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Abstract

Reinforcement learning-based retrieval-001
augmented generation (RAG) methods002
enhance the reasoning abilities of large003
language models (LLMs). However, most rely004
only on final-answer rewards, overlooking005
intermediate reasoning quality. This paper006
analyzes existing RAG reasoning models007
and identifies three main failure patterns: (1)008
information insufficiency: failure to retrieve009
adequate support; (2) faulty reasoning: logical010
or content-level flaws despite sufficient infor-011
mation; (3) answer–reasoning inconsistency:012
a valid reasoning chain with a mismatched013
final answer. We propose TIRESRAG-R1, a014
novel framework using a think–retrieve–reflect015
process and a multi-dimensional reward016
system to improve reasoning and stability.017
TIRESRAG-R1 introduces: (1) a sufficiency018
reward to encourage thorough retrieval;019
(2) a reasoning quality reward to assess020
rationality and accuracy of the reasoning chain;021
(3) a reflection reward to detect and revise022
errors. It also employs a difficulty-aware023
reweighting strategy and training sample024
filtering to boost performance on complex025
tasks. Experiments on four multi-hop QA026
datasets show TIRESRAG-R1 outperforms027
prior RAG methods and generalizes well to028
single-hop tasks.029

1 Introduction030

Large language models (LLMs) (Grattafiori et al.,031

2024; Yang et al., 2025; OpenAI et al., 2024a) have032

achieved remarkable performance across a wide033

range of downstream tasks, such as mathemati-034

cal reasoning (Ahn et al., 2024), code generation035

(Jiang et al., 2025), open-domain question answer-036

ing (Kamalloo et al., 2023). A key factor behind037

this success is chain-of-thought prompting (Wei038

et al., 2022), which enables LLMs to generate in-039

termediate reasoning steps before arriving at a fi-040

nal answer, significantly enhancing performance041

Figure 1: An example showing different reasoning tra-
jectories for answering a multi-hop query. It compares
insufficient information, incorrect predictions, and fully
correct reasoning.

on reasoning tasks (Wang et al., 2023; Pan et al., 042

2023; Snell et al., 2025). Despite these advances, 043

the internal knowledge of LLMs is not always reli- 044

able. For instance, when faced with time-sensitive 045

queries (Mousavi et al., 2024) or conflicting ev- 046

idence within their internal representations (Xu 047

et al., 2024), LLMs often produce hallucinations or 048

factual inaccuracies due to outdated or ambiguous 049

information (Li et al., 2024a; Wang et al., 2024b). 050

The retrieval-augmented generation (RAG) 051

paradigm (Gao et al., 2024a) improves factual ac- 052

curacy and robustness by enabling LLMs to access 053

up-to-date external knowledge. However, standard 054

RAG often treats retrieval and generation as loosely 055

coupled, lacking mechanisms for multi-step rea- 056

soning such as query decomposition or identifying 057

knowledge gaps, which limits performance on tasks 058

requiring deeper reasoning. 059

To overcome this, a growing body of research 060

has turned to reinforcement learning (RL) (a 061

paradigm that has demonstrated strong perfor- 062

mance in mathematical reasoning and code genera- 063

tion (Shao et al., 2024; Wang et al., 2024a)) to train 064
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LLMs for retrieval-augmented reasoning. In this065

setting, the model learns when and how to retrieve,066

as well as how to integrate retrieved information067

into coherent reasoning chains, guided by outcome-068

level rewards (e.g., answer correctness) (Jin et al.,069

2025a; Song et al., 2025; Sun et al., 2025a). De-070

spite recent progress, outcome-based RL methods071

still face two significant limitations: (1) they of-072

ten neglect the quality and validity of intermediate073

reasoning steps, and (2) they lack fine-grained feed-074

back to guide the reasoning process during multi-075

step tasks. As a result, models may learn incorrect076

reasoning paths that degrade answer quality, or077

they may arrive at correct answers through flawed078

reasoning, thereby compromising interpretability.079

In this paper, to address these challenges, we be-080

gin by evaluating the performance of RAG-based081

reasoning models trained with outcome-based re-082

wards. Through human analysis on examples083

from multi-hop reasoning datasets (e.g., MuSiQue084

(Trivedi et al., 2022)), as shown in Fig. 1, we iden-085

tify three primary bottlenecks limiting model accu-086

racy: (1) the model retrieves sufficient information087

but still fails to produce the correct answer; (2)088

reasoning is prematurely interrupted, resulting in089

inadequate retrieval; and (3) the reasoning chain090

is correct, yet the final answer is incorrect. Based091

on these insights, we propose TIRESRAG-R1, an092

approach that enhances reasoning chain quality by093

incorporating rewards focused on sufficiency and094

reasoning coherence. Additionally, we introduce a095

thinking–retrieval–reflection framework, motivated096

by the principle that models should first ensure the097

integrity of their reasoning chains. If the final an-098

swer is incorrect despite a valid chain, the model099

engages in reflection to revise its response.100

TIRESRAG-R1 enhances RAG-based reason-101

ing by introducing a thinking–retrieval–reflection102

framework, where the model can decide post-103

answer whether to reflect and revise its output104

through an additional round of reasoning and re-105

trieval. To guide learning, TIRESRAG-R1 assigns106

multi-dimensional reward signals to each reason-107

ing trajectory, including: an answer reward, a suf-108

ficiency reward to encourage retrieval of adequate109

evidence, a reasoning quality reward evaluating110

logical coherence, alignment, error awareness, and111

conciseness, and a reflection reward that promotes112

correction of wrong answers while discouraging113

unnecessary changes. To address the varying dif-114

ficulty of retrieval tasks, we propose a difficulty-115

aware advantage reweighting strategy that adjusts116

reward weights based on the ease of retrieving suf- 117

ficient evidence, and an advantage filtering mech- 118

anism that excludes trivial examples (where all 119

responses are correct or incorrect) to stabilize RL 120

training. Together, these components enable more 121

robust and interpretable reasoning, significantly 122

outperforming traditional outcome-based methods 123

across multiple QA benchmarks. 124

Our contributions can be summarized as follows: 125

126

• We are the first to define overthinking and un- 127

derthinking in RAG and conduct comprehen- 128

sive analysis to reveal the main bottlenecks 129

faced by current RL-trained RAG reasoning 130

models. 131

• We propose TIRESRAG-R1, which enhances 132

reasoning by introducing a reflection mecha- 133

nism and fine-grained multi-dimensional re- 134

wards to improve both reasoning chains and 135

answer accuracy. We also propose a difficulty- 136

aware advantage reweighting strategy with 137

no additional computational cost to guide the 138

model toward optimizing on harder questions. 139

• Our experiments show that TIRESRAG-R1 140

outperforms multiple state-of-the-art RAG 141

methods on several open-ended QA datasets, 142

with an average accuracy improvement of 143

5.8%. Further ablation studies and analysis 144

confirm the effectiveness of our fine-grained 145

rewards. 146

2 Related Work 147

Retrieval-Augmented Generation. RAG has 148

been widely adopted to mitigate hallucination, 149

domain knowledge gaps, and temporal staleness 150

(Ayala and Bechard, 2024; Siriwardhana et al., 151

2023; Gade and Jetcheva, 2024). Traditional RAG 152

typically follows a static retrieve-then-generate 153

pipeline (Lewis et al., 2020; Guu et al., 2020), 154

which is effective for open-domain QA but of- 155

ten struggles with multi-hop reasoning, latent con- 156

straints, and ambiguous queries (Tang and Yang, 157

2024; Li et al., 2024b; Chan et al., 2024). Recent 158

work has proposed more cognitively inspired archi- 159

tectures, such as AdaptiveRAG (Jeong et al., 2024) 160

using query classification to choose retrieval strate- 161

gies. In parallel, modular and hybrid frameworks 162

(Gao et al., 2024b; Zhang et al., 2024; Zhou et al., 163

2024) integrate evidence aggregation, verification, 164

and query rewriting, reflecting a deeper interaction 165

between retrieval and reasoning. 166
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Reinforcement Learning for LLM Reasoning.167

Reinforcement learning (RL) has recently been ex-168

plored as a way to improve multi-step reasoning in169

LLMs. Models such as GPT-o1 and DeepSeek-R1170

(OpenAI et al., 2024b; DeepSeek-AI et al., 2025)171

demonstrate RL-based training for structured rea-172

soning. Follow-up work (e.g., SimpleRL-Zoo173

(Zeng et al., 2025), Open-Reasoner-Zero (Hu et al.,174

2025c), and Light-R1 (Wen et al., 2025)) fur-175

ther leverage curriculum design, reward shaping,176

and improved optimization algorithms such as Dr177

GRPO (Liu et al., 2025) to enhance verifiability178

and coherence.179

Reinforcement Learning for RAG Reasoning.180

Recent studies combine RL with RAG to dynami-181

cally guide when and what to retrieve (Song et al.,182

2025; Jin et al., 2025a; Chen et al., 2025). Early183

approaches rely primarily on outcome-level re-184

wards, while newer ones introduce process-level185

rewards (Wang et al., 2025; Sha et al., 2025; Zhang186

et al., 2025b). For instance, R3-RAG (Li et al.,187

2025b) computes document relevance at each step188

to refine search strategies, and others enrich the189

“search–think–answer” pipeline with additional190

fields to prompt deeper reflection (Ren et al., 2025;191

Shi et al., 2025). In contrast, our work directly re-192

wards the model’s reasoning process by measuring193

the sufficiency of retrieved documents, enabling194

more adaptive retrieval-reasoning coordination.195

For more details on related work, please see Ap-196

pendix A.197

3 Prelimary Study198

Although R1-like RAG models demonstrate199

stronger reasoning capabilities than traditional200

RAG models in QA tasks, questions remain about201

the faithfulness of their reasoning processes, both202

in relation to the provided context and in how well203

their final answers reflect that reasoning. This sec-204

tion focuses on the following central question: In205

current reasoning-oriented RAG models tackling206

multi-hop tasks, what is the correlation between the207

predicted answers, the retrieved documents, and208

the generated reasoning text?209

3.1 Preliminary Analysis210

We trained a reasoning-capable RAG model us-211

ing the GRPO algorithm from DeepSeek-R1, fol-212

lowing the data setup of R1-Searcher. We used213

Qwen-2.5-3B-Instruct with a local retriever and214

evaluated on in-domain 2Wikimultihopqa (2Wiki)215

Category
Datasets 2Wiki MuSiQue

Corr. Incorr. Corr. Incorr.

