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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive capabilities in
generating coherent and contextually relevant text. These models arguably lack
the ability to logically reason, an essential skill required to solving mathemati-
cal problems and programming tasks. While step-by-step prompting approaches
show some promise, they often depend on finding a suitable prompt tailored to
the specific model and task. In this work, we propose a simple, yet an effective
approach to enhance reasoning capabilities by leveraging reinforcement learning
(RL) and the confidence scores of a well-calibrated LLM. It involves optimising
an implicit reward derived from the model’s confidence levels in the answer to
the reasoning task at hand. We generate preference data and fine-tune the LLM
in a similar spirit to reinforcement learning from human feedback (RLHF), but
without needing any human provided labels or preferences. Our results show that
resulting reasoning abilities of an LLM improve and are transferable to other rea-
soning tasks. This warrants further investigation of RL as a facilitator for solving
complex language tasks.

1 INTRODUCTION

Recent advances in large language models (LLMs) have led to impressive capabilities in text gen-
eration and comprehension (Brown et al., 2020; Ouyang et al., 2022). However, these models often
struggle with tasks requiring deep logical reasoning, which is a critical limitation when deploying
them in real-world applications such as legal analysis, scientific computation, and decision support
systems (Kambhampati, 2024). While LLMs excel at generating contextually appropriate text, they
frequently falter when asked to perform tasks that require maintaining consistency and accuracy
across multiple reasoning steps.

To address this challenge, various techniques have been explored to enhance the logical reasoning
capabilities of LLMs, the most promising being Chain-of-Thought (CoT) reasoning (Wei et al.,
2022). In CoT, prompting encourages models to generate and articulate intermediate reasoning
steps before arriving at a final conclusion. For example, prompts such as “Let us think step by step”
or “Let us break it down” are used (Kojima et al., 2022). By making the reasoning process explicit,
CoT reasoning improves the model’s ability to handle complex tasks that require logical consistency
and deep understanding. This approach, however, heavily relies on the prompt design, leading to
inconsistent performance and user experience.

To address these limitations, approaches such as STaR (Zelikman et al., 2022) have demonstrated
that models can be fine-tuned in a supervised manner to improve their logical reasoning capabili-
ties. While this method can enhance the model’s reasoning skills, it necessitates a large corpus of
question-reasoning-answer triples, which is costly to obtain. Further, the fine-tuning process can be
time-consuming and computationally expensive, limiting the scalability of the approach.

In contrast, Wang & Zhou (2024) found that while LLMs are often not able to provide a correct
answer for a reasoning task using vanilla greedy decoding, the correct answer often appears within
K beams. Moreover, they found that confidence of answer tokens is correlated with the presence of
reasoning in the decoding. Therefore, they propose generating a number of beams and selecting the
one which has the highest confidence answer tokens. The results show that performance of LLMs
on mathematical word problems improve, without the need for additional supervision or fine-tuning.
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Step 1: Collect comparison data based on
answer confidence and train reward model

Step 2: Optimise the initial LM against the
reward model using PPO

Q: I have 3 apples, my father has two more apples
than me, how many do we have in total?
A:

Input prompt:

Top-K tokens at position 0

top-1: 5
top-2: I
top-3: We
top-4: You
...

Generate completions for the top-K tokens

top-1: 5 apples
top-2: I have 3 apples and my father has 2 more, which is 5. 3+5 is 8
so we have 8 apples in total.
top-3: We have 5 apples in total.
top-4: You have 3 apples and your father has 2 more, so he has 5. In
total if you add your 3 apples to your father's 5 apples you end up with
8 apples in total

top-4 top-2 top-3 top-1

Rank the responses by answer confidence

> > >

Train Reward Model using
the confidence-ranked data

Sample inputs from
the training.

Generate prediction
using the LM

Score output with
Confidence-based

Reward Model

Update the LM
policy based on the
given score using

PPO

Q: We need 3 hours
to walk 15 km...

You walk 3 hours for
15 km, which means

you walk 5 km/h...

Score: 0.8

1 2 3 4

Figure 1: RLSF approach overview: For the top-K tokens at position 0 completions are generated,
which are ranked based on answer confidence in descending order. The reward model is trained on
the generated rankings, which is subsequently used to optimise the initial model using PPO. The
example here is based on Wang & Zhou (2024).

