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ABSTRACT

Despite several important advances in recent years, learning causal structures
represented by directed acyclic graphs (DAGs) remains a challenging task in high
dimensional settings when the graphs to be learned are not sparse. In this paper, we
propose to exploit a low rank assumption regarding the (weighted) adjacency matrix
of a DAG causal model to mitigate this problem. We demonstrate how to adapt
existing methods for causal structure learning to take advantage of this assumption
and establish several useful results relating interpretable graphical conditions
to the low rank assumption. In particular, we show that the maximum rank is
highly related to hubs, suggesting that scale-free networks which are frequently
encountered in real applications tend to be low rank. We also provide empirical
evidence for the utility of our low rank adaptations, especially on relatively large
and dense graphs. Not only do they outperform existing algorithms when the low
rank condition is satisfied, the performance is also competitive even though the
rank of the underlying DAG may not be as low as is assumed.

1 INTRODUCTION

An important goal in many sciences is to discover the underlying causal structures in various domains,
both for the purpose of explaining and understanding phenomena, and for the purpose of predicting
effects of interventions (Pearl, 2009). Due to the relative abundance of passively observed data as
opposed to experimental data, how to learn causal structures from purely observational data has been
vigorously investigated (Peters et al., 2017; Spirtes et al., 2000). In this context, causal structures are
usually represented by directed acyclic graphs (DAGs) over a set of random variables.

For this task, existing methods can be roughly categorized into two classes: constraint- and score-
based. The former use statistical tests to extract from data a number of constraints in the form of
conditional (in)dependence and seek to identify the class of causal structures compatible with those
constraints (Meek, 1995; Spirtes et al., 2000; Zhang, 2008). The latter employ a score function to
evaluate candidate causal structures relative to data and seek to locate the causal structure (or a class of
causal structures) with the optimal score. Due to the combinatorial nature of the acyclicity constraint
(Chickering, 1996; He et al., 2015), most score-based methods rely on local heuristics to perform the
search. A particular example is the greedy equivalence search (GES) algorithm (Chickering, 2002)
that can find an optimal solution with infinite data and proper model assumptions.

Recently, Zheng et al. (2018) introduced a smooth acyclicity constraint w.r.t. graph adjacency matrix,
and the task on linear data models was then formulated as a continuous optimization problem with
least-squares loss. This change of perspective allows using deep learning techniques to model causal
mechanisms and has already given rise to several new algorithms for causal structure learning with
non-linear data, e.g., Yu et al. (2019); Ng et al. (2019b;a); Ke et al. (2019); Lachapelle et al. (2020);
Zheng et al. (2020), among others. While these new algorithms represent the current state of the
art in many settings, their performance generally degrades when the target DAG becomes large and
relatively dense, as seen from the empirical results reported in the referred works and also in this
paper. This issue is of course a challenge to other approaches. Ramsey et al. (2017) proposed fast
GES for impressively large problems, but it works reasonably well only when the large structure is
very sparse. The max-min hill-climbing (MMHC) (Tsamardinos et al., 2006) relies on local learning
methods that often do not perform well when the target node has a large neighborhood. How to
improve the performance on relatively large and dense DAGs is therefore an important question.
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In this work, we study the potential of exploiting a kind of low rank assumption on the DAG structure
to help address this problem. The rank of a graph that concerns us is the algebraic rank of its associated
weighted adjacency matrix. Similar to the role of a sparsity assumption on graph structures, we
treat the low rank assumption as methodological and it is not restricted to a particular DAG learning
method. However, unlike sparsity assumption, it is much less apparent when DAGs tend to be low
rank and how low rank DAGs behave. Thus, besides demonstrating the utility of exploiting a low
rank assumption in causal structure learning, another important goal is to improve our understanding
of the low rank assumption by relating the rank of a graph to its graphical structure. Such a result also
enables us to characterize the rank of a graph from several structural priors and helps to choose rank
related hyperparameters for the learning algorithm. Our contributions are summarized as follows:

• We show how to adapt existing causal structure learning methods to take advantage of the
low rank assumption, and provide a strategy to select rank related hyperparameters utilizing
the lower and upper bounds on the true rank, if they are available.
• To improve our understanding of low rank DAGs, we establish some lower bounds on the

rank of a DAG in terms of simple graphical conditions, which imply necessary conditions
for DAGs to be low rank.
• We also show that the maximum possible rank of weighted adjacency matrices associated

with a directed graph is highly related to hubs in the graph, which suggests that scale-free
networks tend to be low rank. From this result, we derive several graphical conditions to
bound the rank of a DAG from above, providing simple sufficient conditions for low rank.
• Empirically, we demonstrate that the low rank adaptations are indeed useful. Not only

do they outperform the original algorithms when the low rank condition is satisfied, the
performance is also very competitive even when the true rank is not as low as is assumed.

Related Work The low rank assumption is frequently adopted in graph-based applications (Smith
et al., 2012; Zhou et al., 2013; Yao & Kwok, 2016; Frot et al., 2019), matrix completion and
factorization (Recht, 2011; Koltchinskii et al., 2011; Cao et al., 2015; Davenport & Romberg, 2016),
network sciences (Hsieh et al., 2012; Huang et al., 2013; Zhang et al., 2017) and so on, but to our
best knowledge, has not been used on the DAG structures in the context of learning causal DAGs.
We notice two works Barik & Honorio (2019); Tichavskỳ & Vomlel (2018) that assume low rank
conditional probability tables in learning Bayesian networks, which are different from ours.

Also related are existing works that studied the rank of real weighted matrices described by a given
simple directed/undirected graph. However, most works only considered the zero-nonzero pattern
of off-diagonal entries (see, e.g., Fallat & Hogben (2007); Hogben (2010); Mitchell et al. (2010)),
whereas we also take into account the diagonal entries. This difference is crucial: if one only considers
the off-diagonal entries, then the maximum rank over all possible weighted matrices is trivial and
is always equal to the number of vertices. Consequently, many works focus on the minimum rank
of a given graph, but to characterize exactly the minimum rank remains open, except for some
special graph structures like trees (Hogben, 2010). Apart from these works, Edmonds (1967) studied
algebraically the maximum rank for matrices with a common zero-nonzero pattern. In Section 4, we
use this result to relate the maximum possible rank to a more interpretable graphical condition, which
further implies several structural conditions of DAGs that may be easier to obtain in practice.

2 PRELIMINARIES

2.1 GRAPH TERMINOLOGY

A graph G is defined as a pair (V,E), where V = {X1, X2, · · · , Xd} is the vertex set and E ⊂ V2

denotes the edge set. We are particularly interested in directed (acyclic) graphs in the context of
causal structure learning. For any S ⊂ V, we use pa(S,G), ch(S,G), and adj(S,G) to denote the
union of all parents, children, and adjacent vertices of the nodes of S in G, respectively. A graph
is called weighted if every edge in the graph is associated with a non-zero value. We will work
with weighted graphs and treat unweighted graphs as a special case where the edge weights are set
to 1. Weighted graphs can be treated algebraically via weighted adjacency matrices. Specifically,
the weighted adjacency matrix of a weighted graph G is a matrix W ∈ Rd×d, where W (i, j) is the
weight of edge Xi → Xj and W (i, j) 6= 0 if and only if Xi → Xj exists in G. The binary adjacency

2



Under review as a conference paper at ICLR 2021

matrix A ∈ {0, 1}d×d is such that A(i, j) = 1 if Xi → Xj in G and A(i, j) = 0 otherwise. The rank
of a weighted graph is defined as the rank of the associated weighted adjacency matrix.

