key innovation involves
modifying the aggregation mechanism within the GNN,
enhancing interpretability without compromising model per-
formance. This is crucial, as traditional XAI tools often
reduce model accuracy by using simpler surrogate models
or decomposing inputs to gauge component influences. In
contrast, we preserved the original message-passing and
readout layers of the original models, altering only the ag-
gregation logic.
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3. Proposed approach
Group Aggregation: GNN models typically consist of
message-passing layers followed by a readout phase. In our
approach, we aggregate embeddings based on group infor-
mation. Each group contains a central atom and neighbors.
We sum the embeddings of all the neighbors with the em-
bedding of the central atom within each group and then pass
the resultant vector to the readout layer. This process yields
a scalar value representing each group’s contribution. The
final prediction is obtained by summing these individual
group contributions (see Fig. 1).

Group definition: Groups were defined as a central atom
and its neighboring atoms. Inspired by Benson’s work (Ben-
son, 1968), we established the constraint that each group
should have at least two neighbors.

Explanations: After obtaining group contributions, we
used heatmaps to represent which parts of the molecule
contribute more to the predicted property.

4. Experiments
Data: We used the QM9 dataset (Ramakrishnan et al.,
2014), focusing on the enthalpy of formation (∆Hf ) and
the HOMO-LUMO gap (∆ϵ) as targets. The ∆Hf was cor-
rected using reference atomic energies as already done by
others (Anderson et al., 2019). The targets were scaled using
the mean absolute deviation (MAD) and the median follow-
ing (Satorras et al., 2021; Pinsky & Klawansky, 2023). The
data was divided based on Bemis-Murcko scaffolds, result-
ing in a distribution of 70%, 15%, and 15% for the training,
validation, and testing sets, respectively.

GNN Models: We employed the SchNet (Schütt et al.,
2017) and EGNN (Satorras et al., 2021) models, as they
use 3D information, contain desirable properties such as
equivariance, and have been successfully applied in vari-
ous material science tasks. Although newer models exist,
our goal was to use well-established methods for proof-of-
principle implementation. We hypothesize that the observed
results would generalize to more recent methods as well.
Given the fact we have used the message-passing and the
readout layers of other models, we expect that the scalabil-
ity and processing costs are dependent on these operations.
The aggregation is a simple and fast step, given that the
information about the adjacency of the groups is calculated
beforehand. We used the hyperparameters from the origi-
nal studies. For each model type, we created two variants:
original and groups. In the groups variant, embeddings
were grouped based on Benson groups, and a scalar was
obtained for each group, as explained previously. In the
original variant, the embeddings were aggregated using a
sum operation.

Regression Models: We performed linear regression using
the ridge method (Hoerl & Kennard, 2000), using the count-
ing of the groups within each molecule as features. The
bias of the ridge models was set to zero. In this case, the
group contributions were considered as the coefficients of
the ridge regression. 5-fold cross-validation was employed
to determine the best hyperparameter of the ridge regression.

Standard training and Testing: The models were trained
using the Adam optimizer with a cosine annealing learning
rate scheduler and a weight decay of 1× 10−16. The initial
learning rate was set to 5×10−4. We used the mean absolute
error (MAE) as the loss function for both the training and
validation phases. The models were validated every 20
epochs. We also implemented checkpointing with a patience
of 10 validation cycles, meaning that if the validation loss
did not improve within 10 validations, training was stopped.
The maximum number of epochs was set at 1000.

Custom loss: In addition to the standard training procedure,
we also trained the models using a custom loss composed
of two components: the difference between the prediction
and the target value and the sum of the differences between
the model’s group contributions and reference group contri-
butions (see equation below). These two components were
weighted by an α parameter. We used the group contribution
values from the ridge regression models as reference.

Losscustom = (1− α)MAEpred. + αMAEgroups

The training began with an α value of 0.5, which was lin-
early decreased to 0. Given the dynamic nature of α, check-
pointing was not employed in this phase, and the models
were trained for a total of 1000 epochs without interruption.
The rationale behind this approach was to initially guide the
model with the group contribution bias and gradually allow
the model to focus solely on minimizing the prediction loss.