However, this approach relies on generating multiple beams, which increases the computational cost
of inference by an order of magnitude.

While these challenges have led to innovations within the domain of LLMs, it is important to note
that reinforcement learning (RL) has long been a foundational framework for solving complex tasks
that can be formulated as sequential decision making problems. The ability for RL algorithms to
solve such tasks is evidenced by success in mastering games like Go, Chess, etc. (Silver et al., 2017).

In the domain of LLMs, RL has been deployed to reward the generation of the output which reflect
human preferences, referred to as reinforcement learning from human feedback (RLHF; Christiano
et al., 2017). This step of optimisation is often seen as critical to allow the models to achieve their
impressive performance (Ouyang et al., 2022). Since RLHF is very sensitive towards the quality of
the human provided preferences, Lee et al. (2023) propose that a superior LLM provides feedback
for the training of smaller models. However this superior LLM still relies on the (accurate) human
feedback.

Building upon the strengths of RL and addressing some limitations observed in CoT decoding, we
propose a novel approach to reasoning tasks, which we name Reinforcement Learning from Self
Feedback (RLSF), illustrated in Figure 1. This approach is based on a simple observation: In a
well-calibrated model, answer confidence is correlated with the presence of reasoning, which in
turn leads to better quality answers. The generated beams can be ranked by answer confidence to
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train a reward model that assesses both reasoning and answer quality. Then this reward model can
be used to fine-tune the LLM via reinforcement learning.

We apply this simple idea to mathematical reasoning tasks, demonstrating that it significantly im-
proves LLM performance on these tasks. Furthermore, we show that once fine-tuned, the resulting
model also exhibits enhanced reasoning abilities across a broader range of tasks, even if the original
model is not well calibrated on these tasks. Finally, while the training costs increase, the inference
costs of the resulting LLM are equivalent to the vanilla LLM.

2 RELATED WORK

2.1 CONFIDENCE ESTIMATION IN LLMS

The reliability and calibration of confidence estimates in large language models (LLMs) are impor-
tant in real-world applications. Overconfident models, which assign high confidence to incorrect
answers, can undermine trust in these model. Well-calibrated confidence estimates are not only
important for the model’s trustworthiness, but also for improving its performance (Wang & Zhou,
2024).

Recent studies have analysed the calibration of confidence estimates across various LLM config-
urations. Supervisedly fine-tuned LLMs, trained on extensive datasets, have demonstrated well-
calibrated token-level confidence (Kuhn et al., 2022; Xiao et al., 2022). However, aligned LLMs
fine-tuned using RLHF often exhibit poorly calibrated token-level confidence (Tian et al., 2023;
OpenAI et al., 2024). This discrepancy likely arises because RLHF optimizes for human prefer-
ences, which may not always correlate with the correctness of answers.

Traditional token-level confidence estimation methods primarily focus on the confidence of the fi-
nal token in a response. This can lead to high confidence in the final token even if the answer is
incorrect, as the model might generate a seemingly plausible continuation that does not reflect the
correct answer. Recent advancements have shifted towards evaluating the confidence of the answer
span, which has been shown to offer better calibration than the final or average token-level confi-
dence (Kojima et al., 2022; Wang & Zhou, 2024).

2.2 CHAIN-OF-THOUGHT DECODING

The performance of large language models (LLMs) on reasoning tasks improves when the model
generates a chain of thought (CoT). To elicit CoT reasoning, Wei et al. (2022) include examples
of multistep reasoning in the prompt, while Kojima et al. (2022) prompt the model in a zero-shot
manner to “think step by step”. Reasoning capabilities can be further enhanced through specific
training on CoT data (Chung et al., 2024), or by teaching the model how to reason (Zelikman et al.,
2022).

CoT-decoding (Wang & Zhou, 2024) is proposed as a method which does not necessitate specific
prompting or supervised fine-tuning. Instead, it elicits reasoning by exploiting the correlation be-
tween answer token confidence and the presence of CoTs. Multiple completions are sampled and the
answer with the highest confidence is selected, as a confident answer is more likely to contain a CoT
and, consequently, be correct. While this method effectively generates more accurate answers, it in-
creases inference time by an order of magnitude due to the need to generate multiple beams for each
input. CoT-decoding is mainly used for logical reasoning tasks, however in a recent study, Vukovic
et al. (2024) employ it to improve generalisation of ontology relation extractors for task-oriented
dialogue.

