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Fig. 1: VLFM achieves state-of-the-art semantic Object Goal Navigation performance in unfamiliar environments, without task-specific
training, pre-built maps, or prior knowledge of the surroundings. It utilizes a vision-language model to explore the environment, capitalizing
on visual semantic cues that are likely to guide the agent towards the goal to explore the environment more efficiently than a greedy
frontier-based exploration agent.

Abstract— Understanding how humans leverage semantic
knowledge to navigate unfamiliar environments and decide
where to explore next is pivotal for developing robots capable
of human-like search behaviors. We introduce a zero-shot
navigation approach, Vision-Language Frontier Maps (VLFM),
which is inspired by human reasoning and designed to navigate
towards unseen semantic objects in novel environments. VLFM
builds occupancy maps from depth observations to identify
frontiers, and leverages RGB observations and a pre-trained
vision-language model to generate a language-grounded value
map. VLFM then uses this map to identify the most promising
frontier to explore for finding an instance of a given target
object category. We evaluate VLFM in photo-realistic environ-
ments from the Gibson, Habitat-Matterport 3D (HM3D), and
Matterport 3D (MP3D) datasets within the Habitat simulator.
Remarkably, VLFM achieves state-of-the-art results on all three
datasets as measured by success weighted by path length
(SPL) for the Object Goal Navigation task. Furthermore, we
show that VLFM’s zero-shot nature enables it to be readily
deployed on real-world robots such as the Boston Dynamics
Spot mobile manipulation platform. We deploy VLFM on Spot
and demonstrate its capability to efficiently navigate to target
objects within an office building in the real world, without any
prior knowledge of the environment. The accomplishments of
VLFM underscore the promising potential of vision-language
models in advancing the field of semantic navigation. Videos of
real world deployment can be viewed at naoki.io/vlfm.

I. INTRODUCTION

How do humans navigate in novel environments? The pro-
cess of human navigation in unfamiliar environments is
complex, often relying on a combination of explicit maps
and internal knowledge. This internal knowledge is typically
an accumulation of semantic knowledge, which can be used

to infer the layout of the space, including the locations of
specific objects and geometric configurations. For instance,
we know that toilets and showers are usually found together
in bathrooms, often located near bedrooms. Natural language
can further enhance this prior semantic knowledge, depend-
ing on the context.

In the development of robots capable of human-like navi-
gation, learned foundation models that mimic this human rea-
soning process can be invaluable. Many methods, known as
zero-shot methods, utilize these models to facilitate semantic
navigation without any task-specific training or fine-tuning.
Zero-shot methods are convenient because they can be easily
adapted or repurposed for future robotic systems performing
complex tasks, and they provide intermediate representations
that improve interpretability. The remarkable performance of
large language models (LLMs) and vision-language models
(VLMs) has facilitated task-independent solutions for the
semantic inference of out-of-view scene information [1]–[3].

In this work, we propose Vision-Language Frontier Maps
(VLFM), a zero-shot approach for target-driven semantic
navigation to an unseen object in a novel environment.
VLFM builds occupancy maps from depth observations
to identify frontiers of the explored map region. To find
semantic target objects, VLFM prompts a pre-trained VLM
to select which of these frontiers is most likely to lead
to the semantic target. In contrast to prior language-based
zero-shot semantic navigation methods [2]–[4], our method
does not rely on object detectors and language models
(e.g., ChatGPT, BERT) to evaluate frontiers using text-only
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semantic reasoning. Instead, VLFM uses a vision-language
model to directly extract semantic values from RGB images
in the form of a cosine similarity score with a text prompt
involving the target object. VLFM uses these scores to
generate a language-grounded value map that is used to iden-
tify the most promising frontier to explore. This spatially-
grounded joint vision-language-based semantic reasoning
increases computational inference speed and overall semantic
navigation performance.

We demonstrate VLFM in photorealistic environments
within the Habitat [5] simulator, where we achieve state-
of-the-art results on the Object Goal Navigation (ObjectNav)
task, even when compared to methods trained directly on the
task. Specifically, we achieve absolute increases in success
rates weighted by path length over prior state-of-the-art
approaches of 12% on Gibson [6], 5% on Matterport 3D
(MP3D) [7] and 3% on Habitat-Matterport 3D (HM3D) [8]
datasets. We also demonstrate our approach in the real world
on a Boston Dynamics Spot mobile manipulation platform
by navigating efficiently to unseen semantic targets across a
novel office building floor, without access to a pre-built map.