Overthinking 13 25 13 31
Good thinking 232 89 80 96
Underthinking 16 125 0 280

Table 1: Distribution of correct (Corr.) and incorrect (In-
corr.) predictions across different reasoning categories
on 2Wiki and MuSiQue datasets.

and out-of-domain Musique test sets. 216

In what follows, we will denote an example as 217

E = (Q,RD,A), where Q is the query, RD the 218

combined reasoning steps and retrieved documents, 219

and A the predicted or gold answer. Regarding 220

reasoning behavior, we categorize the model’s rea- 221

soning into three cases: overthinking (gold an- 222

swer could be inferred before the final step), good 223

thinking (gold answer emerges exactly at the fi- 224

nal step), and underthinking (model stops without 225

sufficient content). Following prior work (Joren 226

et al., 2025), we use an LLM to assess whether Q 227

and RD are sufficient to derive the gold answer, 228

but unlike (Joren et al., 2025), we also provide the 229

gold answer to reduce misjudgments. Details of 230

fine-tuning setup and experimental analysis settings 231

are all provided in Appendix J. 232

We report sufficiency judgment results sepa- 233

rately based on whether the model’s prediction is 234

correct. The results are shown in Table 1. We can 235

observe that among correctly predicted examples, 236

overthinking and underthinking account for very 237

small proportions, while good thinking accounts 238

for 86% in Musique and 89% in 2Wiki. This in- 239

dicates that for correctly predicted examples, the 240

model’s reasoning process is generally just right 241

and sufficient. Among incorrectly predicted exam- 242

ples, underthinking accounts for a large proportion. 243

This is unsurprising, as the model did not retrieve 244

relevant documents and thus lacked enough infor- 245

mation to answer the question, so answering incor- 246

rectly is expected. Surprisingly, overthinking and 247

good thinking together account for 48% in Musique 248

and 31% in 2Wiki. This shows that the reasoning 249

process was sufficient, but the model still failed to 250

produce the correct answer. 251

3.2 Fine-grained Analysis 252

Since overthinking accounts for a small propor- 253

tion among predictions, we further analyzed the 254

incorrectly predicted examples belonging to good 255

thinking and overthinking to determine specific er- 256
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Context Sufficiency Error type Case Ratio
Insufficient Knowledge retrieved incorrect Question: What is the place of birth of the founder of Leister Technologies?

Model output: ... <search> founder of Leister Technologies </search> ... <think>
Louis Leitz (founder of Esselte Leitz) ... therefore answer Ingersheim </think>
<answer> Ingersheim </answer> Gold Answer: Wilhelmshaven

30.2%

Insufficient Thinking incorrect Question: Where was the place of burial of John De Ferrers, 1st Baron Ferrers of
Chartley’s father? Model output: ... <search> John De Ferrers, 1st Baron Ferrers
of Chartley father’s burial place </search> ... <think> Linked to Sir Humphrey
Ferrers of Tamworth Castle and concluded burial at Tamworth Church </think>
<answer> Tamworth Church </answer> Gold Answer: Staffordshire

22.1%

Sufficient Thinking process mismatch evi-
dence

Question: Who is Gaius Rubellius Blandus’s father-in-law? Model output:
... <search> Gaius Rubellius Blandus father-in-law </search> ... <think> Mar-
ried Julia (granddaughter of Tiberius) ⇒ therefore father-in-law is Tiberius
</think><answer> Tiberius </answer> Gold Answer: Drusus Julius Caesar

16.4%

Sufficient Thinking correct but incorrect an-
swer

Question: Which film has the director died earlier, Girls School Screamers or
Lucky Numbers? Model output: ... <search> director of Girls School Screamers
</search> ... <search> director of Lucky Numbers </search> ... <think> Found
John P. Finnegan (died 2007) and Nora Ephron (died 2012) ⇒ therefore the
director of Lucky Numbers director died earlier </think> <answer>Girls School
Screamers</answer> Gold Answer: Lucky Numbers

5.7%

Sufficient Thinking process match evidence
but thinking process is incorrect

Question: Which film has the director who was born first, Nasib Si Labu Labi
or Solo Per Te Lucia? Model output: ... <search> director of Nasib Si Labu
Labi birth year </search> ... <search> director of Solo Per Te Lucia birth year
</search> ... <think> P. Ramlee (born 1936) vs Franco Rossi (born 1923) ⇒
therefore Nasib Si Labu Labi director was born first </think><answer> Nasib Si
Labu Labi </answer> Gold Answer: Solo Per Te Lucia

25.6%

Table 2: Fine-grained error analysis with examples.

ror causes. We manually reviewed these examples257

and classified them into five error types, as shown258

in Table 2.259

We observe the following. When the reason-260

ing process was insufficient to fully answer the261

question, we found two error types: (i) the model262

mistakenly believes the retrieved content matches263

the question entity and therefore stops further re-264

trieval and outputs an answer, while in fact the265

retrieved content is irrelevant; (ii) the model only266

obtained partial content relevant to the question and267

ended the reasoning, which is a reasoning omis-268

sion. When the reasoning process was sufficient269

to answer the question, a prominent problem was270

that the model failed to follow evidence, indicating271

difficulty in understanding retrieved content and272

integrating it into reasoning (Shi et al., 2025; Li273

et al., 2025a). Another issue was that the reasoning274

process was correct but the final answer was wrong,275

or the model showed correct evidence but failed to276

reason correctly from it.277

Based on these findings, we categorize the fail-278

ure cases of RAG reasoning on part of the test279

sets into three major types: retrieval failure, rea-280

soning failure, and answer failure. Motivated281

by this observation, we propose TIRESRAG-R1,282

which aims to enhance the model’s awareness of283

retrieval sufficiency while improving both its rea-284

soning chain and final answer quality.285

4 Method286

In this section, we first introduce our GRPO-based287

thinking–search–answer–reflect pipeline. Then, we288

elaborate on the reward design, which is the core of 289

our RL algorithm. On top of the standard answer re- 290

ward, we carefully add three additional reward sig- 291

nals: thinking reward, sufficient reward, and reflect 292

reward. Finally, we observe that during training 293

there exists a class of “extreme” examples that are 294

either answered correctly by the model in all roll- 295

outs or answered incorrectly in all rollouts. Such 296

examples contribute very limited training signals 297

and may even introduce noise, affecting training 298

stability. To address this issue, we introduce two 299

optimization mechanisms: a difficulty-aware ad- 300

vantage reweighting strategy and a group filtering 301

mechanism that filters out those extreme problems. 302

A complete algorithmic description can be found 303

in Appendix K. 304

4.1 Trajectory Generation with Search and 305

Reflect 306

Given a question q, we first prompt the LLM πθ 307

to generate a long chain of thought. During this 308

thinking process, the model is encouraged to trig- 309

ger search operations in order to use external docu- 310

ment information. When the model decides that a 311

search is needed, it terminates the current thinking 312

step. The reasoning text so far is wrapped with 313

<think> </think> tags, and the search query 314

is wrapped with <search> </search> tags. 315

We extract the search query and feed it into the 316

retriever πret to obtain k relevant documents Dk = 317

{d1, . . . , dk}. These documents are wrapped with 318

<information> </information> tags and 319

appended back to the trajectory. The model then 320
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Figure 2: Overall architecture of TIRESRAG-R1, which integrates search, reasoning, and reflection with a dynamic
reward design to guide reinforcement learning.

continues reasoning based on the retrieved doc-321

uments. This process of thinking and searching322

repeats until the model judges that enough infor-323

mation has been collected to generate the final an-324

swer. At that point, the answer is wrapped with325

<answer> </answer> tags. However, accord-326

ing to our prompt design, the model is instructed to327

reflect on the generated answer, potentially enter-328

ing another cycle of thinking and searching before329

producing a second answer wrapped again with330

<answer> </answer>. This reflection mecha-331

nism is specifically introduced to address the issue332

discussed in Section 3, namely that the reasoning333

process may be correct but the first generated an-334

swer is wrong. In the final trajectory, the content335

inside the last <answer> </answer> is taken336

as the model’s predicted answer.337

4.2 GRPO for Training338

As shown in Figure 2, we adopt the group relative339

policy optimization (GRPO) algorithm (DeepSeek-340

AI et al., 2025) for RL training. For each query341

in GRPO, a group of G rollout trajectories, as de-342

scribed in Section 4.1, is generated using the cur-343

rent policy πold
θ . Here πold

θ also serves as a frozen344

reference model initialized with the same param-345

eters as the policy model. The GRPO algorithm346

uses the following optimization objective to update347

the policy: 348

JGRPO(θ) = Eq∼Q,{oi}Gi=1∼πold

[
1

G

G∑
i=1

|oi|∑
t=1

min(
πθ(oi,t | q)
πθold(oi,t | q)

Ai,clip
(

πθ(oi,t | q)
πθold(oi,t | q)

, 1− ϵ, 1 + ϵ

)
Ai

)] 349

where ϵ is the clipping hyper-parameter and β 350

is the KL-divergence penalty coefficient. The 351

advantage Ai for each response is computed as 352

A=
i

ri−mean({rj}Gj=1)

std({rj}Gj=1)
, where {ri}Gi=1 are the rewards 353

from the group. The detailed definition of each 354

reward is introduced in Section 4.3. 355

4.3 Reward Design 356

As described in Section 3, we aim to achieve three 357

major goals: (1) encourage the policy model to 358

search sufficiently before generating an answer, 359

(2) improve the quality of the reasoning chain and 360

make it more consistent with the retrieved informa- 361

tion, and (3) enhance the model’s ability to correct 362

answers through reflection. To achieve these goals, 363

we adopt a mixed reward function with the follow- 364

ing components: 365

Answer reward measures the match between the 366

predicted answer and the gold answer. Following 367

prior work (Jin et al., 2025a), we use the F1 score as 368

the answer reward to avoid reward hacking issues 369

observed with exact match (EM): 370

RA = F1(a, a
∗). (1) 371
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Sufficient reward measures whether the rea-372

soning trajectory RD provides enough informa-373

tion to support the gold answer. Following Sec-374

tion 3, we use a locally deployed LLM to score375

(Q,RD, gold answer) with 0/1, where 1 means suf-376

ficient and 0 means insufficient:377

RS =

{
1.0, if (Q,RD, og) is sufficient,
0.0, otherwise.

