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ABSTRACT

Although graph neural networks (GNNs) have shown remarkable performance in
graph machine learning, their effectiveness in practice often suffers from realis-
tic challenges including distribution shifts and label scarcity. Towards this end,
this paper studies the problem of semi-supervised domain generalization, which
aims to improve the performance of GNNs on unseen graphs using both labeled
and unlabeled data. We propose a novel approach named LLM-Guided Graph Ex-
pert Routing (LIGHT) for semi-supervised domain generalization. The core idea
of LIGHT is to distill the knowledge from LLM-as-a-judge to determine context-
aware routing weights for a multi-hop graph mixture-of-experts framework. In
particular, our LIGHT employs diverse graph experts that explore neighborhood
information at varying depths. More importantly, we leverage LLMs to provide
judgments of the most reliable graph experts are for crucial nodes, which pro-
vide context-aware routing guidance with high generalizability for knowledge
distillation. To further address label scarcity, we introduce an expert-aware dy-
namic pseudo-labeling strategies that selects reliable nodes for additional train-
ing. Extensive experiments on various benchmark datasets validate the effec-
tiveness of the proposed LIGHT in comparison with competing approaches. Our
source code can be found at https://anonymous.4open.science/r/
LIGHT-A817.

1 INTRODUCTION

Graphs serve as a fundamental data structure for capturing intricate relational and structural de-
pendencies. With their proven effectiveness and computational efficiency in graph-based machine
learning, Graph Neural Networks (GNNs) have become a de facto apporach across a variety of tasks.
One fundamental task is node classification, which endeavors to predict the label of each node within
a graph based on its features and relational context, has been widely applied in various domains, i.e.,
social network analysis Bhagat et al. (2011), biochemistry Yue et al. (2020) and recommender sys-
tems Wu et al. (2022b). However, GNNs inherently rely on the assumption that training and testing
data are independently and identically distributed (i.i.d.) Pan & Yang (2010), making them sus-
ceptible to the out-of-distribution (OOD) problem that induces significant performance drops under
distribution shifts.

To prevent the generalization failure of GNNs, recent efforts have focused on the invariance prin-
ciple from causality and invariant learning has emerged as a promising strategy for generalizable
graph learning. Actually, GNNs’ OOD generalization (domain generalization) is impaired by spu-
rious associations between non-essential graph patterns and target labels Chen et al. (2024b); Ju
et al. (2024b). The rationale of invariant graph learning is to identify the invariant subgraph that
consistently contributes to the prediction under distribution shift Li et al. (2022b); Wu et al. (2022a);
Liu et al. (2023a). Despite the effectiveness, these methods often assume fully labeled source do-
mains, whereas in real-world scenarios, the source domain typically contains only a small number of
labeled samples alongside a large amount of unlabeled data Qiao et al. (2023b); Dan et al. (2024a;b).

In this work, we focus on a more realistic problem of semi-supervised domain generalization on
graphs. Nonetheless, straightly adapting the above methods remains non-trivial, primarily aris-
ing from two key challenges: First, The availability of diverse training environments under label
scarcity setting. Effective disentanglement of invariant components from spurious correlations re-
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quires exposure to a variety of training environments Xia et al. (2023); Li et al. (2023); Wang et al.
(2024b). However, in real-world settings, unseen domains often involve a broad spectrum of latent
factors, whose quantity and nature are difficult to specify and replicate. This issue is further exac-
erbated when labeled data are scarce, making it difficult to reliably simulate the necessary diversity
for invariant learning. Second, The heterogeneity of graph data could degrade generalization abil-
ity. Contrary to regular Euclidean data, graphs inherently possess diverse and intricate structures,
with each node connected to different neighbors, resulting in highly divergent neighborhood struc-
tures and node degrees. The message-passing mechanism in GNNs tends to emphasize signals from
nodes or subgraphs with high degrees and strong modularity Liu et al. (2023b); Sun et al. (2024).
This often induces a simplicity bias, where the model focuses on prominent yet potentially spurious
patterns, at the expense of capturing the true invariant substructures critical for robust prediction.

Fortunately, the remarkable generalization capabilities of Large Language Models (LLMs) provide
new avenues for addressing these challenges. By harnessing their extensive pre-trained knowledge
and semantic reasoning abilities, LLMs can offer valuable guidance to complement the learning
process of GNNs. On the one hand, some prior works have utilized LLMs as enhancers to enrich
node or graph representations Chien et al. (2022); Jin et al. (2023); He et al. (2024); Liu et al. (2024);
Li et al. (2024a). On the other hand, some approaches have attempted to directly employ LLMs as
predictors Zhao et al. (2023); Fatemi et al. (2024); Tang et al. (2024); Perozzi et al. (2024); Chen
et al. (2024a); Wang et al. (2024a). However, LLMs are fundamentally designed to generate discrete
textual outputs in a decoder-only manner, which limits their ability to accurately represent complex
graph semantics Wei et al. (2022); Jiang & Luo (2025). Meanwhile, directly generating predictions
from LLMs often leads to instability and unrelated outputs required for graph-based tasks.

Towards the end, in this paper, we propose a novel approach named LLM-guIded GrapH Mixture-
of-expert RouTing (LIGHT) for semi-supervised domain generalization on graphs, which aims to
utilize LLMs as a context-aware routing to select appropriate invariant subgraph experts under the
label scarcity setting. Specifically, given the input graph, we first transform the context of the node
from different hops (i.e., 0-hop, 1-hop and 2-hop) into prompts, which are fed into pre-trained
LLMs. Then, instead of directly predicting node labels, our LIGHT employs a graph mixture-of-
expert (MoE) framework Wang et al. (2023), where each expert is dedicated to handling distinct
data distributions, thereby facilitating better alignment with invariant correlations. Based on this,
we generate predictions from each graph expert and LLMs are employed to dynamically select the
most contextually aligned output. Finally, pseudo-labels are assigned to the remaining unlabeled
nodes, and a flexible confidence threshold informed by expert outputs is utilized to identify high-
confidence pseudo-labeled nodes. Therefore, benefiting from the zero-shot capabilities of LLMs,
the framework could generalize effectively to unseen domains under the semi-supervised scenario.

The contribution of our LIGHT can be summarized as follows:
❶ New Perspective. We study an underexplored yet practical problem of semi-supervised domain

generalization on graphs and pioneer a path of leveraging zero-shot capabilities of LLMs to ad-
dress this problem.

❷ Novel Methodology. We propose a novel LLM-Guided MoE framework LIGHT, which transforms
the multi-hop ego-subgraphs of each node into LLM prompts to guide the selection of GNN expert
as the invariant predictor, and introduces a flexible expert-enhanced pseudo-labeling strategy to
supervise the training of unlabeled nodes.