2.2 CAUSAL STRUCTURE LEARNING AND RECENT GRADIENT-BASED METHODS

A commonly used model in causal structure learning is the structural equation model (SEM) that
describes data generating procedure. In a slight abuse of notation, we also use Xi’s to denote random
variables associated with the nodes in a graph G. Assuming G being a DAG, then the SEM is given by

Xi = fi (pa(Xi,G), εi) , i = 1, 2, . . . , d,

where fi is a deterministic function and εi’s are jointly independent noises. The SEM induces a
marginal distribution P (X) over X = [X1, X2, · · · , Xd]

T , and G and P (X) are said to form a
causal Bayesian network (Pearl, 2009; Spirtes et al., 2000). The problem of causal structure learning
is to infer the underlying causal DAG G based on the marginal distribution P (X), or more practically,
an empirical version consisting of a number of i.i.d. observations from P (X).

We next briefly review recently developed gradient-based methods that rely on a smooth characteriza-
tion of acyclicity of directed graphs. These methods aim to find a DAG that optimizes a score function
and can be categorized into two classes. The first class of methods explicitly associates the target
causal model with a weighted adjacency matrix W and then estimate W by solving optimization
problems in the following form:

min
W,φ

EX∼P (X) S
(
X,h(X;W,φ)

)
, subject to trace

(
eW◦W

)
− d = 0, (1)

where h : Rd → Rd is a model function parameterized by W (and other possible parameter φ) that
aims to reconstruct X , S(·, ·) denotes a score function between the true and reconstructed variables,
notation ◦ denotes the element-wise product, and eM is the matrix exponential of a square matrix
M . The constraint was proposed by Zheng et al. (2018), which is smooth and holds if and only if
W indicates a DAG. Methods in this class include: NOTEARS (Zheng et al., 2018), which targets
linear models, with h(X;W,φ) = WTX and S(·, ·) being the Frobenius norm or equivalently
the least-squares loss; and DAG-GNN (Yu et al., 2019) and the graph autoencoder approach (Ng
et al., 2019b), where neural networks are used for the function h with φ being the weights of neural
networks, and the score function can be chosen as the evidence lower bound (Kingma & Welling,
2013). A sparsity inducing term may be further added when the causal graph is assumed to be
sparse. These objectives are equivalent to or are variants of some well studied score functions like the
penalized maximum likelihood (Chickering, 2002; Van de Geer et al., 2013; Loh & Bühlmann, 2014).

The second class uses certain functions, with parameter θ, to construct a weighted adjacency matrix
W (θ) (or a binary one A(θ)) to represent the causal structure. These methods can be summarized as

min
θ, φ

EX∼P (X) S
(
X,h(X;W (θ), φ)

)
, subject to trace

(
eW (θ) ◦W (θ)

)
− d = 0. (2)

For example, GraN-DAG (Lachapelle et al., 2020) and NOTEARS-MLP (Zheng et al., 2020) respec-
tively use neural network path products and partial derivatives between variables to construct W (θ).
The binary matrix A(θ) can be obtained by sampling according to some distributions with learnable
parameters, as used by Kalainathan et al. (2018); Ke et al. (2019); Ng et al. (2019a); Zhu et al. (2020).

Before ending this section, we remark that while the gradient-based methods intend to learn a causal
DAG, the learned DAG may not be identical to the underlying one for general SEMs due to the
Markov equivalence (Spirtes et al., 2000; Peters et al., 2017). For such cases, one may convert the
obtained DAG to its corresponding Completed Partially Directed Acyclic Graph (CPDAG) as the
estimate. Nevertheless, if the SEM is identifiable and a proper score function is used, then the exact
solution to the optimization problem is consistent, i.e., same as the true graph with probability 1;
see, e.g., Shimizu et al. (2006); Peters & Bühlmann (2013); Peters et al. (2014); Zhang & Hyvärinen
(2009). For further details and other technical issues like parameter optimization of the gradient-based
methods, we refer the reader to the cited works and references therein.

3 EXPLOITING LOW RANK ASSUMPTION IN CAUSAL STRUCTURE LEARNING

This section shows how to adapt existing gradient-based methods to take advantage of the low rank
assumption, by providing a way for each class to utilize this assumption using techniques from the
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matrix completion literature. We remark that our adaptations with the low rank assumption are not
restricted to a particular learning algorithm; other DAG learning methods may potentially combine
one of the proposed modifications for learning low rank causal graphs, too.

Matrix Factorization Since the weighted adjacency matrix W is explicitly optimized in the first
class of methods, we can then apply the matrix factorization technique. Specifically, with an estimate
r̂ for the graph rank, we can factorize W as W = UV T with U, V ∈ Rd×r̂. Problem (1) is then to
optimize U and V that minimizes the score function under the DAG constraint, and has the same
solution W (obtained from the product UV T ) as the original one if r̂ is greater than or equal to the
true rank. Furthermore, if r̂ � d, we have a much reduced number of parameters to optimize.

Nuclear Norm For the second class of methods, the adjacency matrix W (θ) is not an explicit
parameter to be optimized. In such a case, we can adopt a commonly used technique to add a nuclear
norm term λ‖W (θ)‖∗, with λ > 0 being a tuning parameter, to the objective to induce low-rankness.

The optimization procedures in these recent structure learning methods can directly incorporate the
two adaptations as they are all gradient-based, though some extra care needs to be taken. Appendix C
provides a detailed description of the optimization procedure and our implementation. The second
approach is also feasible for the first class of methods, but we find that it does not work as well as
the matrix factorization approach, possibly due to the singular value decomposition to compute the
(sub-)gradient w.r.t. W at each optimization step.

An acute reader may have noticed that we assumed a proper rank estimate r̂ or a proper penalty
parameter λ. Yet knowing exactly the rank of the graph to be learned can be difficult in practice.
Similar to the sparsity assumption, one may determine the hyperparameters r̂ and λ assisted by a
validation dataset (or by cross-validation if the observed dataset is not sufficiently large). Alternatively,
we can try different choices of the hyperparameters and then apply traditional score-based method
where the search space is restricted to the resulting DAGs. However, since we are more concerned
with relatively large and dense problems, the possible ranks may be too many to choose. As such,
a lower bound rl and an upper bound ru on the graph rank would be beneficial—we need only
consider ranks in [rl, ru] in the matrix factorization method, while the bounds are still useful by
providing qualitative information for the nuclear norm approach: the lower an upper bound, the
higher the tuning parameter λ should be chosen. Moreover, a lower bound can also justify the low
rank assumption, i.e., if the lower bound is high, then the low rank assumption is likely to fail to hold.

4 GRAPHICAL BOUNDS ON RANKS

Obtaining exact algebraic information of a DAG such as its rank and eigenvalues may be infeasible
in practice, because it may require a full knowledge of the graph to be learned. On the other hand,
structural information, such as graph connectivity, distributions of in-degrees and out-degrees, and
an estimate of number of hubs, is sometimes more accessible. As such, this section is devoted to
relating the rank of a graph to more easily interpretable graphical conditions, for the sake of a better
understanding of what kinds of DAGs tend to satisfy the low rank assumption and for lower and
upper bounds on the graph rank from certain structural priors.

4.1 PROBLEM SETTING

Consider a DAG G = (V,E) with weighted adjacency matrix W and binary adjacency matrix A.
We aim to seek upper and lower bounds on rank(W ) using only the graphical structure. Specifically,
we focus on the weighted adjacency matrices with the same binary adjacency matrix A, i.e.,WA =
{W ∈ Rd×d ; sign(|W |) = A}, where sign(·) and | · | are point-wise sign and absolute value
functions, respectively. Notice that there exist trivial upper bound d− 1 and lower bound 0 for any
DAG, but they are generally too loose for our purpose. In the following, we investigate the maximum
rank max{rank(W );W ∈ WA} and minimum rank min{rank(W );W ∈ WA} to find tighter upper
and lower bounds for any W ∈ WA. Before introducing two useful graph concepts, we comment
that low rank DAGs are not necessarily sparse and vice versa; see a discussion in Appendix A.