XAI Plots: We used the RDKit cheminformatics toolkit
(Landrum et al., 2024) to create a molecular drawing over-
laid with a heatmap that was created using the group contri-
butions attributed to the central atom of each group.

Code availability: The code developed for this work is
available at https://github.com/g-cathoud/GNNXGroup.

5. Results and discussion
Accuracy of the Models: The linear regression models
performed reasonably well for such a simple model, par-
ticularly for predicting ∆Hf (R2 = 0.915). However, the
performance for ∆ϵ was poorer (R2 = 0.815). This lower
performance is likely due to the non-local distribution of the
HOMO and LUMO orbitals in the molecule affecting ∆ϵ.
The grouping method segments the molecules into pieces,
which favors localized properties like ∆Hf .
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Table 1. Accuracy metrics obtained with the test set for the differ-
ent models (O - original model, G - model with group aggregation,
C - model with group aggregation, trained with custom loss)

∆Hf RMSE / meV MAE / meV R2

R.R. 303 235 0.915
EGNN (O) 43 27 0.998
EGNN (G) 50 30 0.998
EGNN (C) 101 38 0.990
SchNet (O) 41 22 0.998
SchNet (G) 46 26 0.998
SchNet (C) 41 20 0.998

∆ϵ RMSE / meV MAE / meV R2

R.R. 514 401 0.815
EGNN (O) 348 222 0.917
EGNN (G) 343 214 0.919
EGNN (C) 343 222 0.919
SchNet (O) 337 211 0.922
SchNet (G) 311 198 0.934
SchNet (C) 308 199 0.935

GNN models significantly improved accuracy over the re-
gression models. For ∆Hf , GNN models achieved an R2

value of 0.998 in all cases. For ∆ϵ, GNN models also
outperformed the ridge regression models, though learning
∆ϵ remained more challenging than ∆Hf , with R2 values
ranging from 0.917 to 0.934.

Comparing our results for the original GNN models with
those reported by the original authors, we observed that our
mean absolute error (MAE) was twice as high for ∆Hf and
four times as high for ∆ϵ. It is important to note that we used
a scaffold split, whereas the original authors used a random
split. Therefore, these discrepancies were anticipated. In our
experiments, SchNet demonstrated slightly better accuracy
than EGNN for both ∆Hf and ∆ϵ.

Interestingly, the different aggregation schemes did not af-
fect the overall model accuracy for SchNet and EGNN. The
R2 values remained almost constant, and the MAE varied
by a maximum of only 7 meV for ∆Hf and 13 meV for ∆ϵ.
In fact, for ∆ϵ, the grouping method yielded better results.
Typically, XAI techniques tend to decrease model accuracy,
but our approach offers the significant advantage of provid-
ing enhanced interpretability without compromising model
performance.

Regarding the models trained with the custom loss, the ac-
curacy of the EGNN in predicting ∆Hf decreased, which
underscores the notion that EGNN does not align with the
learning process of the ridge regression model. Conse-
quently, efforts to align the learning with the reference con-
tributions resulted in a decline in the model’s performance.

In terms of the other models, the results show that there
was minimal variation. In fact, the SchNet model demon-
strated a slight improvement in accuracy. This confirms
that employing the custom loss function does not impair the
accuracy of the models. Instead, it suggests that the custom
loss can be beneficial.

Explainability of the models: Using the group contribu-
tions from the different models, we were able to construct
the XAI plots (see Fig. 2). Visual inspection showed good
agreement in the group contributions between the ridge
regression and the SchNet for both the target properties. Re-
garding EGNN and ridge regression, the agreement between
the group contributions from these models was much lower,
especially concerning ∆Hf .

Figure 2. Example of heatmaps obtained with the group contribu-
tions for the ridge regression and the GNN models. In this case,
Cos sim stands for cosine similarity. Green colors represent posi-
tive values, while pink colors represent negative values.