❸ Extensive Experiments. We conduct extensive experiments on multiple public datasets to evaluate
the effectiveness of the proposed framework. The results consistently demonstrate the superiority
of LIGHT in semi-supervised graph domain generalization.

2 RELATED WORK

Graph Domain Generalization. Graph Domain Generalization (GDG) has emerged as a critical
research area to address the prevalent issue of performance degradation when GNNs encounter OOD
data Li et al. (2022a); Mai et al. (2025). Early efforts focused on self-supervised pretraining (e.g.
Pretraining-GNN), disentanglement (e.g. DisenGCN Ma et al. (2019a)), and adversarial training
(e.g. GraphAT) Zhang et al. (2025). Recently, casual inference with representative methods includ-
ing CIGA Chen et al. (2022) and StableGNN Polina Andreeva & Bochenina (2022). Data augmenta-
tion techniques have matured and label semantic preservation (e.g. LiSA Yu et al. (2023)). Complex
multicomponent frameworks, such as MLDGG Tian et al. (2025) which integrates meta-learning
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and causal reasoning, and TRACI Zhao et al. (2025a) which employs topological adversarial learn-
ing and prototypical mixup, signify a shift towards holistic solutions. However, these methods often
assume fully labeled source domains, which limits their applicability in real-world scenarios where
label annotations are scarce or expensive. In our paper, we consider the graph domain generalization
task under the semi-supervised scenario.

Semi-supervised Learning on Graphs. Semi-Supervised Learning on Graphs (GSSL) has emerged
as a crucial paradigm for learning from graph-structured data where labeled instances are scarce
but unlabeled data and structural information are abundant Zhao et al. (2025b). Traditional GSSL
includes Label Propagation Algorithms Kipf & Welling (2017); Ju et al. (2024a) and graph regu-
larization techniques that enforce smoothness in predictions, while current emphasizes enhancing
robustness and scalability through regularization Wu et al. (2025); Parveen et al. (2024), pseudo-
labeling, and sophisticated Graph Contrastive Learning coupled with advanced data augmentation
strategies Du et al. (2025); Wang et al. (2025); Ma et al. (2019b). Build on various kind on GNNs
architecture, advanced SSL paradigms emerged, self-training strategies like A3-GCN Abdolali et al.
(2025) and graph contrastive learning method like DGI Zhu et al. (2020), GRACE Hu et al. (2024)
and AFECL Li et al. (2024b) for unsupervised representation learning. However, how to effectively
perform semi-supervised learning under distribution shift remains underexplored.

3 PRELIMINARIES

Notations. Let G = {V, E} denote a graph, where V is the node set with N nodes and E is the
edge set. The adjacency matrix is denoted as A ∈ {0, 1}N×N , where Auv = 1 if there is an edge
(u, v) ∈ E , otherwise Auv = 0. Besides, the node feature matrix can be denoted as X ∈ RN×d,
where d is the feature dimension. From the data-generating perspective, the input graph can be
decomposed into a set of overlapping ego-graphs Wu et al. (2022a; 2024b) and the k-hop ego-graph
of node v can be defined as G(k)

v = {X(k)
v ,A

(k)
v }, where feature matrix X

(k)
v and adjacency matrix

A
(k)
v is induced by the node v as well as its k-hop neighborhood respectively.

Semi-supervised Domain Generalization on Graphs. Given the graph G = {V, E}, we denote
Vs ⊂ V as the labeled node set, where each node v ∈ Vs is assigned a label Yv ∈ {0, 1}C , with
C being the number of classes, and Yv,c = 1 if node v belong to c-th class, otherwise Yv,c = 0.
The rest Vu = V\Vs is an unlabeled node set. The distribution shifts on the graph indicate that the
distribution of ego-subgraphs and their labels differs between the training and testing data, namely
ptr(Gv, yv) ̸= pte(Gv, yv). The objective is to learn an optimal predictor f∗(·) given the source
graph G with limited labels such that it performs well on the unseen target graph.

f∗ = argmin
f

Eptr
[L(f(Gv),Yv)], (1)

where L(·) is the loss function. The learned model is then utilized to infer the node label for the
target graph. Note that here the source and target graphs share the same label space.

4 METHODOLOGY

4.1 FRAMEWORK OVERVIEW

We introduce an LLM-guided MoE framework for semi-supervised domain generalization on
graphs. The high-level idea of our LIGHT is to leverage the zero-shot capability of LLMs to dy-
namically select appropriate GNN experts based on multi-hop ego-subgraph prompts, thereby en-
hancing the generalization to unseen domains. In particular, we first decouple the node context into
different hops and feed them into an MoE framework. Based on this, we extract the context of each
node from different hops into prompts and integrate them into LLMs to adaptively route inputs to
the most relevant experts with high generalizability for knowledge distillation. Finally, we utilize
an expert-enhanced pseudo-labeling to alleviate the label scarcity. The overview of our LIGHT is
illustrated in Figure 1. More details are introduced as follows.
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Router

0-hop Expert

W0 W1 W2

Classifier

1-hop Expert 2-hop Expert

You are an expert on GNN expert selector. Task is to analyze the 
given node and its neighbors to choose which expert…
Node i represent … and it’s connected to node j, k, l…
0-hop expert’s prediction is …, 1-hop …, 2-hop…
Which expert is the best Give me your choice…

Large Language Model

Influence 
Score

Activated nodes

Top K

Unlabeled nodes

Top

Top

Top

Labeled nodes

Unlabeled nodes

Target node

Distillation
Pseudo label

Figure 1: The overview framework of our proposed LIGHT. We decouple the node context into
different hops and feed them into a mixture-of-expert framework. Then, we transform the context
into prompts and input them into an LLM. The LLMs serve as a teacher router and we distill the
knowledge from LLM-as-judge. Finally, we introduce expert-aware dynamic pseudo-labeling to
select reliable nodes for additional training.

4.2 MULTI-HOP GRAPH MIXTURE-OF-EXPERT FOR DIVERSE NEIGHBORHOOD
EXPLORATION

Traditional GNNs often suffer from oversmoothing or overfitting when aggregating multi-hop neigh-
bors, particularly under distribution shifts. These issues can be attributed to the indiscriminate ag-
gregation of neighborhood information across varying hops. This practice can lead to the generation
of spurious correlations or redundant patterns both of which are sensitive to domain-specific biases.
Theorem 4.1 demonstrates that the mixture-of-experts (MoE) model achieves a lower prediction
error compared to the individual model.