2.3 PREFERENCE LEARNING

In the field of large language models, RLHF is proposed for aligning models with human values and
preferences (Christiano et al., 2017). In preference learning, LLMs are typically first fine-tuned on
human-written question-answer pairs, followed by RLHF to further refine the model (Ouyang et al.,
2022). During the RLHF phase, human annotators evaluate and rank sampled model outputs based
on various criteria, such as helpfulness and safety. This ranking generates preference data that is
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used to train a reward model, which in turn guides the model’s further refinement to better adhere to
the specified evaluation criteria and enhance answer quality.

Building on this foundational RLHF framework, Glaese et al. (2022) have introduced additional
layers of control by instructing human workers to focus on specific rules, such as the avoidance of
stereotypes. This refinement aims to improve the quality of the preference data, thereby enhancing
the alignment process and mitigating the risk of adversarial attacks. Similarly, Bai et al. (2022) have
employed a trained preference model to rank generated utterances, utilising this ranked data to train a
reward model, thereby advancing the alignment and safety of the LLM. Despite these advancements,
all existing RLHF approaches are heavily dependent on human labellers for generating preference
and safety data.

3 METHODOLOGY

Our method is based on the observation that if the model is well calibrated the confidence of the
answer correlates with the presence of reasoning and hence with the accuracy of this answer. There-
fore, a sequential-decision making process is needed that chooses the tokens of the generated text in
such a way that the confidence of the answer tokens is maximal. This can be achieved via reinforce-
ment learning.

3.1 CHAIN-OF-THOUGHT DECODING PRELIMINARIES

The goal of this method is to extract the inherent reasoning ability of a large language model by
generating multiple hypotheses for a given input q. In contrast to traditional beam-search methods,
in CoT decoding one samples the K highest-probability tokens ti, i = 1, · · · ,K at the very first
decoding step. From here, each hypothesis hi, i = 1, · · · ,K is expanded using standard auto-
regressive decoding, i.e. hi [0] = ti. Then the tokens contained within the answer ai, i = 1, · · · ,K
to the question, q, are identified in each hypothesis hi. This is done by appending the text “So
the answer is” to each hypothesis hi, subsequently continuing the decoding process to generate
a′i, i = 1, · · · ,K. Next, the repeated answer span is located in the hypothesis hi using string
matching to obtain ai.

The final beam a is the one with the highest answer confidence of the model, a = argmaxi d (hi).
The confidence in the answer is calculated as the average token level probability disparity of the
answer tokens (Wang & Zhou, 2024). That is, given an answer a, consisting of M tokens tm,m =
1, · · · ,M , the confidence of the model in the answer is calculated as:

d (a) =
1

M

M∑
m=1

p
(
t
(1)
j

∣∣∣h<j , q
)
− p

(
t
(2)
j

∣∣∣h<j , q
)
.

Here, p
(
t
(1)
j

∣∣∣h<j , q
)

is the probability of the most likely token at position j in the hypothesis, and

p
(
t
(2)
j

∣∣∣h<j , q
)

is the probability of the second most likely token at position j in the hypothesis.

Probability disparity tends to be a more reliable indicator of the model’s confidence than the proba-
bility of the token itself. This is because it also considers the probability of the second most likely
token, which helps capture the spread of probability mass across the vocabulary. Higher dispar-
ity corresponds to the model having a high certainty in sampling of the answer tokens, since an
alternative continuation is significantly less likely to be sampled.

To further improve the reliability of the confidence scores, we consider the frequency of unique
answers in the generated hypotheses. It has been shown empirically that the answer is more likely
to be correct if it is the most frequent answer in the set of hypotheses (Wang & Zhou, 2024). To
combine confidence and frequency, we calculate the final confidence score for an answer as the sum
of the confidence scores of the beams that contain that answer.