Definition 1 (Height). Given a DAG G = (V,E) and a vertex Xi ∈ V, the height of Xi, denoted by
l(Xi), is defined as the length of the longest directed path starting from Xi. The height of G, denoted
by l(G), is the length of the longest path in G.
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(a) A DAG G (b) Binary adjacency matrix (c) A head-tail vertex cover

Figure 1: A DAG G with 12 vertices, 12 edges and height 3, where V0 = {X1, X2, X3, X4},
V1 = {X5, X6, X7}, V2 = {X8, X9}, and V3 = {X10, X11, X12}.

Definition 2 (Head-tail vertex cover). Let G = (V,E) be a directed graph and H,T be two subsets
of V. (H,T) is called a head-tail vertex cover of G if every edge in G has its head vertex in H or its
tail vertex in T. The size of a head-tail vertex cover (H,T) is defined as |H|+ |T|.

As an example, Figure 1c is a head-tail vertex cover of G in Figure 1a, where H = {X2, X4, X8}
(red nodes) and T = {X8, X9, X10} (blue nodes). The size of this vertex cover is 6.

4.2 LOWER BOUNDS

We first study lower bounds on the rank of a weighted DAG. Define V−1 = ∅ and Vs =
{Xi; l(Xi) = s} for s = 0, 1, . . . , l(G). Denote by Gs,s−1 the induced subgraph of G over Vs∪Vs−1.
Let C(Gs,s−1) be the set of non-singleton connected components of Gs,s−1 and |C(Gs,s−1)| the cardi-
nality. We have the following lower bounds.
Theorem 1. Let G be a DAG with binary adjacency matrix A. Then

min{rank(W ) ; W ∈ WA} ≥
∑l(G)

s=1
|C(Gs,s−1)| ≥ l(G). (3)

All the proofs in this paper are provided in Appendix B. Theorem 1 shows that rank(W ) is greater
than or equal to the sum of the number of non-singleton connected components in each Gs,s−1. As
Gs,s−1 has at least one non-singleton connected component, we obtain the second inequality. In other
words, the rank of a weighted DAG is at least as high as the length of the longest directed path. As an
example, consider the graph shown in Figure 1. One can verify that min{rank(W );W ∈ WA} = 6,
|C(G1,0)| = 2, |C(G2,1)| = 1, |C(G3,2)| = 1, and l(G) = 3. Thus, we have min{rank(W );W ∈
WA} = 6 > 2 + 1 + 1 = 4 > 3. We remark that the bounds in Theorem 1 may be loose in some
cases. To characterize the minimum rank exactly is an on-going research problem (Hogben, 2010).

4.3 UPPER BOUNDS

We turn to the more important issue for our purpose, regarding upper bounds on rank(W ). The next
theorem shows that max{rank(W );W ∈ WA} can be characterized exactly in graphical terms.
Theorem 2. Let G be a directed graph with binary adjacency matrix A. Then max{rank(W );W ∈
WA} is equal to the minimum size of the head-tail vertex cover of G, that is,

max{rank(W ) ; W ∈ WA} = min{|H|+ |T| ; (H,T) is a head-tail vertex cover of G}.

We comment that Theorem 2 holds for all directed graphs (not only DAGs), which may be of
independent interest to other applications. A head-tail vertex cover of minimum size is called a
minimum head-tail vertex cover, which in general is not unique. For a head-tail vertex cover (H,T),
the vertices in H cover all the edges pointing towards these vertices while the vertices in T cover the
edges pointing away. A head-tail cover of a relatively small size then indicates the presence of hubs,
that is, vertices with relatively high in-degrees or out-degrees. Therefore, Theorem 2 suggests that the
maximum rank of a weighted DAG is highly related to the presence of hubs: a DAG with many hubs
tends to have low rank. Intuitively, a hub of high in-degree (out-degree) is a common effect (cause)
of a number of direct causes (effect variables), comprising many V-structures (inverted V-structures).
For example, in Figure 1a, X8 is a hub of V-structures and X9 is a hub of inverted V-structures.
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Such features are fairly common in real graph structures. Appendix A presents a real network, called
pathfinder, which describes the causal relations among 109 variables (Heckerman et al., 1992) with
the center node being the parent of a large number of other nodes. The famous scale-free (SF) graphs
also tend to have hubs. A scale-free graph is one whose distribution of degree k follows a power law:
P (k) ∼ k−γ , where γ is the power parameter typically within [2, 3] and P (k) denotes the fraction
of nodes with degree k (Nikolova & Aluru, 2012). It is observed that many real-world networks
are scale-free, and some of them, such as gene regulatory networks, protein networks, and financial
system network, may be viewed as causal networks (Guelzim et al., 2002; Barabasi & Oltvai, 2004;
Hartemink, 2005; Eguı́luz et al., 2005; Gao & en Ren, 2013; Ramsey et al., 2017). In particular,
Barabasi & Oltvai (2004) claimed that most protein networks, some of which are directed and acyclic
due to irreversible reactions, are the results of growth processes and preferential attachments, probably
due to the gene duplication.

Figure 2: 100-node graphs.

Empirically, the ranks of scale-free graphs are relatively
low, especially in comparison to Erdös-Rényi (ER) random
graphs (Mihail & Papadimitriou, 2002). Figure 2 provides
a simulated example where γ is chosen from {2, 3} and
each reported value is over 100 random runs. As graph
becomes denser, the graph rank also increases. However,
for scale-free graphs with a relatively large γ, the increase
of their ranks is much slower than that of Erdös-Rényi
graphs; indeed, their ranks tend to stay fairly low even
when the graph degree is large.

Theorem 2 can also be used to generate a low rank graph, or more precisely, a random DAG with a
given rank r and a properly specified graph degree. Here we briefly describe the idea and leave the
detailed algorithm to Appendix C.1: first generate a graph with r edges and rank r; a random edge is
sampled without replacement and would be added to the graph, if adding this edge does not increase
the size of the minimum head-tail vertex cover; repeat the previous step until the pre-specified degree
is reached or no edge could be added to the graph; finally, assign the edge weights randomly according
to a continuous distribution and the weighted graph will have rank r with high probability.

The next two theorems report some looser but simpler upper bounds on rank(W ).

Theorem 3. Let G be a DAG with binary adjacency matrix A, and denote the set of vertices with at
least one parent by Vch and those with at least one child by Vpa. Then we have

max{rank(W ) ; W ∈ WA} ≤


∑l(G)

s=1
min (|Vs|, |ch(Vs)|) ≤ |Vpa|,∑l(G)−1

s=0
min (|Vs|, |pa(Vs)|) ≤ |Vch|,

|V| −max{|Vs| ; 0 ≤ s ≤ l(G)}.

(4)

Since Vch and Vpa are the non-root and the non-leaf vertices, respectively, the first two inequalities
of (4) indicate that the maximum rank is bounded from above by the number of non-root vertices and
also by the number of non-leaf vertices. The last inequality of (4) is a generalization of the first two,
which implies that the rank is likely to be low if most vertices have the same height.

Theorem 4. Let G be a DAG with binary adjacency matrix A. Denote by skeleton(A) and moral(A)
the binary adjacency matrices of the skeleton and moral graph of G, respectively. Then we have

max{rank(W ) ; W ∈ WA} ≤max{rank(W ) ; sign(|W |) = skeleton(A)}
≤max{rank(W ) ; sign(|W |) = moral(A)}.

The skeleton of a DAG is the undirected graph obtained by removing all the arrowheads, and the
moral graph is the undirected graph where two vertices are adjacent if they are adjacent or if they
share a common child in the DAG. This result is useful when the skeleton or the moral graph can be
accurately estimated and the corresponding rank is low. In practice, we may use all available structural
priors to obtain upper bounds on the underlying rank and choose the lowest one as our estimate.
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5 EXPERIMENTS

This section reports empirical results of the low rank adaptations of existing methods, compared with
their original versions. We choose NOTEARS (Zheng et al., 2018) for linear SEMs by adopting the
matrix factorization approach, denoted as NOTEARS-low-rank, and use the nuclear norm approach
in combination with GraN-DAG (Lachapelle et al., 2020) for a non-linear data model. Again we
remark that the two methods are only demonstrations of the utility of low rank assumption, which can
be potentially combined with other methods as well. For more information, we also include several
benchmark methods: fast GES (Ramsey et al., 2017), PC (Spirtes et al., 2000), MMHC (Tsamardinos
et al., 2006), ICA-LiNGAM (Shimizu et al., 2006) specifically designed with non-Gaussian noises,
for linear SEMs;1 and DAG-GNN (Yu et al., 2019), NOTEARS-MLP (Zheng et al., 2020), and CAM
(Bühlmann et al., 2014) for the non-linear case. Their implementations are described in Appendix C.