Theorem 4.1. Suppose the true label for node v is 1. If only a single expert is available (i.e.,
K = 1) and this expert is not aligned with the domain-specific distribution of node v, then the
prediction error satisfies the lower bound:

P(Ŷv ̸= 1) = P(Qv,1 < 0) > 0.

In contrast, if K experts are available, the prediction error is upper bounded as:

P(Ŷv ̸= 1) ≤ C0

K
,

where C0 is a constant that depends on the margin ν and the sub-Gaussian parameter σ2.

The proof of this bound is provided in Appendix B. Notably, different hops capture different lev-
els of contextual semantics: lower hops (e.g., 1-hop) typically reflect local homophilic patterns,
while higher hops encode global and heterophilic dependencies. Therefore, we decouple informa-
tion aggregation by hop and generate a set of candidate predictions by designing a graph MoE frame-
work Cai et al. (2024); Wang et al. (2023), where hop-specific experts generate candidate predictions
that are adaptively integrated based on node context for robust performance under distribution shift.

For the k-hop ego-subgraph G(k)
v , we calculate positive pointwise mutual information

(PPMI) Zhuang & Ma (2018) between nodes to fully explore the structural information. Specifi-
cally, we employ a random walk to sample a set of paths on A, and the frequency matrix F between
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nodes can be calculated as the co-occurrence on the paths. Then, the PPMI between nodes can be:

P̃ij =
Fij∑
i,j Fij

,P̃i =

∑
j Fij∑
i,j Fij

, P̃j =

∑
i Fij∑
i,j Fij

,

Pij = max{log( P̃ij

P̃i × P̃j

), 0}.
(2)

where P̃ij denotes the probability that node vi within the contextual window of node vj and Pij

is the PPMI between them. Therefore, a larger Pij indicates a higher co-occurrence frequency
between nodes than if they were independent. We treat P (k)

v as the new adjacency matrix for the
k-hop ego-subgraph G(k)

v and the representation of node v can be extracted as:
Z(k)

v = GNNk(X
(k)
v ,P (k)

v ), (3)
where GNNk(·) is the GNN with L layers. Note that in our work, we employ K experts sharing the
same architecture but parameterized independently. We utilize a MoE routing mechanism to assign
expert weights, followed by a classifier that produces the final prediction:

Ŷv = f
( K∑
k=1

ω(k)
v Z(k)

v

)
, (4)

where f(·) is a learnable classifier and ωv denote the weight of the different expert.

4.3 NEIGHBORHOOD-AWARE PROMPT ENGINEERING

Since the distribution shifts on the graph entail a broad range of structural variations, directly learn-
ing a routing function for ωv as in traditional MoE frameworks becomes unreliable. We leverage
the zero-shot capability of LLMs as a judge to enable more informed and adaptive expert selection.
In particular, for each node v, we first extract K ego-subgraphs corresponding to different hops,
effectively capturing multi-hop structural contexts. Then, we take each ego-graph Gv as input of
the expert and provide the context to describe the expert (g : Gv → W ) and the goal of tasks
(q : W → W ), where W is the sequence of discrete tokens for the LLMs.

Expert Context Provision. Given a node v, the ego-subgraph for each expert and its context can
be presented as: You are an expert on GNN experts selector, given GNN experts: ⟨expert⟩...\n, with
node v and its neighborhood {graph} represent node connection relationships...\n, where ⟨expert⟩
is the placeholder for expert inputs and {graph} is the ego-subgraph information.

Note that the k-th expert input is the description w.r.t. k-hop neighborhood, i.e., the 1-hop expert can
be 1-hop: direct connected neighbors providing classification signals. Ego-subgraph information
can be described in an incident manner, i.e., Node v represents..., and it is connected to node u...\n.

Task Description. To guide the expert selection process, we design a task-specific prompt where
the model is asked to choose the most appropriate expert for node classification based on the expert
context. Specifically, the prompt includes not only the task description but also a set of alternative
expert choices, i.e., Which expert does node v classification used? Please give out your choice on
the following experts: {ans}, where {ans} represent the set of experts, namely {1, 2 . . . ,K}.

Based on this, the context information of nodes can be formulated as prompts (g(Gv), q(Q),Rv),
where Q denote the question text for the task. Note that we also incorporate the individual predic-
tions Rv from each expert as the context (see Section 4.2).

4.4 LLM-GUIDED CONTEXT-AWARE ROUTING WITH KNOWLEDGE DISTILLATION

Instead of relying on LLMs to directly generate predictions, which often results in unreliable outputs
or incorrect formats, we propose to leverage LLMs as a judge instead of a predictor and employ
knowledge distillation to transfer the LLM-guided routing behavior to a lightweight student model.

LLM Judge for Context-aware Routing. We generate the predictions from different experts and
incorporate them into the LLM judge for contextual-aware routing, which can be formulated as:

Rv = {R(k)
v }Kk=1, R

(k)
v = f

( K∑
k′=1

e(k)v (k′)Z(k)
v

)
, (5)
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where e
(k)
v is initialized as a one-hot vector with the k-th entry set to 1. Then, the resulting predic-

tions are subsequently incorporated into the LLMs, which selects the most plausible expert k∗:

k∗ = LLM(g(Gv), q(Q),Rv). (6)

We adopt a label smoothing strategy Müller et al. (2019) within our MoE framework by assigning
lower weights to non-selected experts. Accordingly, the weight vector e(k)v can be updated as:

e(k)v =

{
α, if k = k∗,
1−α
K−1 , if k ̸= k∗,

(7)

where α ∈ (0, 1) is the smoothing coefficient.

Knowledge Distillation with Influence Maximization. Note that performing LLM inference for
each node is computationally inefficient, we distill a lightweight routing function from the LLM to
enable efficient expert selection. Inspired by the influence maximization (IM) problem in the social
network Kempe et al. (2003), we aim to select a set of anchor nodes S that maximizes the utility of
LLMs in a cost-effective manner, and the formation is:

max
S

|σ(S)| s.t. S ⊆ V, |S| = B, (8)

where σ(S) denotes the set of nodes that can be activated by S, defined as:

σ(S) =
⋃

v∈V,Iv(S)>θ

{v}, Iv(S) = max
u∈S

Iv(u), (9)

where Iv(S) denotes the maximum influence from the anchor nodes, θ is the activation threshold.
In practice, we introduce Pu,v and the influence quality Iv(u) from anchor node u is measured as:

Iv(u) = Pu,v

K∑
k=1

E(k)
u , (10)

where we use entropy E
(k)
u = −

∑C
c=1 R

(k)
u,c logR

(k)
u,c as the influence score. We employ a greedy

node selection to obtain S and the details can be seen in Appendix 1. Based on S, we distill knowl-
edge from the LLMs to obtain a lightweight routing function, and the teaching loss can be:

Ldl = −
∑
u∈S

CE(e(k
∗)

u , h(Zu)), Zu = Z(1)
u ∥ . . . ∥Z(K)

u , (11)

where h(·) denotes the routing function and CE(·) is the cross-entropy loss. Note that to effectively
address domain shifts, we perform knowledge re-distillation from the LLMs for each target domain
prior to inference, and the MoE framework in Equation 3 can be updated into:

Ŷv = f
( K∑
k=1

h(Zv)Z
(k)
v

)
, (12)

4.5 EXPERT-AWARE DYNAMIC PSEUDO-LABELING

For each unlabeled node v, we generate the sharpening pseudo-label Ỹv from the MoE framework,
which is then used for the node classification. In particular, we use the θ-percentile of the entropy
value u

(k)
v from each expert to establish a dynamic threshold τ , which can be defined as:

τ = Percentileθ

(
{u(k)

v }Kk=1

)
. (13)

Given this dynamic threshold, we filter out noisy pseudo labels and leave only the high-quality
samples from the unlabeled data. In formula:

Vselected = {(v, u(k∗)
v )|u(k∗)

v ≤ τ}. (14)

We leverage the high-quality samples to fine-tune the model, thereby improving its performance and
promoting better generalisation under domain shifts. The unsupervised classification loss can be:

Lu =
∑

v∈Vselected

CE
(
Ỹv, f

( K∑
k=1

h(Zv)Z
(k)
v

))
. (15)

6
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Table 1: The model performance comparison on six domain generalization tasks with source label
rate as 5%. A: ACMv9; C:Citationv1; D: DBLPv7. A⇒C represents that A is the source graph and
C is the target graph. The same applies to other tasks.

A⇒C A⇒D C⇒A C⇒D D⇒A D⇒CMethods Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
MLP 41.3±1.15 35.8±0.72 42.8±0.88 36.3±0.77 39.4±0.57 33.7±0.58 43.7±0.69 36.7±0.55 37.3±0.32 30.8±0.37 39.4±0.99 32.8±0.99

GCN 54.4±1.52 52.0±1.62 56.9±2.33 53.4±2.81 54.1±1.40 52.3±1.98 58.9±0.99 54.5±1.55 50.1±2.14 48.0±3.28 56.0±1.24 51.9±1.49

GSAGE 49.3±2.18 46.4±2.06 51.8±1.35 47.4±1.62 46.8±2.56 45.0±2.78 51.7±1.95 48.1±1.97 41.7±2.17 37.4±4.59 45.4±2.11 39.3±3.45

GAT 55.1±3.22 50.8±1.45 55.3±2.52 51.8±2.60 50.0±1.20 45.6±2.36 55.4±2.73 49.2±2.59 44.8±2.74 38.3±4.84 50.4±3.35 42.0±4.46

GIN 64.6±2.47 56.0±2.73 60.0±2.09 51.3±3.99 57.1±1.19 54.4±2.57 62.0±1.05 56.8±1.40 51.9±2.00 45.4±2.16 60.2±3.05 53.0±2.10

CaNet 62.3±3.11 54.9±2.98 61.2±3.77 51.0±2.00 58.6±1.01 51.3±0.76 63.0±2.31 57.5±1.64 52.4±5.09 43.8±1.77 57.2±4.01 48.3±3.67

MARIO 65.5±4.07 60.9±4.31 66.3±5.85 61.4±4.05 57.0±4.16 53.5±5.10 63.9±4.89 53.7±5.56 51.5±4.13 42.9±3.06 63.9±5.28 55.7±4.57

LDAT 69.3±0.99 70.3±1.30 65.0±2.24 67.0±1.53 65.8±0.89 63.1±1.65 70.7±1.57 68.4±1.11 60.6±2.81 60.3±2.65 64.7±2.00 62.3±1.87

SGDA 71.8±1.85 70.0±1.83 63.3±3.01 61.6±2.15 66.2±1.60 65.3±1.74 68.5±1.40 65.8±1.29 56.9±1.01 57.4±0.73 62.3±0.77 61.8±0.85

Ours 75.7±0.89 73.5±0.91 70.7±0.50 68.5±0.57 70.6±0.51 71.3±0.50 73.3±0.58 72.3±0.53 64.5±0.38 64.3±0.50 73.6±0.61 69.0±1.71

4.6 SUMMARIZATION

To ensure each expert captures distinct aspects of the ego-subgraphs, we propose a diversity objec-
tive with distance correlation Székely et al. (2007); Wang et al. (2020) to encourage divergence:

Lind =

K∑
k=1

K∑
k′=k+1

dCor(Z(k),Z(k′)), (16)

where Z(k) is the representation of all nodes and dCor(·) is the distance correlation function:

dCor(Z(k),Z(k′)) =
dCov(Z(k),Z(k′))√

dV ar(Z(k)) · dV ar(Z(k′))
, (17)

where dV ar(·) and dCov(·) is the distance variance and covariance respectively. Finally, we com-
bine supervised classification loss Ls from labeled node, the knowledge distillation loss Ldl and the
expert diversity regularization Lind. The overall objective of our LIGHT is:

L = Ls + Lu + λdlLdl + λindLind, (18)

where λdl and λind are the balance factors that control the weights of the losses. The overall algo-
rithm of our proposed LIGHT can be found in the Appendix B.

5 EXPERIMENT

5.1 SETUP

Datasets. We conduct extensive experiments from ArnetMiner Tang et al. (2008), i.e., ACMv9, Ci-
tationv1, and DBLPv7. These datasets are widely used for evaluating graph learning models, where
each paper, represented as a node, is to be categorized into one of five predefined research areas, in-
cluding Artificial Intelligence, Computer Vision, Database, Information Security, and Networking.
The citation relationship is represented as an edge. These datasets provide diverse graph structures
and data contributions, making them suitable to evaluate our method.

Compared Baselines. To comprehensively evaluate our proposed LIGHT, we compare it against
a comprehensive suite of baseline methods including GCN Kipf & Welling (2017), GraphSAGE
(GSAGE) Hamilton et al. (2017), GAT Vrahatis et al. (2024), GIN Xu et al. (2019), CaNet Wu et al.
(2024a), MARIO Zhu et al. (2024), LDAT Wang et al. (2022), and SGDA Qiao et al. (2023a). Note
that we adopt the same experimental settings with baselines to ensure a fair comparison.