We also calculated the cosine similarity and MAE between
contributions from the linear regression models and from
the GNN models, as shown in Table 2. Again, the contribu-
tions from the ridge regression and SchNet models showed
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high agreement, with a mean cosine similarity of 0.70 for
∆Hf and 0.62 for ∆ϵ, and a mean MAE of 0.25 for ∆Hf

and 0.27 for ∆ϵ. In contrast, the EGNN models exhibited
much lower cosine similarity values, particularly for ∆Hf .
This indicates that although EGNN and SchNet have similar
predictive accuracy, their underlying learned patterns differ.
Since the ridge regression model is based on the approach
proposed by Benson, the high agreement between SchNet
and ridge regression suggests that these models share some
chemical insights. However, the EGNN seems to be learning
something different. This divergence invites further explo-
ration into the distinct features identified by EGNN and
whether these could provide new perspectives on chemical
understanding.

Table 2. Average of the cosine similarity (CS) and MAE between
the contributions of the ridge regression (R.R.) models and the
GNN models. The distributions of the values can be seen in the
supplementary materials.

Target Model comparison µCS µMAE / ev

Regular loss

∆Hf
EGNN vs. R.R. -0.17 0.32
SchNet vs. R.R. 0.70 0.25

∆ϵ
EGNN vs. R.R. 0.51 0.23
SchNet vs. R.R. 0.62 0.27

Custom loss

∆Hf
EGNN vs. R.R. 0.99 0.52
SchNet vs. R.R. 0.99 0.04

∆ϵ
EGNN vs. R.R. 0.94 0.07
SchNet vs. R.R. 0.96 0.07

Regarding the results obtained with the custom loss, it is ev-
ident that the agreement is much higher, with average values
for cosine similarity reaching as high as 0.99 for ∆Hf and
0.96 for ∆ϵ. Yet, the high average MAE regarding EGNN
when predicting ∆Hf further underscores the model’s resis-
tance to aligning with the group contributions derived from
ridge regression. In other cases, the average MAE remained
very low. Looking at the examples presented in Fig. 3, it is
evident that the agreement is significantly higher across the
models. These results are particularly significant because,
while the models demonstrated similar accuracy for most
cases, the incorporation of the custom loss function enabled
the alignment of the model’s learning with established chem-
ical intuition. The parameter space of these models is vast,
and due to the nature of the models, it is highly probable that
multiple optima exist that yield accurate predictions. How-
ever, during training, a model may converge to an optimum
that, although accurate, does not align well with specific
domain knowledge. Our results indicate that it is possible
to guide the models toward a region that better aligns with
these concepts while maintaining high accuracy.

Figure 3. Example of heatmaps obtained with the group contri-
butions for the ridge regression and the GNN models. Results
obtained with custom loss. Again, Cos sim stands for cosine sim-
ilarity. Green colors represent positive values, while pink colors
represent negative values.

6. Conclusions
Our study demonstrates that modifying the aggregation step
in GNN models significantly enhances their explainability
with minimal impact on performance. This advancement is
crucial for providing interpretable predictions while main-
taining high accuracy. Furthermore, our analysis reveals a
strong alignment between group contributions from both
ridge regression and SchNet models, indicating that these
models capture common underlying chemical principles. In
contrast, the contributions from EGNN differ significantly
from those of the ridge regression, suggesting that the mod-
els might be learning different patterns. This raises curiosity
about the source of these differences and how we can benefit
from them.

Additionally, the implementation of a custom loss function
demonstrates that it is possible to align the model’s learn-
ing process with specific chemical intuitions, potentially
improving or at least keeping the model’s accuracy. In this
context, the use of group contributions offers a significant
advantage, as it enables the incorporation of established
group contribution values from the literature to enhance the
model’s alignment with chemical knowledge.

Overall, this study paves the way for the development of
more interpretable GNN models in chemistry. Furthermore,
the ability to align model learning with established chemical
knowledge while keeping the same accuracy underscores the
transformative potential of integrating advanced ML tech-
niques with domain-specific expertise. Future work should
investigate other models and datasets to further validate and
expand upon these results.
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