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Abstract

Neural network (NN) denoisers are an essential building block in many common
tasks, ranging from image reconstruction to image generation. However, the
success of these models is not well understood from a theoretical perspective. In
this paper, we aim to characterize the functions realized by shallow ReLU NN
denoisers — in the common theoretical setting of interpolation (i.e., zero training
loss) with a minimal representation cost (i.e., minimal ℓ2 norm weights). First, for
univariate data, we derive a closed form for the NN denoiser function, find it is
contractive toward the clean data points, and prove it generalizes better than the
empirical MMSE estimator at a low noise level. Next, for multivariate data, we find
the NN denoiser functions in a closed form under various geometric assumptions on
the training data: data contained in a low-dimensional subspace, data contained in a
union of one-sided rays, or several types of simplexes. These functions decompose
into a sum of simple rank-one piecewise linear interpolations aligned with edges
and/or faces connecting training samples. We empirically verify this alignment
phenomenon on synthetic data and real images.

1 Introduction

The ability to reconstruct an image from a noisy observation has been studied extensively in the last
decades, as it is useful for many practical applications (e.g., Hasinoff et al. [2010]). In recent years,
Neural Network (NN) denoisers commonly replace classical expert-based approaches as they achieve
substantially better results than the classical approaches (e.g., Zhang et al. [2017]). Beyond this
natural usage, NN denoisers also serve as essential building blocks in a variety of common computer
vision tasks, such as solving inverse problems [Zhang et al., 2021] and image generation [Song
and Ermon, 2019, Ho et al., 2020]. To better understand the role of NN denoisers in such complex
applications, we first wish to theoretically understand the type of solutions they converge to.

In practice, when training denoisers, we sample multiple noisy samples for each clean image and
minimize the Mean Squared Error (MSE) loss for recovering the clean image. Since we sample
numerous noisy samples per clean sample, the number of training samples is typically larger than
the number of parameters in the network. Interestingly, even in such an under-parameterized regime,
the loss has multiple global minima corresponding to distinct denoiser functions which achieve zero
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loss on the observed data. To characterize these functions, we study, similarly to previous works
[Savarese et al., 2019, Ongie et al., 2020], the shallow NN solutions that interpolate the training data
with minimal representation cost, i.e., where the ℓ2-norm of the weights (without biases and skip
connections) is as small as possible. This is because we converge to such min-cost solutions when we
minimize the loss with a vanishingly small ℓ2 regularization on these weights.

We first examine the univariate input case: building on existing results [Hanin, 2021], we characterize
the min-cost interpolating solution and its generalization to unseen data. Next, we aim to extend this
analysis to the multivariate case. However, this is challenging, since, to the best of our knowledge,
there are no results that explicitly characterize these min-cost solutions for general multivariate
shallow NNs — except in two basic cases. In the first case, the input data is co-linear [Ergen and
Pilanci, 2021]. In the second case, the input samples are identical to their target outputs, so the trivial
min-cost solution is the identity function. The NN denoisers’ training regime is ‘near’ the second
case: there, the input samples are noisy versions of the clean target outputs. Interestingly, we find that
this regime leads to non-trivial min-cost solutions far from identity — even with an infinitesimally
small input noise. We analytically investigate these solutions here.

Our Contributions. We study the NN solutions in the setting of interpolation of noisy samples
with min-cost, in a practically relevant “low noise regime” where the noisy samples are well clustered.
In the univariate case,

• We find a closed-form solution for the minimum representation cost NN denoiser. Then, we prove
this solution generalizes better than the empirical minimum MSE (eMMSE) denoiser.

• We prove this min-cost NN solution is contractive toward the clean data points, that is, applying
the denoiser necessarily reduces the distance of a noisy sample to one of the clean samples.

In the multivariate case,

• We derive a closed-form solution for the min-cost NN denoiser in multivariate case under various
assumptions on the geometric configuration of the clean training samples. To the best of our
knowledge, this is the first set of results to explicitly characterize a min-cost interpolating NN in a
non-basic multivariate setting.

• We illustrate a general alignment phenomenon of min-cost NN denoisers in the multivariate
setting: the optimal NN denoiser decomposes into a sum of simple rank-one piecewise linear
interpolations aligned with edges and/or faces connecting clean training samples.

2 Preliminaries and problem setting

The denoising problem. Let y ∈ Rd be a noisy observation of x ∈ Rd, such that y = x + ϵ
where x and ϵ are statistically independent, and E[ϵ] = 0. Commonly, this noise is Gaussian with
covariance matrix σ2I. The ultimate goal of a denoiser x̂ (y) is to minimize the MSE loss over the
joint probability distribution of the data and the noisy observation (“population distribution”), i.e., to
minimize

L (x̂) = Ex,y ∥x̂ (y)− x∥2 . (1)
The well-known optimal solution for (1) is the minimum mean square error (MMSE) denoiser, i.e.,

x̂∗(y) = Ex|y[x | y] ∈ argminx̂(y)Ex,y ∥x− x̂ (y)∥2 . (2)
Since we do not have access to the distribution of the data, and hence not to the posterior distribution,
we rely on a finite amount of clean data {xn}Nn=1 in order to learn a good approximation for the
MMSE estimator. One approach is to assume an empirical data distribution and derive the optimal
solution of (1), i.e., the empirical minimum mean square error (eMMSE) denoiser,

x̂eMMSE (y) ∈ argmin
x̂(y)

1

N

N∑
n=1

Ey|xn
∥x̂ (y)− xn∥2 . (3)

If the noise is Gaussian with a covariance of σ2I, an explicit solution to the eMMSE is given by

x̂eMMSE (y) =

∑N
n=1 xn exp

(
−∥y−xn∥2

2σ2

)
∑N

n=1 exp
(
−∥y−xn∥2

2σ2

) . (4)
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An alternative approach to computing the eMMSE directly is to draw M noisy samples for each
clean data point, as yn,m = xn + ϵn,m, where ϵn,m ∼ N

(
0, σ2I

)
are independent and identically

distributed, and to minimize the following loss function

Loffline,M (x̂) =
1

MN

M∑
m=1

N∑
n=1

∥x̂ (yn,m)− xn∥2 . (5)

Denoiser model and algorithms. In practice, we approximate the optimal denoiser x̂ (y) using a
parametric model hθ (y), typically a NN. We focus on a shallow ReLU network model with a skip
connection of the form

hθ(y) =

K∑
k=1

ak[w
⊤
k y + bk]+ + V y + c (6)

where θ = ((θk)
K
k=1; c,V ) with θk = (bk,ak,wk) ∈ R × Rd × Rd and c ∈ Rd,V ∈ Rd×d.

We train the model on a finite set of clean data points {xn}Nn=1. The common practical training
method is based on an online approach. First, we sample a random batch (with replacement) from the
data B ⊆ {xn}Nn=1. Then, for each clean data point xn ∈ B, we draw a noisy sample yn = xn + ϵn,
where ϵn ∼ N

(
0, σ2I

)
are independent of the clean data points and other noise samples. At each

iteration t out of T iterations, we update the model parameters according to a stochastic gradient
descent rule, with a vanishingly small regularization term λC (θ), that is,

θt+1 = θt − η∇θt

1

|B|
∑
n∈B

∥hθt
(yn)− xn∥2 − ηλ∇θt

C (θt) . (7)

Another training method [Chen et al., 2014] is based on an offline approach. We sample M noisy
sample for each clean data point and minimize (5) plus a regularization term

Loffline,M (θ) =
1

MN

M∑
m=1

N∑
n=1

∥hθ (yn,m)− xn∥2 + λC (θ) . (8)

Similarly to previous works [Savarese et al., 2019, Ongie et al., 2020], we assume an ℓ2 penalty on
the weights, but not on the biases and skip connections, i.e.,

C(θ) =
1

2

K∑
k=1

(
∥ak∥2 + ∥wk∥2

)
. (9)

Low noise regime. In this paper, we study the solution of the NN denoiser when the clusters of
noisy samples around each clean point are well-separated, a setting which we refer to as the “low
noise regime”. This is a rather relevant regime since denoisers are practically used when the noise
level is mild. Indeed, common image-denoising benchmarks test on low (but not negligible) noise
levels. For instance, in the commonly used denoising benchmark BSD68 [Roth and Black, 2009], the
noise level σ = 0.1 is in the low noise regime.1 Moreover, this setting is important, for example, in
diffusion-based image generation, since at the end of the reverse denoising process, new images are
sampled by denoising smaller and smaller noise levels.2

3 Basic properties of neural network denoisers

Offline v.s. online NN solutions. NN denoisers are traditionally trained in an online fashion (7),
using a finite amount of T iterations. Consequently, only a finite number of noisy samples are used for
each clean data point. We empirically observe that the solutions in the offline and online settings are
similar. Specifically, in the univariate case, we show in Figure 1 that denoisers based on offline and

1The minimum distance between two images in BSD68 is about 97 while the image resolution is
d = 481×321. Also, the norm of the noise concentrates around the value of

√
dσ≈

√
481 · 321 · 0.1≈40<97.

Therefore, the clusters of noisy samples around each clean point are generally well-separated.
2Interestingly, it was suggested that the “useful” part of the diffusion dynamics happens only below some

critical noise level [Raya and Ambrogioni, 2023].
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Figure 1: NN denoiser vs eMMSE denoiser.
We trained a one-hidden-layer ReLU network with
a skip connection on a denoising task. The clean
dataset has four points equally spaced in the interval
[−5, 5], and the noisy samples are generated by
adding zero-mean Gaussian noise with σ = 1.5.
We use λ = 10−5 in both setting. The Figure
shows the denoiser output as a function of its input
for: (1) NN denoiser trained online using (7) for
100K iterations, (2) NN denoiser trained offline
using (8) with M = 9000 and 20K epochs, and
(3) the eMMSE denoiser (4).

online loss functions converge to indistinguishable solutions. For the multivariate case, we observe
(Figure 11 in Appendix D) that the offline and online solutions achieve approximately the same test
MSE when trained on a subset of the MNIST dataset. The comparison is made using the same number
of iterations for both training methods, while using much less noisy samples in the offline setting.
Evidently, this lower number of samples does not significantly affect the generalization error. Hence,
in the rest of the paper, we focus on offline training (i.e., minimizing the offline loss Loffline,M ), as
it defines an explicit loss function with solutions that can be theoretically analyzed, as in [Savarese
et al., 2019, Ongie et al., 2020].

The empirical MMSE denoiser. The law of large numbers implies that the denoiser minimizing
the offline loss Loffline,M approaches the eMMSE estimator in the limit of infinitely many noisy
samples,

x̂eMMSE (y) ∈ argminx̂ lim
M→∞

Loffline,M (x̂) . (10)

Therefore, it may seem that for a reasonable number of noise samples M , a large enough model,
and small enough regularization, the denoiser we get by minimizing the offline loss (6) will also be
similar to the eMMSE estimator. However, Figure 1 shows that the eMMSE solution and the NN
solutions (both online and offline) are quite different. The eMMSE denoiser has a much sharper
transition and maps almost all inputs to a value of a clean data point. This is because in the case of
low noise the eMMSE denoiser (4) approximates the one nearest-neighbor (1-NN) classifier, i.e.,

lim
σ→0+

x̂eMMSE (y) = argmin
x∈{xi}N

i=1

∥y − x∥ . (11)

In contrast, the NN denoiser maps each noisy sample to its corresponding clean sample only in a
limited “noise ball” around the clean point, and interpolates near-linearly between the “noise balls”.
Hence, we may expect that the smoother NN denoiser typically generalizes better than the eMMSE
denoiser. We prove that this is indeed true for the univariate case in Section 4.