(2)378

Thinking reward measures the quality of the379

thinking part of the trajectory. The locally deployed380

LLM is prompted to evaluate logical soundness,381

alignment with retrieved content, error awareness,382

and concise accuracy. It outputs a score in [0, 1]:383

RT ∈ [0, 1]. (3)384

Reflect reward encourages the model to revise385

wrong answers into correct ones. We extract each386

intermediate answer a1, a2, . . . from the trajectory,387

compare each with the gold answer using an accu-388

racy score, and assign rewards as follows: a pos-389

itive reward when reflection corrects an incorrect390

answer, a negative reward when it replaces a correct391

answer with an incorrect one, and zero otherwise.392

R
R

=


+1.0, if CEM(a1, a

∗) = 0 and CEM(a2, a
∗) = 1,

−1.0, if CEM(a1, a
∗) = 1 and CEM(a2, a

∗) = 0,

0.0, otherwise.
(4)393

Dynamic Weight of Reward. Because of the394

mixed reward mechanism, the model could over-395

fit to auxiliary signals such as sufficient reward396

or thinking reward and ignore answer accuracy.397

We design a dynamic weight schedule at =398
1

1+exp
(
t−0.9T

10

) , where t denotes the current train-399

ing step and T denotes the total number of training400

steps. This schedule gradually shifts focus from401

auxiliary reasoning rewards to answer accuracy as402

training proceeds.403

Finally, the overall reward is computed as404

Rsum = RA + at
(
wtR

T + wsR
S + wrR

R
)
, (5)405

4.4 Optimization Strategy406

Difficulty-aware Resampling. Despite em-407

ploying a mixed reward mechanism, we ob-408

served that different rollout groups can yield very409

different raw rewards but almost identical nor-410

malized advantages (e.g., [0.8, 0.85, 0.9, 0.95, 1.0]411

vs. [0.0, 0.05, 0.1, 0.15, 0.2]). This phenomenon412

causes simple problems to receive the same op-413

timization emphasis as hard problems. Fol-414

lowing Zhang and Zuo (2025), we introduce a415

difficulty-aware advantage reweighting strategy. 416

For each sample, we estimate the problem diffi- 417

culty by computing the average sufficient-reward 418

score across all its rollouts, denoted as Ravg
S . The 419

weight function is defined as 420

W (RS
avg) = A+

B −A

1 + exp
[
k(RS

avg − ρ0)
] , (6) 421

where A,B, ρ0, k are tunable hyper-parameters 422

controlling the sensitivity of the reweighting. Rs
avg 423

is the average sufficient-reward score of all rollouts 424

associated with question q. 425

Consistency Penalty. Because we use a mixed 426

reward mechanism, it is possible for a trajectory to 427

receive a high reasoning reward but a low answer 428

reward. To encourage consistent trajectories where 429

high reasoning quality aligns with high answer ac- 430

curacy, we add a small penalty term to discourage 431

such inconsistencies: 432

AP
i = −λpA

T
i ·AT

i ·AA
i , if AS

i ·AT
i ·AA

i < 0. (7) 433

where AS
i , AT

i , and AA
i denote the 434

group-normalized values of the sufficient reward, 435

the thinking reward, and the answer reward, respec- 436

tively. The final difficulty-aware advantage is then 437

expressed inline as A′
i = (Ai − AP

i ) · W (Rs
avg), 438

where Ai is the original normalized advantage for 439

rollout i. 440

Group Filtering. As noted in (Jin et al., 2025a), 441

applying GRPO to RAG tasks can lead to late-stage 442

collapse, where training rewards drop to zero. We 443

also observe this phenomenon: in later stages, 444

many queries have groups where all rollouts are ei- 445

ther completely correct or completely wrong, lead- 446

ing to zero advantage and noisy updates. To mit- 447

igate this, we introduce a simple filtering mecha- 448

nism that removes these saturated queries from the 449

training set. 450

5 Experiments 451

Experimental Setup. Following the evaluation 452

protocol of R1-Searcher, we assess performance 453

on four widely used and challenging multi-hop QA 454

datasets: HotpotQA (Yang et al., 2018), 2Wiki- 455

MultiHopQA (Ho et al., 2020), Bamboogle (Press 456

et al., 2023), and Musique (Trivedi et al., 2022). 457

For HotpotQA, 2WikiMultiHopQA, and Musique, 458

we adopt the test splits released by R1-Searcher, 459

each containing 500 examples. For Bamboogle, 460

we use the full set of 125 test examples. For train- 461

ing, we use the dataset provided by R1-Searcher, 462
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Method Hotpotqa 2wikimultihopqa Musique Bamboogle
EM F1 Judge EM F1 Judge EM F1 Judge EM F1 Judge

Direct Generation 18.0 23.5 24.2 19.0 23.6 23.0 3.6 9.0 6.0 20.8 30.7 28.8
COT 18.2 24.4 25.2 21.0 25.7 25.0 4.4 10.9 8.8 21.6 31.3 28.8
Naive RAG 29.4 40.7 43.4 26.0 30.5 29.8 5.2 11.0 8.0 18.4 27.0 22.4
Sure 20.2 27.2 32.0 21.0 24.6 26.2 3.0 8.5 5.2 10.4 17.9 12.8
IRCOT 22.2 32.7 38.6 17.4 23.4 26.0 5.2 10.8 8.4 13.6 23.8 24.0
Self-ask 14.4 24.6 39.0 14.8 19.6 25.0 4.0 10.3 7.4 9.6 22.3 18.4
RAG with Agentic Search 7.0 10.1 10.4 10.4 12.3 12.4 1.4 6.8 3.4 9.6 13.3 12.0
Search-o1 12.4 17.6 17.2 17.0 19.6 18.8 3.4 8.8 6.4 14.4 23.0 18.4
SFT 15.8 20.1 18.2 28.4 31.1 30.0 2.2 9.6 3.8 8.0 15.8 8.8
SimpleDeepSearcher 34.4 45.3 47.6 39.6 46.5 47.8 12.4 20.5 18.8 33.6 44.1 42.4
ReSearch-Base 28.8 38.4 36.2 37.2 40.7 40.0 14.4 24.2 17.4 34.8 45.5 37.2
ReSearch-Instruct 30.8 41.7 43.6 38.0 42.0 41.6 14.2 23.8 18.0 34.8 47.1 42.0
R1-search-Base 30.8 40.7 48.0 37.2 41.1 40.2 13.6 23.9 17.0 33.2 41.3 37.2
R1-search-Instruct 31.2 42.2 43.4 42.6 47.1 46.2 15.4 25.3 18.6 33.2 43.5 39.6
Search-R1-Base 35.4 50.1 51.2 44.0 50.9 51.4 14.8 26.0 22.6 38.4 50.9 48.4
Search-R1-Instruct 37.4 49.3 50.4 47.6 51.7 53.4 16.2 23.7 21.0 40.2 50.3 47.4
LeTS-Instruct* 37.1 - 55.2 41.0 - 47.5 17.5 - 26.9 38.4 - 51.2
TIRESRAG-R1-Base 41.0 53.0 56.4 52.4 58.4 60.2 16.2 26.9 24.4 40.4 52.6 50.0
TIRESRAG-R1-Instruct 41.0 54.2 56.0 52.8 59.6 61.4 19.4 30.0 27.4 44.0 54.7 52.8

Table 3: Main experimental results on HotpotQA, 2WikiMultiHopQA, Musique, and Bamboogle.