We consider randomly sampled DAGs with specified ranks (the generating procedure was described
in Section 4.3 and is given as Algorithm 1 in Appendix C.1), scale-free graphs, and a real network
structure. For linear SEMs, the weights are uniformly sampled from [−2,−0.5] ∪ [0.5, 2] and the
noises are either standard Gaussian or standard exponential. For non-linear SEMs, we use additive
Gaussian noise model with functions sampled from Gaussian processes with RBF kernel of bandwidth
one. These data models are known to be identifiable (Shimizu et al., 2006; Peters & Bühlmann, 2013;
Peters et al., 2014). From each SEM, we then generate n = 3, 000 observations. We repeat ten times
over different seeds for each experiment setting. Detailed information about the setup can be found in
Appendix C.3. Below we mainly report structural Hamming distance (SHD) which takes into account
both false positives and false negatives, and a smaller SHD indicates a better estimate.

5.1 LINEAR SEMS WITH RANK-SPECIFIED GRAPHS

We first consider linear SEMs on rank-specified graphs, with number of nodes d ∈ {100, 300},
rank r = d0.1de, and average degree k ∈ {2, 4, 6, 8}. The true rank is assumed to be known and
is used as the rank parameter r̂ in NOTEARS-low-rank. For a better visualization, Figure 3 only
reports the average SHDs, while the true positive rate, false discovery rate, and running time are left
to Appendix D. We also show the results after using the interquartile range rule to remove outlier
SHDs. We observe that the low rank assumption can greatly improve the performance of NOTEARS,
reducing the SHDs by at least a half. For this data model, the fast GES has much higher SHDs
(see also Appendix D). PC is too slow (for example, it did not finish in 16 hours for a dataset with
100 nodes and degree 6), because some nodes may have a high in-degree. For the same reason, the
skeleton may not be well estimated by MMHC; its performance is slightly worse than the fast GES
and is not reported.

(a) d = 100, Gaussian (b) d = 300, Gaussian (c) d = 100, Exponential

Figure 3: Average SHDs on rank-specified graphs. The models are linear SEMs with (a)-(b) Gaussian
noises, and (c) exponential noises. The true rank is assumed to be known.

For more information regarding the role of sparsity, we include NOTEARS with an `1 penalty, named
NOTEARS-L1. Here the `1 penalty weight is chosen from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. Instead

1Here we choose ICA-LiNGAM, other than alternative LiNGAM methods like DirectLiNGAM (Shimizu
et al., 2011), based on our empirical observation. Specifically, an implementation of ICA-LiNGAM has a
noticeably better performance than DirectLiNGAM for relatively dense graphs. Please find a detailed discussion
and an empirical comparison in Appendix D.4.
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of relying on an additional validation dataset, we treat NOTEARS-L1 favorably by picking the lowest
SHD obtained from different weights for each dataset. As seen from Figure 3a, NOTEARS-L1
is slightly better than NOTEARS when the average degree is 2, but is largely outperformed with
relatively dense graphs. This observation was also reported in Zheng et al. (2018). We conjecture
that it is because our experiments consider relatively sufficient data and dense graphs. Moreover, the
thresholding procedure controls false discoveries and may have a similar effect to the `1 penalty.

Appendix D.1 studies graphs with higher ranks, where it is observed that the advantage of NOTEARS-
low-rank over NOTEARS decreases when the rank of the underlying DAG increases. Nevertheless,
NOTEARS-low-rank is still competitive when the true rank is dd/2e and the factorized matrix has
the same number of parameters as NOTEARS. We also conduct an empirical analysis with different
sample sizes in Appendix D.2, which shows that NOTEARS-low-rank performs reasonably well
when the sample size is small and tends to have a better performance with a larger number of samples.
Due to space limit, please find further details in the appendix.

5.2 LINEAR SEMS WITH SCALE-FREE GRAPHS

Figure 4: Scale-free graphs.

We next consider scale-free graphs with d = 100 nodes,
average degree k = 6, and power γ = 2.5. For this
experiment, the minimum, maximum, and mean ranks
of generated graphs are 14, 24, and 18.7, respectively.
Here we choose the rank parameter r̂ from {20, 30, 40} for
NOTEARS-low-rank. As seen from Figure 4, NOTEARS-
low-rank with rank parameter r̂ = 20 performs the best,
even though there are graphs with ranks greater than 20.

5.3 SENSITIVITY OF RANK PARAMETERS AND VALIDATION

So far we have assumed that the true rank or an accurate estimate is known. In this experiment,
we conduct an empirical analysis with different rank parameters for linear Gaussian data model on
rank-specified graphs with 100 nodes, degree 8, and rank 10. We also include the validation based
approach where 2, 000 samples are chosen as training dataset and the rest as validation dataset. We
use the derived lower and upper bounds in Theorems 1 and 3 to obtain a range of possible rank
parameters, assuming that the corresponding structural priors are available. Within this range, we then
select 7 evenly distributed rank parameters used with NOTEARS-low-rank to learn causal graphs.
Finally, we evaluate each learned DAG using the validation dataset and choose the DAG with the best
score as our estimate.

As seen from Figure 5, NOTEARS-low-rank performs the best when the rank parameter is identical
to the true rank, while the rank parameter chosen by validation has almost the same performance.
Compared with NOTEARS on the same datasets, the low rank version performs well across a range
of rank parameters. Although this validation approach increases the total running time that depends
on the number of candidate rank parameters, we believe that it is acceptable given the gained accuracy
and also the fact that this strategy has been frequently adopted for tuning hyperparameters in practice.

Figure 5: Different rank parameters. Figure 6: Non-linear SEMs.

5.4 NON-LINEAR SEMS

For non-linear data models, we pick rank-specified graphs with 50 nodes, rank 5, and average degree
k ∈ {2, 4, 6, 8}. To our knowledge, the selected benchmark methods CAM, NOTEARS-MLP, and

8
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GraN-DAG are state-of-the-art methods on this data model. As a demonstration of the low rank
assumption, we apply the nuclear norm approach to GraN-DAG and choose from {0.3, 0.5, 1.0} as
penalty weights. For validation, we use the same splitting ratio as in Section 5.3 and consider more
penalty weights from {0.1, 0.2, 0.3, 0.5, 1, 2, 5}. Similarly, the learned graph that achieves the best
score on the validation dataset is chosen as final estimate. Figure 6 (and Appendix D.6 with a more
detailed result) shows that adding a nuclear norm can improve the performance of GraN-DAG across
a large range of weights when the graph is relatively dense. For degree 8, the low rank version with
validation achieves average SHD 77.4, while the SHDs of CAM, NOTEARS-MLP, and original
GraN-DAG are 131.9, 119.4, and 109.4, respectively.

5.5 REAL NETWORK

Figure 7: Real network.

We apply the proposed method to the arth150 gene net-
work, which is a DAG containing 107 genes and 150 edges.
Its maximum rank is 40. Since the real dataset has only
22 samples, we instead use simulated data from linear
Gaussian SEMs. We pick r̂ from {36, 40, 44} and also
use validation to select the rank parameter. We apply
NOTEARS-L1 where the `1 penalty weight is chosen from
{0.05, 0.1, 0.2}, and similarly treat this method favorably
by picking the lowest SHD for each dataset. The mean
and median SHDs are shown in Figure 7. Using Student’s
t-test, we find that with significance level 0.1, the results
obtained with r̂ = 44 and the validation approach are significantly better than NOTEARS. This
experiment demonstrates again the utility of the low rank assumption, even when the true rank of the
graph is not very low.