Implementational Details. All experiments are conducted on a single NVIDIA RTX3090 GPU
with 24GB memory. We utilize PyTorch and PyG to implement our framework. We utilize a random
splitting strategy to ensure diversity. In the source domain, 5% of node labels are used for supervised
training. The MoE network is composed of multiple experts and a router network. All experiments
are conducted with five fixed random seeds for reproducibility. Our LIGHT is trained using the Adam
optimizer with a learning rate of 1e-3 and L2 weight decay of 2e-3. We utilize Qwen2.5-7B as
our default LLMs and attempt the Gemma3 series model in our experiments as well. We report the
performance on the target domain nodes in terms of both Micro F1-score and Macro F1-score.
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Table 2: Ablation studies on the Citations benchmark (MoE/LLM/DIV/HQ as peers).

A ⇒ C A ⇒ D C ⇒ A C ⇒ D D ⇒ A D ⇒ CModels Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
LIGHT w/o MoE 43.3 37.1 44.5 38.5 42.1 34.3 46.8 37.8 36.0 31.5 38.2 33.9
LIGHT w/o LLM 72.0 66.6 66.7 58.5 66.1 63.3 69.7 64.7 51.0 43.4 66.0 61.7
LIGHT w/o DIV 74.9 72.7 68.6 66.9 67.5 68.1 71.8 71.2 60.3 57.5 68.0 61.8
LIGHT w/o HQ 70.0 66.0 67.5 62.2 64.4 60.4 71.1 69.2 57.5 52.0 57.2 50.1
LIGHT 75.7 73.5 70.7 68.5 70.6 71.3 73.3 72.3 64.5 64.3 73.6 71.6

Class 1
Class 2
Class 3
Class 4
Class 5

(a) LIGHT

Class 1
Class 2
Class 3
Class 4
Class 5

(b) LIGHT w/o Distill

Class 1
Class 2
Class 3
Class 4
Class 5

(c) SGDA

Figure 2: Analysis of different t-SNE visualizations on A ⇒ C task. (a), (b) respectively represent
the performance of our method before and after knowledge distillation, (c) represents the effect of
the baseline method SGDA.

5.2 EMPIRICAL PERFORMANCE

Performance Comparison. The compared results can be found in Table 1, across all six domain
generalization tasks involving transfers between ACMv9 (A), Citationv1 (C), and DBLPv7 (D)
datasets, even with a scarce 5% source label rate. ▷ Firstly, our LIGHT consistently achieves state-
of-the-art Micro-F1 and Macro-F1 scores. For instance, on the A⇒C task, our method achieves
75.7% Micro-F1, surpassing the strongest specialized baseline SGDA (71.8%) by 3.9% and ex-
hibiting larger improvements over standard GNNs like GIN. The performance increasement can be
attributed to two factors as follows: (I) Introduction of our LLM-based guidance, which provides the
judgments of the most graph experts for strong generalizability with knowledge distillation. (II) In-
troduction of our mixture-of-experts framework, which provides adaptive neighborhood aggregation
for topological exploration. ▷ Secondly, LLM guidance dynamically selects experts, especially for
nodes with high uncertainty, providing an adaptability which absent in baselines. This tailored exper-
tise, combined with a semi-supervised learning component that leverages high-quality pseudo-labels
identified through a novel process considering both expert agreement and LLM-derived confidence,
facilitates effective knowledge distillation and transfer from limited labeled data. The consistent
high performance across all tasks, which involve datasets with varied structural properties and data
distributions, underscores the robustness and generalizability of LIGHT.

Ablation Study. To validate the individual contributions of key components in our LIGHT, we
introduce the following model variants: (I) LIGHT w/o MoE, which removes the MoE framework and
utilize one single expert; (II) LIGHT w/o LLM, which removes the knowledge distillion from LLMs;
(III) LIGHT w/o DIV, which removes the divergence-prompting objective in our framework; (IV)
LIGHT w/o HQ, which removes our expert-aware dynamic pseudo-labeling. Results are shown in
Table 2. We can observed that removing the MoE framework led to the most substantial performance
decline, underscoring its fundamental role. Disabling LLM-guided expert selection caused Micro-
F1 scores decreasing by about 7.3% and Macro-F1 by 12.9%, highlighting the LLM’s contribution
to refining expert routing. The exclusion of the high-quality pseudo-labeling strategy resulted in
a considerable reduction in performance, averaging a 7.0% decrease in Micro-F1 and an 11.6%
decrease in Macro-F1, emphasizing its importance in leveraging unlabeled data. Finally, removing
the MoE’s diversity/coherence loss led to Micro-F1 scores dropping by an average of 2.9% and
Macro-F1 by 4.0%, indicating its value in refining expert representations. These findings collectively
affirm the crucial role each component plays in the proposed method’s overall effectiveness.

Case Study. To further investigate the qualitative impact of our proposed method, particularly the
LLM-guided expert selection distillation, we present a case study visualizing the learned node em-
beddings from a representative domain generalization task (e.g., A⇒C). The t-SNE van der Maaten
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Figure 3: (a) shows the Micro F1 score for varying expert types, and (b) illustrates results when ex-
pert instances increase proportionally. Sub-figures (c) and (d) compare performance under different
label rates on A ⇒ C and A ⇒ D tasks respectively.

qwen2.5-3b

qwen2.5-7b

qwen2.5-14bgemma3-4b

gemma3-12b

(a) A ⇒ C

qwen2.5-3b

qwen2.5-7b
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(b) A ⇒ C
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(d) C ⇒ D

Figure 4: Effect analysis of LLMs type and loss weight effect impact analyze on micro-f1 score.

& Hinton (2008) results in Figure 2 illustrates these visualizations for three distinct model configu-
rations: (a) our full proposed method including LLM distillation (ours w distill), (b) an ablation of
our method without the LLM distillation component (ours w/o distill), and (c) the SGDA baseline, a
relevant graph domain adaptation method. Node colors correspond to their ground-truth classes. By
providing high-level, context-aware guidance to the MoE’s gating mechanism, the LLM helps the
model assign nodes to the most appropriate specialized experts, leading to embeddings that better
align with the true class distinctions. The noticeable degradation in cluster quality when distillation
is removed corroborates this, further emphasizing the value added by the LLM component.