Why the NN denoiser does not converge to the eMMSE denoiser? Note that the limit in (10) is
not practically relevant for the low-level noise regime, since we need an exponentially large M in
order to converge in this limit. For example, in the case of univariate Gaussian noise, we have that
P (|ϵ| > t) ≤ 2 exp(− t2

2σ2 ), ∀t > 0. Therefore, during training, we effectively observe only noisy
samples that are in a bounded interval of size 2σ

√
logM around each clean sample (see Figure 1). In

other words, in the low-noise regime and for non-exponential M , there is no way to distinguish if the
noise is sampled from some distribution with limited support of from a Gaussian distribution. The
denoiser minimizing the loss with respect to a bounded-support distribution can be radically different
from the eMMSE denoiser in the regions outside the “noise balls” surrounding the clean samples,
where the denoiser function is not constrained by the loss. This leads to a large difference between
the NN denoiser and the MMSE estimator.

Alternatively, one may suggest that the NN denoiser does not converge to the eMMSE denoiser due to
an approximation error (i.e., the shallow NN’s model capacity is too small to approximate the MMSE
denoiser). Nevertheless, we provide empirical evidence indicating it is not the case. Specifically,
recall that in the low noise regime, the eMMSE denoiser tends to the nearest-neighbor classifier, and
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such a solution does not generalize well to test data. Thus, if the NN denoiser would have converged
to the eMMSE solution, then its test error would have increased with the network size, in contrast to
what we observe in Figure 12 (Appendix D).

Therefore, in order to approximate the eMMSE with a NN, it seems we must have an exponentially
large M . Alternatively, we may converge to the eMMSE if we use a loss function marginalized
over the Gaussian noise. This idea was previously suggested by Chen et al. [2014], with the goal of
effectively increasing the number of noisy samples and thus improving the training performance of
denoising autoencoders. Therein, this improvement was obtained by approximating the marginalized
loss function by a Taylor series expansion. However, for shallow denoisers, we may actually obtain
an explicit expression for this marginalized loss, without any approximation. Specifically, if we
assume for simplicity, that the network does not have a linear unit (V = 0) and its bias terms are zero
(c = 0, bk = 0), then the marginalized loss for Gaussian noise, derived in Appendix A, is given by

L (θ, σ) = Ex,y ∥hθ (y)− x∥2 = Ex,y

∥∥∥∥∥
K∑

k=1

ak[w
⊤
k y]+ − x

∥∥∥∥∥
2

= ExEy|x

∥∥∥∥∥
K∑

k=1

ai[w
⊤
k y]+ − x

∥∥∥∥∥
2

= Ex

∥∥∥∥∥
K∑

k=1

akϕ̃
(
ŵ⊤

k x, ∥wk∥ , σ
)
− x

∥∥∥∥∥
2

+

K∑
i=1

K∑
j=1

a⊤
i ajHij

(
wi,wj , σ

2
)
, (12)

where wk = ŵk ∥wk∥ and H ⪰ 0, ϕ̃ (·) are defined in Appendix A. NN denoisers trained over
this loss function will thus tend to the eMMSE solution as the network size is increased. However,
as we explained above, this is not necessarily desirable, so we only mention (12) to show exact
marginalization is feasible.

Regularization biases toward specific neural network denoisers. To further explore the con-
verged solution for offline training, we note that the offline loss function Loffline,M (θ) allows the
network to converge to a zero-loss solution. This is in contrast to online training for which each
batch leads to new realizations of noisy samples, and thus the training error is never exactly zero.
Specifically, consider the low noise regime (well-separated noisy clusters). Then, the network can
perfectly fit all the noisy samples using a finite number of neurons (see Section 4 for a more accurate
description in the univariate case). Importantly, there are multiple ways to cluster the noisy data
points with such neurons, and so there are multiple global training loss minima that the network can
achieve with zero loss, each with a different generalization capability. In contrast to the standard case
considered in the literature, this holds even in the under-parameterized case (where NM , the total
number of noisy samples, is larger than the number of parameters).

Since there are many minima that perfectly fit the training data, we converge to specific minima which
also minimize the ℓ2 regularization we use (even though we assumed it is vanishing). Specifically,
in the limit of vanishing regularization C (θ), the minimizers of Loffline,M (θ) also minimize the
representation cost.
Definition 1. Let hθ : Rd → Rd denote a shallow ReLU network of the form (6). For any function
f : Rd → Rd realizable as a shallow ReLU network, we define its representation cost as

R(f) = inf
θ: f=hθ

C (θ) = inf
θ

K∑
k=1

∥ak∥ s.t. ∥wk∥ = 1 ∀k,f = hθ , (13)

and a minimizer of this cost, i.e. the ‘min-cost’ solution, as
f∗ ∈ argmin

f
R(f) s.t. f(yn,m) = xn ∀n,m , (14)

where the second equality in (13) holds due to the 1-homogeneity of the ReLU activation function,
and since the bias terms are not regularized (see [Savarese et al., 2019, Appendix A]). In the next
sections, we examine which function we obtain by minimizing the representation costR(f) in various
settings.

4 Closed form solution for the NN denoiser function — univariate data

In this section, we prove that NN denoisers that minimize R(f) for univariate data have the specific
piecewise linear form observed in Figure 1, and we discuss the properties of this form. We observe N
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clean univariate data points {xn}Nn=1, s.t. −∞ < x1 < x2 < · · · < xN <∞, and M noisy samples
(drawn from some known distribution) for each clean data point, such that yn,m = xn + ϵn,m. We
denote by ϵmax

n the maximal noise seen for data point xn, and by ϵmin
n the minimal noise seen for

data point xn, i.e.,

ϵmax
n ≡ max

m
ϵn,m, ϵmin

n ≡ min
m

ϵn,m , (15)

and assume the following,

Assumption 1. Assume the data {xn}Nn=1 is well-separated after the addition of noise, i.e.,

∀n ∈ [N − 1] : xn + ϵmax
n < xn+1 + ϵmin

n+1 , (16)

and ϵmax
n > 0 , ϵmin

n < 0.

So we can state the following,
Proposition 1. For all datasets such that Assumption 1 holds, the unique minimizer of R(f) is

f∗1D(y) =


x1, y < x1 + ϵmin

1

xn, xn + ϵmin
n ≤ y ≤ xn + ϵmax

n
xn+1−xn

xn+1+ϵmin
n+1−(xn+ϵmax

n )
(y − (xn + ϵmax

n )) + xn, xn + ϵmax
n < y < xn+1 + ϵmin

n+1

xN , y > xN + ϵmax
N

.

(17)

The proof (which is based on Theorem 1.2. in [Hanin, 2021]) can be found in Appendix B.1. As
can be seen from Figure 1, the empirical simulation matches Proposition 1. 3 Proposition 1 states
that (17) is a closed-form solution for (8) with minimal representation cost. Notice that the minimal
number of neurons needed to represent f∗1D using hθ (y) is 2N − 2, which is less than the number of
the total training samples NM for M ≥ 2.

In the case of univariate data, we can prove that the representation cost minimizer f∗1D (linear
interpolation) generalizes better than the optimal estimator over the empirical distribution (eMMSE)
for low noise levels.
Theorem 1. Let y = x + ϵ where x ∼ px (x) and ϵ ∼ N

(
0, σ2

)
where x and ϵ are statistically

independent. Then for all datasets such that Assumption 1 holds, and for all density probability dis-
tributions px (x) with bounded second moment such that px (x) > 0 for all x ∈ [minn xn,maxn xn],
the following holds,

lim
σ→0+

MSE
(
x̂eMMSE (y)

)
> lim

σ→0+
MSE (f∗1D (y)) .

See Appendix B.2 for the proof. We may deduce from Theorem 1 that for each density probability
distribution p (x) there exists a critical noise level for which the the representation cost minimizer
f∗1D has strictly lower MSE than the eMMSE for all smaller noise levels (this is because the MSE
is a continuous function of σ). The critical noise level can change significantly depending on p (x).
For example, if p (x) has a high “mass” in between the training points then the critical noise level is
large. However, if the density function has a low “mass” between the training points then the critical
noise level is small. In Appendix D we show the MSE vs. the noise level on MNIST denoiser for NN
denoiser and eMMSE denoiser (Figure 13). As can be seen there, the critical noise level in this case
is not small (∼ 5).

Intuitively, the difference between the NN denoiser and the eMMSE denoiser is how they operate on
inputs that are not close to any of the clean samples (compared to the noise standard deviation). For
such a point, the eMMSE denoiser does not take into account that the empirical distribution of the
clean samples does not approximate well their true distribution. Thus, for small noise, it insists on
“assigning” it to the closest clean sample point. By contrast, the NN denoiser generalizes better since
it takes into account that, far from the clean samples, the data distribution is not well approximated
by the empirical sample distribution. Thus, its operation there is near the identity function, with a
small contraction toward the clean points, as we discuss next.

3Notice that the training points in Figure 1 are used in the online setting (7) and in the offline setting (8) we
observe less noisy samples.
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Minimal norm leads to contractive solutions on univariate data. Radhakrishnan et al. [2018]
have empirically shown that Auto-Encoders (AE, i.e. NN denoisers without input noise), are locally
contractive toward the training samples. Specifically, they showed that the clean dataset can be
recovered when iterating the AE output multiple times until convergence. Additionally, they showed
that, as we increase the width or the depth of the NN, the network becomes more contractive toward
the training examples. In addition, Radhakrishnan et al. [2018] proved that 2-layer AE models
are locally contractive under strong assumptions (the weights of the input layer are fixed and the
number of neurons goes to infinity). Next, we prove that a univariate shallow NN denoiser is globally
contractive toward the clean data points without using the assumptions used by Radhakrishnan et al.
[2018] (i.e., the minimizer optimizes over both layers and has a finite number of neurons).
Definition 2. We say that f : Rd → Rd is contractive toward a set of points {xn}Nn=1 on Y ⊆ Rd if
there exists a real number 0 ≤ α < 1 such that for any y ∈ Y there exists i ∈ [N ] so that

∥f (y)− f (xi)∥ ≤ α ∥y − xi∥ . (18)

Lemma 1. f∗1D (y) is contractive toward the clean training points {xn}Nn=1 on Y =

R \ ∪n∈[N−1]

{
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1

}
.

The proof can be found in Appendix B.3.

5 Minimal norm leads to alignment phenomenon on multivariate data

In the multivariate case, min-cost solutions of (14) are difficult to explicitly characterize. Even in the
setting of fitting scalar-valued shallow ReLU networks, explicitly characterizing min-cost solutions
under interpolation constraints remains an open problem, except in some basic cases (e.g., co-linear
data [Ergen and Pilanci, 2021]).