II. RELATED WORKS

ObjectNav. Object Goal Navigation (ObjectNav) involves
executing semantic target-driven navigation in a novel envi-
ronment, where performance is primarily measured by the
efficiency of the robot’s path to an instance of a given target
object category. This is based on the premise that effective
use of semantic priors should enable a robot to locate objects
more efficiently [10]. Learning approaches to train robots
with semantic navigation abilities have typically leveraged
reinforcement learning [11]–[14], learning from demonstra-
tion [15], or prediction of semantic top-down maps [3], [16]–
[20] on which waypoint planners can be used.

However, these task-specific trained approaches only work
with the closed-set of object categories that they were trained
on, and are often trained exclusively on simulated data,
which can impede deployment of these policies onto real-
world platforms. In contrast, our work proposes a zero-shot
method that can take in an open-set of object categories, uses
models that were trained on large amounts of real-world data,
and demonstrates successful semantic navigation in the real
world.

Zero-shot ObjectNav. Recent works in zero-shot methods
for ObjectNav involve adapting the frontier-based explo-
ration method proposed by [21]. Frontier-based exploration
involves visiting the boundaries between explored and un-
explored areas on a map that is iteratively built by the
agent as it explores. Many methods for choosing the next
frontier to explore have been proposed, such as classical
methods that select frontiers based on the expected amount of
information the agent would gain [22], [23]. CLIP on Wheels
(CoW) [1] adopts a straightforward approach in which the
robot explores the closest frontier until the target object is de-
tected using either CLIP [24] features or an open-vocabulary
object detector. LGX [4] and ESC [2] use a large language
model (LLM) that processes object detections presented in

the form of text to identify which frontiers would most likely
harbor an instance of the target object. Instead of an LLM,
SemUtil [3] uses BERT [25] to embed the class labels of
objects detected near frontiers, and then compare them to the
text embedding of the target object to select the frontier to
explore next. However, these methods introduce a bottleneck
in which visual cues from the environment must be converted
into text by an object detector before they can be used to
semantically evaluate frontiers. Additionally, reliance on an
LLM requires a large amount of compute that may require a
remote server the robot must connect to. In contrast, VLFM
uses a vision-language model that can be easily loaded onto
a consumer laptop to generate semantic value scores directly
from RGB observations and text prompts, without generating
any text from visual observations.

III. PROBLEM FORMULATION

We address the task of ObjectNav [10], where a robot is
tasked with searching for an instance of a target object cat-
egory (e.g., ‘bed’) in a previously unseen environment. This
semantic navigation task encourages the robot to understand
and navigate the environment based on high-level semantic
concepts, such as the type of room it’s in or the types of
objects it sees, rather than relying solely on geometric cues.
The robot only has access to an egocentric RGB-D camera
and an odometry sensor that provides its current forward and
horizontal distance and heading relative to its starting pose.
The action space consists of the following: MOVE FORWARD
(0.25m), TURN LEFT (30◦), TURN RIGHT (30◦), LOOK UP
(30◦), LOOK DOWN (30◦), and STOP. An episode is defined
as successfully completed if STOP is called within 1 m of
any instance of the target object in 500 or fewer steps.

IV. VISION-LANGUAGE FRONTIER MAPS

As depicted in Fig. 2, our approach is divided into three
phases: initialization, exploration, and goal navigation. In the
initialization phase, the robot rotates in place for a complete
turn to set up its frontier and value maps, which are crucial
for the subsequent exploration phase. During exploration,
the robot persistently updates the frontier and value maps to
create frontier waypoints and select the most valuable one for
locating the specified target object category and navigating
to it. Once it detects a target object instance, it transitions to
the goal navigation phase. In the goal navigation phase, the
robot simply navigates to the nearest point on the detected
target object and triggers STOP once it is within sufficient
proximity.

