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ABSTRACT

We investigate the mechanistic underpinnings of in-context learning (ICL) in
large language models by reconciling two dominant perspectives: the component-
level analysis of attention heads and the holistic decomposition of ICL into Task
Recognition (TR) and Task Learning (TL). We propose a novel framework based
on Task Subspace Logit Attribution (TSLA) to identify attention heads specialized
in TR and TL, and demonstrate their distinct yet complementary roles. Through
correlation analysis, ablation studies, and input perturbations, we show that the
identified TR and TL heads independently and effectively capture the TR and TL
components of ICL. Via steering experiments with geometric analysis of hidden
states, we reveal that TR heads promote task recognition by aligning hidden
states with the task subspace, while TL heads rotate hidden states within the
subspace toward the correct label to facilitate prediction. We further show how
previous findings on ICL’s mechanism—including induction heads, task vectors,
and more—can be reconciled with our attention-head-level analysis of the TR–TL
decomposition. Our framework thus provides a unified and interpretable account
of how LLMs execute ICL across diverse tasks and settings1.

1 INTRODUCTION

A key property of Large Language Models (LLMs) is their ability to solve tasks from demonstrations
embedded in the input—without further training. This phenomenon, known as In-context Learning
(ICL) (Brown et al., 2020; Radford et al., 2019), has reduced the need for large datasets and finetuning,
enabling fast adaptation of LLMs to new tasks (Dong et al., 2024; Sun et al., 2022). Since its success
cannot be explained by traditional gradient-based paradigms (Ren et al., 2024b), deciphering the
mechanism behind ICL has become a central research question of great academic interest.

Two research paradigms dominate this pursuit. (1) The introspective paradigm designates internal
model components or representations as critical drivers of ICL functionality. Pioneering works
(Elhage et al., 2021; Olsson et al., 2022) formulate the output logits of Transformers as the sum
of individual component outputs and highlight the significance of Induction Heads (IHs) in toy
models, with follow-ups confirming their importance in larger models via ablation (Crosbie &
Shutova, 2024; Halawi et al., 2024; Cho et al., 2025a). These studies inspired the concept of task
vectors—compact representations distilled from hidden states or attention head outputs that steer
zero-shot prompts toward ICL-level predictions (Hendel et al., 2023; Todd et al., 2024; Liu et al.,
2024), and spurred further inquiries into the properties, behaviors, and emergence of IHs (Ren et al.,
2024b; Singh et al., 2024; Yin & Steinhardt, 2025). (2) The holistic paradigm instead treats the
LLM as an entirety and investigates ICL’s properties by directly inspecting and probing how different
demonstration configurations shape ICL performance. For instance, by perturbing the demonstration
labels in context, Pan et al. (2023) factorize ICL into two core components: Task Recognition (TR,
recognizing the label space) and Task Learning (TL, learning the text–label mapping), each
contributing to part of the ICL functionality (Figure 1 (A)). Min et al. (2022) also systematically
explored the effect of the distribution of texts and labels in demonstrations individually, as well as the
templates and number of demonstrations.

1The source code will be released upon acceptance of this paper.
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Task Recognition

TR Heads

B

TL Heads

It is fantastic → positive 
Not so good → negative 
I like it → positive
Satisfactory →    (positive)

CA

Task Learning

Task Recognition & Task Learning

Test Samples:
Positive / Negative

Geometry of Task Recognition and TR Heads
Geometry of 
Task Learning and TL Heads

Figure 1: (A) Example of how LLMs deduce the label of a final query through ICL, which consists
of two components: task recognition (identifying the label space) and task learning (mapping
demonstration texts to labels). (B) The outputs of Task Recognition heads align with the task
subspace spanned by candidate label unembeddings, thus they can steer the hidden states to align
with the subspace by reducing the angle between the point clouds and the task subspace. (C) Task
Learning heads act as rotations within the task subspace, aligning the query’s hidden state with the
unembedding of the correct label and enabling the correct prediction.

The two research paradigms offer complementary insights but also limitations. The introspective
paradigm localizes ICL to individual attention heads, yet its reliance on ablation only measures how
much performance changes when heads are removed, without explaining how these heads realize ICL
or behave under varied inputs. The holistic paradigm provides a broad functional view, separating
ICL into TR and TL, but cannot trace these roles back to concrete components. A unified framework
is needed to combine mechanistic precision with functional clarity.

Therefore, in this paper, we propose such a framework through attention head analysis, illustrated
in Figure 1. Using the Task Subspace Logit Attribution (TSLA) method, which analyzes how each
head contributes to the movement of hidden states w.r.t. the unembedding vectors of the task-related
labels from a geometric perspective, we identify Task Recognition Heads (TR heads) and Task
Learning Heads (TL heads) that are critically responsible for the TR and TL components of ICL.
Geometric analyses (Kirsanov et al., 2025; Yang et al., 2025; Marks & Tegmark, 2024) reveal that
TR heads align hidden states with the subspace spanned by task-related token unembeddings, helping
the model recognize them as part of the label space and preventing the prediction of irrelevant tokens
(Figure 1 (B)). TL heads then rotate the hidden states within the task subspace toward the correct
label unembedding and facilitate correct prediction (Figure 1 (C)). Together, these mechanisms guide
LLMs to perform the complete ICL functionality.

We validate these mechanisms through ablation and novel steering experiments across diverse ICL
settings, including corrupted demonstrations and free-form generation—scenarios often overlooked
in prior work. Our framework also reconciles earlier findings: for IHs, correlation analyses indicate
they are best understood as a subset of TR heads whose main role is label-space recognition. For task
vectors, we show that the primary barrier to accurate zero-shot prediction is weak alignment between
hidden states and the task subspace, explaining why outputs of TR heads—and thus IHs—naturally
serve as effective task vectors (Todd et al., 2024).

2 RELATED WORKS

Early investigations into ICL relied on input perturbation experiments (Min et al., 2022; Pan et al.,
2023; Wei et al., 2023). By removing labels with semantic content (e.g., “negative” → “0”) or
scrambling the text-label mapping while still observing non-trivial accuracy, these works concluded
that ICL is a composite mechanism comprising two components: Task Recognition (TR) and Task
Learning (TL). However, this approach is limited, as it cannot provide mechanistic explanations
with finer granularity and mechanistically tie ICL functionality to specific model components.

This gap was narrowed by the circuit formulation of Transformers (Elhage et al., 2021; Olsson et al.,
2022), which decomposes output logits into contributions from individual attention heads and MLPs.
This allowed precise attribution of LLM behaviors to components (Crosbie & Shutova, 2024) and
spotlighted the Induction Head (IH) as crucial for ICL (Zheng et al., 2024; Song et al., 2025). In toy
copying tasks ([X][Y][X][Y]...[X] → [Y]), IHs attend to earlier occurrences of [Y], mimicking label
copying. Their importance for ICL has been confirmed in large-scale models through ablation studies
that directly replace or remove their outputs and observe a change in final logits (Cho et al., 2025a).
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Building on this methodology, later work identified Function Vector Heads (Todd et al., 2024; Yin
& Steinhardt, 2025)—those exerting the strongest influence on ground-truth label logits and thus
conceived as the cause of ICL functionality (Sun et al., 2025). Similar approaches extend to retrieval-
augmented generation (distinguishing heads leveraging parametric vs. external knowledge) (Jin et al.,
2024; Kahardipraja et al., 2025) and chain-of-thought reasoning (Cabannes et al., 2024). Yet these
methods reveal only how much a head contributes, not how it contributes or which ICL component
it affects. Existing attempts at explanation, often based on attention heatmaps (Kahardipraja et al.,
2025; Ren et al., 2024a), remain too shallow to establish causal significance.

Recent studies move beyond attribution by aggregating head outputs into task vectors that steer
zero-shot hidden states toward ICL-level accuracy (Hendel et al., 2023), where heads producing
effective task vectors are seen as mechanistic origins of ICL (Todd et al., 2024; Yin & Steinhardt,
2025). However, this line of work faces interpretability challenges: 1) candidate heads are selected
using ablation-based methods, treating the channel linking attention heads to outputs as a black box;
2) construction of task vectors sometimes involves opaque optimization (Li et al., 2024); and 3) the
model’s use of injected vectors is described only as a black-box function (Merullo et al., 2024).

To address these interpretability challenges, geometric analysis of layer-wise hidden state evolution
which incorporates the effects of attention head outputs and injected task vectors offers a promising
alternative (Kirsanov et al., 2025). Jiang et al. (2025) identify a compress-expand pattern in task
representations during ICL, while Yang et al. (2025) link IH outputs to alignment between hidden
states and unembedding vectors of task-relevant labels. This geometric perspective enables deeper
insight into how attention heads influence LLM outputs in complex ICL settings.