As an approximation to (14) that is more mathematically tractable, we assume the functions being
fit are constant and equal to xn on a closed ball of radius ρ centered at each xn, i.e., f(y) = xn

for all ∥y − xn∥ ≤ ρ, such that the balls do not overlap. Letting B(xn, ρ) denote the ball of radius
ρ centered at xn, we can write this constraint more compactly as f(B(xn, ρ)) = {xn}. Consider
minimizing the representation cost under this constraint:

min
f
R(f) s.t. f(B(xn, ρ)) = {xn} ∀n ∈ [N ] . (19)

However, even with this approximation, explicitly describing minimizers of (19) for an arbitrary
collection of training samples remains challenging. Instead, to gain intuition, we describe minimizers
of (19) assuming the training samples belong to simple geometric structures that yield explicit solu-
tions. Our results reveal a general alignment phenomenon, such that the weights of the representation
cost minimizer align themselves with edges and/or faces connecting data points. We also show that
approximate solutions of (14) obtained numerically by training a NN denoiser with weight decay
match well with the solutions of (19) having exact closed-form expressions.

5.1 Training data on a subspace

In the event that the clean training samples belong to a subspace, we show the representation cost
minimizer depends only on the projection of the inputs onto the subspace containing the training data,
and its output is also constrained to this subspace.
Theorem 2. Assume the training samples {xn}Nn=1 belong to a linear subspace S ⊂ Rd, and
let PS ∈ Rd×d denote the orthogonal projector onto S. Then any minimizer f∗ of (19) satisfies
f∗(y) = PSf

∗(PSy) for all y ∈ Rd.

The proof of this result and all others in this section is given in Appendix C.

Note the assumption that the dataset lies on a subpaces is practically relevant, since, in general, large
datasets are (approximately) low rank, i.e., lie on a linear subspace [Udell and Townsend, 2019]. In
Appendix D we also validated that common image datasets are (approximately) low rank (Table 1).

Specializing to the case co-linear training data (i.e., training samples belonging to a one-dimensional
subspace) the min-cost solution is unique and is described by the following corollary:
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f1(y1, y2) f2(y1, y2) ReLU boundaries

y1

y2

predicted

denoiser


trained

denoiser


f1(y1, y2) f2(y1, y2) ReLU boundaries

Figure 2: Predicted (top row) and empirical (bottom row) min-cost NN denoisers for N = 3 clean training
samples in d = 2 dimensions. The empricial NN denoisers were trained with weight decay parameter λ = 10−5

and M = 100 noisy samples. As predicted by our theory, the ReLU boundaries align either perpendicular to the
triangle edges in the obtuse case (left panel), or parallel to the triangle edges (right panel).

Corollary 1. Assume the training samples {xn}Nn=1 are co-linear, i.e., xn = cnu for some scalars
c1 < c2 < · · · < cn where u ∈ Rd is a unit-vector. Then the minimizer f∗ of (19) is unique and
given by f∗(y) = uϕ(u⊤y) where ϕ : R → R has the same form as the 1-D minimizer (17) f∗1D
with xn = cn and ϵmax

n = −ϵmin
n = ρ.

In other words, the min-cost solution has a particularly simple form in this case: f∗(y) = uϕ(u⊤y),
where ϕ is a monotonic piecewise linear function. We call any function of this form a rank-one
piecewise linear interpolator. Below we show that many other min-cost solutions can be expressed
as superpositions of rank-one piecewise linear interpolators.

5.2 Training data on rays

As an extension of the previous setting, we now consider training data belonging to a union of
one-sided rays sharing a common origin. Assuming the rays are well-separated (in a sense made
precise below) we prove that the representation cost minimizer decomposes into a sum of rank-one
piecewise linear interpolators aligned with each ray.
Theorem 3. Suppose the training samples X belong to a union of L rays plus a sample at the
origin: X = {0} ∪ {x(1)

n }N1
n=1 ∪ · · · ∪ {x(L)

n }NL
n=1 where x

(ℓ)
n = c

(ℓ)
n uℓ for some unit vector uℓ and

constants 0 < c
(ℓ)
1 < c

(ℓ)
2 < · · · < c

(ℓ)
Nℓ

. Assume that the rays make obtuse angles with each other
(i.e., u⊤

ℓ uk < 0 for all ℓ ̸= k). Then the minimizer f∗ of (19) is unique and is given by

f∗(y) = u1ϕ1(u
⊤
1 y) + · · ·+ uLϕL(u

⊤
Ly) , (20)

where ϕℓ : R → R has the form of the 1-D minimizer (17) f∗1D with xn = c
(ℓ)
n , ϵmax

n = −ϵmin
n = ρ.

Additionally, in the Appendix C.2.1 we show that this min-cost solution is stable with respect to small
perturbations of the data. In particular, if the training data is perturbed from the rays, the functional
form of the min-cost solution only changes slightly, such that the inner and outer-layer weight vectors
align with the line segments connecting consecutive data points.

5.3 Special case: training data forming a simplex

Here, we study the representation cost minimizers forN ≤ d+1 training points that form the vertices
of a (N − 1)-simplex, i.e., a (N − 1)-dimensional simplex in Rd (e.g., a 2-simplex is a triangle, a
3-simplex is a tetrahedron, etc.). As we will show, the angles between vertices of the simplex (e.g.,
an acute versus obtuse triangle in N = 3) influences the functional form of the min-cost solution.

Our first result considers one extreme where the simplex has one vertex that makes an obtuse angle
with all other vertices (e.g., an obtuse triangle for N = 3).
Proposition 2. Suppose the convex hull of the training points {x1,x2, ...,xN} ⊂ Rd is a (N − 1)-
simplex such that x1 forms an obtuse angle with all other vertices, i.e., (xj − x1)

⊤(xi − x1) < 0
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for all i ̸= j with i, j > 1. Then the minimizer f∗ of (19) is unique, and is given by

f∗(y) = x1 +

N∑
n=2

unϕn(u
⊤
n (y − x1)) (21)

where un = xn−x1

∥xn−x1∥ , ϕn(t) = sn([t− an]+ − [t− bn]+), with an = ρ, bn = ∥xn − x1∥ − ρ, and
sn = ∥xn − x1∥/(bn − an) for all n = 2, ..., N .

This result is essentially a corollary of Theorem 3, since after translating x1 to be the origin, the
vertices of the simplex belong to rays making obtuse angles with each other, where there is exactly
one sample per ray. Details of the proof are given in Appendix C.2.

At the opposite extreme, we consider the case where every vertex of the simplex is acute, meaning for
all n = 1, ..., N we have (xi −xn)

⊤(xj −xn) > 0 for all i, j ̸= n. In this case, we make following
conjecture: the min-cost solution is instead a sum of N rank-one piecewise linear interpolators, each
aligned orthogonal to a different (N − 2)-dimensional face of the simplex.

Conjecture 1. Suppose the convex hull of the training points {x1,x2, ...,xN} ⊂ Rd is a (N − 1)-
simplex where every vertex of the simplex is acute. Then the minimizer f∗ of (19) is unique, and is
given by

f∗(y) = x+

N∑
n=1

vnϕn(u
⊤
n (y − zn)) (22)

where: zn is the projection of xn onto the unique (N − 2)-dimensional face of the simplex not
containing xn; x is the weighted geometric median of the vertices specified by

x = argmin
x∈Rd

N∑
n=1

∥xn − x∥
∥xn − zn∥

;

un = xn−zn

∥xn−zn∥ , vn = xn−x
∥xn−x∥ ; and ϕn(t) = sn([t − an]+ − [t − bn]+) with an = ρ, bn =

∥xn − zn∥ − ρ, and sn = ∥xn − x∥/(bn − an).

Justification for this conjecture is given in Appendix C.3.2. In particular, we prove that the interpolator
f∗ given in (86) is a min-cost solution in the special case of three training points whose convex
hull is an equilateral triangle. If true in general, this would imply a phase transition behavior in the
min-cost solution when the simplex changes from having one obtuse vertex to all acute vertices, such
that ReLU boundaries go from being aligned orthogonal to the edges connecting vertices, to being
aligned parallel with the simplex faces. Figure 2 illustrates this for N = 3 training points forming
a triangle in d = 2 dimensions. Moreover, Figure 2 shows that the empirical minimizer obtained
using noisy samples and weight decay regularization agrees well with the form of the exact min-cost
solution predicted by Proposition 2 and Conjecture 1.

In general, any given vertex of a simplex may make acute angles with some vertices and obtuse angles
with others. This case is not covered by the above results. Currently, we do not have a conjectured
form of the min-cost solution in this case, and we leave this as an open problem for future work.

6 Related works

Numerous methods have been proposed for image denoising. In last decade NN-based methods
achieve state-of-the-art results [Zhang et al., 2017, 2021]. See [Elad et al., 2023] for a comprehensive
review of image denoising. Sonthalia and Nadakuditi [2023] empirically showed a double decent
behavior in NN denoisers, and theoretically proved it in a linear model. Similar to a denoiser, an
Auto-Encoder (AE) is a NN model whose output dimension equals its input dimension, and is trained
to match the output to the input. For AE, the typical goal is to learn an efficient lower-dimensional
representation of the samples. Radhakrishnan et al. [2018] proved that a single hidden-layer AE that
interpolates the training data (i.e., achieves zero loss), projects the input onto a nonlinear span of the
training data. In addition, Radhakrishnan et al. [2018] empirically demonstrated that a multi-layer
ReLU AE is locally contractive toward the training samples by iterating the AE and showing that the
points converge to one of the training samples. Denoising autoencoders inject noise into the input
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data in order to learn a good representation [Alain and Bengio, 2014]. The marginalized denoising
autoencoder, proposed by Chen et al. [2014], approximates the marginalized loss over the noise
(which is equivalent to observing infinitely many noisy samples) by using a Taylor approximation.
Chen et al. [2014] demonstrated that by using the approximate marginalized loss we can achieve a
substantial speedup in training and improved representation compared to standard denoising AE.

Many recent works aim to characterize function space properties of interpolating NN with minimal
representation cost (i.e., min-cost solutions). Building off of the connection between weight decay and
path-norm regularization identified in Neyshabur et al. [2015, 2017], Savarese et al. [2019] showed
that the representation cost of a function realizable as a univariate two-layer ReLU network coincides
with the L1-norm of the second derivative of the function. Extensions to the multivariate setting were
studied in Ongie et al. [2020], which identified the representation cost of a multivariate function with
its R-norm, a Banach space semi-norm defined in terms of the Radon transform. Related work has
extended the R-norm to other activation functions Parhi and Nowak [2021], vector-valued networks
Shenouda et al. [2023], and deeper architectures Parhi and Nowak [2022]. A separate line of research
studies min-cost solutions from a convex duality perspective Ergen and Pilanci [2021], incuding
two-layer CNN denoising AEs Sahiner et al. [2021]. Recent work also studies properties of min-cost
solutions in the case of arbitrarily deep NNs with ReLU activation Jacot [2022], Jacot et al. [2022].