6 CONCLUDING REMARKS

This paper studies the potential of low rank assumption in causal structure learning. Empirically, we
show that the low rank adaptations perform noticeably better than existing algorithms when the low
rank condition is satisfied, and also deliver competitive performances when the rank is not as low as
is assumed. Theoretically, we provide an improved understanding of what kinds of graphs tend to be
low rank and a possibility to obtain bounds on the underlying rank from several structural priors.

We treat the present work as our first step to incorporate low-rankness into causal DAG learning. A
future direction is to approximate a high rank DAG with a low rank one (possibly adding an additional
DAG that is sparse). While there is a rich literature on low rank approximations of matrices and
combining low-rankness with sparsity, it is non-trivial to us to conclude under what conditions such
an approximation is guaranteed to be effective to learn causal DAGs. Another direction is to compare
the low rank assumption to other structural or parametric priors affecting model selection through
marginal likelihood (Eggeling et al., 2019; Silander et al., 2007). Finally, it is also interesting to
investigate if a low rank DAG model implies any useful behavior in the data.
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Appendix

A EXAMPLES AND DISCUSSIONS

We provide more examples and discussions in this section.

Minimum rank of the graph in Figure 1 We first show that the minimum rank of the DAG
structure in Figure 1 is 6. It is clear that the 6-th to 10-th rows of A are always linearly independent,
so it suffices to show that the 11-th row is linearly independent of the 6-th to 10-th rows. To see this,
notice that if the 11-th row is a linear combination of the 6-th to 10-th rows, then A(11, 1) would be
non-zero, which is a contradiction.

The pathfinder and arth150 networks Figure 8 visualizes the pathfinder and arth150 networks
that are mentioned in Sections 4.3 and 5, respectively. Both networks can be found at http:
//www.bnlearn.com/bnrepository. As one can see, these two networks contain hubs: the
center note in the pathfinder network has a large number of children, while the arth150 network
contains many ‘small’ hubs, each of which has 5 ∼ 10 children. We also notice that nearly all the
hubs in the two networks have high out-degrees.
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Figure 8: The pathfinder (left) and arth150 (right) networks.

Sparse DAGs and low rank DAGs A sparse DAG does not necessarily indicate a low rank DAG,
and vice versa. For example, a directed linear graph with d vertices has only d − 1 edges, i.e.
X1 → X2 → · · · → Xd, while the rank of its binary adjacency matrix is d − 1. According to
Theorems 1 and 2, the maximum and minimum ranks of a directed linear graph are equal to its
number of edges. Thus, directed linear graphs are sparse but have high ranks. On the other hand, for
some non-sparse graphs, we can assign the edge weights so that the resulting graphs have low ranks.
A simple example would be a fully connected directed balanced bipartite graph, as shown in Figure 9.
The definition of bipartite graphs can be found in Appendix B.1. A bipartite graph is called balanced
if its two parts contain the same number of vertices. The rank of a fully connected balanced bipartite
graph with d vertices is 1 if all the edge weights are the same (e.g., the binary adjacency matrix), but
the number of edges is d2/4.

(a) G (b) Binary adjacency matrix

Figure 9: A fully connected directed balanced bipartite graph G and its binary adjacency matrix.

We also notice that there exist some connections between the maximum rank and the graph degree, or
more precisely, the total number of edges in the graph, according to Theorem 2. Intuitively, if the
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graph is dense, then we need more vertices to cover all the edges. Thus, the size of the minimum
head-tail vertex cover should be large. Explicitly providing a formula to characterize these two graph
parameters is an interesting problem, which will be explored in the future.

B PROOFS

In this section, we present proofs for the theorems given in the main content.

B.1 PRELIMINARIES

A bipartite graph is a graph whose vertex set V can be partitioned into two disjoint subsets V0 and
V1, such that the vertices within each subset are not adjacent to one another. V0 and V1 are called
the parts of the graph. A matching of a graph is a subset of its edges where no two of them share a
common endpoint. A vertex cover of a graph is a subset of the vertex set where every edge in the
graph has at least one endpoint in the subset. The size of a matching (vertex cover) is the number of
edges (vertices) in the matching (vertex cover). A maximum matching of a graph is a matching of the
largest possible size and a minimum vertex cover is a vertex cover of the smallest possible size. An
important result about bipartite graphs is König’s theorem (Dénes, 1931), which states that the size of
a minimum vertex cover is equal to the size of a maximum matching in a bipartite graph.

Based on the heights of vertices in V, we can define a weak ordering among the vertices: Xi � Xj

if and only if l(Xi) > l(Xj), and Xi ∼ Xj if and only if l(Xi) = l(Xj). Given this weak ordering,
we can group the vertices by their heights, and the resulting graph shows a hierarchical structure;
see Figure 1 in the main text for an example. This hierarchical representation has some simple and
nice properties. Let Vs = {Xi; l(Xi) = s}, s = 0, 1, . . . , l(G), and let V−1 = ∅. We have: (1) for
any given s ∈ {0, 1, . . . , l(G)} and two distinct vertices X1, X2 ∈ Vs, X1 and X2 are not adjacent,
and (2) for any given s ∈ {1, 2, . . . , l(G)} and Xi ∈ Vs, there is at least one vertex in Vs−1 which
is a child of Xi. If we denote the induced subgraph of G over Vs ∪Vs−1 by Gs,s−1, then Gs,s−1

is a bipartite graph with Vs and Vs−1 as parts, and singletons in Gs,s−1 (i.e., vertices that are not
endpoints of any edge) only appear in Vs−1.

For ease of presentation, we occasionally use index i to represent variable Xi in the following
sections.

B.2 PROOF OF THEOREM 1

Proof. Let G = (V,E). Consider an equivalence relation, denoted by ∼, among vertices in V
defined as follows: for any Xi, Xj ∈ V, Xi ∼ Xj if and only if l(Xi) = l(Xj) and Xi and Xj are
connected. Here, connected means that there is a path between Xi and Xj . Below we use C(Xi) to
denote the equivalence class containing Xi. Next, we define a weak ordering π on V/ ∼, i.e., the
equivalence classes induced by ∼, by letting C(Xi) �π C(Xj) if and only if l(Xi) ≥ l(Xj). Then,
we extend �π to a total ordering ρ on V/ ∼. The ordering ρ also induces a weak ordering (denoted
by ρ̄) on V: Xi �ρ̄ Xj if and only if C(Xi) �ρ C(Xj). Finally, we extend ρ̄ to a total ordering γ on
V. It can be verified that γ is a topological ordering of G, that is, if we relabel the vertices according
to γ, then Xi ∈ pa(Xj ,G) if and only if i > j and Xi and Xj are adjacent, and the adjacency matrix
of G becomes lower triangular.