Parameter Analysis. In this part, we conduct parameter analysis. The number of experts influ-
ences performance in Figure 3 (a), where increasing the diversity of expert types or the number of
instances per expert type in Figure 3 (b) can yield improvements, though gains diminish beyond an
optimal point. Regarding data scarcity, while higher label rates generally lead to better outcomes,
the proposed method demonstrates strong performance even with low label rates, outperforming al-
ternatives in semi-supervised domain generalization. The results in Figure 4 (c) and (d) shows the
choice of LLM for guidance affects outcomes, with larger or more capable LLMs generally offering
better guidance, although the performance gap between mid-sized (e.g., 7b) and larger (e.g., 12-14b)
models was not substantial, while smaller models (e.g., 3-4b) showed a noticeable performance de-
crease. Further analysis is provided in the Appendix F. Finally, the model’s performance is sensitive
to the loss weight hyperparameters (λdl, λind), which control the balance between unsupervised
classification, knowledge distillation, and expert diversity regularization losses; their optimal values
vary across some tasks, tuning as illustrated by the results in Figure 3 (c) and (d).

6 CONCLUSION

In this work, we have introduced a novel framework LIGHT for semi-supervised domain general-
ization on graphs. Our LIGHT leverages the zero-shot ability of LLMs to steer a MoE architecture,
where each expert specializes in different graph topological neighborhoods. This allows for dy-
namic, context-aware selection of the most pertinent expert, guided by multi-hop ego-subgraph
prompts transformed for LLM comprehension. Furthermore, we have incorporated an expert-
enhanced pseudo-labeling strategy, which leverages high-confidence pseudo-labels to effectively
supervise the model’s training in label-scarce environments. Extensive empirical evaluations on
multiple public benchmark datasets demonstrate the superiority of our method in generalizing across
different graph domains, significantly outperforming existing state-of-the-art methods.
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A LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT

We use the LLM as a general-purpose assistant tool. Specifically, the LLM assists in (i) checking
grammar and improving clarity of text descriptions, and (ii) suggesting alternative phrasings for
some sections. No parts of the paper are generated entirely by the LLM. All research ideas, experi-
ments, model designs, and results are conceived, implemented, and analyzed solely by the authors.
The LLM does not contribute to the development of the methodology, experiments, or analysis pre-
sented in this paper. We confirm that the use of the LLM is limited to minor writing support and
does not constitute a substantive contribution that would qualify it as a co-author.

B THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the proposed LIGHT framework. We assume the
existence of a set of K experts, each specialized in learning a particular domain. Each domain may
be subject to potential distribution shifts, making domain-specific modeling essential. For notational
simplicity, we focus on a binary classification setting with C = 2 classes and assume the presence
of two distinct domains. Suppose that for the first K/2 experts, the domain-specific distribution is
aligned with the first domain, while the remaining K/2 experts are aligned with the second domain.
Assume that the routing weights ω(k)

v satisfy the following condition: for the correct expert k,

ω(k)
v =

2

K
, and for all incorrect experts k′ ̸= k, ω(k′)

v = 0,

which indicates that the routing mechanism assigns equal weight to the correct expert while ignoring
all others. Let the final prediction for node v be defined as:

Ŷv = f

(
K∑

k=1

ω(k)
v Z(k)

v

)
,

where Z
(k)
v is the representation of node v obtained from the k-th expert, ω(k)

v denotes the routing
weight for expert k, and f(·) is a learnable classifier. We further assume that the classifier f(·) can
be expressed as a logistic (sigmoid) transformation of a linear combination of expert outputs:

f

(
K∑

k=1

ω(k)
v Z(k)

v

)
= σ

(
K∑

k=1

ω(k)
v W⊤Z(k)

v

)
,

where σ(·) is the sigmoid activation function and W is the weight matrix of the classifier. Under
this formulation, the term W⊤Z

(k)
v can be interpreted as the logit output of the k-th expert for

node v. Due to the monotonicity of the sigmoid function, a larger logit corresponds to a higher
predicted probability of class 1. The following lemma establishes a threshold-based decision rule
for the aggregated expert logits.
Lemma B.1. There exists a threshold τ ∈ R such that:

Ŷv =

{
1, if

∑K
k=1 ω

(k)
v W⊤Z

(k)
v > τ,

0, otherwise.

In the multi-class setting (C > 2), a similar formulation applies by replacing the sigmoid function
with the softmax function, and defining a class-specific threshold for each output dimension.

With this lemma, we can analyze the performance of the proposed LIGHT framework. Specifi-
cally, we aim to show that a mixture-of-experts (MoE) model can outperform a single-expert model
in terms of classification accuracy. Without loss of generality, we assume that the threshold τ in
Lemma B.1 is set to 0. Let the logit output of the k-th expert for node v be denoted as

Qv,k = W⊤Z(k)
v ,

and let its expected value be µv,k = E[Qv,k]. For a given node v, suppose expert k is the correct
expert (i.e., best aligned with the domain-specific distribution of v). Then, the expected logit µv,k

should exceed a positive margin ν > 0, while any incorrect expert k′ ̸= k should have mean
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logit output µv,k′ = 0. This reflects the fact that only the correct expert can effectively model the
distributional characteristics of node v. We further assume that the logits of different experts are
independent and sub-Gaussian distributed, i.e.,

E[exp t(Qv,k − µv,k)] ≤ exp
t2σ2

2
, ∀t ∈ R,

where σ2 is a constant. With these assumptions, we can analyze the prediction error of the MoE
model.

Proof of Theorem 4.1. We begin by analyzing the case where only a single expert is available, i.e.,
K = 1. Suppose the true label for node v is 1. The prediction error of the model is then given by

P(Ŷv ̸= 1) = P(Qv,1 < 0).

We aim to show that this probability is strictly greater than zero, i.e., P(Qv,1 < 0) > 0.

Since the expert is misaligned with the domain-specific distribution of node v, we assume E[Qv,1] =
0. Define the following events:

A1 = {Qv,1 < 0}, A2 = {Qv,1 ≥ 0}, A3 = {Qv,1 = 0}.
Because Qv,1 is not almost surely constant, we must have P(A3) < 1. If P(Qv,1 < 0) = 0, then
necessarily P(Qv,1 > 0) > 0, which contradicts the assumption that E[Qv,1] = 0. Therefore, it
must be that P(Qv,1 < 0) > 0, and the prediction error is strictly positive in the single-expert case.

Now consider the case with K experts. Suppose expert k is correctly aligned with the domain of
node v, and thus has expected logit output µv,k = ν > 0, while all other experts k′ ̸= k have
zero-mean outputs, µv,k′ = 0. Then the expected value of the aggregated logit is

E

[
K∑

k=1

ω(k)
v Qv,k

]
=

K∑
k=1

ω(k)
v µv,k = ν.

Assuming the expert outputs Qv,k are independent and sub-Gaussian with variance proxy σ2, we
apply Hoeffding’s inequality to bound the tail probability:

P

(
K∑

k=1

ω(k)
v Qv,k < 0

)
≤ exp

(
− Cν2

2σ2/K

)
.