Despite these advances in understanding min-cost solutions, there are few results explicitly character-
izing their functional form. One exception is Hanin [2021], which gives a complete characterization
of min-cost solutions in the case of shallow univariate ReLU networks with unregularized bias.
This characterization is possible because the univariate representation cost is defined in terms of
the 2nd derivative, which acts locally. Therefore, global minimizers can be found by minimizing
the representation cost locally over intervals between data points. An extension of these results
to the case of regularized bias is studied in Boursier and Flammarion [2023]. In the multivariate
setting, the representation cost involves the Radon transform of the function – a highly non-local
operation – that complicates the analysis. Parhi and Nowak [2021] prove a representer theorem
showing that there always exists a min-cost solution realizable as a shallow ReLU network with
finitely many neurons, and Ergen and Pilanci [2021] give an implicit characterization of min-cost
NNs the solution to a convex optimization problem, and give explicit solutions in the case of co-linear
training features. However, to the best of our knowledge, there are no results explicitly characterizing
min-cost solutions in the case of non-colinear multivariate inputs, even for networks having scalar
outputs.

7 Discussions

Conclusions. We have explored the elementary properties of NN solutions for the denoising
problem, while focusing on offline training of a one hidden-layer ReLU network. When the noisy
clusters of the data samples are well-separated, there are multiple networks with zero loss, even in
the case of under-parameterization, while having a different representation cost. In contrast, previous
theoretical works focused on the over-parametrized regime. In the univariate case, we have derived
a closed-form solution to such global minima with minimum representation cost. We also showed
that the univariate NN solution generalizes better than the eMMSE denoiser. In the multivariate case,
we showed that the interpolating solution with minimal representation cost is aligned with the edges
and/or faces connecting the clean data points in several cases.

Limitations. One limitation of our analysis in the multivariate case is that we assume the denoiser
interpolates data on a full d-dimensional ball centered at each clean training sample, where d is the
input dimension. In practical settings, often the number of noisy samples M ≪ d. A more accurate
model would be to assume that denoiser interpolates over an (M − 1)-dimensional disc centered at
each training sample. This model may still be a tractable alternative to assuming interpolation of
finitely many noisy samples. Also, our results relate to NN denoisers trained with explicit weight
decay regularization, which is not always used in practice. However, recent work shows that stable
minimizers of SGD must have low representation cost Mulayoff et al. [2021], Nacson et al. [2023],
and so some of our analysis may provide insight for unregularized training, as well. Finally, for
mathematical tractability, we focussed on the case of fully-connected ReLU networks with one
hidden-layer. Extending our analysis to deeper architectures and convolutional neural networks is an
important direction for future work.
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A Marginalized loss

In this section, we derive the marginal loss for the case of a 1-hidden layer ReLU neural network.
The loss function is,

L (θ, σ) = Ex,y

∥∥∥∥∥
K∑

k=1

ak[w
⊤
k y]+ − x

∥∥∥∥∥
2

= Ex,y

 K∑
i=1

K∑
j=1

a⊤
i aj [w

⊤
i y]+[w

⊤
j y]+ − 2
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i=1

x⊤ai[w
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i y]+ + ∥x∥2


=

K∑
i=1

K∑
j=1

a⊤
i ajEx,y
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i y]+[w
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]
− 2
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[
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]
+ E ∥x∥2

=
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[
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]]
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]]
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We denote by

Hij

(
wi,wj , σ

2
)
= Ex
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i y]+[w
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− Ey|x
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Note that H ⪰ 0 since H is a covariance matrix. Thus we get,

L (θ, σ) = Ex

∥∥∥∥∥
K∑

k=1

akϕ̃
(
ŵ⊤

k x, ∥wk∥ , σ
)
− x

∥∥∥∥∥
2

+
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i ajHij
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wi,wj , σ

2
)
.

Lemma 2. In the case of the ReLU activation function and Gaussian noise the following holds,

ϕ̃
(
ŵ⊤

i x, ∥wi∥ , σ
)
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−ŵ⊤

i x
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i x
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where φ,Φ are the density and cumulative distribution of standard normal distribution, and
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Figure 3: Numerical evaluation of (23) Histogram of the sample average of ReLU(x) for 10000
Monte-Carlo samples. We denote by E the analytical expectation and by Ē the sample average.
Figure (a) is for µ = 1, σ = 5, the normalized error is |E−Ē|

E = 0.0032%. Figure (b) is for

µ = −1, σ = 5 , the normalized error is |E−Ē|
E = 0.0059%.
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Note that given x, y is a Gaussian random vector. Therefore, given x,
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−ŵ⊤

k x

σ

))
ŵ⊤
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then,
E [[z1]+[z2]+] = E [[z1]+[z2]+|z1 > 0, z2 > 0]P (z1 > 0, z2 > 0)

= E [z1z2|z1 > 0, z2 > 0]P (z1 > 0, z2 > 0) .

Given z1 > 0, z2 > 0 the distribution of (z1, z2)
⊤ is truncated multivariate normal distribution

[Manjunath and Wilhelm, 2021], therefore,
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where f (−µ;0,Σ) is a density function of of Gaussian random vector with mean vector 0 and
covariance matrix Σ at the point −µ, and

F2 (z2) =

∫∞
−µ1

f (z1, z2;0,Σ) dz1

P (Z1 > −µ1, Z2 > −µ2;0,Σ)

F1 (z1) =

∫∞
−µ2

f (z1, z2;0,Σ) dz2

P (Z1 > −µ1, Z2 > −µ2;0,Σ)
.

We denote by Λ = Σ−1 thus,∫ ∞

−µ1

exp

(
−1

2

(
Λ11z

2
1 + 2Λ12z1z2 + Λ22z

2
2

))
dz1 =

exp

(
−1

2
Λ22z

2
2

)∫ ∞

−µ1

exp

(
−1

2
Λ11z

2
1 − Λ12z1z2

)
dz1 =

exp

(
−1

2
Λ22z

2
2

)∫ ∞

−µ1

exp

(
− 1

2 1
Λ11

(
z1 +

Λ12z2
Λ11

)2

+
Λ2
12z

2
2

2Λ11

)
dz1 =

exp

(
−1

2
Λ22z

2
2 +

Λ2
12z

2
2

2Λ11

)∫ ∞

−µ1

exp

(
− 1

2 1
Λ11

(
z1 +

Λ12z2
Λ11

)2
)
dz1 =

exp

(
−1

2
Λ22z

2
2 +

Λ2
12z

2
2

2Λ11

)√
2π

Λ11
P

(
z > −µ1;−

Λ12z2
Λ11

,
1

Λ11

)
.

Thus,∫ ∞

−µ1

f (z1, z2; 0,Σ) dz1 =
1

2π
√
det (Σ)

exp

(
−1

2
Λ22z

2
2 +

Λ2
12z

2
2

2Λ11

)√
2π

Λ11
P

(
z > −µ1;−

Λ12z2
Λ11

,
1

Λ11

)
=

1√
2πσ22

exp

(
− 1

2σ22
z22

)
P

(
z > −µ1;−

Λ12z2
Λ11

,
1

Λ11

)
.

Similarly, we obtain,∫ ∞

−µ2

f (z1, z2; 0,Σ) dz2 =
1√

2πσ11
exp

(
− 1

2σ11
z21

)
P

(
z > −µ2;−

Λ21z1
Λ22

,
1

Λ22

)
.

Therefore,

F2 (z2) =
φ
(

z2√
σ22

)
P
(
z > −µ1;−Λ12z2

Λ11
, 1
Λ11

)
P (Z1 > −µ1, Z2 > −µ2;0,Σ)

F1 (z1) =
φ
(

z1√
σ11

)
P
(
z > −µ2;−Λ21z1

Λ22
, 1
Λ22

)
P (Z1 > −µ1, Z2 > −µ2;0,Σ)

.
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Figure 4: Numerical evaluation of (24) Histogram of the sample average of ReLU(z1)ReLU(z2)
for 10000 Monte-Carlo samples. We denote by E the analytical expectation and by Ē the sample

average. Figure (a) is for µ =

(
−4
17

)
,Σ =

(
13 −9
−9 8

)
, the normalized error is |E−Ē|

E = 0.0093%.

Figure (b) is for µ =

(
6
2

)
,Σ =

(
10 2
2 1

)
, the normalized error is |E−Ē|

E = 0.0044%.

Next, we present in Figures 3 and 4 a numerical evaluation of (23) and (24). As can be seen, the
Monte-Carlo simulations verify the analytical results.

B Proofs of Results in Section 4

B.1 Proof of Proposition 1

Proof. Let

D = {(yn = xn + ϵn,m, xn)}, n ∈ [N ],m ∈ [M ], −∞ < x1 < x2 < · · · < nN <∞

such that Assumption 1 holds. We define a reduced dataset, which only contains the noisy samples
with the most extreme noises

D̄ = {(xn + ϵmin
n , xn), (xn + ϵmax

n , xn)}, n ∈ [N ] .

We define the ℓ2 penalty on the weights,

C (θ,K) =

K∑
k=1

(
∥ak∥2 + ∥wk∥2

)
.

According to Theorem 1.2. in [Hanin, 2021], since we have opposite discrete curvature on the
intervals [x1 + ϵmax

1 , x2 + ϵmin
1 ] · · · [xN−1 + ϵmax

1 , xN + ϵmin
1 ],

{hθ(y) | hθ(y) = x ∀(y, x) ∈ D̄, C (θ,K) = C∗} = {f∗1D (y)} ,

where

C∗ = inf
θ,K

{C (θ,K) | ∀(y, x) ∈ D̄ hθ(y) = x} .

Also note that,

{hθ(y) | hθ(y) = x ∀(y, x) ∈ D, C (θ,K) = C∗} = {f∗1D (y)}

since f∗1D (y) interpolates all the points in D, and if we assume by contradiction that C∗ >
infθ,K{C (θ,K) | ∀(y, x) ∈ D hθ(y) = x} then C∗ ̸= infθ,K{C (θ,K) | ∀(y, x) ∈ D̄ hθ(y) =
x}, thus contradicting Theorem 1.2. in [Hanin, 2021]. Note that the minimal number of neurons
needed to represent f∗1D (y) is 2N − 2. So, if K ≥ 2N − 2 then f∗1D is the minimizer of the
representation cost (i.e., f∗1D ∈ argminf R(f)).
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B.2 Proof of Theorem 1

First we prove the following lemmas.
Lemma 3. Let y = x+ σϵ where x, ϵ ∈ R, σ > 0 then,

lim
σ→0+

x̂eMMSE (y) = x̂1−NN (y)

Proof. Notice that the following holds,

exp
(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) =
exp

(
− |y−xi|2

2σ2

)
exp

(
minn|y−xn|2

2σ2

)
∑N

i=1 exp
(

|y−xi|2
2σ2

)
exp

(
minn|y−xn|2

2σ2

)
=

exp
(
− |y−xi|2−minn|y−xn|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2−minn|y−xn|2

2σ2

) .
In addition,

lim
σ→0+

exp

(
−|y − xi|2 −minn |y − xn|2

2σ2

)
=

{
1 |y − xi|2 = minn |y − xn|2

0 |y − xi|2 ̸= minn |y − xn|2

so we obtain,

lim
σ→0+

exp
(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) =

{
1 |y − xi|2 = minn |y − xn|2

0 |y − xi|2 ̸= minn |y − xn|2
.