It is important to note that CoT decoding does not guarantee reasoning (Wang & Zhou, 2024), but
rather builds on the observed correlation of answer confidence and reasoning to improve answers.
The ability to generate rationales is likely learned during pre-training, since logical reasoning data
often contains reasoning. However, LLMs tend not to reason when prompted directly and output
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the answer directly instead. Our approach aims at bringing the inherent LLM reasoning abilities
forward to be predicted via greedy decoding.

3.2 REINFORCEMENT LEARNING FROM SELF FEEDBACK

Reinforcement learning (RL) relies on a reward signal to guide the learning process. Thus, defining
the reward appropriately is an important aspect of any RL-based approach.

In our approach, we utilise a reward model, inspired by Reinforcement Learning from Human Feed-
back (RLHF; Christiano et al., 2017). In RLHF, the reward model is a large language models which
is trained using a combination of pre-training, supervised fine-tuning, and fine-tuning on human
preference data. The human preference data is used to train a reward model, which assigns a score
to generated sequences based on human judgements. The objective function for training the reward
model is given as follows (Bradley & Terry, 1952):

L
(
h(1), h(2);θrew

)
= − log

(
σ
(
R
(
h(1)

)
−R

(
h(2)

)))
,

where hypothesis h(1) is preferred over hypothesis h(2), σ(·) is the sigmoid activation function, and
R(·) is the reward assigned to a hypothesis by the reward model parameterised by parameters θrew.

Once the reward model is trained, it can be used to assign reward values to the generated sequences.
In the context of reinforcement learning, this implies that each token in a sequence is assigned a
reward of zero, except for the final token, which receives the reward predicted by the model for the
entire sequence.

In contrast to approaches that rely on human preferences for ranking, our method ranks hypotheses
based solely on the confidence scores of their predicted answers. These confidence-based rankings
are then used to train the reward model, and the correctness of the answers is not explicitly con-
sidered when ranking the hypotheses. Given that the model relies entirely on its own confidence
scores rather than external feedback, we refer to this approach as Reinforcement Learning from
Self-Feedback (RLSF).

4 EXPERIMENTAL SETUP

4.1 DATASETS

To evaluate the efficacy of RLSF, we conduct experiments using logical reasoning datasets. Specif-
ically, we utilise the Multi-Arith and GSM8K (Cobbe et al., 2021) mathematical word problem
datasets during the training phase.

Additionally, we evaluate the method on the StrategyQA commonsense question answering
dataset (Geva et al., 2021), as well as on synthetic reasoning tasks, such as tracking the state of
a coin through a sequence of actions and concatenating the first or last letters of words, which was
used in Khot et al. (2022).

4.2 CALIBRATION

As outlined in Section 3, our approach relies on the calibration of the language model. For evaluating
the calibration, we use the estimated calibration error (ECE; Naeini et al., 2015) that measures the
alignment between model confidence and prediction accuracy. In other words, ECE measures how
much model confidence tells us about answer quality; the lower ECE the better. Consequently, we
decided to use the Phi-2 model (Hughes, 2023) in all our experiments, as it demonstrated superior
confidence calibration compared to alternative models, including Mistral (Jiang et al., 2023) and
Gemma (Team et al., 2024) (see Table 1). Furthermore, all fine-tuning, including the training of the
reward model, was performed using Low-Rank Adaptation (LoRA) (Hu et al., 2021).

4.3 REWARD MODEL

We train a reward model based on the self-feedback mechanism described in Section 3.2. For our
reward model, we use an instance of the Phi-2 model, with a reward prediction head fine-tuned using
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Model Multi-Arith GSM8K
ECE Accuracy ECE Accuracy

Phi-2 11.9 60.6 48.8 42.7
Mistral 4b Instruct 24.3 46.3 53.1 37.6
Gemma 2b Instruct 62.5 29.7 84.8 11.3

Table 1: Confidence calibration of different language models on the mathematical reasoning tasks,
together with the accuracy scores of Chain-of-Thought decoding using 10 beams.

Figure 2: Comparison of decoding strategies on the multi arithmetic task using the Phi2 model.

LoRA. To train this reward model, a preference dataset is required, which we generate using ques-
tions from the Multi-Arith and GSM8K mathematical reasoning datasets. For the construction of
our preference dataset, we do not accumulate answer confidences, as we wish to maintain the indi-
vidual hypotheses. Consequently, we generate 10 hypotheses per input, as Figure 2 demonstrates no
significant improvement in CoT decoding performance without accumulation beyond 10 hypothe-
ses. To ensure stability during learning, the rewards are re-scaled so they are in interval [0, 1]. We
train both the reward model and the prediction model using the transformer reinforcement learning
library (TRL; von Werra et al., 2020).