which includes 4,561 examples from the HotpotQA463

training set and 3,587 examples from the 2Wiki-464

MultiHopQA training set.465

Evaluation Metrics. We evaluate model perfor-466

mance using four metrics: Exact Match (EM), F1,467

LLM-as-Judge, and Cover Exact Match (CEM).468

EM checks exact matches, F1 accounts for partial469

overlaps, LLM-as-Judge (via GPT-4o) assesses se-470

mantic correctness, and CEM measures whether471

the gold answer is covered. For more detailed set-472

tings, please refer to App. C.2.473

Baselines. We compare TIRESRAG-R1 with 14474

representative baselines spanning four categories:475

(1) Naive prompt methods: Direct, COT, and R1-476

based; (2) Retrieval-augmented prompt meth-477

ods: Naive RAG, Agentic-R1, Search-o1, SURE,478

IRCOT, Self-Ask, and RQRAG; (3) SFT meth-479

ods: SFT and SimpleDeepSearcher; (4) RL meth-480

ods: Search-R1, R1-Searcher, Research, and the481

process-reward method LeTS. For detailed descrip-482

tions and configurations of these baselines, please483

refer to the App. C.3.484

5.1 Main Results485

Table 3 shows that TIRESRAG-R1 achieves supe-486

rior or competitive performance on all four com-487

plex multi-hop datasets when trained on either488

Qwen-2.5-3B-Base or Qwen-2.5-3B-Instruct. Our489

key findings are as follows:490

(1) For the small 3B models, prompt-based meth-491

ods generally perform poorly. For instance, Search-492

o1 even underperforms naive RAG, as 3B models493

struggle to interpret instructions and generate ef- 494

fective retrieval queries without fine-tuning. 495

(2) Incorporating format rewards may not be op- 496

timal. Compared to Search-R1 (answer reward 497

only), Research and R1-Searcher exhibit average 498

EM drops of 5.13% and 4.60%, respectively. We at- 499

tribute this decline to format-based learning, which 500

reduces the exploration capacity of the 3B models 501

and weakens useful reward signals when answers 502

are correct but deviate slightly in format. 503

(3) TIRESRAG-R1 delivers substantial perfor- 504

mance gains. On in-domain datasets HOT- 505

POTQA and 2WIKIMULTIHOPQA, it outperforms 506

SEARCH-R1 by average EM margins of 4.7% and 507

7.0%, respectively. For out-of-domain datasets 508

MUSIQUE and BAMBOOGLE, we observe improve- 509

ments of 5.3% and 4.6%. Compared to LeTS, 510

TIRESRAG-R1 achieves additional gains of 5.8 511

and 4.2 points in EM and LLM-AS-JUDGE, re- 512

spectively. These results indicate that our approach 513

effectively learns higher-quality reasoning chains 514

and generalizes well to unseen domains. 515

5.2 Analysis 516

We perform a comprehensive analysis to better un- 517

derstand the factors influencing our method’s effec- 518

tiveness. Below, we highlight the most significant 519

findings; for a more detailed discussion and a case 520

study, please refer to Appendix G. 521

Different RL Methods. To assess the generality 522

of our training strategy, we also apply it to Re- 523

inforce++ (Hu et al., 2025a) that does not use a 524
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Method Hotpotqa 2wikimultihopqa Musique Bamboogle
EM F1 CEM EM F1 CEM EM F1 CEM EM F1 CEM

Ours-Base+GRPO 41.0 53.0 47.8 52.4 58.4 59.0 16.2 26.9 21.4 40.4 52.6 43.6
Ours-Instruct+GRPO 41.0 54.2 46.0 52.8 59.6 60.8 19.4 30.0 23.2 44.0 54.8 47.2
Ours-Base+Reinforce++ 42.2 55.9 49.0 52.0 58.6 61.2 16.6 28.7 22.2 36.8 50.7 44.0
Ours-Instruct+Reinforce++ 39.6 53.9 49.8 46.2 55.0 58.4 15.4 25.4 20.6 37.6 48.8 42.4

Table 4: Comparison between GRPO and Reinforce++ across datasets.

Datasets HotpotQA 2WikiMultiHopQA MusiQue Bamboogle Average

Thinking Length
Naive grpo 318.7 293.1 467.7 215.2 323.7
Search-R1-Instruct 258.4 331.3 360.8 194.3 286.2
TIRESRAG-R1-Instruct 252.1 312.1 303.6 229.2 274.3

Search Steps
Naive grpo 2.7 2.9 3.9 2.2 2.93
Search-R1-Instruct 2.3 2.3 2.8 2.2 2.40
TIRESRAG-R1-Instruct 2.1 2.7 2.6 2.0 2.35

Table 5: Comparison of average thinking length and search steps across datasets.

Method NQ PopQA TriviaQA

COT 10.5 9.7 7.8
Sure 25.5 30.4 13.4
SimpleDeepSearcher 33.4 38.9 59.6
ReSearch-Instruct 35.8 41.8 58.4
TIRESRAG-R1-Instruct 38.0 43.0 60.0

Table 6: Generalization results on single-hop bench-
marks.

critic model. The key difference between Rein-525

force++ and GRPO is that it normalizes advan-526

tages across the entire batch rather than within527

group rollouts. We train both Qwen2.5-3B-Base528

and Instruct models under identical settings. As529

shown in Table 4, compared with GRPO’s group-530

normalization strategy, Reinforce++ performs bet-531

ter on in-domain datasets (HotpotQA, 2WikiMul-532

tiHopQA) but worse on out-of-domain datasets533

(Musique, Bamboogle), which is consistent with534

the findings in R1-Searcher.535

Efficiency Analysis. We compare search counts536

and thought lengths with naive GRPO and Search-537

R1. As shown in Table 5, despite encouraging538

reflection and sufficient information gathering, our539

method does not hurt efficiency. Compared to naive540

GRPO, our method reduces average search count541

by 0.58 points and token generation by 49.4 points.542

Compared to Search-R1, search count decreases543

by 0.05 points and token generation by 12 points.544

This indicates that RL-trained Agent-RAG models545

can achieve improved reasoning quality without546

sacrificing efficiency.547

5.3 Generalization on Single-Hop548

Benchmarks549

Since our primary training data consist of multi-550

hop QA examples, we also evaluate on single-hop551

tasks to assess generalization. We use three widely 552

adopted single-hop QA benchmarks: NQ, PopQA, 553

and TriviaQA and present comparisons with the 554

best baseline in each category. More comprehen- 555

sive results can be found in the App. H. Table 6 556

shows that our method consistently outperforms all 557

baselines across all metrics. On NQ, it achieves 558

EM score of 38.0, exceeding the strongest baseline 559

(ReSearch-Instruct) by 2.2 points. On PopQA, we 560

obtain 43.0, surpassing baselines by 1.5 points. For 561

TriviaQA, we achieve 60.0, with an improvement 562

of 2.1 points. These results demonstrate that, de- 563

spite being trained primarily on multi-hop data, our 564

method generalizes effectively to single-hop tasks, 565

highlighting its robustness across reasoning types 566

and task distribution. 567

6 Conclusion 568

In this work, we reveal the limitations of cur- 569

rent outcome-supervised RL-trained RAG rea- 570

soning models. To address these issues, we 571

propose TIRESRAG-R1, which uses a novel 572

think–search–reflect paradigm, explicitly encour- 573

aging models to reflect on uncertain answers. We 574

design multiple reward functions to improve doc- 575

ument retrieval sufficiency and reasoning quality, 576

and introduce a difficulty-aware advantage strat- 577

egy to provide stronger learning signals on hard 578

problems. Comprehensive evaluations show that 579

TIRESRAG-R1 outperforms existing methods on 580

four multi-hop QA benchmarks. Further analy- 581

sis highlights that our method is compatible with 582

different RL algorithms and exhibits strong gener- 583

alization. 584
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Limitations585

Model scaling. Our experiments are conducted586

only on Qwen2.5-3B due to computational con-587

straints. Although TIRESRAG-R1 shows promis-588

ing results on smaller models, its effectiveness on589

larger architectures (e.g., Qwen2.5-7B) remains590

unexplored.591

Reward modeling. We use Qwen3-8B for suffi-592

cient and thinking scoring. Although it provides593

accurate signals, using a stronger model such as594

GPT-4o, or a specialized reward model fine-tuned595

on domain-specific data, may further improve per-596

formance. Exploring more accurate reward models597

(e.g., as suggested in recent thinking-reward litera-598

ture) is a promising direction.599

Reflection signal sparsity. While our reflection600

mechanism corrects some wrong answers, the num-601

ber of training examples requiring reflection is lim-602

ited, reducing useful learning signals. Future work603

could synthesize reflection-rich data for SFT be-604

fore applying TIRESRAG-R1 to further improve605

the model’s ability to reflect effectively.606
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A Related Work1000