Therefore,

lim
σ→0+

x̂eMMSE (y) = lim
σ→0+

∑N
i=1 xi exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) = argmin
n

|y − xn|2

= argmin
n

|y − xn| = x̂1−NN (y) .

Lemma 4. Let y = x+ σϵ where x ∈ R, σ > 0 and ϵ ∼ N (0, 1) then,

lim
σ→0+

MSE
(
x̂eMMSE (y)

)
= lim

σ→0+
MSE

(
x̂1−NN (y)

)
Proof.

MSE
(
x̂eMMSE (y)

)
= E

[(
x̂eMMSE (y)− x

)2]
= E

[(
x̂eMMSE (y)− x̂1−NN (y) + x̂1−NN (y)− x

)2]
= MSE

(
x̂1−NN (y)

)
+ E

[(
x̂eMMSE (y)− x̂1−NN (y)

)2]
+ 2E

[(
x̂1−NN (y)− x

) (
x̂eMMSE (y)− x̂1−NN (y)

)]
Note that,

x̂eMMSE (y) =

∑N
i=1 xi exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) ≤

∑N
i=1 maxj{xj} exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

)
= max

j
{xj}

∑N
i=1 exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) = max
j

{xj} ,
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x̂eMMSE (y) =

∑N
i=1 xi exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) ≥

∑N
i=1 minj{xj} exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

)
= min

j
{xj}

∑N
i=1 exp

(
− |y−xi|2

2σ2

)
∑N

i=1 exp
(
− |y−xi|2

2σ2

) = min
j

{xj} .

Similarly,

x̂1−NN (y) = argmin
i

|y − xi| ≤ max
i

{xi}

x̂1−NN (y) = argmin
i

|y − xi| ≥ min
i
{xi}

thus ∃M0 > 0 ∀σ > 0

|x̂eMMSE (y)− x̂1−NN (y) | < M0 .

According to Lemma 3

lim
σ→0+

x̂eMMSE (y) = x̂1−NN (y)

almost surely. Note that,

Ex,y

[(
x̂eMMSE (y)− x̂1−NN (y)

)2]
= Ex,ϵ

[(
x̂eMMSE (x+ σϵ)− x̂1−NN (x+ σϵ)

)2]
Therefore, by the Dominated convergence theorem we obtain

lim
σ→0+

Ex,ϵ

[(
x̂eMMSE (x+ σϵ)− x̂1−NN (x+ σϵ)

)2]
=

Ex,ϵ

[
lim

σ→0+

(
x̂eMMSE (x+ σϵ)− x̂1−NN (x+ σϵ)

)2]
= 0

Similarly,

lim
σ→0+

Ex,ϵ

[(
x̂1−NN (x+ σϵ)− x

) (
x̂eMMSE (x+ σϵ)− x̂1−NN (x+ σϵ)

)]
=

Ex,ϵ

[
lim

σ→0+

(
x̂1−NN (x+ σϵ)− x

) (
x̂eMMSE (x+ σϵ)− x̂1−NN (x+ σϵ)

)]
= 0

Since x̂eMMSE (y) and x̂1−NN (y) are bounded and E [x] <∞. Therefore, we get

lim
σ→0+

MSE
(
x̂eMMSE (y)

)
= lim

σ→0+
MSE

(
x̂1−NN (y)

)

Next, we prove Theorem 1.

Proof. Assume, without loss of generality, that N = 2. Let px (x) be a probability density function
with bounded second moment such that px (x) > 0 for all x ∈ [x1, x2]. According to Lemma 4

lim
σ→0+

MSE
(
x̂eMMSE (y)

)
= lim

σ→0+
MSE

(
x̂1−NN (y)

)
So we need to prove that

lim
σ→0+

MSE
(
x̂1−NN (y)

)
> lim

σ→0+
MSE (f∗1D (y))

For the case of N = 2, the training set includes two data points {x1, x2}. So we get,

x̂1−NN (y) =

{
x1 y < x1+x2

2

x2
x1+x2

2 ≤ y

f∗1D (y) =


x1 y < x1 +∆1

x2−x1

x2−x1+∆2−∆1
(y − x1 −∆1) + x1 x1 +∆1 ≤ y ≤ x2 +∆2

x2 y > x2 +∆2
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where maxm∈[M ] ϵ1,m = ∆1 > 0,minm∈[M ] ϵ2,m = ∆2 < 0. Note that x̂1−NN (y) = f∗1D (y) for
all y ∈ (−∞, x1 +∆1) ∪ (x2 +∆,∞) and E [x] <∞,E

[
x2
]
<∞. Therefore,

MSE
(
x̂1−NN (y)

)
−MSE (f∗1D (y)) =∫ ∞

−∞
dx

∫ x2+∆2

x1+∆1

dy
(
x̂1−NN (y)− x

)2
py|x (y|x) px (x) (25)

−
∫ ∞

−∞
dx

∫ x2+∆2

x1+∆1

dy (f∗1D (y)− x)
2
py|x (y|x) px (x) (26)

First, we derive (25):∫ ∞

−∞
dx

∫ x2+∆2

x1+∆1

dy
(
x̂1−NN (y)− x

)2
py|x (y|x) px (x) =∫ ∞

−∞

∫ x1+x2
2

x1+∆1

(x1 − x)
2
py|x (y|x) px (x) dydx+

∫ ∞

−∞

∫ x2+∆2

x1+x2
2

(x2 − x)
2
py|x (y|x) px (x) dydx =

Ex

[
P

(
y ∈

[
x1 +∆1,

x1 + x2
2

]∣∣∣∣x) (x1 − x)
2

]
+ Ex

[
P

(
y ∈

[
x1 + x2

2
, x2 +∆2

]∣∣∣∣x) (x2 − x)
2

]
.

Note that,

E
[
P

(
y ∈

[
x1 +∆1,

x1 + x2
2

]∣∣∣∣x) (x1 − x)
2

]
< E

[
(x1 − x)

2
]
<∞

E
[
P

(
y ∈

[
x1 + x2

2
, x2 +∆2

]∣∣∣∣x) (x2 − x)
2

]
< E

[
(x2 − x)

2
]
<∞

thus by the Dominated convergence theorem we obtain

lim
σ→0+

∫ ∞

−∞
dx

∫ x2+∆2

x1+∆1

dy
(
x̂1−NN (y)− x

)2
py|x (y|x) px (x) =

Ex

[
lim

σ→0+
P

(
y ∈

[
x1 +∆1,

x1 + x2
2

]∣∣∣∣x) (x1 − x)
2

]
+ Ex

[
lim

σ→0+
P

(
y ∈

[
x1 + x2

2
, x2 +∆2

]∣∣∣∣x) (x2 − x)
2

]
=

Ex

[
(x− x1)

2
1

{
x ∈

[
x1,

x1 + x2
2

]}]
+ Ex

[
(x− x2)

2
1

{
x ∈

[
x1 + x2

2
, x2

]}]
> C > 0

since px (x) > 0 for all x ∈ [x1, x2]. Next, we derive (26)∫ ∞

−∞
dx

∫ x2+∆2

x1+∆1

dy (f∗1D (y)− x)
2
py|x (y|x) px (x) =

Ex,y

[
1 {y ∈ [x1 +∆1, x2 +∆2]} (f∗1D (y)− x)

2
]
=

Ex,ϵ

[
1 {x+ σϵ ∈ [x1 +∆1, x2 +∆2]} (f∗1D (x+ σϵ)− x)

2
]

Note that,

Ex,ϵ

[
1 {x+ σϵ ∈ [x1 +∆1, x2 +∆2]} (f∗1D (x+ σϵ)− x)

2
]
< Ex,ϵ

[
(f∗1D (x+ σϵ)− x)

2
]
<∞

thus by the Dominated convergence theorem we obtain

lim
ϵ→0+

∫ ∞

−∞
dx

∫ x2+∆2

x1+∆1

dy (f∗1D (y)− x)
2
py|x (y|x) px (x) =

lim
ϵ→0+

Ex,ϵ

[
1 {x+ σϵ ∈ [x1 +∆1, x2 +∆2]} (f∗1D (x+ σϵ)− x)

2
]
=

Ex,ϵ

[
lim

ϵ→0+
1 {x+ σϵ ∈ [x1 +∆1, x2 +∆2]} (f∗1D (x+ σϵ)− x)

2

]
= 0
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since
lim

ϵ→0+
1 {x+ σϵ ∈ [x1 +∆1, x2 +∆2]} = 1 {x ∈ [x1, x2]}

lim
ϵ→0+

f∗1D (x+ σϵ) =


x1 x < x1
x x1 ≤ x ≤ x2
x2 x > x2

B.3 Proof of Lemma 1

Proof. First we prove that for all y ∈ ∪n∈[N−1]

{
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1

}
f∗1D(y) = y. We find the

intersection between the line f∗1D(y) = y and the linear part of (17) (the third branch)
xn+1 − xn

xn+1 + ϵmin
n+1 − (xn + ϵmax

n )
(y − (xn + ϵmax

n )) + xn = y (27)

(xn+1 − xn) (y − (xn + ϵmax
n )) + xn

(
xn+1 + ϵmin

n+1 − (xn + ϵmax
n )

)
= y

(
xn+1 + ϵmin

n+1 − (xn + ϵmax
n )

)
(28)

xn
(
xn+1 + ϵmin

n+1 − (xn + ϵmax
n )

)
− (xn+1 − xn) (xn + ϵmax

n ) = y
(
ϵmin
n+1 − ϵmax

n

)
(29)

xn
(
xn+1 + ϵmin

n+1

)
− xn+1 (xn + ϵmax

n ) = y
(
ϵmin
n+1 − ϵmax

n

)
(30)

xnϵ
min
n+1 − xn+1ϵ

max
n = y

(
ϵmin
n+1 − ϵmax

n

)
(31)

y =
xn+1ϵ

max
n − xnϵ

min
n+1

ϵmax
n − ϵmin

n+1

. (32)

Note that

xn + ϵmax
n <

xn+1ϵ
max
n − xnϵ

min
n+1

ϵmax
n − ϵmin

n+1

< xn+1 + ϵmin
n+1 (33)

Since,

xn + ϵmax
n <

xn+1ϵ
max
n − xnϵ

min
n+1

ϵmax
n − ϵmin

n+1

(34)

(xn + ϵmax
n )

(
ϵmax
n − ϵmin

n+1

)
< xn+1ϵ

max
n − xnϵ

min
n+1 (35)(

xn + ϵmax
n − ϵmin

n+1

)
ϵmax
n < xn+1ϵ

max
n (36)

xn + ϵmax
n − ϵmin

n+1 < xn+1 (37)

xn + ϵmax
n < xn+1 + ϵmin

n+1 (38)
which holds according to Assumption 1.

xn+1ϵ
max
n − xnϵ

min
n+1

ϵmax
n − ϵmin

n+1

< xn+1 + ϵmin
n+1 (39)

xn+1ϵ
max
n − xnϵ

min
n+1 <

(
xn+1 + ϵmin

n+1

) (
ϵmax
n − ϵmin

n+1

)
(40)

−xnϵmin
n+1 < −ϵmin

n+1

(
xn+1 − ϵmax

n + ϵmin
n+1

)
(41)

xn < xn+1 − ϵmax
n + ϵmin

n+1 (42)

xn + ϵmax
n < xn+1 + ϵmin

n+1 (43)
which holds according to Assumption 1.