3 METHODOLOGY

3.1 BACKGROUND

Circuit Formulation of Transformer In the circuit formulation of Transformer LLMs, an input
query q with N tokens [x1, ...,xN ] (e.g., “I like this movie. Sentiment:” for a sentiment analysis task)
is first transformed into layer-0 hidden states h0

1, ...,h
0
N via the embedding matrix WE ∈ R|V|×d ,

where d is the model dimension and V the vocabulary. These hidden states then pass through L layers,
where the update of the i-th token’s hidden state at layer l is:

hl
i = hl−1

i +
K

∑
k=1

al
i,k +ml

i ,

with al
i,k the output of the k-th attention head (denoted head (l,k)) in the attention sublayer, and ml

i

the MLP sublayer output. al
i,k is the weighted sum of the layer-(l − 1) hidden states of the first i

tokens, H l−1
≤i = [hl−1

j ]ij=1, transformed by the embedding matrices of head (l,k). The final hidden
state of the last token (“:” in the previous example) can thus be written as:

hL
N = h0

N +
L

∑
l=1

( K

∑
k=1

al
N,k +ml

N

)
. (1)

hL
N is multiplied by the unembedding matrix WU ∈ Rd×|V| to form logits. Each head output thus

contributes to the logits additively as a l
N,kWU , referred to as Direct Logit Attribution (DLA)

(Olsson et al., 2022; Chughtai et al., 2024; Yu & Ananiadou, 2024; Lieberum et al., 2023).

ICL and Induction Head In ICL, m text-label demonstration pairs t1,y1, ...,tm,ym are prepended
to the query, forming the sequence t1,y1, ...,tm,ym,q (e.g., “I hate this movie. Sentiment: negative.
This movie is great. Sentiment: positive· · · I like this movie. Sentiment:”). With these demonstrations,
the attention head outputs al

N,k to the final position, depending on all preceding tokens, producing
logits that can lead the LLM to predict y∗, the correct label for q. An Induction Head (IH) is a special
attention head that, at each position, searches for earlier occurrences of the current token, attends to
the immediately following tokens, and copies their information back to the current position. In the
example above, an IH at the final position places its attention on the “positive” and “negative” tokens
that follow previous “:” tokens and uses their hidden states to form its output.
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3.2 IDENTIFYING TR AND TL HEADS USING TASK SUBSPACE LOGIT ATTRIBUTION

Pan et al. (2023) decomposes ICL into two components. Task Recognition (TR) means recognizing
the set of candidate task label tokens Y from demonstration labels, with {y1, ...,ym} ∈ Y, without
using the text-label mapping information to deduce the correct token. Task Learning (TL), in
contrast, means learning the mapping from demonstration texts to task labels, f : X→ Y, to predict
the only correct label for query q. To identify heads contributing to TR and TL, Lieberum et al.
(2023) compute al

N,kW
Y

U and al
N,kW

y∗
U for all heads (l,k), where WY

U ∈ Rd×|Y| and W y∗
U ∈ Rd are

the unembedding matrix restricted to Y and y∗. Heads with the highest element-wise sum 1Tal
N,kW

Y
U

are considered TR heads, and those with the highest al
N,kW

y∗
U are TL heads.

This approach has two problems. 1) For TR heads, Lieberum et al. (2023) study four-choice tasks
where the full label space is “A”, “B”, “C”, “D”. In general settings, demonstration labels are arbitrary
hyperparameters and may not capture full task semantics. Changing labels from positive/negative
to favourable/unfavourable does not alter the task, but heads amplifying logits for positive/negative
may not do so for favourable/unfavourable. 2) For TL heads, the method ignores competition among
label tokens: heads boosting y∗ may also boost incorrect labels Y/y∗, disqualifying them as true
task-mapping heads. A more precise approach must (a) capture task semantics beyond surface tokens
and (b) evaluate contributions relative to competing labels.

We therefore propose the Task Subspace Logit Attribution (TSLA) method. For TR heads, we
compute the TR score:

∥ProjWY
U
al

N,k∥2, (2)

where ProjWY
U
= WY

U (WY,⊤
U WY

U )−1WY,⊤
U is the d × d projection matrix onto span(WY

U ), the
subspace spanned by unembedding vectors of demonstration labels, which also encompasses unem-
beddings of related tokens since LLMs encode related semantics as subspaces (Saglam et al., 2025;
Zhao et al., 2025). The TR score—the projected norm of a head’s output onto this subspace—thus
captures logit contributions to all task-related semantics regardless of the chosen demonstration labels,
alleviating the DLA approach’s sensitivity to demonstration-label choice as a hyperparameter. We
have the following theoretical guarantee for this metric’s effectiveness.

Theorem 1 Let r = |Y|. Assume n distinct r-dimensional subspaces drawn i.i.d. from the Grassman-
nian Gr(r,d) are spanned by columns of WU . If head (l,k) has TR score γ , then with probability
at least 1− (n−1)(1− I( γ

∥al
N,k∥2

)2( r
2 ,

d−r
2 )), al

N,k has the largest projected l2 norm onto span(WY
U )

among all such subspaces,

where Ix(α,β ) = B(x;α,β )
B(α,β ) is the regularized incomplete beta function, increasing in x. This shows that

a large TR score implies the head output is best captured by the subspace spanned by demonstration
label unembeddings, qualifying it as a TR head. The proof is in Appendix B.

For TL heads, we compute:

Avey′∈Y/{y∗}(a
l,⊤
N,k(W

y∗
U −W y′

U ))

∥ProjWY
U
al

N,k∥2
. (3)

The numerator is the mean inner product of the head output with the difference between the correct
label unembedding and each incorrect label, which measures the logit difference a head creates
between correct and incorrect labels. The denominator is the TR score. Since W y∗

U −W y′
U ∈

span(WY
U ) for all y′ ∈ Y/{y∗}, the TL score ranges in [−1,1]. Geometrically, it is the proportion of

the projected head output that aligns with the unembedding difference between correct and incorrect
labels. Heads with high TL scores express logit contributions to task-related labels primarily by
increasing the logit gap between correct and incorrect labels. They can steer hidden states to better
align with the correct label’s unembedding within the task subspace when added to the residual
stream. This conforms to task learning, which centers on identifying the correct label and excluding
incorrect ones for an input. Moreover, this TL score also mitigates the DLA issue of interference
from incorrect labels by disregarding heads that fail to differentiate and instead raise both logits.
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For each dataset, we use ICL prompts built from the first 50 queries to calculate the TR and TL scores
of each head, with the scores summed across prompts. Heads are ranked by TR and TL scores to
identify TR and TL heads. See Appendix C for a comparison with Lieberum et al. (2023)’s method.

4 EXPERIMENTS

Models We experiment on models with diverse architectures and sizes, including Llama3-8B,
Llama3.1-8B, Llama3.2-3B (Grattafiori et al., 2024), Qwen2-7B, Qwen2.5-32B (Yang et al., 2024),
and Yi-34B (01. AI et al., 2024). Unless otherwise noted, results are reported on Llama3-8B.

Datasets We evaluate on the following datasets: SUBJ (Wang & Manning, 2012), SST-2 (Socher
et al., 2013), TREC (Li & Roth, 2002), MR (Pang & Lee, 2005), SNLI (MacCartney & Manning,
2008), RTE (Dagan et al., 2005), and CB (De Marneffe et al., 2019). We also include an LLM-
generated dataset introduced in Subsection 4.3, with curation details in Appendix D and Appendix J.

ICL setting We use 8-shot demonstrations for ICL. For implementation details (models, datasets,
prompt templates, etc.), see Appendix D.

4.1 VALIDATING TR/TL HEAD SPECIALIZATION AND THE ROLE OF INDUCTION HEADS

Jaccard Coef

Kendall's Spearman's 

0.0
0.1
0.2
0.3
0.4
0.5

TR TL
TL IH
TR IH

(a) Dataset-averaged Jaccard Co-
efficient, Kendall’s τ , and Spear-
man’s ρ for TR heads, TL heads,
and IHs at the top 3% level.

3% 5% 10% 20%

20.0

40.0

TR-IH

TL-IH

(b) Conditional Mean Percent-
age at four top thresholds for the
TR–IH and TL–IH pairs aver-
aged over datasets.

Figure 2: Overlap, correlation, and consistency of three at-
tention head types averaged across datasets. (A) TR heads
exhibit substantially greater overlap and correlation with IHs
compared to TR–TL or TL–IH pairs. (B) Top IHs consis-
tently rank higher in the TR ranking than in the TL ranking.
Results for other models are in Appendix F.1.

To examine whether the TR and TL
heads we identified indeed capture the
distinct TR and TL components of
ICL, we first analyze overlap, corre-
lation, and consistency between them.
We also include IHs in the analysis.
Given their significance in mechanis-
tic accounts of ICL (Zheng et al.,
2024), we also wish to know whether
IHs contribute by improving TR, TL,
or both. Following Todd et al. (2024)
and Yang et al. (2025), we compute
IH scores (i.e., the degree to which a
head’s attention pattern resembles that
of IHs) as described in Appendix E.

Adopting the methodology of Yin &
Steinhardt (2025), we report Jaccard

Coefficients2 among the top 3% of each head type to measure overlap at the top level. We also
compute Kendall’s τ and Spearman’s ρ among the three rankings to evaluate the global correlations
levels among the head types. Finally, we introduce Conditional Mean Percentage, which measures
the average rank percentile of the top 3%, 5%, 10%, and 20% IHs within the TR and TL rankings.
This metric bridges the local and global perspectives and answers the question of how significantly
on average does the top IHs exhibit the TR and TL functionality, which is important in subsequent
ablation-based experiments in Subsection 4.2.