Retrieval-Augmented Generation. RAG has1001

emerged as a prominent framework to augment1002

LLMs with external knowledge, aiming to mitigate1003

issues such as hallucination (Ayala and Bechard,1004

2024), domain incompleteness (Siriwardhana et al.,1005

2023), and temporal staleness (Gade and Jetcheva,1006

2024). Conventional RAG systems adopt a static1007

retrieve-then-generate paradigm, where a retriever1008

first fetches top-ranked documents given an input1009

query, and a generator conditions its output on the1010

retrieved context (Lewis et al., 2020; Guu et al.,1011

2020). While this structure has proven effective1012

for factual QA and open-domain generation, it1013

often falls short when confronted with complex1014

reasoning tasks involving multi-hop dependencies1015

(Tang and Yang, 2024), latent constraints (Li et al.,1016

2024b), or ambiguous query intents (Chan et al.,1017

2024). To overcome these limitations, recent works1018

have proposed more cognitively informed RAG ar-1019

chitectures. For example, AdaptiveRAG (Jeong1020

et al., 2024) uses query classification to trigger1021

different retrieval strategies, PlanRAG (Lee et al.,1022

2024) decomposes tasks into executable plans for1023

targeted retrieval, and ITER-RETGEN (Shao et al.,1024

2023) incorporates intermediate generation to itera-1025

tively reformulate queries. In parallel, modular and1026

hybrid RAG frameworks (Gao et al., 2024b; Zhang1027

et al., 2024; Zhou et al., 2024) have introduced com-1028

ponentized systems that integrate query rewriting,1029

evidence aggregation, and verification in sequential1030

or recursive pipelines. These advances suggest that1031

effective RAG increasingly requires not just better1032

retrieval quality, but dynamic, context-aware rea-1033

soning to inform when, what, and how to retrieve.1034

This growing interdependence between retrieval1035

and reasoning sets the stage for more adaptive1036

mechanisms (particularly those that go beyond pre-1037

defined rules) highlighting the need for learning-1038

based control in complex RAG workflows.1039

Reinforcement Learning for LLM Reasoning.1040

Driven by the growing need for LLMs to perform1041

complex and reliable reasoning across diverse tasks,1042

recent research has turned to reinforcement learn-1043

ing as a promising paradigm to enhance their rea-1044

soning capabilities. The release of GPT-o1 (Ope-1045

nAI et al., 2024b) and DeepSeek-R1 (DeepSeek-1046

AI et al., 2025) marked a shift toward training1047

LLMs that exhibit structured, multi-step reasoning1048

through RL-based objectives. Early efforts such1049

as SimpleRL-Zoo (Zeng et al., 2025) and Open-1050

Reasoner-Zero (Hu et al., 2025c) explored direct 1051

RL fine-tuning from base models, eliminating the 1052

reliance on extensive supervised instruction tun- 1053

ing. Building on this foundation, approaches like 1054

DeepScaler (Meng et al., 2024) and Light-R1 (Wen 1055

et al., 2025) introduced cold-start datasets and re- 1056

ward schemes explicitly designed to promote step- 1057

by-step thinking and verifiable inferences. In par- 1058

allel, improvements to RL algorithms, such as Dr 1059

GRPO (Liu et al., 2025), refined policy optimiza- 1060

tion to better align with the cognitive demands of 1061

long-form reasoning. 1062

Reinforcement Learning for RAG Reasoning. 1063

There is a growing body of work focused on 1064

bringing RL-based reasoning into the retrieval- 1065

augmented generation framework (Song et al., 1066

2025; Jin et al., 2025a; Chen et al., 2025). Inspired 1067

by DeepSeek-R1, these approaches use regularized 1068

rewards to encourage the model to think and gen- 1069

erate retrieval queries to search external corpora. 1070

However, these methods only consider the final 1071

outcome reward signal to train the model, which 1072

is relatively simple, and do not deeply optimize 1073

according to the characteristics of the RAG task 1074

itself. In view of this, many works incorporate the 1075

model’s thinking process into the reward calcula- 1076

tion (Wang et al., 2025; Sha et al., 2025; Zhang 1077

et al., 2025b). For example, Zhao et al. (2025) uses 1078

different models to generate answers based on the 1079

same evidence in order to calculate evidence qual- 1080

ity, while also alleviating answer bias caused by the 1081

preference of the policy model itself. R3-RAG (Li 1082

et al., 2025b) calculates the relevance between each 1083

retrieved document and the question at every step, 1084

attempting to improve the model’s search strategy 1085

through fine-grained process rewards. Different 1086

from these works, our work directly measures the 1087

sufficiency between all retrieved documents and the 1088

question, in order to enhance the model’s aware- 1089

ness of searching less or more. In addition, some 1090

works attempt to add new information fields to 1091

the “search–thinking–answer” pipeline proposed 1092

by search-r1-type methods to prompt the model to 1093

think more about the documents (Ren et al., 2025). 1094

For example, Shi et al. (2025) lets the model refine 1095

the retrieved documents during the reasoning pro- 1096

cess before proceeding to thinking. Our work, un- 1097

like in these methods, directly rewards the model’s 1098

thinking process, allowing the model to optimize 1099

its reasoning process, rather than manually adding 1100

thinking rules. 1101
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B Experimental Setup for Preliminary1102

Studies1103

We trained a reasoning-capable RAG model using1104

the GRPO algorithm from Deepseek-R1. Follow-1105

ing R1-Searcher, we selected part of the training1106

data from HotpotQA (Yang et al., 2018) and 2Wiki-1107

MultiHopQA (Ho et al., 2020), with a total of 8,1481108

examples. We used the Qwen-2.5-3B-Instruct1109

model for training. For the retriever, we deployed1110

a system locally based on the BGE-large-en-v1.51111

retrieval, with the retrieval corpus from English1112

Wikipedia provided by KILT (Petroni et al., 2021)1113

in 2019. The training prompt can be found in Ap-1114

pendix J. We trained the model for one epoch (de-1115

tailed experimental settings are the same as those1116

in Section 5.) and evaluated the model on the1117

in-domain 2Wiki test set and the out-of-domain1118

Musique test set. After obtaining predictions on1119

500 test examples from each dataset, we used1120

GPT-4o to evaluate the correlation between the1121

model’s predictions and the retrieved content plus1122

the reasoning process.1123

We introduce notation for a generic open-domain1124

question–reasoning setting, assuming sufficient1125

contextual information. Consider an example repre-1126

sented as E = (Q,RD,A), where Q is the query,1127

RD is the combined reasoning process and re-1128

trieved documents, and A is either the model’s1129

predicted answer or the gold answer. We define1130

RD = {R1, D1, . . . , Ri, Di, Ri+1}ni=1, where n1131

is the number of sub-questions generated by the1132

model during reasoning, Ri denotes the interme-1133

diate reasoning step prior to document retrieval,1134

and Di represents the set of documents retrieved in1135

response to the sub-question formulated in Ri.1136

We define three cases: (1) Overthinking: the1137

model produces too many reasoning steps, meaning1138

that the gold answer could already be inferred at1139

some step Ri with i < n. (2) Good thinking: the1140

model obtains sufficient content exactly before the1141

final reasoning step, i.e., the gold answer can only1142

be inferred at step Rn+1. (3) Underthinking: the1143

model stops reasoning without obtaining sufficient1144

content in RD, and still outputs an answer. Since1145

Joren et al. (2025) has shown enabling LLMs to1146

judge whether the provided context is adequate1147

for answering a question is effective, we directly1148

input Q, RD, and the gold answer into an LLM to1149

assess whether Q and RD together are sufficient1150

to derive the correct answer (see prompt in App.J).1151

Importantly, we include the gold answer in the1152

input, unlike what (Joren et al., 2025) does. which 1153

uses only Q and RD. This is because we found that 1154

omitting the answer leads to more errors: when RD 1155

is actually insufficient, the model is more likely to 1156

incorrectly judge it as sufficient. 1157

C Implementation Details and Baselines 1158

C.1 Implementation Details. 1159

For all baselines and TIRESRAG-R1, we use 1160

Qwen-2.5-3B (base and instruct variants) as the 1161

backbone. Following R1-Searcher, we use the 1162

2019 English Wikipedia as the external knowledge 1163

source, and BGE-large-en-v1.5 as the retrieval en- 1164

gine. Our training framework is built upon Open- 1165

RLHF (Hu et al., 2025b), and we use FlashRAG 1166

(Jin et al., 2025b) for evaluation. The total batch 1167

size is 108, with a learning rate of 2 × 10−6. We 1168

generate 5 rollout samples per input for reward es- 1169

timation and set temperature = 1 during rollout to 1170

encourage exploration. The KL coefficient β is set 1171

to 0, the number of iterations per batch µ = 2, and 1172

the clipping parameter ϵ = 0.2. Top-k during re- 1173

trieval is set to 5. In the difficulty-aware resampling 1174

strategy, the hyperparameters are set to A = 0.4, 1175

B = 1.5, ρ0 = 0.75, and k = 10.0. For the con- 1176

sistency penalty, we set λp = 0.1. In the overall 1177

reward computation, the weights are configured as 1178

wt = 0.6, ws = 0.3, and wr = 0.3. All models 1179

are trained on 3 NVIDIA H200 GPUs: 2 GPUs 1180

are allocated for policy optimization, and 1 GPU 1181

is dedicated to rollout inference via vLLM (Kwon 1182

et al., 2023). 1183

C.2 Evaluation Metrics 1184

For open-ended evaluation, we report three widely 1185

used metrics: Exact Match (EM), F1 score 1186

(aligned with the RL training answer reward), and 1187

LLM-as-Judge. EM measures whether the ground- 1188

truth answer exactly matches the model prediction. 1189

F1 is computed between predicted and gold an- 1190

swers to handle partial overlap. For LLM-as-Judge, 1191

we use GPT-4o to evaluate the semantic correctness 1192

of the prediction given the question and support- 1193

ing evidence. The prompts used for LLM-as-Judge 1194

are listed in App. J. Due to the high cost of using 1195

LLM-as-a-Judge, we only adopt this metric in the 1196

main experiments. For the other experiments, we 1197

use Cover Exact Match (CEM), which assesses 1198

whether the ground-truth answer is included in the 1199

predicted answer. 1200
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C.3 Baselines.1201