A. Frontier waypoint generation

We utilize depth and odometry observations to build a top-
down 2D map of obstacles that the robot has encountered.
The explored area within this map is updated based on the
robot’s location, its current heading, and any obstacles that
obstruct parts of its current view from being explored. To
identify obstacle locations, we transform the current depth
image into a point cloud, filter out any points that are either
too short or too tall to be considered an obstacle, transform



Fig. 2: VLFM constructs an occupancy map of the scene identifying frontiers of explored space as well as a value map of the likelihood
of each region to lead toward the out-of-view target object. In a navigation episode, the robot first spins in a circle to initialize these
maps and then begins executing frontier-based exploration by selecting waypoints from the current map frontier using the value map.
Navigation to each waypoint is executed with a PointNav policy trained with Variable Experience Rollout (VER) [9]. The policy is also
used to navigate to the target object once it is detected (‘goal navigation’).

Fig. 3: Left: Visualization of how the confidence score of a pixel
within the robot’s FOV is determined based on its location relative
to the optical axis. Right: The confidence scores are used when
the robot’s current FOV overlaps with the previously seen area; the
new semantic values within this region become an average of the
previous and current values, weighted by their confidence scores.

the points to the global frame, and then project them onto
a 2D grid. We then identify each boundary separating the
explored and unexplored areas, identifying its midpoint as a
potential frontier waypoint. As the robot explores the area,
the quantity and locations of frontiers will vary until the
entire environment has been explored and no more frontiers
remain. If the robot has not detected a target object at
this point, it will simply trigger STOP to end the episode
(unsuccessfully).

B. Value map generation

At the core of our approach is a value map, a 2D grid
similar to the frontier map. This map assigns a value to
each pixel within the explored area, quantifying its semantic
relevance in locating the target object. The value map is
used to evaluate each frontier, and the frontier with the
highest value is chosen as the next one to explore. Similar
to the frontier map, the value map uses depth and odometry
observations to build a top-down map iteratively. However,
the value map differs in that it has two channels representing
semantic value scores and confidence scores.

Similar to how humans derive semantic cues directly from
visual observations (e.g., lighting, room type, room size,

navigability to other rooms), rather than attempting to first
represent what is currently visible to the robot with text (e.g.,
using detected object bounding boxes like [2]–[4]), we use a
pre-trained BLIP-2 [26] vision-language model to compute
a cosine similarity score directly from the robot’s current
RGB observation and a text prompt containing the target
object. BLIP-2 adapts CLIP [24] to achieve state-of-the-art
results for image-to-text retrieval, which relies on accurately
measuring how well a text prompt is represented by a given
image. When used for image-to-text retrieval, BLIP-2 outputs
a cosine score given an input RGB image and text prompt,
where higher values indicate higher accuracy. We use a
text prompt to measure how valuable the area represented
by the current RGB image is for finding the target ob-
ject ("Seems like there is a <target object>
ahead."). These scores are then projected onto their own
channel of the top-down value map.

The confidence channel aims to determine how a pixel’s
value in the semantic value channel should be updated if it
has a value assigned from a previous time step and is within
the robot’s field-of-view (FOV) at the current time step. It
does not affect a pixel’s semantic value score if that pixel was
not seen until the current time step. The confidence score of a
pixel within the robot’s FOV depends on its location relative
to the optical axis. Pixels along the optical axis have a full
confidence of 1, while those at the left and right edges have a
confidence of 0. Specifically, we set the confidence of a pixel
as cos2(θ/(θfov/2)∗π/2), where θ is the angle between the
pixel and the optical axis, and θfov is the horizontal FOV of
the robot’s camera.

When the robot moves to a new position where its FOV
overlaps with a previously seen region, the semantic value
and confidence scores for each pixel in that region are
both updated with new scores. Each of these pixels’ new
semantic value score, vnewi,j , is computed by averaging its
current and previous value scores, weighted by ccurri,j and
cprevi,j , its current and previous confidence scores: vnewi,j =



Fig. 4: VLFM iteratively constructs value maps for target-driven navigation by using BLIP-2 to compute the cosine similarity between
a text prompt incorporating the target object and an RGB image taken from the robot’s current pose. These semantic value scores are
projected onto a top-down 2D pixel grid in the shape of the camera’s FOV and exclude regions occluded by obstacles captured in the
depth image.