Next we prove that f∗1D(y) is contractive toward a set of the clean datapoints {xn}Nn=1 on

R \ ∪n∈[N−1]

{
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1

}
. In the case where y ∈ (−∞, x1 + ϵmin

1 ] or y ∈ ∪n∈[N ][xn +

ϵmin
n , xn+ ϵ

max
n ] or y ∈ [xN + ϵmax

N ,∞) f∗1D(y) ∈ {xn}Nn=1 therefore (18) holds for all 0 ≤ α < 1.

In the case where y ∈ ∪n∈[N−1][xn + ϵmax
n ,

xn+1ϵ
max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
) we choose i = n,

|f∗1D (y)− f (xn)| =
xn+1 − xn

xn+1 + ϵmin
n+1 − (xn + ϵmax

n )
(y − (xn + ϵmax

n )) (44)
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Figure 5: Illustration of f∗1D(y).

There exists 0 < γ1 < 1 such that

xn ≤ xn+1 − xn
xn+1 + ϵmin

n+1 − (xn + ϵmax
n )

(y − (xn + ϵmax
n )) + xn ≤ γ1y (45)

since for y ∈ ∪n∈[N−1][xn + ϵmax
n ,

xn+1ϵ
max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
) f∗1D(y) is bellow the line f(y) = y because

f∗1D(y) is an affine function with slope larger than 1 and f∗1D(
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
) =

xn+1ϵ
max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
.

Therefore there exists 0 < α1 < 1

|f∗1D (y)− f (xn)| =
xn+1 − xn

xn+1 + ϵmin
n+1 − (xn + ϵmax

n )
(y − (xn + ϵmax

n )) ≤ γ1y − xn ≤ α1 (y − xn)

(46)
since,

γ1y − xn ≤ α1 (y − xn) (47)

α1 ≥ γ1y − xn
y − xn

. (48)

In the case where y ∈ ∪n∈[N−1](
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
, xn+1 + ϵmin

n+1] we choose i = n+ 1,

|f∗1D (y)− f (xn+1)| = xn+1 −
xn+1 − xn

xn+1 + ϵmin
n+1 − (xn + ϵmax

n )
(y − (xn + ϵmax

n ))− xn . (49)

There exists 0 < γ2 < 1 such that

xn+1 ≥ xn+1 − xn
xn+1 + ϵmin

n+1 − (xn + ϵmax
n )

(y − (xn + ϵmax
n )) + xn ≥ 1

γ2
y (50)

since for y ∈ ∪n∈[N−1](
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
, xn+1+ ϵ

min
n+1] f

∗
1D(y) is above the line f(y) = y because

f∗1D(y) is an affine function with slope larger than 1 and f∗1D(
xn+1ϵ

max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
) =

xn+1ϵ
max
n −xnϵ

min
n+1

ϵmax
n −ϵmin

n+1
.

Therefore there exists 0 < α2 < 1

|f∗1D (y)− f (xn+1)| = xn+1 −
xn+1 − xn

xn+1 + ϵmin
n+1 − (xn + ϵmax

n )
(y − (xn + ϵmax

n ))− xn (51)

≤ xn+1 −
1

γ2
y ≤ α2 (xn+1 − y) (52)

since,

xn+1 −
1

γ2
y ≤ α2 (xn+1 − y) (53)

α2 ≥
xn+1 − 1

γ2
y

xn+1 − y
. (54)

Therefore (18) holds for α = max{α1, α2}.
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C Proofs of Results in Section 5

Let f : Rd → Rd be any function realizable as a shallow ReLU network. Consider any parametriza-
tion of f given by f(y) =

∑K
k=1 ak[w

⊤
k y+bk]++V y+c. We say such a parametrization is a min-

imal representative of f if ∥wk∥2 = 1 and ak ̸= 0 for all k = 1, ...,K, and R(f) =
∑K

k=1 ∥ak∥2.
In particular, the units making up a minimal representative must be distinct in the sense that the
hyperplanes describing ReLU boundaries Hk = {x ∈ Rd : w⊤

k x + bk = 0} are distinct, which
implies that no units can be cancelled or combined.

We will also make use of the following lemma, which shows that representation costs are invariant to
a translation of the training samples, assuming the function is suitably translated.

Lemma 5. Let f : Rd → Rd be any function realizable as a shallow ReLU net satisfying norm-ball
interpolation constraints f(B(xn; ρ)) = {xn} for all n = 1, ..., N . Let x0 ∈ Rd. Then the function
g(y) = f(y − x0) + x0 is such that R(g) = R(f) and g(B(xn + x0; ρ)) = {xn + x0} for all
n = 1, ..., N .

Proof. First we show g(B(xn + x0; ρ)) = {xn + x0} for all n = 1, ..., N . Fix any n, and let y ∈
B(xn +x0; ρ). Then y = y′ +x0 for some y′ ∈ B(xn; ρ), and so g(y) = f(y′)+x0 = xn +x0,
as claimed.

To show that R(g) = R(f), let f(y) =
∑K

k=1 ak[w
⊤
k y + bk]+ + V y + c be any minimal

representative of f . Then

g(y) =

K∑
k=1

ak[w
⊤
k (y − x0) + bk]+ + V (y − x0) + c+ x0 (55)

=

K∑
k=1

ak[w
⊤
k y + b̃k]+ + V y + c̃ (56)

with b̃k = bk −w⊤
k x0 and c̃ = c+ x0 − V x0. And so R(g) ≤

∑K
k=1 ∥ak∥2 = R(f). A parallel

argument with the roles of g and f reversed shows that R(f) ≤ R(g), and so R(f) = R(g).

In particular, this lemma shows that if f∗(y) is a norm-ball interpolating representation cost minimizer
of the training samples {xn}Nn=1, then g∗(y) = f∗(y−x0)+x0 is a norm-ball interpolating min-cost
solution of the translated training samples {xn + x0}Nn=1.

C.1 Training data belonging to a subspace

The proof of Theorem 2 is a direct consequence of the following two lemmas:

Lemma 6. Suppose the clean training samples {xn}Nn=1 belong to a r-dimensional subspace S ⊂ Rd,
and let PS denote the orthogonal projector onto S . Let f(y) be any function realizable as a shallow
ReLU network satisfying f(B(xn, ρ)) = {xn} for all n = 1, ..., N . Define g(y) = PSf(x). Then
g(B(xn, ρ)) = {xn} for all n = 1, ..., N , and R(g) ≤ R(f), with strict inequality if f ̸= g.

Proof. First, for any y ∈ B(xn, ρ) we have g(y) = PSf(y) = PSxn = xn. Therefore,
g(B(xn, ρ)) = {xn} for all n = 1, ..., N .

Now, let f(y) =
∑K

k=1 ak[w
⊤
k y + bk]+ + V y + c be a minimal representative of f . Then

g(y) =
∑K

k=1 Pak[w
⊤
k y + bk]+ + P (V y + c). Since ∥Pak∥ ≤ ∥ak∥ for all k, we have

R(g) ≤
∑K

k=1 ∥PSak∥ ≤
∑K

k=1 ∥ak∥ = R(f).

Now we show f ̸= g implies R(g) < R(f). Observe that if any of the outer-layer weight vectors
ak ̸∈ S then ∥PSak∥ < ∥ak∥, which implies R(g) < R(f). Hence, it suffices to show that f ̸= g
implies some ak ̸∈ S.

First, consider the case where PSV = V and PSc = c. Then in this case f ̸= g if only if∑K
k=1(PSak − ak)[w

⊤
k y + bk]+ ̸= 0 for all y ∈ Rd, which implies PSak ̸= ak for some k, or

equivalently ak ̸∈ S.
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Next, assume either PSV ̸= V or PSc ̸= c. Fix any training sample index n, and let An denote the
index set of units active over the ballB(xn, ρ). Then, since f(y) is constant for all y ∈ B(xn, ρ), the
Jacobian ∂f(y) =

∑
k∈An

akw
⊤
k +V = 0 for all y ∈ B(xn, ρ). This gives V = −

∑
k∈An

akw
⊤
k .

Therefore, if PSV ̸= V then at least one of the ak ̸∈ S. On the other hand, if PSc ̸= c then for all
y ∈ B(xn, ρ) we have

f(y) =
∑
k∈An

ak(w
⊤
k y+bk)+V y+c =

∑
k∈An

(akw
⊤
k +V )y+

∑
k∈An

bkak+c =
∑
k∈An

bkak+c = xn,

which implies c = xn −
∑

k∈An
bkak, and since xn ∈ S this implies some ak ̸∈ S, proving the

claim.

Lemma 7. Suppose the clean training samples {xn}Nn=1 belong to an r-dimensional subspace
S ⊂ Rd, and let PS denote the orthogonal projector onto S. Let f be any network satisfying
f(B(xn, ρ)) = {xn}. Define h(y) = f(PSy). Then h(B(xn, ρ)) = {xn} and R(h) ≤ R(f),
with strict inequality if h ̸= f .

Proof. Define P−1
S (B(xn, ρ)) := {y ∈ Rd : PSy ∈ B(xn, ρ)}, i.e., the set of points in Rd whose

projection onto S is contained in B(xn, ρ). Then clearly h(P−1
S (B(xn, ρ))) = {xn}. Also, by

properties of norm-balls, we have B(xn, ρ) ⊂ P−1
S (B(xn, ρ)). Therefore, h(B(xn, ρ)) = {xn}

for all n = 1, ..., N .

Next, let f(y) =
∑K

k=1 ak[w
⊤
k y + bk]+ + V y + c be a minimal representative of f . Then

h(y) =
∑K

k=1 ak[(PSwk)
⊤y + bk]+ + V PSy + c. Since ∥PSwk∥ ≤ ∥wk∥ for all k, we have

R(h) ≤
∑K

k=1 ∥ak∥∥PSwk∥ ≤
∑K

k=1 ∥ak∥∥wk∥ = R(f).

Finally, we show that if f ̸= h, then R(h) < R(f). Observe that if any of the inner-layer weight
vectors wk ̸∈ S then ∥Pwk∥ < ∥wk∥, which implies R(h) < R(f). Hence, it suffices to show
that f ̸= h implies some wk ̸∈ S. First, consider the case V PS = V . Then f ̸= h if and only
if PSwk ̸= wk for some k, or equivalently, wk ̸∈ S. Next, consider the case V PS ̸= V . Fix
any training sample index n, and let An denote the index set of units active over B(xn, ρ). Then,
since f(y) is constant for all y ∈ B(xn, ρ), the Jacobian ∂f(x) =

∑
k∈An

akw
⊤
k + V = 0 for all

y ∈ Bn(xn, ρ). This gives V = −
∑

k akw
⊤
k . Therefore, if V PS ̸= V (i.e., at least one row of V

is not contained in S) then at least one of the wk ̸∈ S, proving the claim.