To evaluate the effectiveness of our proposed1202

TIRESRAG-R1 method, we implement and com-1203

pare against 14 baselines, grouped into four cate-1204

gories:1205

(1) Naive prompt methods: Direct answers ques-1206

tions directly using its own parametric knowledge.1207

COT is instructed to produce a chain of thought1208

before the final answer. R1-based uses a distilled1209

DeepSeek-Qwen-3B reasoning model to first rea-1210

son then answer. We implement all three naive1211

prompt methods ourselves.1212

(2) Retrieval-augmented prompt methods: Naive1213

RAG extends Direct by retrieving documents for1214

the query and appending them as additional input1215

before direct answering. Agentic-R1 (Li et al.,1216

2025a) enables the model to autonomously retrieve1217

external knowledge when needed while avoiding1218

interference from irrelevant content. Search-o1 (Li1219

et al., 2025a) introduces a Reason-in-Documents1220

module that condenses retrieved content into coher-1221

ent reasoning steps, iteratively guiding the model1222

to the final answer. SURE (Kim et al., 2024) gener-1223

ates and evaluates summaries of retrieved passages1224

for multiple answer candidates. IRCOT (Trivedi1225

et al., 2023) interleaves retrieval with Chain-of-1226

Thought reasoning. Self-Ask (Press et al., 2023)1227

improves multi-hop reasoning by decomposing the1228

original question into intermediate sub-questions1229

that are answered before final prediction. RQRAG1230

(Chan et al., 2024) learns to explicitly refine queries1231

through rewriting, decomposition, and disambigua-1232

tion. For these retrieval-augmented methods, we1233

use the implementations provided in flashrag.1234

(3) SFT methods: SFT fine-tunes the model di-1235

rectly on training pairs of questions and gold an-1236

swers. During training, we only input the ques-1237

tion and instruct the model to output a short1238

answer without any intermediate reasoning or1239

evidence selection. SimpleDeepSearcher (Sun1240

et al., 2025b) constructs a high-quality dataset1241

containing intermediate reasoning and retrieval1242

steps, then fine-tunes the model with question-to-1243

(reasoning,answer) pairs. Its input is also only the1244

question, but its output format follows R1-Searcher1245

with four components:1246

• <thinking> ... </thinking>,1247

• <|begin_search_query|> ...1248

</|end_search_query|>,1249

• <|begin_search_result|> ... 1250

</|end_search_result|>, 1251

• \box{answer}. 1252

A total of 871 examples are constructed to repro- 1253

duce this method, and during inference we extract 1254

the text inside the \box{} as the model’s predicted 1255

answer. 1256

(4) RL methods: Search-R1 (Jin et al., 2025a) 1257

uses only F1 as reward. R1-Searcher (Song et al., 1258

2025) uses answer reward plus a format reward. 1259

Research (Chen et al., 2025) also incorporates 1260

format reward. To ensure fairness, we re-trained 1261

these RL-based baselines on our training set us- 1262

ing the authors’ released code and hyperparameter 1263

settings, without using their checkpoints. LeTS 1264

(Zhang et al., 2025a) combines step-level rewards 1265

with answer rewards and introduces rollout-level 1266

redundancy penalties and group-level knowledge- 1267

matching rewards. Since LeTS has no public code, 1268

we report the results from the original paper. 1269

All baselines are evaluated under a unified pro- 1270

tocol: each method first produces its predicted an- 1271

swers, which are then scored using the same stan- 1272

dardized evaluation script. 1273

D Detailed Reinforce++ 1274

Reinforce++ (Hu et al., 2025a) is an efficient RLHF 1275

algorithm without a critic network, designed to ad- 1276

dress overfitting in advantage estimation and re- 1277

ward hacking in REINFORCE-based methods. Its 1278

core idea is to use the global batch mean reward 1279

as the baseline, rather than constructing a separate 1280

baseline for each prompt as in RLOO or GRPO. 1281

This avoids prompt-specific bias and improves sta- 1282

bility and generalization. We adopt the same re- 1283

ward computation strategy as in our main exper- 1284

iments to ensure consistency across training and 1285

evaluation. 1286

E Visualization of Annealing 1287

To better illustrate the dynamic weight schedule 1288

defined in the main content, Figure 4 plots the four 1289

annealing strategies used in Section 7.2. Our strat- 1290

egy keeps the weight stable in the early and mid 1291

training phases, and then drops sharply in the late 1292

phase, aligning with our goal of letting the model 1293

focus on answer accuracy in the later stages. 1294
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Figure 3: Effect of different hyperparameters.

Method Hotpotqa 2wikimultihopqa Musique Bamboogle
EM F1 CEM EM F1 CEM EM F1 ACC CEM F1 CEM

Naive GRPO 36.4 48.5 41.6 46.4 53.1 54.0 16.2 26.0 19.6 36.0 49.2 40.8
TIRESRAG-R1-Instruct 41.0 54.2 46.0 52.8 59.6 60.8 19.4 30.0 23.2 44.0 54.7 47.2
w/o Filter 18.8 24.6 26.8 21.4 26.5 28.8 6.0 11.4 9.4 19.2 28.8 25.6
w/o Difficulty 38.2 50.4 43.6 49.2 54.0 55.4 17.0 27.0 21.4 35.2 49.3 38.4
w/o Penalty 38.0 49.9 44.2 44.2 50.9 52.0 15.6 24.9 19.0 39.2 50.6 43.2
w/o Reflect 37.8 47.9 41.2 44.6 52.0 53.8 10.8 21.4 15.2 32.8 45.3 37.6
w/o Sufficient 37.4 48.5 44.6 41.4 46.3 46.4 14.0 22.3 16.4 32.6 43.4 35.8
w/o Thinking 39.8 51.8 47.6 44.8 51.3 53.8 14.8 23.9 19.2 37.6 46.4 39.2

Table 7: Ablation Study.

Figure 4: Visualization of different reward weight
scheduling strategies curves.

F Ablation Study1295

To verify the effectiveness of each module in1296

TIRESRAG-R1, we conduct systematic ablation1297

experiments on the Qwen2.5-3B-Instruct model.1298

Table 7 shows the obtained results. We observe1299

that: (1) The filter module is crucial for model1300

stability. As shown in Table 7, removing it sig-1301

nificantly degrades performance: compared with1302

standard GRPO, the average F1 score drops by1303

21.2%. This is because, in the later training stages,1304

the model collapses. We show the training curves1305

in Section 7.3. (2) The difficulty-aware weighting1306

and penalty mechanisms are crucial for effectively 1307

integrating our diverse reward signals. While ab- 1308

lations without them still outperform naive GRPO, 1309

the gains are limited, showing average performance 1310

drops of 4.48 and 5.58 points compared to our full 1311

method. (3) Each reward component plays a crit- 1312

ical role in overall performance. Removing any 1313

single reward leads to noticeable degradation—and 1314

in all cases, performance drops below that of naive 1315

GRPO. Notably, removing the sufficient reward 1316

results in the largest decline, indicating that the 1317

model may engage in reward hacking and neglect 1318

crucial external documents. In contrast, remov- 1319

ing the thinking reward has the smallest impact, 1320

with an average drop of 6.3% compared to our full 1321

method. This is likely because the answer, suffi- 1322

cient, and reflect rewards already provide partial 1323

supervision for generating high-quality reasoning 1324

chain. 1325

G Analysis 1326

G.1 Impact of Hyperparameters. 1327

We explore three key hyperparameters: the number 1328

of retrieved documents, the penalty weight, and 1329

the reward mixture weights. Figure 3 present the 1330

obtained results. 1331
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Figure 5: Comparison of different reward weight
scheduling strategies.

• Impact of number of retrieved documents. As the1332

number of retrieved documents increases from1333

3 to 5 (ours), the model performance improves,1334

with EM increasing by 3.95 points on average.1335

When increasing from 5 (ours) to 7, the average1336

EM drops by 3.6 points, suggesting that retriev-1337

ing too many documents introduces noise, hurt-1338

ing reasoning quality. There is thus a trade-off1339

between providing more information and avoid-1340

ing noise.1341

• Impact of penalty weight. In Eq. 7, λp controls1342

the magnitude of the consistency penalty in the1343

advantage calculation. Setting λp = 0.5 or λp =1344

1, we observe that as λp increases, performance1345

decreases, with the largest drop when λp = 1.1346

This suggests over-emphasizing consistency can1347

suppress beneficial reward signals and hurt final1348

performance.1349

• Impact of reward mixture weights. In Eq. 5,1350

thinking, sufficient, and reflect rewards are com-1351

bined with different weights. We try settings1352

of (0.3,0.3,0.6), (0.3,0.6,0.3), (0.3,0.3,0.3), and1353

our (0.6,0.3,0.3). Results show that giving the1354

highest weight to thinking reward (ours) yields1355

the best performance, likely because thinking di-1356

rectly measures the quality of the reasoning chain,1357

which more strongly impacts final answers.1358

G.2 Impact of Annealing Strategy.1359

As described in Section 4.3, we adopt a decaying1360

schedule for mixed reward weights over training1361

steps. To analyze its effectiveness, we compare1362

several variants (fixed weights, linear decay, fast1363

decay). Weight curves are shown in Fig. 4. Results1364

in Fig. 5 show that linear annealing performs worst,1365

with an average EM drop of 2.35 points across1366

datasets, suggesting auxiliary signals decay too1367

early. In contrast, our proposed schedule achieves1368

the best or second-best results on all datasets, es-1369
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Figure 6: Training dynamics of answer rewards over
steps.
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Figure 7: Training dynamics of thinking rewards over
steps.

pecially on 2WikiMultiHopQA and Bamboogle. 1370

Fixed scheduling is relatively stable but subopti- 1371

mal. Pre-low annealing performs slightly better on 1372

HotpotQA but worse on others. 1373

G.3 Learning Curve Analysis. 1374

Figures 6 and 7 show training dynamics. For naive 1375

GRPO, because it does not filter out “all-correct” or 1376

“all-wrong” queries, its answer reward is similar to 1377

ours early on but then drops sharply, showing clear 1378

collapse, before slowly recovering but remaining 1379

below initial levels. Our method maintains stability 1380

throughout training, with answer reward staying 1381

high. For the baseline without thinking reward, 1382

answer reward remains similar to ours, but think- 1383

ing reward fluctuates and declines, indicating the 1384

model fails to learn a stable reasoning process. This 1385

further shows that process-level rewards help both 1386

reasoning quality and training stability. 1387

G.4 Influence of Reward Backbone Model. 1388

The reward model plays a critical role. Fig. 8 com- 1389

pares using Qwen2.5-3B and Qwen3-3B for suffi- 1390
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Method Nq Popqa Triviaqa
EM F1 CEM EM F1 CEM EM F1 CEM

Direct Generation 6.8 10.8 9.5 8.6 11.8 9.4 7.5 19.0 9.5
COT 10.5 17.5 15.0 9.7 13.8 10.7 7.8 20.6 10.1
Naive RAG 23.4 32.9 31.9 29.4 37.0 34.5 12.9 29.9 16.5
Sure 25.5 34.2 27.9 30.4 35.7 31.1 13.4 29.7 16.0
IRCOT 15.4 25.1 33.2 25.1 31.5 35.8 10.1 25.0 17.6
Self-ask 17.2 27.1 41.4 24.8 31.7 41.5 9.5 24.1 20.4
SFT 6.3 12.9 10.1 7.6 11.8 8.4 5.2 14.9 7.0
SimpleDeepSearcher 33.4 44.0 44.1 38.9 44.3 44.1 59.6 67.2 66.5
ReSearch-Instruct 35.8 46.2 44.5 41.8 47.4 46.3 58.4 66.1 64.1
Search-R1-Instruct 34.2 44.0 44.2 37.9 43.5 44.1 54.5 62.2 62.3
R1-search-Instruct 35.2 46.4 44.8 40.3 46.1 45.6 57.3 65.6 64.0
TIRESRAG-R1-Instruct 38.0 49.1 47.9 43.0 48.8 47.9 60.0 68.2 66.9

Table 8: Generalization results on single-hop benchmarks (NQ, PopQA, TriviaQA).

