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Abstract

Hyperbolic representation learning has recently emerged as a powerful frame-
work for modeling hierarchical structures in data, often outperforming Euclidean
embeddings. We investigate its utility for analyzing high-dimensional biolog-
ical data from Imaging Mass Cytometry (IMC) of breast cancer tissues. We
embed cells into Euclidean and Lorentzian latent spaces via a fully hyperbolic
variational autoencoder (VAE) and propose an information-theoretic framework
based on k-nearest neighbor estimators to quantify clustering quality using mu-
tual information (MI) and conditional mutual information (CMI). Results show
that Lorentzian embeddings preserve substantially more biologically relevant
structure compared to Euclidean ones. We further provide open-source tools
for Lorentzian MI estimation and hyperbolic UMAP visualization, enabling
geometry-aware representation learning for spatial biology. Code available at:
https://github.com/youssefwally/FlatlandandBeyond

1 Introduction

Encoding multiscale and hierarchical structure has long been a central goal in representation learning.
Hyperbolic representation learning models, which operate in negatively curved spaces, have recently
been shown to naturally capture hierarchies and outperform Euclidean models across diverse domains
ranging from natural language and knowledge graphs to computer vision and recommender systems
[1–3]. By embedding data in spaces that mirror tree-like relationships, hyperbolic methods achieve
better clustering and classification performance for inherently hierarchical data [4, 5].

These properties make hyperbolic geometry especially appealing for biological applications, where
cell types and states often follow complex hierarchical organization. Multiplexed imaging techniques
such as Imaging Mass Cytometry (IMC) capture dozens of protein markers at subcellular resolution,
enabling high-dimensional single-cell profiling [6]. Accurately modeling the relationships between
cell types and functional states in such data requires representations that respect this underlying
hierarchy, an area where hyperbolic embeddings hold significant promise [7].

However, despite growing interest, rigorous quantitative comparisons between Euclidean and hyper-
bolic embeddings remain scarce. Most studies rely on qualitative visualization rather than quantitative
geometry-agnostic measures. To address this gap, we propose an information-theoretic evaluation
framework that quantifies clustering quality across geometric spaces using mutual information (MI)
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and conditional mutual information (CMI) utilizing the Kraskov–Stögbauer–Grassberge (KSG)
MI estimator [8]. Applying this framework to a 42-marker breast cancer IMC dataset, we show
that Lorentzian (hyperbolic) embeddings capture substantially more biologically relevant structure
than Euclidean ones. We further release open-source tools extending the KSG MI estimator [8] to
Lorentzian manifolds and enabling UMAP [9] visualizations with hyperbolic distance metrics.

2 Methodology

Traditional quantitative metrics such as the Silhouette Score or Average Distortion Index [10, 11]
assume Euclidean geometry; linear distances, convex neighborhoods, and isotropy. These assumptions
fail in hyperbolic spaces, where distances grow exponentially, and local curvature which affects
neighborhood structure. Even substituting Euclidean distances with geodesics can yield misleading
results due to the indefinite nature of the Lorentzian inner product and curvature-dependent spread.

Similarly, visualization methods like t-SNE and UMAP [12, 9] exhibit bias towards Euclidean
geometry. Thus, assessing which geometry better captures biologically meaningful structure requires
evaluation methods that do not assume Euclidean geometry.

We adopt a non-parametric MI estimator based on k-nearest neighbor (kNN), specifically the KSG
estimator [8], which can operate on arbitrary metric spaces, including Lorentzian geodesics.

Geometry-Agnostic: MI and CMI can be estimated directly from pairwise distances, independent
of curvature, convexity, or coordinate representation [13]. This allows fair comparison between
embeddings learned in Euclidean and hyperbolic spaces.

Local and Density-Aware: Unlike global clustering scores, kNN-based MI captures local density
variations and neighborhood consistency.

Cross-Geometry Alignment: By estimating I(X;Y ) (MI), where X and Y denote Euclidean and
hyperbolic representations respectively, we quantify the shared information between representations,
providing a direct measure of structural preservation.