Assume that the vertices of G are relabeled according to γ and we will consider the binary adjacency
matrix A of the resulting graph throughout the rest of this proof. Note that relabelling is equivalent
to applying a permutation onto the adjacency matrix, which does not change the rank. Let V0 =
{1, 2, . . . , k1 − 1} for some k1 ≥ 2. Then the k1-th row of A, denoted by A(k1, ·), is the first
non-zero row vector of A. Letting S = {A(k1, ·)}, then S contains a subset of linearly independent
vector(s) of the first k1 rows of A. Suppose that we have visited the first m rows of A and S =
{A(k1, ·), A(k2, ·), . . . , A(kt, ·)} contains a subset of linearly independent vector(s) of the first m
rows ofA, where k1 ≤ m < d. IfXm+1 � Xkt , then we addA(m+1, ·) to S; otherwise, we keep S
unchanged. We claim that the vectors in S are still linearly independent after the above step. Clearly,
if we do not add any new vector, then S contains only linearly independent vectors. To show the
other case, note that if l(Xm+1) > l(Xkt) ≥ · · · ≥ l(Xk1), then there is an index i ∈ Vl(Xm+1)−1

such that A(m + 1, i) 6= 0, by the definition of height. Since l(Xm+1) > l(Xkt), we have
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l(Xkt) ≤ l(Xm+1)− 1 and thus A(kj , i) = 0 for all j = 1, 2, . . . , t. Therefore, A(m+ 1, ·) cannot
be linearly represented by {A(kj , ·); j = 1, 2, . . . , t} and the vectors in S are linearly independent.
On the other hand, if l(Xm+1) = l(Xkt), then the definition of the equivalence relation ∼ implies
that Xm+1 and Xkt are disconnected, which means that Xm+1 and Xkt do not share a common
child in Vl(Xm+1)−1. Consequently, there is an index i ∈ Vl(Xm+1)−1 such that A(m + 1, i) 6= 0
but A(kt, i) = 0. Similarly, we can show that A(kj , i) = 0 for all j = 1, 2, . . . , t. Thus, the vectors
in S are still linearly independent.

After visiting all the rows in A, the number of vectors in S is equal to
∑l(G)
s=1 |C(Gs,s−1)| based on

the definition of ∼. The second inequality can be shown by noting that C(Gs,s−1) has at least one
elements. The proof is complete.

B.3 PROOF OF THEOREM 2

Proof. Denote the directed graph by G = (V,E). Edmonds (1967, Theorem 1) showed that
max{rank(W );W ∈ WA} is equal to the maximum number of nonzero entries of A, no two of
which lie in a common row or column. Therefore, it suffices to show that the latter quantity is equal
to the size of the minimum head-tail vertex cover. Let V

′
= V′0 ∪V′1, where V′0 = V × {0} =

{(Xi, 0);Xi ∈ V} and V′1 = V × {1} = {(Xi, 1);Xi ∈ V}. Now define a bipartite graph
B = (V

′
,E

′
) where E

′
= {(Xi, 0) → (Xj , 1); (Xi, Xj) ∈ E}. Denote byM a set of nonzero

entries of A so that no two entries lie in the same row or column. Notice thatM can be viewed as an
edge set and no two edges inM share a common endpoint. Thus,M is a matching of B. Conversely,
it can be shown by similar arguments that any matching of B corresponds to a set of nonzero entries
of A, no two of which lie in a common row or column. Therefore, max{rank(W ),W ∈ WA}
equals the size of the maximum matching of B, and further the size of the minimum vertex cover of
B according to König’s theorem. Note that any vertex cover of B can be equivalently transformed
to a head-tail vertex cover of G, by letting H and T be the subsets of the vertex cover containing
all variables in V′0 and of the vertex cover containing all variables in V′1, respectively. Thus,
max{rank(W ),W ∈ WA} is equal to the size of the minimum head-tail vertex cover.

B.4 PROOF OF THEOREM 3

Proof. We start with the first inequality in Equation (4). Let h1, . . . , hp denote the heights where
|Vs| < |ch(Vs)|, and t1, . . . , tq the height where |Vs| > |ch(Vs)|. Let H = ∪pi=1Vhi and
T = ∪qi=1Vti . It is straightforward to see that (H,T) is a head-tail vertex cover. Thus, Equation (4)
holds according to Theorem 2. The second inequality can be shown similarly and its proof is omitted.
For the third inequality, let m = argmax{|Vs| : 0 ≤ s ≤ l(G)}, and define H = ∪i>mVi and
T = ∪i<mVi. Then (H,T) is also a head-tail vertex cover and the third inequality follows from
Theorem 2, too.

B.5 PROOF OF THEOREM 4

Proof. Notice that Theorem 2 holds for all directed graphs. This theorem then follows by treating
the skeleton and the moral graph as directed graphs with loops, i.e., an undirected edge Xi −Xj is
treated as two directed edges Xi → Xj and Xj → Xi.

C IMPLEMENTATION DETAILS

In this section, we present an algorithm to generate a random DAG with a given rank, a low rank
version of NOTEARS and GraN-DAG, and also a description of our experimental settings.

C.1 GENERATING RANDOM DAGS

In Section 4.3, we briefly discuss the idea of generating a random DAG with a given rank. We now
describe the detailed procedure in Algorithm 1. In particular, we aim to generate a random DAG with
d nodes, average degree k, and rank r. The first part of Algorithm 1 after initialization is to sample a
number N , representing the total number of edges, from a binomial distribution B(d(d − 1)/2, p)
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Algorithm 1 Generating random DAGs

Require: Number of nodes d, average degree k, and rank r.
Ensure: A randomly sampled DAG with the number of nodes d, average degree k, and rank r.

1: Set M = empty graph, Mp = ∅, and R = {(i, j); i < j, i, j = 1, 2, ..., d}.
2: Set p = k/(d− 1).
3: Sample a numberN ∼ B(d(d−1)/2, p), whereB(n, p) is a binomial distribution with parameters
n and p.

4: if N < r then
5: return FAIL
6: end if
7: Sample r indices from 1, . . . , d− 1 and store them in Mp in descending order.
8: for each i in Mp do
9: Sample an index j from i+ 1 to d.

10: Add edge (i, j) to M and remove (i, j) from R.
11: end for
12: while R 6= ∅ and |M | < N do
13: Sample an edge (i, j) from R and remove it from R.
14: if adding (i, j) to M does not change the size of the minimum head-tail vertex cover of M

then
15: Add (i, j) to M .
16: end if
17: end while
18: if |M | < N then
19: return FAIL
20: end if
21: return M

where p = k/(d− 1). If N < r, Algorithm 1 would return FAIL since a graph with N < r edges
could never have rank r. Otherwise, Algorithm 1 samples an initial graph with r edges and rank r, by
choosing r edges such that no two of them share the same head points or the same tail points, i.e.,
each row and each column of the corresponding adjacency matrix have at most one non-zero entry.
Then, Algorithm 1 sequentially samples an edge from R containing all possible edges and checks
whether adding this edge to the graph changes the size of the minimum head-tail vertex cover. If not,
the edge will be added to the graph; otherwise, it will be removed from R. This is because if a graph
G is a super-graph of another graphH, then the size of the minimum head-tail cover of G is no less
than that ofH. We repeat the above sampling procedure until there is no edge in R or the number of
edges in the resulting graph reaches N . If the latter happens, the algorithm will return the generated
graph; otherwise, it will return FAIL.

The theoretic basis of Algorithm 1 is Theorem 2. Note that the algorithm may not return a valid
graph if the desired number N of edges cannot be reached. This could happen if the input rank is
too low while the input average degree is too high. With our experiment settings, we find it rare for
Algorithm 1 to fail to return a desired graph.

C.2 OPTIMIZATION

For this part, we consider a dataset consisting of n i.i.d. observations from P (X) and consequently
the expectations in Problems (1) and (2) are replaced by empirical means. Denote the design matrix
by X ∈ Rn×d, where each row of X corresponds to an observation and each column represents a
variable. Here we use NOTEARS (Zheng et al., 2018) and Gran-DAG (Lachapelle et al., 2020) from
each class of methods as examples and will describe their low rank versions in the following. Other
gradient-based methods and their optimization procedures can be similarly modified to incorporate
the low rank assumption.
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Algorithm 2 Optimization procedure for NOTEARS-low-rank

Require: Design matrix X, starting point (U0, V0, α0), rate c ∈ (0, 1), tolerance ε > 0, and threshold
w > 0.

Ensure: Locally optimal parameter W ∗.
1: for t = 1, 2, . . . do
2: (Solve primal) Ut+1, Vt+1 ← arg minU,V Lρ(U, V, αt) with ρ such that g(Ut+1V

T
t+1) <

cg(UtV
T
t ).

3: (Dual ascent) αt+1 ← αt + ρg(Ut+1V
T
t+1).