Therefore, the prediction error of the MoE model satisfies:

P(Ŷv ̸= 1) ≤ exp

(
−Cν2K

2σ2

)
≤ C0

K
,

for some constant C0 > 0. This completes the proof.

C GREEDY ANCHOR NODE SELECTION

Algorithm 1 Greedy Anchor Node Selection
Input: PPMI matrix P , Influence Score Iv(u) from node v to node u, budget B.
Output: Anchor Node set S

1. S = ∅
2. for t = 1, 2, . . . , B do

(a) for v ∈ Vtrain \ S do
i. update σ(S ∪ {v}) based on Eq. (9)

(b) end for
(c) v∗ = argmax

v∈Vtrain\S

(
|σ(S ∪ {v})| − |σ(S)|

)
(d) S = S ∪ {v∗}

3. end for
4. return S
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D BASELINE DETAILS

To comprehensively evaluate our method, we compare it against a comprehensive suite of baseline
methods. These baselines are carefully selected to cover a range of approaches: (i) a fundamental
neural network model that processes node features independently of graph structure; (ii) standard
Graph Neural Network architectures trained via empirical risk minimization on the source domain,
representing common graph representation learning techniques without explicit domain generaliza-
tion mechanisms; and (iii) contemporary methods specifically designed for graph out-of-distribution
generalization or domain adaptation, which employ diverse strategies to tackle distribution shifts.
Following previous works Kipf & Welling (2017); Qiao et al. (2023a), all GNN-based baselines are
trained using the 5% labeled data from the source domain for the specified cross-domain generaliza-
tion tasks. To assess performance against established graph representation learning techniques, we
include several widely-adopted architectures. We begin with an MLP which serves to quantify the
performance achievable without considering the intrinsic graph structure.

E FURTHER ANALYSIS OF ABLATION EXPERIMENT

To meticulously validate the individual contributions of the key components within our proposed
method, we conducted a series of ablation experiments. We systematically removed or simplified
core modules: (1) the Mixture of Experts architecture (w/o MoE), reverting to a more standard single
MLP encoder. Without the expert mechanism, all other modules based on it are also removed; (2) the
LLM-guided expert selection distillation (w/o LLM); (3) the MoE’s internal diversity/coherence loss
(w/o DIV); and (4) our expert-aware dynamic pseudo-labeling strategy for semi-supervised learning
(w/o HQ). The performance of these variants was evaluated on the same six domain generalization
tasks, with results and the extent of performance degradation detailed in Table 3.

Table 3: Ablation studies on the Citations benchmark with component presence indicators.

Components A ⇒ C A ⇒ D C ⇒ A C ⇒ D D ⇒ A D ⇒ C
PPMI LLM DIV HQ Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

✓ 71.3 66.0 65.9 58.8 65.7 63.1 69.1 63.6 50.4 42.6 65.7 61.3
✓ 68.8 64.4 65.7 60.1 62.8 58.7 68.2 67.3 55.8 49.7 54.6 49.2
✓ ✓ 69.6 65.3 67.0 62.0 63.7 60.2 71.0 68.7 56.7 51.2 56.4 49.9
✓ ✓ 73.2 72.0 68.2 66.1 66.7 67.4 70.4 70.0 58.9 55.1 66.1 59.8

✓ ✓ 72.0 66.6 66.7 58.5 66.1 63.3 69.7 64.7 51.0 43.4 66.0 61.7
✓ ✓ 69.3 65.7 66.2 61.0 63.1 59.1 69.8 68.5 56.3 50.7 55.0 49.9
✓ ✓ ✓ 70.0 66.0 67.5 62.2 64.4 60.4 71.1 69.2 57.5 52.0 57.2 50.1
✓ ✓ ✓ 74.9 72.7 68.6 66.9 67.5 68.1 71.8 71.2 60.3 57.5 68.0 61.8
✓ ✓ ✓ ✓ 75.7 73.5 70.7 68.5 70.6 71.3 73.3 72.3 64.5 64.3 73.6 71.6

Impact of MoE Architecture (MoE). The results show removing the Mixture of Experts frame-
work leads to the most substantial performance decline across all tasks and metrics, with Micro-F1
scores dropping by an average of approximately 29.2% and Macro-F1 by 34.5%. For instance, on
A⇒C, the Micro-F1 score plummets by 32.4 points. Notice without MoE Architecture, all other
experts related mechanism are disabled and our framework revert to simple MLP-based method.
This drastically reduced performance underscores that the ability of MoE to employ specialized ex-
perts and adaptively combine their insights is fundamental to our model’s success, exceeding the
capabilities of a monolithic encoder structure in these challenging domain generalization scenarios.

Impact of LLM-guided Expert Selection (LLM). Disabling the LLM-based distillation for expert
selection results in a significant performance drop, with Micro-F1 scores decreasing by an average
of approximately 7.3% and Macro-F1 by 12.9%. The degradation is particularly notable on tasks
like D⇒A (13.5 points drop in Micro-F1). This highlights the contribution of the LLM’s semantic
guidance in refining the MoE’s expert routing, especially for uncertain nodes. Without this external,
high-level reasoning, the MoE’s autonomous gating mechanism is demonstrably less effective at
tailoring expertise to specific node contexts for optimal generalization.

Impact of MoE Diversity/Coherence Loss (DIV). Removing the MoE’s internal diversity loss
results in a noticeable, albeit comparatively smaller, performance decrease, with Micro-F1 scores
dropping by an average of 2.9% and Macro-F1 by 4.0%. While more modest, this degradation
across tasks indicates that this regularization term plays a valuable role in refining the representations
learned by each expert. By encouraging intra-expert coherence or better-defined specializations, the
diverse neighborhood exploration also avoid the routing network get into local optimal solution.
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Impact of Expert-aware Dynamic Pseudo-labeling (HQ). The exclusion of our specialized expert-
aware dynamic pseudo-labeling strategy also leads to a considerable reduction in performance, av-
eraging a 7.0% decrease in Micro-F1 and an 11.6% decrease in Macro-F1. This emphasizes the
importance of this sophisticated semi-supervised learning component, which selectively leverages
unlabeled source data. By identifying reliable pseudo-labels through a process informed by expert
consistency and LLM insights, our method effectively learns from the scarce 5% labeled data and
mitigates error propagation common in naive pseudo-labeling approaches.

Impact of Positive Pointwise Mutual Information (PPMI). We replace P (k)
v to the original graph

adjacency matrix. This results of the overall performance has decreased by about 1-2%. The reason
is that without such a model architecture highly sensitive to topological structures, the differentia-
tion in feature extraction among heterogeneous experts diminishes. Consequently, it becomes more
challenging for the router to assign nodes to appropriate experts.