Finally, we now give the proof Theorem 2 and Corollary 1.

Proof of Theorem 2. Let f∗ be any min-cost solution. Applying both Lemma 6 and 7 we see it must
be the case that f∗(y) = PSf

∗(PSy) for all y ∈ Rd, since otherwise the representation cost of f∗

could be reduced.

Proof of Corollary 1. Suppose S is one-dimensional, i.e., S = span{u} for some unit vector u ∈ Rd.
Theorem 2 shows we can express any min-cost solution f∗ as

f∗(y) =

K∑
k=1

aku[sku
⊤y + bk]+ + vuu⊤y + cu = uϕ(u⊤y)

where
ϕ(t) =

∑
k

ak[skt+ bk]+ + vt+ c

is such that R(f∗) = R(ϕ). Therefore, minimizing the representation cost subject to norm-ball
interpolation constraints is reduces to a univariate problem:

min
ϕ
R(ϕ) s.t. ϕ((cn − ρ, cn + ρ)) = cn

where cn = u⊤xn. The minimizing ϕ∗ is unique and coincides with the 1-D denoiser f∗1D in (17)
with xn = cn and ϵmax

n = −ϵmin
n = ρ.
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C.2 Data along rays

We begin with a key lemma that is central to the proof of Theorem 3.
Lemma 8. Suppose {ui}ni=1 ⊂ Rd is a collection of n > 1 unit vectors such that u⊤

i uj < 0 for
all i ̸= j, and w is a unit vector such that u⊤

i w > 0 for all i = 1, ..., n. Let a ∈ Rd be any vector.
Then,

n∑
i=1

|u⊤
i a|(u⊤

i w) < ∥a∥.

Before giving the proof of Lemma 8, we first prove an auxiliary result.
Lemma 9. Let a ∈ Rd be a unit vector, and suppose {ui}ni=1 ⊂ Rd is a collection of unit vectors such
that u⊤

i a > 0 for all i and u⊤
i uj < 0 for all i ̸= j. Let b =

∑n
i=1 uiu

⊤
i a. Then ∥b− a/2∥ ≤ 1/2

with strict inequality if n > 1.

Proof. It suffices to show b⊤a ≥ b⊤b, since if this is the case then

∥b− a/2∥ =
√
(b− a/2)⊤(b− a/2) =

√
b⊤b− b⊤a+

1

4
a⊤a ≤ 1

2
, (57)

which also holds with strict inequality when b⊤a > b⊤b.

First, if n = 1, then b = a⊤u1u
⊤
1 , and so b⊤b = a⊤u1u

⊤
1 u1u

⊤
1 a = a⊤u1u

⊤
1 a = b⊤a. Now

assume n > 1. Then we have

b⊤a =

n∑
i=1

a⊤uiu
⊤
i a (58)

=

n∑
i=1

a⊤uiu
⊤
i uiu

⊤
i a (59)

>

n∑
i=1

n∑
j=1

a⊤uiu
⊤
i uju

⊤
i a (60)

= b⊤b (61)

The first and last equalities hold by definition. The second equality holds because each ui is a unit
vector. The last inequality holds because for i ̸= j

(a⊤ui)(u
⊤
i uj)(u

⊤
j a) < 0,

since u⊤
i uj < 0 and a⊤ui,a

⊤uj > 0 by assumption.

Now we give the proof of Lemma 8.

Proof of Lemma 8. Let v =
∑n

i=1 |u⊤
i a|ui. Then we have

S =

n∑
i=1

|u⊤
i a|(u⊤

i w) = v⊤w

WLOG, we may assume ∥a∥ = 1, in which case the lemma reduces to showing S = v⊤w < 1.
By the Cauchy-Schwartz inequality, it suffices to show ∥v∥ < 1. Toward this end, let us write v =
v+ + v− where v+ =

∑
i:u⊤

i a>0 |u⊤
i a|ui =

∑
i:u⊤

i a>0 uiu
⊤
i a and v− =

∑
i:u⊤

i a<0 |u⊤
i a|ui =∑

i:u⊤
i a<0 uiu

⊤
i (−a). By Lemma 9 we have ∥v+ − a/2∥ ≤ 1/2 and ∥v− + a/2∥ ≤ 1/2, and so

∥v∥ = ∥v+ + v−∥ (62)
= ∥v+ − a/2 + v− + a/2∥ (63)
≤ ∥v+ − a/2∥+ ∥v− + a/2∥ (64)
≤ 1. (65)
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Also, if either of the index sets I+ := {i : u⊤
i a > 0} or I− := {i : u⊤

i a < 0} has cardinality
greater than one then the lemma above guarantees ∥v+ − a/2∥ < 1/2 or ∥v+ − a/2∥ < 1/2, and
so ∥v∥ < 1, which gives S < 1.

It remains to show S < 1 when I+ or I− has cardinality less than or equal to one, i.e., |I+| ≤ 1 or
|I−| ≤ 1. We consider the various possibilities:

Case 1: |I+| = 0 & |I−| = 0. Then v = 0 and so S = v⊤w = 0 < 1.

Case 2: |I+| = 1 & |I−| = 0 or |I+| = 0 & |I−| = 1. Then v = |u⊤
i a|ui for some i, and

|u⊤
j a| = 0 for all j ̸= i. By way of contradiction, assume that S = v⊤w = |u⊤

i a|u⊤
i w = 1. Since

ui, a, and w are all unit vectors, the only way this is possible is if |u⊤
i a| = 1 and u⊤

i w = 1, which
implies a = ±w and ui = w, and so a = ±ui. However, this shows that u⊤

j ui = 0 for all j ̸= i,
contradicting our assumption that u⊤

j ui < 0 for all i ̸= j. Therefore, S < 1 in this case as well.

Case 3: |I+| = 1 & |I−| = 1. Then v = |u⊤
i a|ui + |u⊤

j a|uj for some i ∈ I+ and j ∈ I−, and so

∥v∥ = ∥|u⊤
i a|ui + |u⊤

j a|uj∥ (66)

= ∥(uiu
⊤
i − uju

⊤
j )a∥ (67)

≤ ∥uiu
⊤
i − uju

⊤
j ∥ (68)

where the last inequality follows by the fact that ∥a∥ = 1. Finally, since the matrix uiu
⊤
i − uju

⊤
j is

symmetric, its operator norm ∥uiu
⊤
i − uju

⊤
j ∥ coincides with the maximum eigenvalue (in absolute

value). Eigenvectors in the span of ui and uj have the form v = ciui + cjuj where ci, cj satisfy the
equation

(uiu
⊤
i − uju

⊤
j )(ciui + cjuj) = λ(ciui + cjuj) (69)

where λ ∈ R is the corresponding eigenvalue. Expanding and equating coefficients gives the system[
1− λ u⊤

i uj

u⊤
i uj 1 + λ

] [
ci
cj

]
=

[
0
0

]
(70)

which has non-trivial solutions iff

(1− λ)(1 + λ)− (u⊤
i uj)

2 = 0 ⇐⇒ λ = ±
√
1− (u⊤

i uj)2 (71)

and so |λ| < 1. Therefore, ∥v∥ ≤ ∥uiu
⊤
i − uju

⊤
j ∥ < 1 as claimed. And so S ≤ ∥v∥ < 1.

R1

R2

w

R1

R2

P1w

P2w

Figure 6: Illustration of “unit splitting” technique used in proof of Theorem 3. If a ReLU unit is
active along two rays (left panel), it can be split into two units with lower representation cost by
projecting its inner-layer weight vector w onto the two rays separately (right panel).

Proof of Theorem 3. Let f∗ be any representation cost minimizer. We prove the claim by showing
that if f∗ fails to have the form specified in (20) then it is possible to construct a norm-ball interpolant
h whose units are aligned with the rays that has strictly smaller representation cost than f∗.
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First, let f∗(y) =
∑K

k=1 ak[w
⊤
k y+bk]+V x+c be any minimal representative of f∗. By properties

of minimal representatives, none of the ReLU boundary sets {y ∈ Rd : w⊤
k y+ bk = 0} can intersect

any of the norm-balls centered at the training samples, since otherwise f∗ would be non-constant on
one of the norm-balls. Also, we may alter this parameterization in such a way that the active set of
every unit avoids the ball centered at the origin B0 := B(0, ρ) without changing the representation
cost. In particular, suppose the active set of the kth unit contains B0. Then, using the identity
[t]+ = t− [−t]+ for all t ∈ R, we have

ak[w
⊤
k y + bk]+ = ak(w

⊤
k y + bk)− ak[−w⊤

k y − bk]+

for all y ∈ Rd. The active set of the reversed unit −ak[−w⊤
k y − bk]+ does not intersect B0.

Therefore, after applying this transformation to all units whose active sets contain B0, we can write
f∗ = g∗ + ℓ where g∗ is a sum of ReLU units whose active sets do not contain B0 and ℓ is an
affine function that combines the original affine part V y + c with a sum of linear units of the form
ak(w

⊤
k y + bkak) arising from the transformation above. However, because of the interpolation

constraint f(B0) = {0}, and by the fact that no units in g∗ are active over B0, for all y ∈ B0 we
have

f∗(y) = g∗(y) + ℓ(y) = ℓ(y) = 0 (72)
which implies ℓ ≡ 0, i.e., f∗(y) = g∗(y) for all y. Finally, note that the inner- and outer-layer
weight vectors on the reversed units change only in sign. Therefore, this re-parameterization does not
change the representation cost, and so is also a minimal representative.

Now we construct a new norm-ball interpolant h as follows. Let fℓ be the function defined as the
sum of all units making up the re-parametrized f∗ that are active on at least one norm-ball centered
on the ℓth ray. Also, let Pℓ = uℓu

⊤
ℓ ∈ Rd×d denote the orthogonal projector onto the ℓth ray. Define

h =
∑L

ℓ=1 hℓ where hℓ(y) := Pℓfℓ(Pℓy). Put in words, h is constructed by “splitting” any units
active over multiple rays into a sum of multiple units aligned with each ray; see Figure 6 for an
illustration.

First, we prove that h satisfies norm-ball interpolation constraints. Let a[w⊤y + b]+ denote any unit
belonging to fℓ. Since this unit is active on a norm-ball centered on ray ℓ, this implies that w⊤uℓ > 0,
and since the unit is inactive on B0 we must have b < 0. Also, because we assume u⊤

ℓ um < 0 for
any m ̸= ℓ, we see that the projected unit Pℓa[w

⊤Pℓy+ b]+ = Pℓa[(w
⊤uℓ)u

⊤
ℓ y+ b]+ is active on

norm-balls centered on ray ℓ and inactive on norm-balls centered on any other ray. In particular, if y
belongs to a norm-ball centered on ray ℓ, then hm(y) = 0 for allm ̸= ℓ. Therefore, if y ∈ B(x

(ℓ)
n , ρ)

where x
(ℓ)
n denotes a training sample along ray ℓ, then

h(y) =

L∑
m=1

hm(y) (73)

= hℓ(y) (74)
= Pℓfℓ(Pℓy) (75)
= Pℓf(Pℓy) (76)

= Pℓx
(ℓ)
n (77)

= x(ℓ)
n (78)

which shows that h satisfies norm-ball interpolation constraints, as claimed.