Strong association between IHs and TR heads Figure 2a shows that TR heads and IHs are
highly similar: 1) their overlap at the top 3% is much larger than either TR–TL or TL–IH pairs, and
significantly above random baseline3; 2) their rank correlations are consistently higher. By contrast,
TR–TL and TL–IH pairs show weaker overlap and correlation. This reveals how IHs, the magnitude of
whose influence on ICL has been widely recorded, affect ICL: they influence ICL mainly by enabling
recognition of the label space, rather than selectively amplifying the correct label. It reconciles
conflicting previous findings with some reporting IHs as recognizing correct labels (Olsson et al.,
2022; Cho et al., 2025b), others mentioning “false induction heads” that mislead (Halawi et al., 2024;
Yu & Ananiadou, 2024). It also echoes Yin & Steinhardt (2025), who observed IHs overlap strongly
with “function vector heads”4, reinforcing the centrality of TR heads in ICL.

2For two subsets A1,A2 ⊆ A, the Jaccard Coefficient is |A1∩A2|
|A1∪A2| .

3For random subsets of size k%, the expected Jaccard Coefficient is k
200−k , which is 0.0152 for k = 3.

4Heads revealed to have greatest impact on correct label logits through ablations.
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Figure 2b further shows that top IHs consistently rank higher within TR rankings than TL rankings.
For example, the top 10% IHs correspond to roughly the top 20% TR heads but only the top 50% TL
heads. This further justifies the large accuracy implications of ablating top IHs, which would imply
ablating fairly high-ranking TR heads and the failure of task recognition.

1 3 5 7 9 1113151719212325272931
Head ID

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

La
ye

r 
ID

IH TL TR IH-TR

Figure 3: Distribution of the top 10% TR
heads, TL heads, and IHs on SST-2. TR heads
occur significantly deeper than TL heads and
IHs. Overlaps between TR heads and IHs are
also more frequent in deeper layers. Results
for other models are in Appendix F.2.

Layer-wise distribution of special heads Figure 3
shows the per-layer distribution of the top 10% TR,
TL, and IH heads for SST-2. We observe: 1) TR
heads appear significantly deeper than both TL heads
and IHs, while the layer distributions of TL heads
and IHs are more similar (see Appendix F.2 for sig-
nificance tests). This partly echoes but also chal-
lenges Yin & Steinhardt (2025), who reported func-
tion vector heads as only “slightly deeper” than IHs.
2) The TR–IH overlaps are much greater than TL–IH
or TR–TL overlaps, and occur primarily in deeper
layers. This indicates that the correlation between
TR heads and IHs is systematic rather than haphaz-
ard: the overlaps conform to the general trend of TR
heads being concentrated in deeper layers, instead
of reflecting coincidental matches with scattered TR
heads that occasionally appear in early layers.

Cross-dataset correlation To examine whether TR,
TL, and IH heads generalize across tasks, we mea-
sure pairwise Jaccard, Kendall’s τ , and Spearman’s
ρ among top 3% heads identified on seven datasets,
averaged across

(7
2

)
= 21 dataset pairs. As shown in Figure 4, TR heads and IHs exhibit much higher

cross-task overlap and correlation than task-specific TL heads. This underscores TR heads (and
IHs) as task-invariant mechanistic foundations for recognizing label spaces, upon which TL
heads specialize to learn dataset-specific mappings.

4.2 TESTING INDEPENDENT CONTRIBUTIONS OF TR AND TL VIA ABLATION

Kendall Spearman Jaccard

TR

TL

IH

0.61 0.79 0.36

0.09 0.13 0.12

0.76 0.92 0.47
0.0

0.2

0.4

0.6

0.8

1.0

M
in

-M
ax

 N
or

m
al

iz
ed

Figure 4: Pairwise overlap and
correlation of TR/TL heads,
and IHs identified across
datasets. TR heads and IHs are
consistent across tasks, while
TL heads vary greatly. See Ap-
pendix F.1 for other models.

We now show that the TR and TL heads identified by our method
indeed independently and effectively capture the respective TR and
TL functionalities through ablation experiments. Prior studies have
mainly measured the effect of ablation on overall ICL accuracy
(Crosbie & Shutova, 2024). However, as argued in Section 2, this
provides only a coarse view of how much performance drops, with-
out revealing how heads contribute via the TR or TL components.
To address this, we introduce the Task Recognition Ratio (TR
ratio), defined as the proportion of predictions that fall within the
in-context label set. Formally, for m ICL prompts with predicted
labels ŷ1, ..., ŷm,

TR ratio =
1
m

m

∑
i=1

1ŷi∈Y.

Since accuracy is upper-bounded by the TR ratio, the two metrics together let us separately evaluate
contributions of TR and TL heads. We conjecture: (1) ablating TR heads should reduce both
accuracy and TR ratio, while (2) ablating TL heads should reduce accuracy but leave TR ratio largely
intact—causing performance to approximate random guessing over all candidate labels with expected
accuracy 1

|Y|
5. As a control, we also ablate 3% of randomly chosen heads disjoint from the identified

TR/TL sets. We report the results averaged over the seven datasets.

5For the seven datasets with 4 having 2 labels, 2 having 3 labels, 1 having 6 labels, the average random
guessing level is 40.48%
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ICL W/O TL W/O TR
0.0

0.5

1.0

(a) Ablating with shuffled demonstration texts.

ICL W/O TL W/O TR
0.0

0.5

1.0 ACC TR Ratio

(b) Ablating with relabeled demonstrations.

Figure 6: Dataset-average effects of ablating TR and TL heads under input perturbations. (A)
Shuffling character order of demonstration texts destroys TL, making TL ablation negligible while TR
ablation still matters. (B) Relabeling demonstrations alters the label space, thereby greatly reducing
the impact of TR head ablation.

ICL ZSL W/O IH W/O TL W/O TR W/O Rand.
0.0

0.5

1.0

ra
nd

om
 g

ue
ss

ACC TR Ratio

Figure 5: Effects of ablating the top 3% of different
heads, averaged across datasets. TR head ablation
severely reduces both accuracy and TR ratio, while
TL head ablation primarily reduces accuracy.

Separability of TR and TL functionality Fig-
ure 5 confirms our conjecture. Removing top TR
heads collapses the TR ratio from nearly 100%
to ∼20%, leading to a drastic accuracy drop. In
contrast, removing top TL heads lowers accu-
racy by ∼30% but only slightly reduces the TR
ratio (by ∼10%). This highlights a key property:
separability, i.e., TR and TL can be indepen-
dently controlled and intervened upon, consis-
tent with the conclusions in Pan et al. (2023)
achieved through input perturbations. (see Appendix G.1 for other models).

TR heads, IHs, and implications for zero-shot Ablating IHs produces a pattern closely resembling
TR head ablation: large accuracy losses primarily due to failed task recognition. This supports the
conclusion that IHs influence ICL mainly by strengthening TR. Likewise, the root cause of poor
zero-shot performance is insufficient task recognition. Thus, restoring ICL-level accuracy in zero-shot
settings hinges on activating the TR functionality—a question we revisit in Subsection 4.3.

Testing independence via input perturbations To further probe the separability of TR and TL, we
perturb ICL inputs following Wei et al. (2023); Pan et al. (2023). Specifically: Case 1: Keep labels
unchanged but randomize the character order of demonstration texts (e.g., “I like it: positive” → “tkl
iieI : positive”). This destroys TL, since no meaningful mapping from such nonsensical texts to labels
remains. Case 2: Keep texts unchanged but replace demonstration labels with arbitrary tokens (e.g.,
“negative” → “0”, “positive” → “1”), thereby altering the label space recognized by TR heads.

We hypothesize that: if the TR heads and TL heads maintain sufficient independence, then in Case
1, ablating TL heads should have little effect (TL is already disabled), while in Case 2, ablating TR
heads should matter less (the original TR functionality is nullified).

As shown in Figure 6a, when texts are shuffled, TL ablation barely matters while TR ablation remains
devastating. Conversely, in Figure 6b, TR ablation has little effect, compared to the significant impact
shown in Figure 5, since the recognized label space has shifted, while TL ablation behaves as in
the standard case. These results confirm the robustness of TR/TL independence across diverse ICL
settings (see Appendix G.2 for other models).

4.3 STEERING WITH TR/TL HEADS: FUNCTIONAL AND GEOMETRIC INSIGHTS

Ablation experiments, while informative, are insufficient for mechanistic explanations: they show
what happens when heads are removed, but not what happens when added. To address this limitation,
we complement ablation with steering experiments that examine how TR and TL heads contribute
when actively injected. Specifically, we test their suitability as task vectors (TVs) (Todd et al., 2024;
Hendel et al., 2023) by extracting their outputs at the final token position from ICL prompts, summing
them across prompts, and injecting them into the residual stream of zero-shot inputs to test whether
accuracy improves toward ICL levels. We use the top 3% TR/TL heads and compare against a
baseline of 3% random heads and follow procedures in Appendix I.1 to construct task vectors.

Task recognition as the key to zero-shot failure Figure 7 mirror our ablation findings (Figure 5):
poor zero-shot performance stems primarily from weak task recognition. Injecting TR-based TVs

7
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restores this functionality and improves performance. TL-based vectors are less effective, reinforcing
that TL operates based on TR (see Appendix H.1 for other models).

10.0% 20.0% 30.0% 40.0%
TL as TV

TR as TV

Rand. as TV

9.2% 11.2%

9.2% 40.4%

9.2% 9.5%

Original After

Figure 7: Zero-shot accuracy gains from steer-
ing with task vectors constructed from TR,
TL, or random heads. TR-based task vec-
tors consistently recover ICL-level accuracy,
while TL-based vectors have weaker effects.