(ccurri,j vcurri,j +cprevi,j vprevi,j )/(ccurri,j +cprevi,j ). Its new confidence
score is also updated using a weighted average that is biased
towards the higher confidence value: cnewi,j = ((ccurri,j )2 +
(cprevi,j )2)/(ccurri,j +cprevi,j ). The confidence channel and its role
in updating previously seen values is visualized in Fig. 3.

The map updating procedure is summarized as follows:
1) a cone-shaped mask depicting the camera FOV in a
top-down manner at the camera’s current pose is created,
where pixels closer to the optical axis of the camera have
a higher confidence score; 2) using the depth image, the
mask is updated to exclude areas of the FOV obstructed
by obstacles; 3) using BLIP-2, cosine similarity scores are
computed between the current RGB image and the text
prompt to update the semantic value channel within the
masked portion of the value map; 4) previous semantic value
and confidence scores within the masked portion of the
value map are updated using weighted averaging using the
confidence scores. The full process is depicted in Fig. 4.

C. Object detection

To determine whether or not a target object instance is cur-
rently visible to the robot, we use pre-trained object detectors
that infer bounding boxes with semantic labels. Specifically,
we utilize YOLOv7 [27] for target objects that fall within the
COCO [28] classes, and Grounding-DINO [29] for all other
categories. Grounding-DINO is an open-vocabulary object
detector capable of detecting arbitrary objects based on
language inputs. We do this because we find that YOLOv7 is
better at detecting the objects within the COCO categories. If
a target object instance is detected, we use Mobile-SAM [30]
to extract its contour using the RGB image and the detected
bounding box. The contour is then used with the depth

image to determine the point on the object that is closest
to the robot’s current position, which is then used as the
goal waypoint to navigate to. Once the robot’s distance to
this point falls below the success radius, STOP is called.

D. Waypoint navigation

After initialization, the robot is always provided with
either a frontier waypoint or a target object waypoint to
navigate towards, depending on whether a target object has
been detected yet. To determine the action at each step for
reaching the current waypoint, we employ a Point Goal
Navigation (PointNav) [31] policy. To determine the action
at each step for reaching the current waypoint, we use
Variable Experience Rollout (VER) [9], a distributed deep
reinforcement learning algorithm, to train a PointNav [31]
policy. PointNav is a task that challenges the robot to
navigate to a designated waypoint (2D coordinate) solely
relying on visual observations and odometry. We trained
our PointNav policy using scenes from the training split
of the HM3D dataset [8], using the same hyperparameters
as those described in [9], with 4 GPUs (64 workers each),
and train the policy for 2.5 billion steps (around 7 days).
Unlike ObjectNav, PointNav does not necessitate a semantic
understanding of the environment for efficient and successful
completion and can be accomplished using only geometric
understandings. Our PointNav policy exclusively uses the
egocentric depth image and the robot’s relative distance and
heading towards the desired goal point as input (see Fig. 2).
It does not use RGB images.

It is entirely feasible to replace this PointNav policy with
any alternative method capable of guiding the robot to a
visually observed waypoint, be it a frontier or a detected



target object. For example, we do not use a PointNav
policy for our real-world demonstrations. Our preference
for the PointNav policy stems from its speed and ease-of-
use; it alleviates several concerns associated with traditional
mapping-based approaches, particularly when the waypoint
resides outside the navigable area (e.g., when the waypoint
is on a target object, which itself may also be on a different
obstacle), as navigability of the goal does not affect the
policy or its observations.

V. EXPERIMENTAL SETUP

Datasets. We evaluate our approach using the Habitat [5]
simulator on the validation splits of three different datasets of
3D scans of real-world environments; Gibson [6], HM3D [8],
and MP3D [7]. We use the ObjectNav validation split for
Gibson developed in SemExp [16] which contains 1000
episodes across 5 scenes. HM3D’s validation split contains
2000 episodes across 20 scenes and 6 object categories.
MP3D’s validation split contains 2195 episodes across 11
scenes and 21 object categories.

Metrics. For all approaches, we report success rate (SR)
and Success weighted by inverse Path Length (SPL) [31].
SPL scores the efficiency of an agent’s path by comparing
it to the length of the shortest path from the start position to
the closest instance of the target object category. It is zero if
the agent did not succeed; otherwise, it is the shortest path
length divided by the agent’s path length (larger is better).