QWEN2.5_3B QWEN3_3B QWEN2.5_7B QWEN3_8B0

10

20

30

40

50

Ex
ac

t M
at

ch
 (E

M
)

Hotpotqa 2wikimultihopqa Musique Bamboogle

Figure 8: Comparison of different reward backbone
models.

cient and thinking scoring. We observe consistent1391

improvements with Qwen3-3B: on Musique, EM1392

improves from 16.6 to 17.6; on Bamboogle, EM1393

improves from 41.6 to 42.8. A similar trend is1394

seen comparing Qwen2.5-3B and Qwen2.5-7B: on1395

HotpotQA, EM improves from 39.4 to 40.4 and F11396

from 52.7 to 54.4. These results show that stronger1397

reward models provide better supervision and thus1398

improve final performance.1399

H Generalization on Single-Hop1400

Benchmarks1401

We present in Table 8 the complete experimental1402

results with more baselines and additional metrics.1403

As shown, our method outperforms all baselines1404

across all metrics.1405

I Case Study1406

Figures 14, 15, and 16 present three examples1407

illustrating the effectiveness of TIRESRAG-R1.1408

In the first example, the TIRESRAG-R1-trained1409

Qwen2.5-3B follows a correct reasoning process1410

and gives the correct answer, while the naive1411

GRPO model, despite having sufficient informa- 1412

tion, produces an incorrect reasoning chain and 1413

thus a wrong answer. In the second example, 1414

the TIRESRAG-R1-trained model successfully 1415

retrieves enough information before answering, 1416

whereas the naive GRPO model guesses prema- 1417

turely without sufficient evidence and produces 1418

a wrong answer. In the third example, the naive 1419

GRPO model has sufficient information and cor- 1420

rect reasoning but still outputs the wrong answer, 1421

while our model successfully produces the correct 1422

answer. These examples show that TIRESRAG-R1 1423

guides models toward better reasoning chains and 1424

ensures stronger consistency between reasoning 1425

and answers. 1426

J Prompt Templates 1427

Figures 9 to 13 present all prompt templates men- 1428

tioned in this paper. 1429

• Figure 9: Prompt used for training 1430

instruction-based models, setting the sys- 1431

tem’s reasoning–retrieval–reflection strategy 1432

and output format. 1433

• Figure 10: Prompt used for training base mod- 1434

els, converting the above instruction-based 1435

prompt into a conversation format. 1436

• Figure 11: Prompt for scoring the suffi- 1437

ciency of reasoning trajectories. We follow 1438

the sufficient-context method: the model is 1439

prompted to list sub-questions that solve the 1440

main question, and only if all sub-questions 1441

can be answered from the given references is 1442

the trajectory judged sufficient. A demonstra- 1443

tion example is provided. 1444
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• Figure 12: Prompt for scoring reasoning qual-1445

ity. The four criteria described in the main text1446

(logical soundness, alignment, error aware-1447

ness, conciseness) are included. The model is1448

prompted to output only a number between 01449

and 1 to avoid format errors. In experiments,1450

the reward model followed the prompt strictly1451

and output valid scores.1452

• Figure 13: Prompt used for LLM-as-Judge1453

evaluation. We embed both the predicted an-1454

swer and the gold answer into the prompt and1455

feed it to GPT-4o. If GPT-4o judges that the1456

predicted and gold answers are semantically1457

equivalent, it returns “yes,” otherwise “no.”1458

K Algorithm1459

The pseudo code for TIRESRAG-R1 is shown in1460

Algorithm 1.1461
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Prompt Template for RAG-reasoning Model Generation for Instruction-based Model

You are a helpful assistant. Answer the given question.
You must reason **clearly and completely** inside <think> and </think>

before providing any final answer. Always identify and verify all key
entities (e.g., person names, locations, dates, awards) mentioned in the
question.

If you are uncertain about an entity or fact, or if the question
requires external knowledge, you may use <search>your query</search>,
and the top search results will be returned between <information> and
</information>. Carefully read and reflect on each newly retrieved piece
of information. You can search as many times as you want.

When reasoning, you must ensure your reasoning path aligns strictly
with the evidence.

After reasoning, before providing your final answer, rethink it to make
sure the answer is exactly correct for the original question. Use the
most accurate span from the evidence when possible.

Only after satisfying all the above, give the final answer inside
<answer> and </answer>. For example, <answer>Beijing</answer>.

After outputting the final answer in <answer></answer>, you have
one chance to reflect on the answer. If you choose not to reflect,
nothing further needs to be done. Otherwise, you can then re-examine
your thinking process, the information obtained, and even search for
more information to verify your previous answer or correct the previous
answer. Remember, after reflection ends, you should output the answer in
<answer></answer>.

Figure 9: Prompt template for instruction model training.

Prompt Template for RAG-reasoning Model Generation for Base Model

Answer the given question.
You must reason **clearly and completely** inside <think> and </think>

before providing any final answer.
Always identify and verify all key entities (e.g., person names,

locations, dates, awards) mentioned in the question.
If you are uncertain about an entity or fact, or if the question

requires external knowledge, you may use <search>your query</search>,
and the top search results will be returned between <information> and
</information>. Carefully read and reflect on each newly retrieved piece
of information.

You can search as many times as you want.
When reasoning, you must ensure your reasoning path aligns strictly

with the evidence.
After reasoning, before providing your final answer, rethink it to make

sure the answer is exactly correct for the original question.
Use the most accurate span from the evidence when possible.
Only after satisfying all the above, give the final answer inside

<answer> </answer>. For example, <answer> Beijing </answer>.
After outputting the final answer in <answer> </answer>, you have one

chance to reflect on the answer. If you choose not to reflect, nothing
further needs to be done.

Otherwise, you can then re-examine your thinking process, the
information obtained, and even search for more information to verify
your previous answer or correct the previous answer. Remember, after
reflection ends, you should output the answer in <answer> </answer>.

Figure 10: Prompt template for base model training.

20



Algorithm 1 TIRESRAG-R1 Training with GRPO and Multi-Dimensional Rewards
Require: Policy model πθ , reference model πθold , dataset D, retrieval model πret, hyperparameter weights wthink, wsuff, wreflect,

KL penalty β, iterations T , rollouts per query G, buffer B, dynamic weight dw
Ensure: Updated policy model πθ

1: for t = 1, . . . , T do
2: Compute dynamic weight:

at ←
1

1 + exp
(
T−0.9t

10

)
3: Sample Q ⊂ D
4: for q ∈ Q do
5: Generate rollouts {yi}Gi=1 ∼ πθ(· | q)
6: for i = 1, . . . , G do
7: Extract reasoning trajectory RDi and prediction ai from yi
8: Compute answer reward:

RA
i ← F1(ai, a

∗)

where a∗ is the gold answer for q
9: Compute sufficient reward:

RS
i (q,RDi, a

∗) =

{
1, RDi contains sufficient info to derive a∗,

0, otherwise
i

10: Compute think reward:
RT

i ← Think(RDi), Think(RDi) ∈ [0, 1]

scored on logic, alignment, error-awareness, and conciseness
11: Compute reflection reward:

RT
i (ai) =


+1, if CEM(a1, a

∗) = 0 and CEM(a2, a
∗) = 1,

−1, if CEM(a1, a
∗) = 1 and CEM(a2, a

∗) = 0,

0, otherwise

12: Combine rewards:
Rsum

i = at ·
(
wthinkR

T
i + wsuffR

S
i + wreflectR

R
i

)
+RA

i

13: end for
14: if 0.1 < ∀ r(a)i < 0.9 for i ∈ {1, . . . , G} then
15: Compute advantage by normalizing batch reward:

Ai ←
Rsum

i − 1
G

∑G
j=1 R

sum
j√

1
G

∑G
j=1

(
Rsum

j − 1
G

∑G
k=1 R

sum
k

)2
16: Compute consistency penalty AP

i by Eq. 7
17: Apply difficulty-aware weighting:

A′
i ← (Ai −AP

i ) ·W (RS
avg), where W (RS

avg) is calculated by Eq. 6

18: Add sample to buffer:
B ← B ∪ {(q, yi, A′

i)}Gi=1

19: else
20: continue
21: end if
22: Update πθ on buffer B
23: end for
24: end for
25: return πθ
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Prompt for Sufficient Reward Evaluation

You are an expert LLM evaluator that excels at evaluating a QUESTION, ANSWER
and REFERENCES. Consider the following criteria:
Sufficient Context To The Given Answer: 1 IF the CONTEXT is sufficient to
infer the ANSWER to the question and 0 IF the CONTEXT cannot be used to infer
the ANSWER to the question. Make the sufficiency judgment based solely on the
context, without relying on your memory to determine whether the question can
be answered from the context.

First, output a list of step-by-step questions that would be used to
arrive at a label for the criteria. Make sure to include questions about
assumptions implicit in the QUESTION. Include questions about any mathematical
calculations or arithmetic that would be required.

Next, answer each of the questions. Please note that you may answer these
questions only on the basis of the given context; do not use your own outside
knowledge. Make sure to work step by step through any required mathematical
calculations or arithmetic. Finally, use these answers to evaluate the
criteria.