Task-type dependence of steering effectiveness
Note that the relative ineffectiveness of TL heads
as task vectors can be partly attributed to the clas-
sification datasets we use, where performance is
tightly linked to task recognition and effectively
upper-bounded by the TR ratio. In contrast, gen-
eration tasks differ fundamentally in that no fixed
label space exists—the label space is indefinite and,
in principle, infinite. As a result, model success in
such tasks is less constrained by recognizing a closed
set of labels, and instead depends more on learning
and applying the correct input–output mapping. To

examine this scenario, we consider a sentiment-controlled review generation task with prompts such
as: “Write a positive/negative review of a movie within 30 words.” Labels are coherent reviews with
the desired sentiment6. We identify TR and TL heads on ICL-styled prompts from this task following
Appendix I.2, and use their outputs as task vectors to influence the zero-shot generations. An LLM
evaluator is then used to rate generations from 0 to 10 based on sentiment adherence and language
coherence. As shown in Figure 8, TL-based vectors significantly outperform TR-based and random
vectors, consistent with TL heads capturing mappings from demonstrations to the sentiment values
and semantic coherence of the labels (see Appendix H.2 for other models).

ICL ZS TL as TV TR as TVRand. as TV

5

10 7.99

3.92 5.12
3.37 4.44

Mean ± SD

Figure 8: Ratings in the review generation task
when steering with TR, TL, or random TVs. TL
vectors yield the largest improvements, reflecting
their strength in capturing in-context mappings.

Geometric effects of TR and TL outputs To
understand the significance of TR/TL heads in
ICL at a finer level than task vector experi-
ments, we invoke the geometric analysis of hid-
den states (Kirsanov et al., 2025; Yang et al.,
2025), which analyzes the evolution of ICL hid-
den states and the role of different components.
Concretely, given an ICL prompt, we extract the
summed outputs of the top 3% TR or TL heads,
revert to the hidden state at an earlier layer, and
steer it with these outputs. This mimics how

head outputs are added to the residual stream during layer progression inside the model. We measure
two geometric metrics before and after steering: (1) Logit Difference: inner product of the hidden
state with the mean unembedding difference between correct and incorrect labels, reflecting label
discrimination. (2) Subspace Alignment: cosine similarity between the hidden state and the subspace
spanned by label unembeddings, reflecting alignment with task-related semantics 7.

Original +TL +TR +Rand.

4.0

4.5

5.0

3.92

5.28

4.85

3.72

Logit Difference Subspace Alignment

0.15

0.20

0.25

0.30

0.15 0.16

0.29

0.15

Figure 9: Geometric effects of TR and TL
steering. TR outputs enhance alignment with
the task subspace, while TL outputs rotate
hidden states toward the correct label unem-
bedding within the subspace.

The results in Figure 9 demonstrate the specialized
geometric effects TR and TL heads have in the evo-
lution of hidden states (for other models, see Ap-
pendix H.3). Steering with TR outputs causes hidden
states to align significantly more with the task sub-
space. In contrast, TL outputs adjust the hidden state
to align better with the unembedding direction of
the correct label in the task space but not with the
task subspace overall. This leads us to conjecture
that TR outputs are well-aligned with the task sub-
space, thus increase hidden-state alignment with the
subspace after addition by decreasing the angle in
between. By contrast, TL heads create pure rotation
toward the correct label unembedding direction, fine-tuning hidden-state orientation toward the
correct label without boosting subspace alignment. See Appendix H.3 for other models.

6Example positive review: “Bold experimental narrative structure defies genre conventions delightfully.
Socioeconomic themes challenge viewers’ perceptions thoughtfully and respectfully.”

7See Appendix I.3 for full definitions.
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(a) Correlation between hidden state updates and TR
head outputs in subspace alignment. Strong correla-
tion confirms TR heads as main drivers of alignment.
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(b) Correlation between hidden state updates and TL
head outputs in logit difference. TL heads consistently
drive discrimination toward correct labels.

Figure 10: Layerwise verification of TR and TL geometric effects. TR heads enforce alignment with
the task subspace, while TL heads enforce rotations toward correct label directions.

Layerwise verification of geometric influence To validate that TR and TL heads indeed primarily
drive these geometric dynamics, we examine hidden state updates under ICL across layers. At each
layer, we compute the mean subspace alignment of top-3 TR heads (i.e. heads with top-3 TR scores
at the layer) outputs and the mean logit difference of top-3 TL heads outputs, then correlate them with
the same metrics computed on the full hidden state updates. Since head outputs contribute directly to
layer updates, their correlations with hidden-state geometry across layers indicate how strongly TR
and TL heads drive the dynamics. As shown in Figure 10, the correlations are strong, confirming
that TR and TL heads dominate layerwise geometric shaping of hidden states. For other models see
Appendix H.4. Additional ablation-based verification is provided in Appendix H.5.

TL TR Rand.
0.0

0.2

0.4
0.44

0.08
0.00

0.09

0.33

0.03

Projected Discr. Align. Subspace Alignment

Figure 11: Decomposed geometric effects of TR
and TL outputs. TR heads align hidden states to
the task subspace; TL heads rotate states within
the subspace toward correct label directions.

TR Heads align to task space, TL heads rotate
within it To support our geometric intuition
from Figure 9 that TR heads foster alignment
while TL heads perform rotation, we consider
two geometric measures of TR and TL head out-
puts. (1) Subspace Alignment — cosine simi-
larity with the task subspace, and (2) Projected
Discriminant Alignment — cosine similarity
with the mean unembedding difference between
the correct and incorrect labels after projection
onto the task subspace. These measures dis-
sect the geometric effects of head outputs into

steering towards the task space and steering within the task space, enabling more fine-grained
verification of the heads’ distinct effects (Figure 1 (B), (C)). Figure 11 shows that TL head outputs
have high cosine similarity with the mean unembedding difference after projection, confirming that
TL heads, when restricted to the task subspace, propel rotation from wrong-label to correct-label
unembedding directions. The high cosine similarity between TR heads and the task subspace itself
strongly evidences their capability to steer hidden states towards the task subspace and support
prediction of task-related labels (see Appendix H.6 for more models).

5 CONCLUSION

We presented a unified framework that reconciles component-level and holistic views of in-context
learning (ICL) by identifying attention heads specialized for Task Recognition (TR) and Task
Learning (TL). Using Task Subspace Logit Attribution (TSLA), we showed that TR heads align
hidden states with the task subspace, enabling recognition of candidate labels, while TL heads rotate
states within this subspace toward the correct label. Ablation experiments confirmed their separable
roles: removing TR heads collapses task recognition, whereas removing TL heads primarily reduces
accuracy. Steering experiments further highlighted task dependence: TR-based vectors are crucial
for classification tasks with fixed label spaces, while TL-based vectors dominate in open-ended
generation. Geometric analyses corroborated these findings, attributing alignment effects to TR heads
and discriminative rotations to TL heads. Our results also clarify the roles of induction heads and
task vectors, positioning them as manifestations of TR functionality. Together, this work establishes
TR and TL heads as mechanistic foundations of ICL.
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Appendices

A STATEMENT OF LLM USAGE

In this work, LLMs are used to help with writing, experiment coding, and visualization of the results.
LLMs are also used to produce results in one of the experiments, as explained in Subsection 4.3 and
Appendix J.

B PROOF OF THEOREM 1

Let S ∈ Rd×r be one of the n distinct r-dimensional subspaces in span(WU ) drawn uniformly i.i.d.

from the Grassmannian Gr(r,d). Denote PS as the projection matrix of S. Let c =
∥PSal

N,k∥2

∥al
N,k∥2

be

the projected norm of the normalized head output
al

N,k

∥al
N,k∥2

onto S. Since the uniform distribution

over Gr(r,d) is induced by the Haar measure over the orthogonal group O(d), the distribution
is rotation-invariant; i.e., multiplying S by an orthogonal matrix U ∈ Rd×d does not change its
distribution. Because orthogonal transformations preserve angles, we also have

∥PUSUal
N,k∥2

∥al
N,k∥2

=
∥PSa

l
N,k∥2

∥al
N,k∥2

.

Hence, without loss of generality, we pick an U such that U
al

N,k

∥al
N,k∥2

= e1, the unit vector in the first

coordinate, with c′ = ∥PUSe1∥2 having the same distribution as c.

Since US = span(v1, ...,vr), where v1, ...,vr are the first r columns of a Haar orthogonal matrix V ,
let Vr = [v1, ...,vr]. Then PUS = VrV

⊤
r , and we have

c′2 = e⊤1 VrV
⊤

r e1 = ∥V ⊤
r e1∥2

2 =
r

∑
i=1

⟨e1,vi⟩2 =
r

∑
i=1

V 2
1,i,

where V1,: denotes the first row of Vr. Since Vr is Haar orthogonal, V1,: is uniformly distributed on
Sd−1 and has the same distribution as g

∥g∥2
with g ∼ N (0,I). Therefore, ∑

r
i=1V

2
1,i has the same

distribution as
∑

r
i=1g

2
i

∥g∥2
2

=
∑

r
i=1g

2
i

∑
d
i=1g

2
i
=

χ2
r

χ2
r +χ2

d−r
,

since gi ∼ N (0,1) for all i. Because χ2
r |= χ2

d−r, we have

χ2
r

χ2
r +χ2

d−r
∼ Beta

( r
2 ,

d−r
2

)
.