F FURTHER ANALYSIS OF PARAMETER SENSITIVITY

Number of Experts. We further investigated the influence of the number of experts on the model’s
performance. Figure 3 (a) and (b) illustrates two scenarios: Varying Expert Types: The results
from (a) shows how performance changes as the diversity and numbers of expert types increases.
The results suggest that increasing the variety of specialized experts can merely positively impact
the Micro F1 score up to a certain point by providing more capacity or stability to the specialized
processing. Varying Expert Instances: The results from (b) demonstrates the effect of increasing the
number of instances for each type of expert. This indicates that having more instances of the same
expert type can also contribute to performance improvements, after which the gains may diminish
or performance could even degrade.

Label Rate. Figure 3 (c) and (d) examines our model’s performance and robustness to the scarcity
of labeled data by varying the label rates in the source domain. The experiments were conducted
on the A ⇒ C and A ⇒ D tasks. As expected, a higher label rate generally leads to better
performance. However, the proposed method demonstrates strong performance with low label rates,
outperforming other compared methods, highlighting its effectiveness in semi-supervised domain
generalization scenarios.

Loss Weights. The impact of different loss weight hyperparameters (λu, λdl, λind) on the Micro-
F1 score was analyzed, as shown in the heatmaps in Figure 4 (c) and (d) for tasks A ⇒ C, C ⇒
D. These hyperparameters control the balance between the unsupervised classification loss, the
knowledge distillation loss, and the expert diversity regularization loss, respectively. The results
indicate that the optimal weights can vary depending on the specific domain generalization task.
Generally, the model’s performance is sensitive to these weights, and careful tuning is required to
achieve the best results. For instance, in the A ⇒ C task, specific ranges for λu, λdl, and λind yield
higher Micro-F1 scores, as depicted by the color intensity in the heatmap. Similar trends, though
with potentially different optimal regions, are observed for the C ⇒ D and D ⇒ C tasks.

Smoothing Coefficient and Activation Threshold. Figure 5 presents an analysis of the smoothing
coefficient (α) used in the label smoothing strategy for expert selection and the activation threshold
(θ) used in the expert-enhanced pseudo-labeling process. These experiments were performed on the
A ⇒ C, A ⇒ D, C ⇒ A and C ⇒ D tasks. The smoothing coefficient α determines the softness
of the target distribution provided by the LLM for training the routing function. The activation
threshold θ is used to filter noisy pseudo-labels by selecting high-confidence samples. The results
suggest that model performance is influenced by the interplay of these two parameters. Most of
optimal performance is achieved within specific ranges of α = 0.8 and θ = 0.05, indicating that
both appropriate smoothing of LLM guidance and careful selection of pseudo-labels are important
for the model’s success.

LLM Types. We further explored the effect of using different types of LLMs for the LLM-guided
expert selection, as illustrated in Figure 4 (a) and (b) for the A ⇒ C and A ⇒ D tasks. The
results compare the performance achieved using various LLMs, such as qwen2.5-3b, qwen2.5-7b,
qwen2.5-14b Qwen et al. (2025), gemma3-4b, and gemma3-12b Team et al. (2025). The results
indicate that the choice of LLM can impact the model’s performance. Larger or more capable
LLMs (e.g., qwen2.5-14b or gemma-12b in some cases) tend to provide better guidance, leading to
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(d) C ⇒ D

Figure 5: Effect analysis of smoothing coefficient α and influence threshold θ.

improved results, though the best-performing LLM might vary depending on the specific task. We
observe 3-4% of performance degradation with small size model like 3-4b, while the performance
gap between the 7b model and 12-14b model is not significant.

G LIMITATIONS

While the proposed framework demonstrates promising results in semi-supervised domain general-
ization on graphs, we acknowledge certain limitations that offer avenues for future research.

Firstly, our empirical evaluation was conducted on established benchmark datasets in academic re-
search. Although these datasets are standard for assessing graph learning models, the performance
of LIGHT on graphs with substantially different characteristics, such as highly dynamic graphs
or graphs from vastly different domains (e.g., biological networks or social networks with unique
structures), may vary. Further investigation across a broader spectrum of graph types and real-world
applications would be beneficial to ascertain the generalizability of our approach.

Secondly, the use of LLMs and graph data inherently touches upon broader considerations of privacy
and fairness. Depending on the nature of the graph data and the information processed by the LLM,
potential privacy implications could arise. Similarly, fairness in node classification could be affected
by biases present in either the graph data or the LLM. Future research could explicitly address these
aspects by incorporating privacy-preserving techniques or fairness-aware learning objectives within
our framework.

Addressing these limitations could further enhance the robustness, applicability, and societal align-
ment of the LIGHT framework and similar approaches leveraging LLMs for graph-based machine
learning.

H SOCIETAL IMPACTS

Our method primarily focuses on advancing graph neural networks for semi-supervised domain
generalization, aiming to improve their performance on unseen graphs with limited labeled data.
The core idea involves using Large Language Models to guide a mixture-of-experts framework,
enhancing knowledge distillation and addressing label scarcity through dynamic pseudo-labeling.
The successful implementation of this approach could lead to:

Improved Machine Learning Model Generalizability: The LIGHT framework’s ability to gen-
eralize effectively to unseen domains, even with scarce labeled data, can lead to more robust and
adaptable machine learning models across various applications. This is particularly relevant in fields
where data distribution shifts are common and obtaining labeled data is challenging or expensive.

Enhanced Performance in Various Domains: The paper highlights node classification as a fun-
damental task with wide applications in areas such as social network analysis, biochemistry, and
recommender systems. Improvements in this area, as demonstrated by the LIGHT framework, could
translate to more accurate predictions and better decision-making in these domains.

Advancements in Semi-supervised Learning: The research contributes to the field of semi-
supervised learning on graphs by pioneering the use of LLM zero-shot capabilities to address domain
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generalization under label scarcity. This could inspire new methodologies for leveraging LLMs in
data-efficient graph learning.

Better Understanding of Complex Relational Data: By effectively capturing intricate relational
and structural dependencies in graph data, this research can contribute to a deeper understanding of
complex systems and networks.

We also acknowledge Potential Negative Societal Impacts:

Potential for Misuse: As with many advancements in machine learning, there’s a general risk
that improvements in GNNs and LLMs could be adapted for malicious purposes if not carefully
governed.

Fairness Considerations: Biases present in either the graph data or the LLM could affect fairness
in node classification. If the training data or the LLM itself contains biases against certain groups,
the deployed technology could make decisions that unfairly impact these groups.
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