2.1 KSG Estimator Formulation

Given random variables X , Y , and Z, the CMI under the KSG estimator can be expressed as

I(X;Y |Z) ≈ ψ(k) + ψ(N)− 1

N

N∑
i=1

[
ψ(n(i)x + 1) + ψ(n(i)

y + 1)− ψ(n(i)z + 1)
]

where ψ(·) is the digamma function, and n(i)x , n
(i)
y , n

(i)
z denote the number of neighbors within the

εi-ball of the corresponding variables, excluding the query point. The radius εi is defined as the
maximum distance to the k-th nearest neighbor in the joint space. The mutual information (MI) case
follows directly by omitting the (Z)-dependent term.

3 Data

We use the Imaging Mass Cytometry (IMC dataset from [7], featuring a 42-marker panel for phe-
notypic and spatial profiling of the tumor microenvironment, with emphasis on cancer-associated
fibroblasts in breast cancer. Hierarchical cell annotations span four levels; we use the first three,
from broad categories (Cancer, Immune, Endothelial, Fibroblasts) to fine-grained immune subtypes
and detailed T cell and macrophage phenotypes. We also benchmark our method on the MNIST
handwritten digit dataset [14], a standard test bed for representation learning and clustering, offering
a controlled setting to validate geometry-aware embeddings.

4 Experiments

4.1 Implementation Details

Experiments were conducted in PyTorch [15] using Riemannian optimization [16] via Geoopt [17],
with 32-bit precision as in [18]. Models include Hyperbolic Variational Autoencoder (HVAE), and
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Figure 1: 2D latent embeddings from VAEs in Euclidean and Lorentzian spaces, colored by ground-
truth labels.

Table 1: Estimated MI and CMI on IMC and MNIST test sets. Higher is better.

Quantity IMC MNIST

MI(DL;C) 1.07 1.86
MI(DE ;C) 0.96 1.78
MI(DL;DE) 0.01 4.03
CMI(DL;C | DE) 1.06 0.16
CMI(DE ;C | DL) 0.00 0.09

Euclidean Variational Autoencoder (EVAE). All analyses are performed on the test set. To ensure
fair comparison, H-VAE and E-VAE are trained independently, with reconstruction loss as a common
objective.

5 Results

5.1 Qualitative Analysis

Visualizations of Euclidean and Lorentzian embeddings (Fig. 1) reveal clear structural differences
that highlight the representational advantages of hyperbolic geometry. In Lorentzian space, clusters
appear more compact and hierarchically organized, consistent with the space’s exponential volume
growth. In the IMC dataset, minority classes such as Endothelial Cells (8.40% of total samples) form
tighter, more separable clusters than in Euclidean space. This indicates that Lorentzian embeddings
capture fine-grained biological distinctions even among underrepresented cell types.

Similar behavior is observed in MNIST, where ambiguous digits such as certain “3”s are positioned
between clusters of visually similar digits (“0”, “6”, “8”), reflecting Lorentz space’s ability to
represent semantic uncertainty. In contrast, Euclidean embeddings enforce flatter separations that
obscure such relationships.

5.2 Quantitative Analysis

We evaluate how well each geometry encodes class-relevant structure using MI between pairwise
distance matrices Lorentzian Distances (DL), Euclidean Distances (DE) and class labels (C). We
also compute CMI to quantify the incremental information each geometry contributes beyond the
other.

The MI results confirm that Lorentzian embeddings encode more class-relevant information
(MI(DL;C) > MI(DE ;C)) in both datasets. The near-zero MI(DL;DE) on IMC indi-
cates that the two geometries capture largely non-overlapping structural information. Moreover,
CMI(DL;C | DE) = 1.06 versusCMI(DE ;C | DL) = 0.00 shows that Lorentzian geometry pro-
vides additional, non-redundant information beyond what Euclidean structure explains, demonstrating
superior expressiveness and alignment with biological hierarchies.

Additional studies and statistical analyses (kNN evaluations, McNemar test) are provided
in the Supplementary Material. Code available at: https://github.com/youssefwally/
FlatlandandBeyond
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6 Potential Negative Societal Impact

This work uses de-identified biological imaging data to evaluate geometric representation learning.
While the methods proposed are purely analytical, future applications to clinical datasets could raise
privacy and ethical concerns if data are not properly anonymized. Moreover, improved clustering
and cell-type inference could be misused to predict sensitive biological traits without appropriate
oversight. To mitigate these risks, transparency, reproducibility, and responsible data use should be
prioritized.
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