If c2 ∼ Beta
( r

2 ,
d−r

2

)
, then the tail probability is

Pr(c ≥ x) = 1− Ix2
( r

2 ,
d−r

2

)
= 1−

B(x2; r
2 ,

d−r
2 )

B( r
2 ,

d−r
2 )

,

where B is the Beta function. Since the TR score of the head is γ , the probability that ∥PSa
l
N,k∥2 ≥ γ

is
1− I(

γ

∥al
N,k∥2

)2
( r

2 ,
d−r

2

)
.

Because there are n−1 subspaces alongside WY
U , the probability that the head output has the largest

projected norm on WY
U is

1− (n−1)

1− I(
γ

∥al
N,k∥2

)2
( r

2 ,
d−r

2

)
via the union bound.
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C ABLATION EXPERIMENTS REGARDING THE IDENTIFICATION OF TR AND
TL HEADS

In this section, we demonstrate the advantage of our Task Subspace Logit Attribution (TSLA) method
over the naive approach of selecting TR and TL heads based on al

N,kW
Y

U and al
N,kW

y∗
U , i.e., Direct

Logit Attribution (DLA) to the demonstration labels and the correct label. Specifically, Figure 12
shows the consequences of ablating the top 3% TR and TL heads identified via DLA, averaged
across datasets on Llama3-8B. While ablating the identified TR heads achieves the intended effect of
disabling task recognition by reducing the TR ratio, ablating the identified TL heads fails to induce
the expected outcome of driving ICL toward random guessing over the label space. This indicates
that the DLA approach cannot isolate distinct mechanistic causes for the TR and TL components of
ICL, and reflects its inability to correct identify the real TL heads. Instead, it largely identifies heads
that broadly amplify the logits of all demonstration label tokens, which may also increase the correct
label logits but still primarily function through task recognition rather than true label differentiation.

To validate this statement, and following the setup of Figure 2, we report the dataset-averaged Jaccard
Coefficient, Kendall’s τ , and Spearman’s ρ values between TR/TL heads identified by DLA and those
identified by TSLA, as well as their relationship with IHs. As shown in Figure 13, both TL and TR
heads selected via DLA strongly overlap with the TR heads identified by TSLA at the 3% level. This
corroborates our conclusion that DLA fails to effectively recover genuine TL heads. Furthermore, the
weak correlation between the TR/TL sets obtained from the two methods is reinforced by Figure 14,
which displays overlap, correlation, and consistency analyses between DLA TR/TL heads and IHs.
The strikingly high consistency between DLA TR and TL heads across all three metrics demonstrates
the lack of a meaningful distinction between them. Meanwhile, the low correlation between DLA
heads and IHs highlights another limitation of DLA: it cannot provide mechanistic explanations for
the well-documented importance of IHs in ICL.

Finally, to justify our second critique of the DLA approach in Subsection 3.1 regarding its sensitivity
to the concrete set of demonstration labels as a hyperparameter and its inability to comprehensively
capture the task semantics, we consider the following experiment on SST-2. We replace “positive”
and “negative”, i.e. the default demonstration labels used to create ICL prompts from the dataset,
with “unfavourable” and “favourable”, which do not alter the essence of the task. Then we test how
the ablation of TR heads identified with DLA and our TSLA using the ICL prompts with the original
labels will impact the ICL accuracy and TR ratio with the new labels. The results in Figures 15–20
confirm the robustness of our TSLA method against demonstration label shifts in identifying TR
heads. On all models except Qwen2.5-32B, ablating the TR heads causes a significantly larger impact
on ICL performance and TR ratio with the new demonstration labels on the SST-2 dataset, with the
gap being most prominent for the three Llama family models.

D IMPLEMENTATION DETAILS

Models We use the official HuggingFace implementations of all models. Models with more than
10B parameters are quantized to 4-bit for efficiency.

Datasets We use the official HuggingFace implementations of all datasets, except for the Review
dataset, which we curated ourselves. The Review dataset was generated using ChatGPT-4o (OpenAI
et al., 2024) and contains 200 datapoints. Each datapoint consists of a prompt instructing the
model to generate a movie review in the format: ‘‘Write a positive review for a
movie. The positive review should be within 30 words.’’ The 30-word
limit was chosen to set the max new tokens parameter (set to 45) when calling the generation
function. Labels are ChatGPT-4o–generated reviews that comprehensively assess a movie from
multiple aspects in the requested positive/negative tone. For example: “Bold experimental narrative
structure defies genre conventions delightfully. Rich orchestral score enhances every pivotal moment.
Progressive messages inspire reflection on equality and justice. Raw vulnerability on screen fosters
sincere emotional investment.” as a positive review. Details of dataset curation are provided in
Appendix J. The dataset is balanced, with 100 positive and 100 negative reviews.

ICL setting For each dataset (except the Review dataset), we select demonstrations from the training
set and queries from the test set, or the validation set if ground-truth test labels are unavailable. For
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Figure 12: Effects of ablating the top 3% TR and TL heads identified using DLA, averaged across
datasets on Llama3-8B. While TR heads reduce task recognition as expected, TL heads do not
replicate the behavior predicted for task-learning components.

Jaccard Coef

Kendall's Spearman's 

0.0
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TL_DLA TR
TR_DLA TL
TR_DLA-TR

Figure 13: Dataset-averaged Jaccard Coefficient, Kendall’s τ , and Spearman’s ρ between TR and TL
heads identified using DLA and TSLA at the top 3% level. DLA heads overlap substantially with TR
heads, confirming their inability to recover distinct TL heads.

Jaccard Coef

Kendall's Spearman's 

0.0
0.2
0.4
0.6
0.8 TR_DLA TL_DLA

TL_DLA IH
TR_DLA IH

(a) Dataset-averaged Jaccard Coefficient, Kendall’s τ ,
and Spearman’s ρ values for TR heads, TL heads, and
IHs at the top 3% level.

3% 5% 10% 20%

40.0

45.0

TR_DLA IHTL_DLA IH

(b) Conditional Average Percentage at the top 3%, 5%,
10%, and 20% levels for TR–IH and TL–IH pairs,
averaged across datasets.

Figure 14: Dataset-averaged overlap, correlation, and consistency analyses of TR and TL heads
identified using DLA and their relationship with IHs. Results show high redundancy between DLA
TR and TL heads and weak association with IHs, underscoring the limitations of DLA in separating
TR and TL mechanisms or explaining IH significance.
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demonstration selection, we retain at most the first 10,000 training examples. For evaluation, we use
the first 1,000 test or validation examples. For the Review dataset, we use the first 50 examples for
demonstration selection and the remaining 150 for testing. Prompt templates used to construct ICL
prompts are listed in Table 1.

Devices All experiments were conducted on an H200 GPU.

Random label mappings For the experiment in Appendix F, where demonstration labels are
replaced with numbers, we use the mappings in Table 2.

When demonstration labels are replaced with numeric symbols, we also modify the prompt templates
in Table 1. Specifically, for SNLI and CB, “True or maybe or false” is replaced with “0 or 1 or 2,”
and for RTE, “True or false” is replaced with “0 or 1.”

Flipped label mappings For the experiment in Subsection 4.2, where demonstration labels are
flipped, we use the mappings in Table 3.

E EXPERIMENT DETAILS CONCERNING THE IDENTIFICATION OF IHS

For each dataset, we use the first 50 queries to identify the top IHs. Let the queries be
q1, . . . ,q50, where qi has token length s(qi). For each qi, the LLM outputs an attention tensor
Attni ∈ RL×Nh×s(qi)×s(qi), with L being the number of layers and Nh the number of attention heads
per layer. The nh-th head in layer l has an attention matrix Attn(l,nh)i ∈ Rs(qi)×s(qi), where
Attn(l,nh)i, j,k denotes the attention from the k-th token to the j-th token in xi.

Identification of IHs For each qi, we randomly sample 8 demonstrations and prepend them to qi.
The resulting ICL prompt, Qi (length s(Qi)), follows the format ⟨ti,1⟩ : ⟨yi,1⟩, . . . ,⟨ti,8⟩ : ⟨yi,8⟩,⟨qi⟩ :
where ⟨ti,k⟩ is the sentence part of demonstration k (e.g., “I like this movie. Sentiment”), and ⟨yi,k⟩ is
the label (e.g., “positive”), separated by a colon. ⟨qi⟩ is the sentence for the query. At the position of
the final colon, an IH is expected to attend to tokens after previous colons—that is, the label tokens
⟨yi,1⟩, . . . ,⟨yi,8⟩. Let Ii be the set of label token indices in Qi. The IH score for head (l,nh) over the
50 queries is defined as ∑

50
i=1 ∑k∈Ii Attn(l,nh)i,k,s(Qi), i.e., the total attention a head assigns at the final

“:” position to the positions of all the label tokens, summed over all 50 queries. We calculate the IH
scores for all (l,nh) pairs and choose the top 3% attention heads as the identified IHs.

F SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.1

F.1 REPLICATION OF FIGURE 2 FOR OTHER MODELS

Figures 21–25 replicate the experiments from Figure 2, demonstrating the robustness of our findings
across different models. In every case, TR heads show markedly stronger overlap, correlation, and
consistency with IHs than the other head pairs. The consistently higher values of the TR–IH pair in
terms of Jaccard Coefficient, Kendall’s τ , Spearman’s ρ , and Conditional Average Percentage across
all levels and architectures confirm our conclusion.

F.2 REPLICATION OF FIGURE 3 FOR OTHER MODELS

Figures 26–30 replicate the experiments from Figure 3 on additional models. These visualizations
support our claims in Subsection 4.1 that: 1) TR heads generally reside in deeper layers than TL
heads and IHs; 2) The overlap between TR heads and IHs is larger and predominantly occurs in
deeper layers.

To complement these figures, Tables 4–9 report the mean layer indices of the top 3%, 5%, and 10%
TR heads, TL heads, and IHs averaged across datasets. We also conduct Mann–Whitney U tests to
assess whether the differences in layer distributions between TR heads and IHs, and between IHs and
TL heads, are statistically significant. The results show that the distributional differences between
IHs and TL heads are often not significant (p ≥ 0.05). Even when significant, the p-values are much
larger than those observed between TR heads and IHs, indicating that the TR–IH distinction is far
more robust.
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F.3 REPLICATION OF FIGURE 4 FOR OTHER MODELS

Figures 21–25 extend the analysis of Figure 4 to the remaining models. The results reinforce our
conclusion that TR heads and IHs identified across datasets or tasks are largely consistent, whereas
TL heads vary substantially.

To further test this, we evaluate the cross-dataset transferability of TR heads. Specifically, we ablate
top 3% TR heads identified using SST-2 prompts and measure their impact on accuracy and TR
ratio for the six remaining datasets. The results for all models in Figures 36-41 in general confirm
the transferrability of TR heads across datasets, but some interesting variations among datasets
and models are also worth noting. First, on the three Llama family models, ablating the TR heads
identified on the SST-2 dataset can effectively drive both the accuracy and TR ratio on RTE, CB,
and MR datasets to near zero, and to a lesser extent impact the two metrics on TREC and SNLI. On
Yi-34B, the ablation instead significantly impact the model performance on SNLI rather than MR.
For the remaining two Qwen family models the consequence of the ablation over datasets is similar
to the case of Llama models but to a lesser degree overall.

G SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.2

G.1 REPLICATION OF FIGURE 5 FOR OTHER MODELS

In Figures 31–35, we replicate the ablation experiments on additional models and examine their
effects on dataset-average accuracy and TR ratio. The results echo our observations in Subsection 4.2:
1) Ablation of TR heads and TL heads impacts the TR and TL components of ICL separately. 2)
Ablating IHs produces effects similar to ablating TR heads. 3) The primary cause of low accuracy
in the zero-shot case—as well as in cases where TR heads or IHs are ablated—is the failure to
adequately activate the TR functionality.

G.2 REPLICATION OF FIGURE 6 FOR OTHER MODELS

In Figures 42–46, we repeat the experiments from Figure 6 on other models, focusing on the ablation
of TR and TL heads when ICL inputs are subjected to perturbations. The results closely mirror those
in Figure 6: when the in-context text–label mapping is destroyed or reversed, ablating TL heads has
no effect—or even a positive effect—on accuracy. By contrast, since these perturbations do not alter
the demonstration label space, the TR component of ICL remains unaffected.

G.3 ASSESSING THE INDEPENDENCE OF TR AND TL WITH FLIPPED DEMONSTRATION
LABELS

To further validate the independence of TR and TL and the mechanisms of their associated heads, we
analyze the effect of ablating TR/TL heads under flipped demonstration labels. Specifically, we apply
a mapping g : Y′ →Y′ that reverses the demonstration labels (e.g., “negative” → “positive,” “positive”
→ “negative”), as listed in Table 3. Since label flipping invalidates the original text–label mapping
captured by TL heads, we conjecture that ablating top TL heads will increase accuracy, while the
effect of ablating TR heads will remain unchanged because the label space itself is preserved.

The dataset-average results in Figures 47–52 confirm this conjecture: ablating top TL heads indeed
raises accuracy, whereas ablating top TR heads still drives accuracy close to zero, as observed in the
standard setting of Figure 5.

H SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.3

H.1 REPLICATION OF FIGURE 7 FOR OTHER MODELS

Figures 53–57 replicate the steering experiments from Figure 7, evaluating the effectiveness of task
vectors constructed from special attention head outputs in other models. For all models except the
two Qwen-family models, the results are consistent with Subsection 4.2: task vectors built from TR
heads are substantially more effective than those from TL heads. In the Qwen models, however,
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TL heads match TR heads as task vectors. This deviation can be explained by the high zero-shot
accuracy of the Qwen models (Figure 56, Figure 55), which exceeds 20%—considerably higher than
the other models. Because these models already achieve strong task recognition in the zero-shot
setting, injecting TR-head-based task vectors (which primarily encode recognition) provides less
additional benefit.

H.2 REPLICATION OF FIGURE 8 FOR OTHER MODELS

Figures 58–62 evaluate how task vectors built from different types of heads affect the quality of
generated reviews across models. Consistently, TL heads outperform TR heads and random heads
as task vectors. An exception is Yi-34B, where steering reduces the average rating below the
original zero-shot level. For Qwen2-7B and Qwen2.5-32B, TL-head task vectors even push ratings
above the ICL-level baseline. Interestingly, the zero-shot reviews of these models score higher than
their ICL reviews. Closer inspection reveals why: ICL reviews, though coherent and stylistically
faithful, sometimes contradict the sentiment required in the query. TL heads appear to filter out such
inconsistencies by correctly capturing the text–label mapping and discarding misleading signals,
thereby boosting zero-shot review quality beyond ICL.

In addition to cross-model replication, Table 10 presents sampled outputs under ICL, zero-shot, and
steering with different task vectors. These examples highlight the TL heads’ ability to extract the
correct text–label mapping and use it for generation. In contrast, zero-shot or TR-head steering often
yields generic, off-topic sentences loosely related to the concept of “review.”

H.3 REPLICATION OF FIGURE 9 FOR OTHER MODELS

Figures 63–67 extend the geometric analysis of Figure 9 to other models. The results largely confirm
our earlier observation: TL heads tend to align hidden states with label-unembedding difference
directions, while TR heads align hidden states with the broader task subspace.

H.4 REPLICATION OF FIGURE 10 FOR OTHER MODELS

Figures 73–77 report layer-wise correlations between mean TR/TL head outputs and full layer
updates, measured by logit difference and subspace alignment. Across models, we observe clear
and consistent correlation patterns, reinforcing that TR and TL heads are the primary drivers of the
geometric shaping of hidden states in layer updates.

H.5 ABLATING TOP TR AND TL HEADS PER LAYER TO VERIFY THEIR GEOMETRIC
SIGNIFICANCE

In Figure 10, we validated the geometric importance of TR/TL heads by correlating their outputs
with full layer updates. Here, we provide an alternative perspective. Specifically, we ablate the top
three TR/TL heads per layer and then remeasure layer-wise hidden state updates under the same
two metrics. Figures 78–83 show that TR and TL heads are indeed crucial: without top TR heads,
hidden states fail to gradually align with the task subspace, crippling task recognition; without top TL
heads, logit differences collapse, preventing hidden states from rotating toward the correct label’s
unembedding direction. By contrast, ablating three random heads per layer has negligible impact.

H.6 REPLICATION OF FIGURE 11 FOR OTHER MODELS

Figures 68–72 replicate the analysis of Figure 11 across models. The results are consistent: TL heads
excel in projected discriminant alignment, rotating hidden states toward the correct label unembedding
and away from incorrect ones. TR heads, conversely, excel in subspace alignment, keeping hidden
states well-positioned within the task subspace. Both substantially outperform randomly chosen
heads on their respective strengths.
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I EXPERIMENT DETAILS RELATED TO TASK VECTORS

I.1 CONSTRUCTION AND APPLICATION OF TASK VECTORS

For each dataset, we first construct 8-shot ICL prompts using the last 50 queries. The demonstrations
are identical to those used when evaluating the 8-shot ICL accuracy for each dataset. Following the
procedure of Todd et al. (2024), we compute the average output (across the 50 prompts) of each
identified top 3% TR, TL, or random head at the final token position. We then sum these average
outputs across heads to form the task vector.

In the steering experiment, the task vector is added to the hidden state of the final token of each
zero-shot query at the midpoint layer (e.g., layer 16 for the 32-layer Llama3-8B). The modified
hidden states are then propagated through the subsequent layers, and accuracy as well as TR ratio are
measured at the final layer.

I.2 IDENTIFYING TR AND TL HEADS ON THE MOVIE REVIEW DATASET

A key difficulty in identifying TR and TL heads for free-form generation tasks is the unbounded label
space, since labels are not restricted to a finite set of tokens. To address this, we define the relevant
label tokens as “positive” and “negative,” reflecting the sentiment nature of the review-generation
task. Specifically, the TR score of a head is defined as the projection norm of its output onto the
span of the unembedding vectors of “positive” and “negative” when processing ICL prompts from
the review dataset. The TL score is defined as the inner product between the head output and the
difference between the unembeddings of “positive” and “negative,” normalized by its TR score. After
identifying TR and TL heads, we construct task vectors from their outputs following the procedure in
Appendix I.1.