4: if g(Ut+1V
T
t+1) < ε then

5: Set U∗ = Ut+1 and V ∗ = Vt+1.
6: break
7: end if
8: end for
9: (Thresholding) Set W ∗ = U∗V ∗T ◦ 1(|U∗V ∗T | > w).

10: return W ∗

C.2.1 NOTEARS WITH LOW RANK ASSUMPTION

Following Section 3, the optimization problem in our work can be written as

min
W

1

2n

∥∥X−XUV T
∥∥2

F
, subject to trace

(
eUV

T ◦UV T
)
− d = 0, (5)

where U, V ∈ Rd×r̂ and ◦ is the point-wise product. The constraint in Problem (5) holds if and only
if UV T is a weighted adjacency matrix of a DAG. This problem can then be solved by standard
numeric optimization methods such as the augmented Lagrangian method (Bertsekas, 1999). In
particular, the augmented Lagrangian is given by

Lρ(U, V, α) =
1

2n

∥∥X−XUV T
∥∥2

F
+ αg(UV T ) +

ρ

2
|g(UV T )|2,

where g(UV T ) := trace
(
eUV

T ◦UV T
)
− d, α is the Lagrange multiplier, and ρ > 0 is the penalty

parameter. The optimization procedure is summarized in Algorithm 2, similar to Zheng et al.
(2018, Algorithm 1). Notice that here we do not include the `1 penalty term (except for the first
and last experiments in Sections 5.1 and 5.5, respectively), for the following reasons: (1) the
thresholding procedure can also control false discoveries; (2) we consider relatively sufficient data for
the experiments and NOTEARS with thresholding has been shown in Zheng et al. (2018) to perform
consistently well even when the graph is sparse; (3) we are more concerned with relatively large and
dense graphs, so a sparsity assumption may be harmful, as shown also by Zheng et al. (2018); (4) the
`1 penalty term requires a tuning parameter, which itself is not easy to choose.

Zheng et al. (2018) used L-BFGS to solve the unconstrained subproblem in Step 2. We alternatively
use the Newton conjugate gradient method that is written in C. Empirically, these two optimizers
behave similarly in terms of the estimate performance, while the latter can run much faster thanks
to its C implementation. The DAG constraint may not be satisfied exactly using iterative numeric
methods, so it is a common practice to pick a small tolerance, followed by a thresholding procedure
on the estimated entries to obtain exact DAGs. In our implementation, we choose U0 and V0 to be
the first r̂ columns of the d× d identity matrices. Other parameter choices are: α0 = 0, c = 0.25,
ε = 10−6, and w = 0.3, similar to those used in related methods on the same datasets (e.g., Zheng
et al. (2018); Yu et al. (2019); Zhu et al. (2020)). The chosen threshold w = 0.3 works well in
our experiments and in the experiments of related works that use the same data model. In case the
thresholded matrix is not a DAG, one may further increase the threshold until the resulting matrix
corresponds to a DAG.

After obtaining W ∗, we add an additional pruning step: we use linear regression to refit the dataset
based on the structure indicated by W ∗ and then apply another thresholding (with w = 0.3) to the
refitted weighted adjacency matrix. Both the Newton conjugate gradient optimizer and the pruning
technique are also applied to NOTEARS, which not only accelerate the optimization but also improve
its performance by obtaining a much lower SHD, particularly for large and dense graphs. See
Appendix D.3 for an empirical comparison.
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C.2.2 GRAN-DAG WITH LOW RANK ASSUMPTION

We next consider a low rank version of GraN-DAG. The optimization problem can be written as

min
θ
− 1

n

n∑
l=1

d∑
i=1

log p
(
X

(l)
i | pa(Xi,W (θ))(l); θ

)
+ λ‖W (θ)‖∗

subject to trace
(
eW (θ)

)
− d = 0,

(6)

where X(l)
i is the l-th sample of variable Xi and pa(Xi,W (θ))(l) means the l-th sample of Xi’s

parents indicated by the adjacency matrix W (θ). Here, θ denotes the parameters of neural networks
and W (θ) with non-negative entries is obtained from the neural network path products.

Problem (6) can be solved similarly using augmented Lagrangian. The procedure is similar to
Algorithm 2 and is the same to that used by GraN-DAG, with slight modifications: (1) the subproblem
in Step 2 is approximately solved using first-order methods; (2) the thresholding at Step 9 is replaced
by a variable selection method proposed by Bühlmann et al. (2014). The same variable selection
or pruning method is adopted by two other benchmark methods CAM and NOTEARS-MLP in our
experiment. Please refer to Lachapelle et al. (2020) and Bühlmann et al. (2014) for further details.

C.3 EXPERIMENT SETUP

In our experiments, we consider three data models: linear Gaussian SEMs, linear non-Gaussian
SEMs (linear exponential SEMs), and non-linear SEMs (Gaussian processes). Given a randomly
generated DAG G, the associated SEM is generated as follows:

Linear Gaussian A linear Gaussian SEM is given by

Xi =
∑

Xj∈pa(Xi,G)

W (j, i)Xj + εi, i = 1, 2, . . . , d, (7)

where pa(Xi,G) denotes Xi’s parents in G and εi’s are jointly independent standard Gaussian noises.
In our experiments, the weights W (i, j)’s are uniformly sampled from [−2,−0.5] ∪ [0.5, 2].

Linear Exponential A linear exponential SEM is also generated according to Equation (7), where
εi’s are replaced by jointly independent Exp(1) random variables. The weightsW (i, j)’s are sampled
from [−2,−0.5] ∪ [0.5, 2] uniformly, too.

Gaussian Processes We consider the following additive noise model:

Xi = fi(pa(Xi,G)) + εi, i = 1, 2, . . . , d, (8)

where εi’s are jointly independent standard Gaussian noises and fi’s are functions sampled from
Gaussian processes with RBF kernel of bandwidth one.

We sample 3, 000 observations according the SEM. The reported results of each setting are summa-
rized over 10 repetitions with different seeds. The experiments are run on a Linux workstation with
16-core Intel Xeon 3.20GHz CPU and 128GB RAM.

C.4 BENCHMARK METHODS

Existing causal structure learning methods used in our experiments all have available implementations,
as listed below:

• GES and PC: an implementation of both methods is available through the py-causal
package at https://github.com/bd2kccd/py-causal. We note that, the imple-
mentation of py-causal package is based on the CMU TETRAD project, in which the
version of GES is indeed the fast GES algorithm proposed by Ramsey et al. (2017).
• MMHC (Tsamardinos et al., 2006): an implementation is available in the bnlearn package

at https://CRAN.R-project.org/package=bnlearn.
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• CAM (Peters et al., 2014): its codes are available through the CRAN R package repository
at https://cran.r-project.org/web/packages/CAM.

• NOTEARS (Zheng et al., 2018) and NOTEARS-MLP (Zheng et al., 2020): codes are
available at the first author’s github repository https://github.com/xunzheng/
notears.

• GraN-DAG (Lachapelle et al., 2020): an implementation is available at the first author’s
github repository https://github.com/kurowasan/GraN-DAG. Note that for
graphs of 50 nodes or more, GraN-DAG performs a preliminary neighborhood selection
step to avoid overfitting.

• DAG-GNN (Yu et al., 2019): the codes are available at the first author’s github repository
https://github.com/fishmoon1234/DAG-GNN.

• ICA-LiNGAM (Shimizu et al., 2006): an implementation is available at https://sites.
google.com/site/sshimizu06/lingam.

In the experiments, we mostly use default hyperparameters unless otherwise stated.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LINEAR SEMS WITH HIGHER RANKS

This experiment considers graphs of higher ranks. We use rank-specified random graphs with
d = 100 nodes and rank r ∈ {30, 35, 40, 45, 50} on linear Gaussian SEMs. The results are shown
in Figures 10a and 10b with degrees 2 and 8, respectively. We observe that when the rank of the
underlying graph becomes higher, the advantage of NOTEARS-low-rank over NOTEARS decreases.
Nonetheless, NOTEARS-low-rank with rank r = 50 is still comparable to NOTEARS, and has a
lower average SHD after removing outlier SHDs using the interquartile range rule.