Baselines. We evaluate VLFM by comparing it to several
state-of-the-art (SOTA) techniques for zero-shot object nav-
igation: CLIP on Wheels (CoW) [1], ESC [2], SemUtil [3],
and ZSON [32]. ZSON is an open vocabulary method that
uses CLIP to transfer a method for a different navigation task
(ImageNav) zero-shot to the ObjectNav task. It is trained
on ImageNav in which images are used as goals instead
of object names; at test-time, text-embeddings of object
category names are used as goals instead. CoW explores the
closest frontier until the target object is detected using either
CLIP features or an open-vocabulary object detector, and
then navigates directly to the detected target. Similarly to our
approach, ESC and SemUtil both perform semantic frontier-
based exploration, but frontiers are evaluated using nearby
object detections that are converted to text and evaluated
using a text-only model (e.g., an LLM, BERT) that also
considers the target object category.

In addition to the above zero-shot SOTA methods, we also
include a comparison with supervised methods: PONI [19],
PIRLNav [15], RegQLearn [14], and SemExp [16]. SemExp
and PONI both build maps during navigation and train task-
specific policies to perform semantic inference to predict
likely target locations to explore. PIRLNav is an end-to-
end policy trained with behavioral cloning on 77k human
demonstrations and fine-tuned with online deep reinforce-
ment learning. RegQLearn is an end-to-end policy trained
only with deep reinforcement learning.

VI. RESULTS

In this section, we aim to address the following questions:

TABLE I: Zero-shot Object Navigation results on Gibson [6],
HM3D [8], and MP3D [7] benchmarks. Our method outperforms
previous zero-shot methods and performs competitively against
methods directly trained on the Object Navigation task.

Approach Semantic Nav Gibson HM3D MP3D

Training SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑

PONI [19] ObjectNav 41.0 73.6 - - 12.1 31.8
PIRLNav [15] ObjectNav - - 27.1 64.1 - -
RegQLearn [14] ObjectNav 31.3 63.7 - - - -
SemExp [16] ObjectNav 33.9 65.7 - - - -

ZSON [32] ImageNav - - 12.6 25.5 4.8 15.3
CoW [1] None - - - - 3.7 7.4
ESC [2] None - - 22.3 39.2 14.2 28.7
SemUtil [3] None 40.5 69.3 - - - -
VLFM (Ours) None 52.2 84.0 30.4 52.5 17.5 36.4

1) How well can VLFM perform ObjectNav in various
datasets in comparison to other trained or zero-shot
methods?

2) How do different methods of fusing current and previ-
ously seen values affect the performance of VLFM?

3) Can VLFM be deployed successfully in the real world?

A. Benchmark results

The performance of VLFM in comparison to other meth-
ods on the Gibson, HM3D, and MP3D datasets is summa-
rized in Table I. Unfilled cells indicate that the cited work
did not evaluate their approach on the corresponding dataset
(SemExp only evaluated on a subset of MP3D episodes
using COCO classes). VLFM significantly outperforms all
zero-shot methods across all benchmarks, with an increase
of +11.7% SPL and +14.7% success in Gibson compared
to SemUtil; +8.1% SPL and +13.3% success in HM3D
compared to ESC; and +3.3% SPL and +7.7% success in
MP3D compared to ESC.

In the Gibson and MP3D datasets, VLFM even surpasses
methods that were trained directly within those datasets for
ObjectNav, achieving +19.2% SPL and +19.0% success in
Gibson compared to SemExp, and +5.4% SPL and +4.6%
success in MP3D compared to PONI. This establishes new
state-of-the-art metrics for these datasets.

In the HM3D dataset, VLFM only falls short of PIRLNav
in terms of success (-11.6% success, but +3.3% SPL), which
was trained on 77k human demonstrations collected within
the train split of the HM3D dataset, while our method is
entirely zero-shot.

Our superior performance within the Gibson dataset can
be attributed to the lack of episodes that require the robot to
navigate stairs in order to reach a target object, a scenario
present in both HM3D and MP3D. The only non-zero-shot
approach to outperform VLFM in success rate, PIRLNav, can
traverse up or down stairs to find objects. However, VLFM
currently only supports single-floor episodes due to the lack
of a z coordinate in the odometry observation provided by
the simulator, which complicates the resetting of top-down
frontier and value maps upon changing floors. Consequently,



TABLE II: Comparisons of performance with different value update
methods used with VLFM.