I.3 MATHEMATICAL DETAILS OF THE MEASURES IN SUBSECTION 4.3 AND CALCULATION
PROCEDURE

1. Logit Difference Given a hidden state h, we compute Avey′∈Y/{y∗}(h
⊤(W y∗

U −W y′
U )), where

WU is the unembedding matrix, y∗ is the correct label, and Y is the demonstration label space.

2. Subspace Alignment We compute
h⊤Proj⊤

WY
U
h

∥Proj⊤
WY

U
h∥2∥h∥2

, which is the cosine similarity between

Proj⊤
WY

U
h and h.

For evaluation, we take the hidden state of the final position at the layer corresponding to 75% of the
model depth (e.g., layer 24 in Llama3-8B). Reported metric values are averaged across the first 30
ICL prompts of each dataset.

J CURATION DETAILS OF THE REVIEW DATASET

We use the following template, adapted from Zhao et al. (2025), to prompt ChatGPT-4o to generate
movie reviews.

S
am

pl
es

P
ro

m
pt

Compose a concise 30-word movie review that addresses the following four aspects: plot,
sound and music, cultural impact, and emotional resonance. Use a positive tone throughout
the review. For the plot, comment on its structure or originality. For sound and music,
describe how they enhance the storytelling. For cultural impact, mention any relevant
social commentary. Finally, highlight how the film resonates emotionally. Ensure the
positive tone is consistent throughout and include positive descriptions of the movie.

Inventive non-linear storyline weaves intrigue with clever twists. Soaring vocal melodies
heighten the film’s emotional arcs. Relevant socioeconomic themes challenge viewers’
perceptions thoughtfully and respectfully. Joyful humor interwoven with drama creates
comforting resonance.
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We use the following template to ask ChatGPT-4o to rate the movie reviews.

R
es

po
ns

e
P

ro
m

pt
Rate the following movie review on a scale of 10. Your rating should be based on two
criteria: (1) whether the text is indeed a movie review, and (2) whether it conveys the posi-
tive or negative sentiment indicated by the label. Review: Inventive non-linear storyline
weaves intrigue with clever twists. Soaring vocal melodies heighten the film’s emotional
arcs. Relevant socioeconomic themes challenge viewers’ perceptions thoughtfully and re-
spectfully. Joyful humor interwoven with drama creates comforting resonance. Sentiment:
Positive

10
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Table 1: Prompt templates and labels for different datasets.

Dataset Template Labels

SST-2 {Sentence} Sentiment: {Label} positive / negative
SUBJ {Sentence} Type: {Label} subjective / objective
TREC Question: {Sentence} Type: {Label} abbreviation / entity / description / human / location / number
MR {Sentence} Sentiment: {Label} positive / negative

SNLI The question is: {Premise}? True or maybe or false? The
answer is: {Hypothesis} {Label}

true / maybe / false

RTE The question is: {Premise}? True or false? The answer is:
{Hypothesis} {Label}

true / false

CB The question is: {Premise}? True or maybe or false? The
answer is: {Hypothesis} {Label}

true / maybe / false

Table 2: Mappings used to replace ground-truth labels with numeric symbols.

Dataset Label Mapping
SST-2 negative/positive → 0/1
SUBJ objective/subjective → 0/1
MR negative/positive → 0/1

TREC abbreviation/entity/description/person/number/location → 0/1/2/3/4/5
SNLI true/maybe/false → 0/1/2
RTE true/false → 0/1
CB true/maybe/false → 0/1/2

Table 3: Mappings used to flip the demonstration labels for each dataset.

Dataset Label Mapping
SST-2 negative/positive → positive/negative
SUBJ objective/subjective → subjective/objective
TREC abbreviation/entity/description/person/number/location → entity/description/person/number/location/abbreviation

MR negative/positive → positive/negative
SNLI true/maybe/false → maybe/false/true
RTE true/false → false/true
CB true/maybe/false → maybe/false/true

TR heads: TSLA TR heads: DLA
0.0

0.2

0.4

ACC TR Ratio

Figure 15: Results on LLama3-8B: Effects of ablating top 10% TR heads identified using TSLA
or DLA when the SST-2 demonstration labels are shifted from positive/negative to favourable/un-
favourable.

TL heads mean layer IHs mean layer TR heads mean layer TL < IHs? IHs < TR heads?
0.03 16.89 16.69 26.22 0.84985 5.6052e-45
0.05 16.94 16.74 25.08 0.80371 0.0000e+00
0.10 16.75 16.88 23.27 0.59518 0.0000e+00

Table 4: Mean layer index of TL heads, IHs, and TR heads across datasets on Llama3-8B, with
p-values for distribution differences.
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Figure 16: Results on Llama3.1-8B: Effects of ablating top 10% TR heads identified using TSLA
or DLA when the SST-2 demonstration labels are shifted from positive/negative to favourable/un-
favourable.
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Figure 17: Results on Llama3.2-3B: Effects of ablating top 10% TR heads identified using TSLA
or DLA when the SST-2 demonstration labels are shifted from positive/negative to favourable/un-
favourable.
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Figure 18: Results on Qwen2-7B: Effects of ablating top 10% TR heads identified using TSLA or DLA
when the SST-2 demonstration labels are shifted from positive/negative to favourable/unfavourable.
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Figure 19: Results on Qwen2.5-32B: Effects of ablating top 10% TR heads identified using TSLA
or DLA when the SST-2 demonstration labels are shifted from positive/negative to favourable/un-
favourable.
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Figure 20: Results on Yi-34B: Effects of ablating top 10% TR heads identified using TSLA or DLA
when the SST-2 demonstration labels are shifted from positive/negative to favourable/unfavourable.
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(a) Jaccard Coefficient, Kendall’s τ , and Spearman’s
ρ values for TR heads, TL heads, and IHs.

3% 5% 10% 20%

20.0

40.0

TR-IH

TL-IH

(b) Conditional Average Percentage at four top levels
for TR-IH and TL-IH pairs.

Figure 21: Results of overlap, correlation, and consistency analysis of attention head types averaged
across datasets on Llama3.1-8B.
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(a) Jaccard Coefficient, Kendall’s τ , and Spearman’s
ρ values for TR heads, TL heads, and IHs.
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(b) Conditional Average Percentage at four top levels
for TR-IH and TL-IH pairs.

Figure 22: Results of overlap, correlation, and consistency analysis of attention head types averaged
across datasets on Llama3.2-3B.
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(a) Jaccard Coefficient, Kendall’s τ , and Spearman’s
ρ values for TR heads, TL heads, and IHs.
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(b) Conditional Average Percentage at four top levels
for TR-IH and TL-IH pairs.

Figure 23: Results of overlap, correlation, and consistency analysis of attention head types averaged
across datasets on Qwen2-7B.

Jaccard Coef

Kendall's Spearman's 

0.0
0.1
0.2
0.3
0.4
0.5

TR TL
TL IH
TR IH

(a) Jaccard Coefficient, Kendall’s τ , and Spearman’s
ρ values for TR heads, TL heads, and IHs.
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(b) Conditional Average Percentage at four top levels
for TR-IH and TL-IH pairs.

Figure 24: Results of overlap, correlation, and consistency analysis of attention head types averaged
across datasets on Qwen2.5-32B.
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(a) Jaccard Coefficient, Kendall’s τ , and Spearman’s
ρ values for TR heads, TL heads, and IHs.
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(b) Conditional Average Percentage at four top levels
for TR-IH and TL-IH pairs.

Figure 25: Results of overlap, correlation, and consistency analysis of attention head types averaged
across datasets on Yi-34B.
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Figure 26: Distribution of the top 10% TR heads, TL heads, and IHs across layers for the SST-2
dataset on Llama3.1-8B.

TL heads mean layer IHs mean layer TR heads mean layer TL < IHs? IHs < TR heads?
0.03 16.85 16.67 26.07 0.71998 8.4078e-45
0.05 16.36 16.77 25.33 0.22671 0.0000e+00
0.10 16.12 16.79 23.25 0.049241 0.0000e+00

Table 5: Mean layer index of TL heads, IHs, and TR heads across datasets on Llama3.1-8B, with
p-values for distribution differences.
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Figure 27: Distribution of the top 10% TR heads, TL heads, and IHs across layers for the SST-2
dataset on Llama3.2-3B.
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Figure 28: Distribution of the top 10% TR heads, TL heads, and IHs across layers for the SST-2
dataset on Qwen2-7B.
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Figure 29: Distribution of the top 10% TR heads, TL heads, and IHs across layers for the SST-2
dataset on Qwen2.5-32B.
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Figure 30: Distribution of the top 10% TR heads, TL heads, and IHs across layers for the SST-2
dataset on Yi-34B.
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TL heads mean layer IHs mean layer TR heads mean layer TL < IHs? IHs < TR heads?
0.03 14.51 15.69 23.04 0.040803 1.3459e-26
0.05 14.25 15.78 22.59 0.0024930 3.0489e-35
0.10 14.38 15.75 20.96 0.00044495 1.0738e-36

Table 6: Mean layer index of TL heads, IHs, and TR heads across datasets on Llama3.2-3B, with
p-values for distribution differences.