EVALUATION (JSON)
EXAMPLE:
### QUESTION
In which year did the publisher of Roald Dahl’s Guide to Railway Safety cease
to exist?
### ANSWER
2001
### References
Roald Dahl’s Guide to Railway Safety was published in 1991 by the British
Railways Board. The British Railways Board had asked Roald Dahl to write
the text of the booklet, and Quentin Blake to illustrate it, to help young
people enjoy using the railways safely. The British Railways Board (BRB)
was a nationalised industry in the United Kingdom that operated from 1963
to 2001. Until 1997 it was responsible for most railway services in Great
Britain, trading under the brand name British Railways and, from 1965, British
Rail. It did not operate railways in Northern Ireland, where railways were
the responsibility of the Government of Northern Ireland.
### EXPLANATION
The context mentions that Roald Dahl’s Guide to Railway Safety was published
by the British Railways Board. It also states that the British Railways Board
operated from 1963 to 2001, meaning the year it ceased to exist was 2001.
Therefore, the context does provide a precise answer to the question.
### JSON
{{"Sufficient Context To The Given Answer": 1}}

Remember the instructions: You are an expert LLM evaluator that excels at
evaluating a QUESTION, ANSWER and REFERENCES. Consider the following criteria:
Sufficient Context: 1 IF the CONTEXT is sufficient to infer the ANSWER to
the question and 0 IF the CONTEXT cannot be used to infer the ANSWER to the
question. Make the sufficiency judgment based solely on the context, without
relying on your memory to determine whether the question can be answered from
the context.
First, output a list of step-by-step questions that would be used to
arrive at a label for the criteria. Make sure to include questions about
assumptions implicit in the QUESTION. Include questions about any mathematical
calculations or arithmetic that would be required.
Next, answer each of the questions. Please note that you may answer these
questions only on the basis of the given context; do not use your own outside
knowledge. Make sure to work step by step through any required mathematical
calculations or arithmetic.
Finally, use these answers to evaluate the criteria. Output the ###
EXPLANATION (Text). Then, use the EXPLANATION to output the ### EVALUATION
(JSON)

Figure 11: Prompt used to evaluate context sufficiency.
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Prompt for Thinking Reward Evaluation

You are an expert reasoning evaluator for Retrieval-Augmented Generation
(RAG) tasks.
Your goal is to judge the reasoning quality of the model’s thinking
process based on the retrieved context and question.
You will assign a reward score between 0 and 1. This score reflects only
the quality of the reasoning process, not whether the final answer is
correct.

Evaluation Criteria:
1. Logical Soundness - Is the reasoning coherent and structured?
2. Contextual Alignment - Does it use retrieved evidence correctly?
3. Error Awareness - Does it avoid unsupported assumptions?
4. Clarity and Precision - Is it concise, relevant, and non-redundant?

Scoring:
0.0: Completely flawed reasoning
1.0: Perfect reasoning
Intermediate (e.g., 0.3, 0.7) are allowed.

Important:
- Judge only the thinking process, not the answer.
- Reward accurate, grounded, and structured reasoning.

Your Output:
A single float-type score from {{0.0, 0.1, 0.2, ..., 1.0}}.
No explanation. Only the score.

Figure 12: Prompt used to evaluate thinking quality

Prompt for LLM-As-Judge

Given a Question and its Golden Answer, verify whether the Predicted
Answer is correct.
The prediction is correct if it fully aligns with the meaning and key
information of the Golden Answer.
Respond with True if the prediction is correct and False otherwise.

Question: {question}
Golden Answer: {reference}
Predicted Answer: {prediction}

Figure 13: Prompt used for LLM-as-Judge evaluation.
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Question: Who is Gaius Rubellius Blandus’s father-in-law?
Golden Answer: Drusus Julius Caesar

Naive GRPO: <think> To find out who Gaius Rubellius Blandus’s father-in-law is, I need to first determine
who his wife was. I’ll search for information about Gaius Rubellius Blandus to find details about his family,
particularly his wife. </think>
<search> Gaius Rubellius Blandus family </search>
<information> ... (information retrieved about Julia Livia being granddaughter of Tiberius, but not focusing
on her father) ... </information>
<think> From the information retrieved, we know that Gaius Rubellius Blandus married Julia in AD 33. Now, I
need to find out who Julia’s father was to determine her father-in-law. </think>
<search> Julia Livia Gaius Rubellius Blandus wife </search>
<information> ... (mentions Julia Livia is granddaughter of Tiberius) ... </information>
<think> From the information retrieved, we know that Julia Livia was the granddaughter of Tiberius. Therefore,
Gaius Rubellius Blandus’s father-in-law is Tiberius. </think>
<answer> Tiberius </answer>

TIRESRAG-R1: <think> First, I need to identify who Gaius Rubellius Blandus’s wife was. Then I need to
find out who her father was. </think>
<search> who was Gaius Rubellius Blandus’s wife </search>
<information> Gaius Rubellius Blandus married Julia Livia, granddaughter of Emperor Tiberius, in AD 33.
... </information>
<think> Now that I know his wife is Julia Livia, I need to find out who Julia Livia’s father was. </think>
<search> who was Julia Livia’s father </search>
<information> Julia Livia was the daughter of Drusus Julius Caesar and Livilla. ... </information>
<think> Therefore, Gaius Rubellius Blandus’s father-in-law is Drusus Julius Caesar. </think>
<answer> Drusus Julius Caesar </answer>

Figure 14: Case study where the naive GRPO model, despite having sufficient information, mistakenly infers the
grandfather Tiberius as the father-in-law, while TIRESRAG-R1 correctly reasons through the steps and outputs
Drusus Julius Caesar.
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Question: Where was the place of burial of John De Ferrers, 1st Baron Ferrers of Chartley’s father?
Golden Answer: Staffordshire

Naive GRPO: <think> To find out where John de Ferrers, 1st Baron Ferrers of Chartley’s father was buried, I
need to first determine who his father was. I’ll search for information about John de Ferrers, 1st Baron Ferrers of
Chartley to find his father’s name. </think>
<search> John de Ferrers, 1st Baron Ferrers of Chartley father </search>
<information> ... (information retrieved about Roger Ferrers of Fiddington Gloucestershire, unrelated to the
correct father) ... </information>
<think> From the information retrieved, we know that John de Ferrers, 1st Baron Ferrers of Chartley’s father
was Roger Ferrers of Fiddington Gloucestershire. Now, I need to find out where Roger Ferrers of Fiddington
Gloucestershire was buried. </think>
<search> Roger Ferrers of Fiddington Gloucestershire burial place </search>
<information> ... (mentions Fiddington and other unrelated burial info) ... </information>
<think> Based on the information retrieved, Roger Ferrers of Fiddington Gloucestershire was buried at
Fiddington. Therefore, the place of burial of John de Ferrers, 1st Baron Ferrers of Chartley’s father was
Fiddington, Gloucestershire. </think>
<answer> Fiddington, Gloucestershire </answer>

TERRISRAG-R1: <think> First, we need to determine who John de Ferrers, 1st Baron Ferrers of Chartley’s
father was. Then we need to find out where his father was buried. </think>
<search> John de Ferrers, 1st Baron Ferrers of Chartley father burial place </search>
<information> John de Ferrers, 1st Baron Ferrers of Chartley (1271–1324) was the son of Robert de Ferrers,
6th Earl of Derby and Alianore de Bohun. ... </information>
<think> From the search results, I can confirm that John de Ferrers, 1st Baron Ferrers of Chartley’s father was
Robert de Ferrers, 6th Earl of Derby. Now I need to find where he was buried. </think>
<search> Robert de Ferrers, 6th Earl of Derby burial place </search>
<information> Robert de Ferrers, 6th Earl of Derby, was buried at St Thomas’s Priory at Stafford, in
Staffordshire. ...</information>
<think> Therefore, the place of burial of John de Ferrers, 1st Baron Ferrers of Chartley’s father is Stafford, in
Staffordshire. </think>
<answer> Stafford, in Staffordshire </answer>

Figure 15: Case study where the naive GRPO model, despite retrieving sufficient information, follows an incorrect
reasoning chain by focusing on an unrelated person (Roger Ferrers of Fiddington) and outputs the wrong burial
place. In contrast, TIRESRAG-R1 reasons through the correct lineage and finds the true location in Staffordshire.
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Question: Who was born first, Dennis E. Nolan or Humberto Anguiano?
Golden Answer: Dennis E. Nolan

Naive GRPO: <think> To determine who was born first between Dennis E. Nolan and Humberto Anguiano, I
need to find out their birth dates. I’ll first search for Dennis E. Nolan’s birth date. </think>
<search> Dennis E. Nolan birth date </search>
<information> ... Dennis E. Nolan (1872–1956), United States Army general. ... </information>
<think> From the search results, I found that Dennis E. Nolan was a United States Army general. Now, I’ll
search for Humberto Anguiano’s birth date. </think>
<search> Humberto Anguiano birth date </search>
<information> ... Humberto Anguiano (born 2 November 1910) was a Mexican modern pentathlete.
...</information>
<think> Based on the information retrieved, Dennis E. Nolan was born in 1872 while Humberto Anguiano was
born in 1910. Therefore, Dennis E. Nolan was born first. </think>
<answer> Humberto Anguiano </answer>

TERRISRAG-R1: <think> Let’s determine who was born first, Dennis E. Nolan or Humberto Anguiano, by
finding their respective birth years. </think>
<search> Dennis E. Nolan birth date </search>
<information> ... Dennis E. Nolan (1872–1956), United States Army general. ... </information>
<think> From the search results, I can confirm that Dennis E. Nolan is a United States Army general born in
1872. </think>
<search> Humberto Anguiano birth date </search>
<information> ... Humberto Anguiano (born 2 November 1910) was a Mexican modern pentathlete. ...
</information>
<think> Since Dennis E. Nolan was born in 1872 and Humberto Anguiano was born in 1910, Dennis E. Nolan
was born first. </think>
<answer> Dennis E. Nolan </answer>

Figure 16: Case study where the naive GRPO model, despite retrieving the correct birth years (1872 for Dennis E.
Nolan and 1910 for Humberto Anguiano), produces an inconsistent reasoning chain and wrongly outputs Humberto
Anguiano as born first. In contrast, TIRESRAG-R1 follows a correct reasoning process and gives the right answer,
Dennis E. Nolan.
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