Value update Gibson HM3D MP3D

method SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑

Replacement 48.0 76.1 26.5 44.5 16.6 31.7
Unweighted avg. 50.9 83.0 30.0 51.8 17.1 35.0
Weighted avg. 52.2 84.0 30.4 52.5 17.5 36.4

we fail 14.6% and 9.6% of the HM3D and MP3D episodes
(respectively) because they require traversing stairs to en-
counter the target object.

We also attribute the higher performance on the Gibson
and HM3D datasets compared to the MP3D dataset to the
quality of the 3D scans. The MP3D dataset has significantly
lower visual fidelity [8] than the HM3D dataset, while the
scenes from the Gibson dataset were manually repaired and
verified to be free of holes and artifacts [6].

B. Ablations

When an area that was already seen previously is en-
countered again, its representation in the value map used by
VLFM is updated using a combination of its previous and
current values. We explore different methods of combining
these values and their impact on the performance of VLFM
in Table II. In the Replacement method, the previous value
is disregarded and the new value simply overwrites it.
The Unweighted avg. method calculates the new value as
the average of the previous and current values. Our full
approach, Weighted avg., uses confidence scores to weight
the average between the previous and new values, taking
into account the parts of the FOV the area occupied when
it was previously observed and at the current timestep. Our
findings indicate that the Weighted avg. method consistently
enhances performance compared to the other two methods
across all three datasets.

C. Real-world deployment

We deploy VLFM on a Spot robot from Boston Dynamics
(BD) to demonstrate VLFM successfully navigating to ob-
jects in the real world. For waypoint navigation, we utilize
the BD API instead of a PointNav policy, which can guide
the robot towards a specified waypoint, provided the path is
relatively free of obstacles. The camera within the robot’s
gripper is used to detect objects and feed inputs to BLIP-2.
However, due to its limited range in depth sensing, we em-
ploy the ZoeDepth depth estimation model [33] to generate
a depth image and approximate a waypoint for the detected
target object. We rely on the depth cameras on the body of
Spot to detect obstacles for frontier generation. All models
used, including BLIP-2, GroundingDINO, MobileSAM, and
ZoeDepth, were loaded and executed in real-time on a laptop
equipped with an RTX 4090 MaxQ Mobile GPU with 16 GB
of VRAM. Videos can be viewed at naoki.io/vlfm.

VII. CONCLUSION

This paper presents VLFM, a zero-shot framework for
ObjectNav in novel environments. Our key innovation is
spatially grounding joint vision-language-based semantic
reasoning with pre-trained models in a new approach to
frontier waypoint selection in order to perform target-driven
navigation in novel environments. VLFM uses a semantic
prompt-based method to infer which frontier to navigate
to using a pre-trained vision-language model, detects vis-
ible target objects with a pre-trained object detector, and
navigates to these frontiers and target objects using a pre-
trained policy. This modular nature of our method allows
different components to be swapped in as improved mod-
els become available. Experiments in simulated 3D home
environments demonstrate that VLFM achieves state-of-the-
art zero-shot navigation performance on the Object Goal
Navigation benchmark. Demonstrations in an office building
on a Spot Arm platform prove the viability of our method
in real-world scenarios.

VLFM has a number of limitations that could be addressed
by future work. First, we assume target objects will be easily
visible in the scene from the default height of the robot
camera. Future work could investigate policies to increase
interaction with the environment during the search process,
including actively directing the robot camera to look in
promising locations and using manipulation to execute search
actions such as looking inside closed drawers. Furthermore,
we build a map of semantic information and occupancy
information with our frontier and value map, but the value
map, which contains semantic information, provides only
task-specific semantic information. So, we cannot leverage
this map in sequentially executed semantic navigation tasks
to different objects or in executing other navigation tasks
requiring targets specified by language, such as vision-
language navigation. Future work could explore alternate
prompt formulations, value map designs, and methods of
tracking semantic information during task execution to en-
able long-horizon planning and multitask execution.

Overall, our results highlight the promise of leverag-
ing foundation models like BLIP-2 in a zero-shot man-
ner within robotic systems to provide spatially grounded
joint vision-language-based semantic reasoning without task-
specific training.
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