5 RESULTS AND DISCUSSION

5.1 CHAIN OF THOUGHT DECODING

In this section, we evaluate the original CoT decoding strategy (Section 3.1) on the multi-arithmetic
mathematical reasoning task (Figure 2). Our results confirm that it outperforms both greedy de-
coding and beam search. We observe that greedy decoding achieves the lowest performance, as
anticipated. Beam search performs better than greedy decoding, however, interestingly, its perfor-
mance declines as the number of beams increases. We hypothesise that this decline is due to beam
search’s reliance on token-level probabilities to prune beams. In contrast, CoT decoding, which
utilises answer-level confidence to rank beams, significantly outperforms both greedy decoding and
beam search. This performance is further enhanced when answer confidences are accumulated.

5.2 MATHEMATICAL REASONING

In this section, we evaluate the proposed RLSF approach on the Multi-Arith and GSM8K mathe-
matical reasoning tasks. We fine-tune the Phi-2 model using the RLSF approach, incorporating the
reward model obtained in Section 4.3 and the proximal policy optimisation (PPO) algorithm (Schul-
man et al., 2017). As an alternative to the RLHF framework we also train the model using direct
preference optimisation (DPO; Rafailov et al., 2024) that does not need a separately trained reward
model.
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Question: Faye had 34 coloring books. If she gave away 3 of them, but then
bought 48 more, how many would she have total?

Answer: 79

Greedy Decoding: Faye would have 85 coloring books in total.
CoT Decoding (20): Fae has a total of 65 coloring books (34 original books + 48

purchased books - 3 given away books = 65).
RLSF: Faye had 34 coloring books. She gave away 3 of them, so she had

34− 3 = 31 coloring books left. She then bought 48 more, so she
had 31 + 48 = 79 coloring books total.

Figure 3: Comparison of answers generated by the Phi-2 model using greedy decoding, Chain-of-
Thought (CoT) decoding with 20 beams, and the proposed RLSF approach on a question from the
Multi-Arith dataset.

In Table 2, we observe that the model fine-tuned with the RLSF approach outperforms the base
model, when using greedy decoding, on both the Multi-Arith and GSM8K mathematical reasoning
tasks. Additionally, this model either surpasses or matches the performance of the base model
when using CoT decoding with up to 25 hypotheses and accumulating answer confidences. This
demonstrates that through the self-reflection process, the model learns to generate more accurate
responses without the need for beam search or other decoding strategies. The comparison with DPO
that does not utilise a dedicated reward model further illustrates the power of the reward model,
although the DPO-trained model still outperforms the greedy baseline.

Moreover, in Figure 3, we present a scenario where a direct answer obtained via greedy decoding
fails to answer the question correctly. In this example, CoT decoding also fails to provide the correct
answer, offering an explanation for a possible answer rather than reasoning through to the correct
conclusion. Finally, our proposed RLSF approach successfully breaks the problem into smaller,
manageable tasks and ultimately arrives at the correct answer.

Method Number of Beams Multi-Arith GSM8K Decoding Cost

Greedy Decoding 1 34.4 25.3 O
(
n2

)
CoT Decoding

10 60.6 42.7 O
(
Kn2

)
25 76.7 39.6 O

(
Kn2

)
25 (agg) 86.7 40.8 O

(
Kn2

)
RLSF 1 78.9 42.7 O

(
n2

)
DPO SF 1 56.7 35.3 O

(
n2

)
Table 2: Phi-2 accuracy results for Multi-Arith and GSM8K. The decoding cost is represented as the
computational complexity of the decoding process where the context and generated tokens amount
to n, represented using O notation and K is the number of beams in CoT decoding. Best Results in
each dataset are highlighted in bold and second best are underlined.

5.3 GENERALISATION

Method Coin Flip StrategyQA First Letter Last Letter

Greedy Decoding 68.7 67.5 66.7 7.0
CoT Decoding (10 Beams) 23.8 48.4 50.7 6.0
RLSF 76.0 65.5 74.7 19.3

Table 3: Performances of tasks not seen during RLSF training measured in accuracy. Best results
for each dataset in bold.