(a) Degree 2 (b) Degree 8

Figure 10: Average SHDs on rank-specified graphs with higher ranks. The true rank is assumed to be
known.

D.2 NOTEARS-LOW-RANK WITH DIFFERENT SAMPLE SIZES

Figure 11: Different sample sizes.

We next empirically study the consistency of NOTEARS-
low-rank. Again, we use rank-specified random graphs
(sampled according to Algorithm 1) with d = 100 nodes,
degree k = 8, rank r = 10, and linear Gaussian SEMs.
We also assume that the true rank is known. We fix the
rank parameter r̂ = 10 and use different sample sizes
ranging from 200 to 5, 000. From Figure 11, NOTEARS-
low-rank performs reasonably well when the sample size
is small and tends to have a better performance with a
larger number of samples.
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D.3 FURTHER PRUNING

We compare the empirical results before and after applying the additional pruning technique described
in Appendix C.2. The graphs are rank-specified with d ∈ {100, 300} nodes, rank r = d0.1de, and
degree k ∈ {2, 4, 6, 8}. We again use linear Gaussian data model with equal noise variances to
generate the datasets. The average SHDs are reported in Figure 12. We see that applying an additional
pruning step indeed improves the final performance of both NOTEARS and NOTEARS-low-rank,
especially on relatively large and dense graphs.

(a) 100 nodes, rank 10 (b) 300 nodes, rank 30

Figure 12: Average SHDs before and after pruning.

D.4 AN EMPIRICAL COMPARISON BETWEEN ICA-LINGAM AND DIRECTLINGAM

To our best knowledge, there are two Python implementations of ICA-LiNGAM (Shimizu et al., 2006)
released by the authors, available at https://sites.google.com/site/sshimizu06/
lingam and https://github.com/cdt15/lingam, respectively, where the latter is a
Python package containing several LiNGAM related methods. In the following, we use ICA-
LiNGAM-pre and ICA-LiNGAM-cdt to denote these two implementations, respectively. For Di-
rectLiNGAM (Shimizu et al., 2011), we only find a Python implementation available at the previously
mentioned Python package containing ICA-LiNGAM-cdt.

Here we run DirectLiNGAM, ICA-LiNGAM-cdt, and ICA-LiNGAM-pre on linear exponential data
models with 100-node and rank-10 graphs. The mean SHDs are reported below in Table 1. Based on
this experimental result as well as our past experience, DirectLiNGAM usually has a (slightly) better
performance than ICA-LiNGAM-cdt, while ICA-LiNGAM-pre has a noticeably (if not much) better
performance for relatively dense and large graphs. We are more concerned with relatively large and
dense graphs and hence report the results achieved by ICA-LiNGAM-pre in the main paper.

Table 1: An empirical comparison between ICA-LiNGAM and DirectLiNGAM.

Degree 2 4 6 8

DirectLiNGAM 1.4 30.1 114.2 225.0
ICA-LiNGAM-cdt 2.2 37.1 128.0 241.0
ICA-LiNGAM-pre 7.0 31.7 61.7 72.6

D.5 DETAILED EMPIRICAL RESULTS FOR EXPERIMENT 1 WITH LINEAR GAUSSIAN SEMS

Table 2 reports detailed results including true positive rates (TPRs), false discovery rates (FDRs),
structural Hamming distances (SHDs), and running time on rank-specified graphs with linear Gaussian
data model. Here the true rank is assumed to be known and is used as the rank parameter in NOTEARS-
low-rank. We also test (fast) GES, MMHC, and PC. However, PC is too slow since some nodes may
have a high in-degree (i.e., hubs) in large, dense, and low rank graphs. For the same reason, the
skeleton may not be correctly estimated by MMHC, which has a similar performance to that of GES.
Therefore, we only include the results of GES for comparison. We treat GES favorably by regarding
undirected edges as true positives if the true graph has a directed edge in place of the undirected ones.
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Table 2: Detailed results for linear Gaussian data model with equal noise variances.

100 nodes, rank 10

Degree 2 4 6 8

NOTEARS-
low-rank

TPR 0.99± 0.02 0.99± 0.03 0.99± 0.01 0.99± 0.01
FDR 0.001± 0.003 0.01± 0.02 0.02± 0.04 0.02± 0.02
SHD 0.7± 1.6 4.7± 10.2 8.5± 13.7 9.1± 11.5
Time (mins.) 1.9± 0.2 5.7± 2.7 5.8± 2.6 7.5± 2.7

NOTEARS

TPR 0.90± 0.06 0.90± 0.04 0.87± 0.05 0.89± 0.03
FDR 0.07± 0.03 0.06± 0.04 0.06± 0.02 0.04± 0.02
SHD 13.6± 8.6 30.1± 13.2 55.0± 20.9 56.3± 15.2
Time (mins.) 3.6± 1.6 6.6± 1.6 9.6± 1.5 7.3± 1.5

fast GES

TPR 0.3± 0.04 0.13± 0.02 0.08± 0.01 0.06± 0.00
FDR 0.71± 0.03 0.82± 0.03 0.85± 0.01 0.87± 0.01
SHD 141.6± 19.3 292.1± 26.0 412.5± 26.25 521.9± 22.3
Time < 10 seconds

300 nodes, rank 30

Degree 2 4 6 8

NOTEARS-
low-rank

TPR 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.97± 0.05
FDR 0.03± 0.03 0.02± 0.02 0.04± 0.02 0.06± 0.08
SHD 12.0± 10.6 13.9± 14.8 50.0± 32.1 106.0± 169.5
Time (mins.) 57.6± 43.2 76.5± 27.8 158.7± 94.7 262.9± 144.4

NOTEARS

TPR 0.94± 0.01 0.93± 0.02 0.93± 0.02 0.91± 0.02
FDR 0.07± 0.02 0.06± 0.03 0.08± 0.04 0.09± 0.06
SHD 35.4± 10.5 71.3± 29.9 138.3± 64.2 216.9± 102.6
Time (mins.) 23.9± 5.8 42.0± 10.5 74.2± 37.9 104.2± 21.7

fast GES

TPR 0.31± 0.04 0.12± 0.01 0.07± 0.01 0.05± 0.01
FDR 0.68± 0.05 0.83± 0.02 0.87± 0.01 0.89± 0.01
SHD 427.0± 58.1 883.3± 60.5 1260.8± 59.8 1608.4± 67.5
Time < 30 seconds

D.6 DETAILED RESULTS FOR EXPERIMENT 4 WITH NON-LINEAR SEMS

Table 3 reports the detailed SHDs for each method in Section 5.4. We also mark in bold the best
results from methods with or without low rank modifications.

Table 3: Detailed SHDs for Experiment 4 with non-linear SEMs.

Degree 2 4 6 8

DAG-GNN 50.1± 8.2 96.8± 11.9 146.9± 10.6 182.0± 13.5
CAM 12.9± 3.9 51.4± 19.3 98.9± 21.7 131.9± 27.1
NOTEARS-MLP 19.8± 6.4 47.8± 20.4 86.0± 15.8 119.4± 23.9
GraN-DAG 17.9± 17.0 50.3± 51.7 82.6± 75.8 109.4± 102.4

GraN-DAG, low rank, 0.3 20.9± 23.2 45.8± 47.7 65.9± 59.1 87.1± 79.9
GraN-DAG, low rank, 0.5 27.7± 40.8 50.0± 53.4 61.8± 66.7 83.9± 85.2
GraN-DAG, low rank, 1.0 42.7± 58.8 57.9± 67.6 68.7± 76.2 83.2± 76.9
GraN-DAG, low rank, validation 16.0± 4.5 44.4± 21.0 63.3± 24.7 77.4± 28.8
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