TL heads mean layer IHs mean layer TR heads mean layer TL < IHs? IHs < TR heads?
0.03 19.06 18.57 24.87 0.31254 2.6148e-28
0.05 18.01 18.62 24.64 0.37007 1.7432e-42
0.10 16.22 18.97 23.38 2.4055e-09 1.8049e-41

Table 7: Mean layer index of TL heads, IHs, and TR heads across datasets on Qwen2-7B, with
p-values for distribution differences.

TL heads mean layer IHs mean layer TR heads mean layer TL < IHs? IHs < TR heads?
0.03 46.26 44.08 56.80 0.0012338 0.0000e+00
0.05 43.19 44.53 54.89 0.35802 0.0000e+00
0.10 39.42 45.11 51.36 1.7597e-20 0.0000e+00

Table 8: Mean layer index of TL heads, IHs, and TR heads across datasets on Qwen2.5-32B, with
p-values for distribution differences.

TL heads mean layer IHs mean layer TR heads mean layer TL < IHs? IHs < TR heads?
0.03 36.64 38.16 47.21 0.071766 0.0000e+00
0.05 35.57 38.20 46.90 0.0011017 0.0000e+00
0.10 34.09 38.25 45.20 1.0199e-12 0.0000e+00

Table 9: Mean layer index of TL heads, IHs, and TR heads across datasets on Yi-34B, with p-values
for distribution differences.
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Figure 31: Effects of ablating the top 3% of TR, TL, and IH heads across datasets on Llama3.1-8B.
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Figure 32: Effects of ablating the top 3% of TR, TL, and IH heads across datasets on Llama3.2-3B.
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Figure 33: Effects of ablating the top 3% of TR, TL, and IH heads across datasets on Qwen2-7B.
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Figure 34: Effects of ablating the top 3% of TR, TL, and IH heads across datasets on Qwen2.5-32B.
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Figure 35: Effects of ablating the top 3% of TR, TL, and IH heads across datasets on Yi-34B.
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Figure 36: Effects of ablating TR heads identified on SST-2 when transferred to other datasets using
Llama3-8B.
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Figure 37: Effects of ablating TR heads identified on SST-2 when transferred to other datasets using
Llama3.1-8B.
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Figure 38: Effects of ablating TR heads identified on SST-2 when transferred to other datasets using
Llama3.2-3B.
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Figure 39: Effects of ablating TR heads identified on SST-2 when transferred to other datasets using
Qwen2-7B.
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Figure 40: Effects of ablating TR heads identified on SST-2 when transferred to other datasets using
Qwen2.5-32B.
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Figure 41: Effects of ablating TR heads identified on SST-2 when transferred to other datasets using
Yi-34B.
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Figure 42: Effects of ablating TR and TL heads under perturbed ICL inputs on Llama3.1-8B.
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Figure 43: Effects of ablating TR and TL heads under perturbed ICL inputs on Llama3.2-3B.
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Figure 44: Effects of ablating TR and TL heads under perturbed ICL inputs on Qwen2-7B.
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Figure 45: Effects of ablating TR and TL heads under perturbed ICL inputs on Qwen2.5-32B.
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numbers.

Figure 46: Effects of ablating TR and TL heads under perturbed ICL inputs on Yi-34B.
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Figure 47: Effects of ablating TR and TL heads on Llama3-8B when demonstration labels are flipped.
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Figure 48: Effects of ablating TR and TL heads on Llama3.1-8B when demonstration labels are
flipped.
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Figure 49: Effects of ablating TR and TL heads on Llama3.2-3B when demonstration labels are
flipped.

ICL W/O TL W/O TR
0.0

0.5

1.0 ACC TR Ratio

Figure 50: Effects of ablating TR and TL heads on Qwen2-7B when demonstration labels are flipped.
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Figure 51: Effects of ablating TR and TL heads on Qwen2.5-32B when demonstration labels are
flipped.

ICL W/O TL W/O TR
0.0

0.5

ACC TR Ratio

Figure 52: Effects of ablating TR and TL heads on Yi-34B when demonstration labels are flipped.
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Figure 53: Steering zero-shot hidden states of Llama3.1-8B using task vectors from TR, TL, or
random heads.
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Figure 54: Steering zero-shot hidden states of Llama3.2-3B using task vectors from TR, TL, or
random heads.
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Figure 55: Steering zero-shot hidden states of Qwen2-7B using task vectors from TR, TL, or random
heads.
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Figure 56: Steering zero-shot hidden states of Qwen2.5-32B using task vectors from TR, TL, or
random heads.
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Figure 57: Steering zero-shot hidden states of Yi-34B using task vectors from TR, TL, or random
heads.
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Figure 58: Mean and standard deviation of review ratings with Llama3.1-8B when task vectors from
different head types are applied.
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Figure 59: Mean and standard deviation of review ratings with Llama3.2-3B when task vectors from
different head types are applied.
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Figure 60: Mean and standard deviation of review ratings with Qwen2-7B when task vectors from
different head types are applied.
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Figure 61: Mean and standard deviation of review ratings with Qwen2.5-32B when task vectors from
different head types are applied.
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Figure 62: Mean and standard deviation of review ratings with Yi-34B when task vectors from
different head types are applied.

Setting Generated Review
ICL Poignant character arcs explore relatable themes with depth. Cinematic

score heightens emotional impact of pivotal scenes. Timely social com-
mentary addresses important issues with nuance. Strong performances
deliver believable emotions and connection.

ZS 1. What is the purpose of this review? 2. What is the author’s purpose?
3. How do you know? 4. What is the audience? 5. How do you know?

TL as TV The movie was very entertaining. I enjoyed the movie and the charac-
ters. It was a great movie to watch. I would recommend it to others. It
was a very entertaining movie.

TR as TV Write a positive review for a movie. The positive review should be
within 30 words.

Random as TV Thank you for the positive review. It is always nice to hear when
someone enjoyed the film. I am glad that you enjoyed the film and that
you took the time to write a review.

Table 10: Sample reviews generated under different settings with Llama3-8B.
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Figure 63: Geometric effects of TR and TL head outputs on hidden states in Llama3.1-8B.
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Figure 64: Geometric effects of TR and TL head outputs on hidden states in Llama3.2-3B.
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Figure 65: Geometric effects of TR and TL head outputs on hidden states in Qwen2-7B.
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Figure 66: Geometric effects of TR and TL head outputs on hidden states in Qwen2.5-32B.
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Figure 67: Geometric effects of TR and TL head outputs on hidden states in Yi-34B.
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Figure 68: Impact of TL and TR head outputs on hidden states w.r.t. task subspace in Llama3.1-8B.
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Figure 69: Impact of TL and TR head outputs on hidden states w.r.t. task subspace in Llama3.2-3B.
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Figure 70: Impact of TL and TR head outputs on hidden states w.r.t. task subspace in Qwen2-7B.
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Figure 71: Impact of TL and TR head outputs on hidden states w.r.t. task subspace in Qwen2.5-32B.
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Figure 72: Impact of TL and TR head outputs on hidden states w.r.t. task subspace in Yi-34B.
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(a) Correlation of hidden state updates with TR heads
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Figure 73: Layerwise correlation of TR and TL head effects on Llama3.1-8B.
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(subspace alignment).

0 5 10 15 20 25
Layer

0.0

0.5

1.0

1.5

2.0

hs
 u

pd
at

e:
 L

og
it

 D
if

f =0.36, p=0.0622

0.5

1.0

1.5

2.0

2.5

TL
 o

ut
pu

t:
 L

og
it

 D
if

f

(b) Correlation of hidden state updates with TL heads
(logit difference).

Figure 74: Layerwise correlation of TR and TL head effects on Llama3.2-3B.
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(logit difference).

Figure 75: Layerwise correlation of TR and TL head effects on Qwen2-7B.

0 10 20 30 40 50 60
Layer

0.025

0.050

0.075

0.100

0.125

0.150

hs
 u

pd
at

e:
 S

ub
sp

ac
e 

A
lig

n. =0.95, p=4.51e-32

0.0

0.1

0.2

0.3

TR
 o

ut
pu

t:
 S

ub
sp

ac
e 

A
lig

n.

(a) Correlation of hidden state updates with TR heads
(subspace alignment).

0 10 20 30 40 50 60
Layer

0.0

2.5

5.0

7.5

10.0

12.5

hs
 u

pd
at

e:
 L

og
it

 D
if

f =0.70, p=8.05e-11

0

2

4

6

8

10

TL
 o

ut
pu

t:
 L

og
it

 D
if

f

(b) Correlation of hidden state updates with TL heads
(logit difference).

Figure 76: Layerwise correlation of TR and TL head effects on Qwen2.5-32B.
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Figure 77: Layerwise correlation of TR and TL head effects on Yi-34B.
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Figure 78: Layerwise ablation of TR and TL heads (top 3 per layer) in Llama3-8B.
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Figure 79: Layerwise ablation of TR and TL heads (top 3 per layer) in Llama3.1-8B.
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Figure 80: Layerwise ablation of TR and TL heads (top 3 per layer) in Llama3.2-3B.
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Figure 81: Layerwise ablation of TR and TL heads (top 3 per layer) in Qwen2-7B.
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Figure 82: Layerwise ablation of TR and TL heads (top 3 per layer) in Qwen2.5-32B.
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Figure 83: Layerwise ablation of TR and TL heads (top 3 per layer) in Yi-34B.
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