The natural follow-up question is whether the above results generalize to other tasks. To explore
this, we evaluate the model from Section 5.2 on the StrategyQA commonsense question answer-
ing dataset, as well as on synthetic reasoning tasks, such as tracking the state of a coin through a
sequence of actions and concatenating the first or last letters of words.
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In Table 3, we observe that the RLSF model performs at least as well as the base model on the
StrategyQA dataset, while significantly outperforming the base model on the synthetic reasoning
tasks. Unlike the CoT decoding approach, which often led to reduced performance on these tasks,
the RLSF approach consistently enhances performance across all evaluated tasks. This consistent
improvement demonstrates the RLSF model’s generalisation ability beyond mathematical reasoning,
extending to other logical reasoning tasks.

We hypothesise that the reduction in performance observed with CoT decoding is due to the diffi-
culty in correctly locating the answer span in these more complex tasks. This issue arises because
CoT decoding relies heavily on re-ranking hypotheses based on the answer-span confidence. When
the correct answer span is challenging to identify, this can lead to undesirable behaviour during the
re-ranking process, with incorrect spans being ranked more favourably. In the case of coin flip and
last letter the problem arises from the answer tokens being mentioned several times in the generated
reasoning, decreasing the impact of the final answer mention when choosing the best beam.

In contrast, the RLSF model avoids this problem, as it does not depend on identifying the answer
span during inference; only the final answer needs to be parsed for evaluation. This allows the
RLSF model to maintain its high performance, even in tasks where span identification is inherently
difficult. As a result, the RLSF model remains robust across different types of tasks, showcasing its
versatility and ability to adapt to varying reasoning challenges without the limitations imposed by
answer span-dependent methods.

Interestingly, we found that the calibration of the RLSF-trained model is improved compared to the
baseline on GSM8K and the synthetic last letter concatenation task, as seen in Table 4.

Model Multi-Arith GSM8K Last Letter
ECE ↓ Accuracy ↑ ECE ↓ Accuracy ↑ ECE ↓ Accuracy ↑

Phi-2 11.9 34.4 48.8 25.3 21.3 7.0
Phi-2 RLSF 16.5 78.9 41.4 42.7 17.8 19.3

Table 4: Confidence calibration and “Greedy” Decoding accuracy of the Phi-2 model before and
after RLSF.

5.4 REWARD MODEL QUALITATIVE ANALYSIS

In Figure 4, we illustrate the rewards learned by the reward model alongside corresponding example
answers. We observe that the reward model generally assigns higher rewards to answers that exhibit
more logical reasoning, and thus tend to be more accurate. However, it is worth noting that the
reward model does not always assign the highest reward to the most accurate answer. We observe
instances where the reward model assigns a higher reward to a less accurate answer, both with and
without logical reasoning.

5.5 DISCUSSION

Does the RLSF model reason better than the base model? Overall, the RLSF model exhibits
enhanced reasoning capabilities compared to the base model, as evidenced by its ability to produce
more detailed and accurate responses. The increased length and quality of answers suggest that the
model engages in deeper reasoning. However, the reasoning process is not without flaws. In some
cases, the model generates a final answer prematurely and then attempts to justify it retroactively,
which indicates that the answer is not always the result of a coherent reasoning process. Addi-
tionally, there are instances where the model digresses, offering irrelevant or repetitive explanations
without contributing meaningful logical reasoning. Thus, while the RLSF model demonstrates im-
proved reasoning, there remain areas where its reasoning could be further refined to achieve greater
precision and coherence.

Is the RLSF approach more computationally efficient than CoT decoding? While the RLSF
approach requires comparable computational resources to CoT decoding during the creation of the
preference dataset, it also incurs additional costs for training the reward model and fine-tuning the
language model. However, during inference, the RLSF approach is as computationally efficient as
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Figure 4: Illustration of the rewards learned by the reward model. On the y-axis is the assigned
reward and on the x-axis the density, i.e. how many responses get assigned a specific reward.

the base model using greedy decoding, as it does not require additional decoding steps. Thus, for
the specific mathematical reasoning tasks in this study, the RLSF approach may be considered more
computationally intensive than CoT decoding. Nevertheless, the generalisation capability of the
RLSF approach, as demonstrated in Section 5.3, suggests that when applied to a broader range of
tasks, the RLSF method offers greater computational efficiency compared to CoT decoding, espe-
cially as it eliminates the need for multiple hypotheses or complex decoding strategies.

5.6 LIMITATIONS

An important limitation of our approach is the fact that it only works when the calibration of the
LLM is good enough. For evaluating the calibration of an LM with ECE labelled data is needed and
it only gives us an idea of the calibration for the specific task.
While the reliance on the identification of the answer span can be considered a bottleneck, it can be
argued that is needed for evaluating the performance of an LM on logical reasoning tasks, so this
problem is not limited to our approach in particular. The correlation-based heuristic for ranking the
responses does not ensure reasoning and answer quality in all cases. It is also important to mention
that the initial model has to be capable of generating reasoning in some considered beams for the
method to improve reasoning capabilities.

6 CONCLUSION

In this work, we proposed a novel approach, Reinforcement Learning with Self-Feedback (RLSF),
to improve reasoning capabilities in language models. Our method leverages self-reflection during
training, coupled with a reward model that guides the language model to generate more accurate
and logically consistent responses. Through evaluation on mathematical reasoning tasks, such as
Multi-Arith and GSM8K, as well as common-sense reasoning and synthetic tasks like StrategyQA
and coin-state tracking, we demonstrated that the RLSF approach significantly outperforms baseline
models and decoding techniques, including CoT decoding.

Our contributions include:

1. the introduction of the RLSF framework, which improves a model’s reasoning ability by
utilising its own feedback in a reinforcement learning loop,

2. the development of a reward model trained from model-generated preferences, and
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3. empirical evidence showing that RLSF outperforms established methods across multiple
reasoning domains.

Despite these advancements, there are still areas for future improvement. In particular, we observed
that the model’s reasoning can be imperfect in certain cases, with tendencies to justify answers post
hoc or produce irrelevant explanations. A more critical limitation of the current RLSF framework is
that it performs single-step reasoning, which restricts its ability to handle tasks requiring long-term
planning and more complex decision-making. While reinforcement learning is leveraged to enhance
reasoning, RLSF, like many RLHF-based approaches, remains focused on single-turn interactions.
The incorporation of long-term planning into the reinforcement learning process for language mod-
els is still in its early stages (Zhou et al., 2024).

In future work, we envision addressing these limitations by integrating more advanced reasoning
mechanisms, particularly multistep reasoning and long-term planning, into the RLSF framework.
By extending beyond single-turn optimisation, models could potentially reason over extended se-
quences of actions, making them more suitable for tasks that require complex reasoning or decision-
making.

7 ETHICS STATEMENT

Although the presented approach improves performance and encourages reasoning in LLMs, it does
not include measures to prevent harmful output. Depending on the calibration of the LLM and the
underlying data used for comparison data collection, it might be possible that harmful behaviour of
the LLM is reinforced.
However, by reducing the need for human intervention for reasoning training of LLMs, there are po-
tentially more resources available to mitigate harmful LLM behaviour. Apart from that, the learned
reasoning could possibly reduce the risk of harmful behaviour, since the LLMs learn not to rely on
the highest probability response from the pre-training data distribution.

8 REPRODUCIBILITY STATEMENT

The datasets utilised in our experiments are all publicly available. Furthermore, the trained Phi-2
model is an open source model, facilitating reproducibility. Upon publication, all the code used for
our experiments will be made publicly available, and the git repository will be linked in the final
version of the paper. The main sections of the paper needed for reproducing the experiments are
Sections 3 and 4 where the method for obtaining the beams, computing the answer confidence and
ranking the responses, and the datasets are described.
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A APPENDIX

In Figure 5 we see the reliability diagram of the RLSF-trained model and the baseline on the Coin-
flip task. Although increasing the ECE, the calibration diagram is better aligned to the diagonal after
RLSF training.

A.1 RLSF-MODEL RELIABILITY DIAGRAM
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Figure 5: Reliability diagrams of the Phi-2 model before and after RLSF on the Coin-flip task.
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