Next, we show that if h ̸= f∗, then h has strictly smaller representation cost. Let u(y) =
a[w⊤y + b]+ denote any ReLU unit belonging to f∗. Since we assume ∥w∥ = 1, the contribution
of unit u to the representation cost of f∗ is ∥a∥. Let R ⊂ {1, 2, ..., L} index the subset of rays ℓ for
which unit u is active over at least one norm-ball centered on that ray. In constructing the interpolant
h, the unit u get mapped to a sum of |R| units:∑

ℓ∈R

Pℓa[(Pℓw)⊤y + b]+

whose contribution to the representation cost of h is bounded above by

C =
∑
ℓ∈R

∥Pℓa∥∥Pℓw∥ =
∑
ℓ∈R

|u⊤
ℓ a||u⊤

ℓ w|.
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(a) Training samples along rays (b) Perturbed training samples

Figure 7: Change in unit alignment of minimal representation cost solutions under perturbations of
training samples belonging to rays. The red lines represent the ReLU boundaries of the representation
cost minimizing solution satisfying norm-ball interpolation constraints. For the unperturbed samples
in (a), all ReLU boundaries align perpendicular to the rays. For the perturbed samples in (b), the
ReLU boundaries align perpendicular to the line segments connecting successive samples.

If |R| > 1, then by Lemma 8 guarantees C < ∥a∥. And if |R| = 1 then C = |u⊤
ℓ a||u⊤

ℓ w| ≤ ∥a∥,
with strict inequality unless w,a belong to the span of uℓ. This implies that any min-cost solution
must have all its units aligned with the rays, i.e., f∗ must have the form f∗(y) =

∑L
ℓ=1 uℓϕℓ(u

⊤
ℓ y),

where each ϕℓ is a univariate function. The representation cost of any function f∗ in this form is the
sum of the (1-D) representation costs of the ϕℓ. Therefore, ϕℓ must also be the 1-D min-cost solution
of the norm-ball constraints projected onto ray ℓ, and so must have the form specified by (17).

C.2.1 Perturbations of samples along rays

As an extension of the above setting, suppose the training samples along rays x(ℓ)
n have been slightly

perturbed, i.e., we consider training samples x̃(ℓ)
n = x

(ℓ)
n + ϵ

(ℓ)
n for some vectors ϵ(ℓ)n with ∥ϵ(ℓ)n ∥ < δ

for some sufficiently small δ > 0. In particular, we make the following two assumptions:

(A1) Let ∆ℓ := {x̃(ℓ)
n − x̃

(ℓ)
n−1}

Nℓ
n=1 be the collection of difference vectors between successive

perturbed points along the ℓth ray (with x̃
(ℓ)
0 := 0). Assume that for all vℓ ∈ ∆ℓ and for all

vk ∈ ∆k with k ̸= ℓ, we have v⊤
ℓ vk < 0.

(A2) If H is any halfspace not containing the origin that contains the ball B(x̃
(ℓ)
n ; ρ), then H also

contains all successive balls along that ray, i.e., H contains B(x̃
(ℓ)
m ; ρ) for m ≥ n.

Note that if the original points x(ℓ)
n belong to rays that satisfy the conditions of Theorem 3, then for

sufficiently small δ the perturbed samples x̃(ℓ)
n will satisfy assumptions (A1)&(A2) above.

We show in this case the norm-ball interpolating representation cost minimizer is a perturbed version
of the min-cost solution for the unperturbed samples as identified in Theorem 3. In particular, the
ReLU boundaries align with the line segments connecting successive points along the rays. See
Figure 7 for an illustration in the case of L = 2 rays.

Proposition 3. Suppose the training samplesX are a perturbation of data belong to a union of L rays
plus a sample at the origin, i.e., X = {0}∪{x̃(1)

n }N1
n=1∪· · ·∪{x̃(L)

n }NL
n=1 where x̃(ℓ)

n = c
(ℓ)
n uℓ+ϵ

(ℓ)
n

for some unit vector uℓ, constants 0 < c
(ℓ)
1 < c

(ℓ)
2 < · · · < c

(ℓ)
Nℓ

, and vectors ϵ(ℓ)n . Assume (A1)&(A2)
above hold. Then the minimizer f∗ of (19) is unique and is given by

f∗(y) =

L∑
ℓ=1

Nℓ∑
n=1

u(ℓ)
n ϕ(ℓ)n ((u(ℓ)

n )⊤(y − x̃
(ℓ)
n−1)) (79)
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where u
(ℓ)
n =

x̃(ℓ)
n −x̃

(ℓ)
n−1

∥x̃(ℓ)
n −x̃

(ℓ)
n−1∥

and ϕ
(ℓ)
n (t) = s

(ℓ)
n ([t − a

(ℓ)
n ] − [t − b

(ℓ)
n ]+) with a

(ℓ)
n = ρ, b(ℓ)n =

∥x(ℓ)
n − x

(ℓ)
n−1∥ − ρ, and s(ℓ)n = ∥x̃(ℓ)

n − x̃
(ℓ)
n−1∥/(b

(ℓ)
n − a

(ℓ)
n ).

Proof. Let f∗ be any min-cost solution. Following the same steps as in the proof of Theorem 3, there
is a minimal representative of f∗ having the form f∗(y) =

∑
k ak[w

⊤
k y + bk]+ where the active

sets of all units in this representation have empty intersection with the ball B(0, ρ).

Let f (ℓ)
n denote the sum of all units in f∗ whose active set boundary {y ∈ Rd : w⊤

k y + bk = 0}
intersects the line segment connecting the training samples x̃(ℓ)

n−1 and x̃
(ℓ)
n . By assumption (A2), this

is equivalent to the sum of units that are active over balls B(x̃
(ℓ)
m , ρ) for m ≥ n, and inactive for the

balls with m < n. In particular, for y ∈ B(x̃
(ℓ)
n , ρ), we have f∗(y) =

∑
m≤n f

(ℓ)
m (y). This implies

f
(ℓ)
1 (y) = x̃1for all y ∈ B(x̃

(ℓ)
1 , ρ). Likewise, f (ℓ)

2 (y) = x̃
(ℓ)
2 − x̃

(ℓ)
1 for all y ∈ B(x̃

(ℓ)
2 ; ρ), and so

on, such that for all n = 1, ..., Nℓ we have f
(ℓ)
n (y) = x̃

(ℓ)
n − x̃

(ℓ)
n−1 for all y ∈ B(x̃

(ℓ)
n ; ρ).

Now we show how to construct a new interpolating function h having representation cost less than or

equal to f∗. Let u(ℓ)
n =

x̃(ℓ)
n −x̃

(ℓ)
n−1

∥x̃(ℓ)
n −x̃

(ℓ)
n−1∥

and define P
(ℓ)
n = u

(ℓ)
n (u

(ℓ)
n )⊤, the orthogonal projector onto

the span of the difference vector x̃(ℓ)
n − x̃

(ℓ)
n−1. Note that the map y 7→ P

(ℓ)
n y + x̃

(ℓ)
n−1 is projection

onto the affine line connecting samples x̃(ℓ)
n−1 and x̃

(ℓ)
n . Consider the function

h =

L∑
ℓ=1

Nℓ∑
n=1

h(ℓ)
n

where
h(ℓ)
n (y) = P (ℓ)

n f (ℓ)
n (P (ℓ)

n y + x̃
(ℓ)
n−1).

Put in words, h is constructed by aligning all inner-layer and outer-layer weights of units in f∗ with
the line segment connecting successive data points over which that unit first activates. See Figure 8
for an illustration.

x0 = 0

f1

f2

S1

S2

h1(y) = P1 f1(P1y)

x0 = 0

S1

S2

B1

B2

B1

h2(y)
= P2 f2(P2y + x1)

h = h1 + h2 B2



f1(y) = x1
f2(y) = 0

f = f1 + f2



f1(x) = x1
f2(x) = x2 − x1 Align units



h1(y) = x1
h2(y) = 0



h1(y) = x1
h2(y) = x2 − x1

Figure 8: Illustration of “unit alignment” technique used in the proof of Proposition 3. The left panel
shows an interpolant f whose ReLU boundaries (shown here as dark blue and dark red lines) are not
aligned with the line segments S1 and S2 connecting successive training samples. The right panel
shows how a new interpolant h can be constructed by projecting units in f onto the line segments S1

and S2, which reduces the representation cost.

Now we show that h satisfies norm-ball interpolation constraints. By assumption (A1), the function
h
(ℓ)
n is non-zero only on the norm-ballsB(x̃

(ℓ)
m , ρ) form ≥ n. This implies that for all y ∈ B(x̃

(ℓ)
n ; ρ)

we have h(y) =
∑

m≤n h
(ℓ)
n (y).

Observe that h(B(0, ρ)) = {0} since all functions h
(ℓ)
n are zero on B(0, ρ). Also, for all y ∈

B(x̃
(ℓ)
1 ; ρ) we have P

(ℓ)
1 y ∈ B(x̃

(ℓ)
1 ; ρ), and so

h(y) = h
(ℓ)
1 (y) = P ℓ

1f
(ℓ)
1 (P

(ℓ)
1 y) = P

(ℓ)
1 x̃

(ℓ)
1 = x̃

(ℓ)
1 .
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Similarly, the only terms in h active for y ∈ B(x̃
(ℓ)
2 ; ρ) are h

(ℓ)
1 and h

(ℓ)
2 , for which h

(ℓ)
1 (y) = x

(ℓ)
1 ,

and h
(ℓ)
2 (y) = P

(ℓ)
2 f

(ℓ)
2 (P

(ℓ)
2 y + x̃

(ℓ)
1 ) = P

(ℓ)
2 (x̃

(ℓ)
2 − x̃

(ℓ)
1 ) = x̃

(ℓ)
2 − x̃

(ℓ)
1 . This gives

h(y) = h
(ℓ)
1 (y) + h

(ℓ)
2 (y) = x̃

(ℓ)
2 .

Iterating this procedure for all n = 1, ..., Nℓ we see that if y ∈ B(x̃
(ℓ)
n , ρ) then h

(ℓ)
n (y) = x̃

(ℓ)
n −

x̃
(ℓ)
n−1, and so h(y) =

∑
m≤n h

(ℓ)
m (y) = x

(ℓ)
n , as claimed.

Following steps similar to the proof of Theorem 3, we can show that R(h) ≤ R(f∗) and with strict
inequality if h ̸= f∗. First, if any unit u(y) = a[w⊤y + b]+ in f∗ is active over balls centered on
multiple rays R ⊂ {1, 2, ..., L}, then in the construction of h the unit u gets mapped to a sum of
multiple units: ∑

ℓ∈R

u(ℓ)
nℓ

(u(ℓ)
nℓ

)⊤a[w⊤u(ℓ)
nℓ

(u(ℓ)
nℓ

)⊤(y + x̃
(ℓ)
nℓ−1) + b]+

for some nℓ with 1 ≤ nℓ ≤ Nℓ. The contribution of the sum of these units to the representation
cost of h is less than or equal to C =

∑
ℓ∈R |(u(ℓ)

nℓ )
⊤a||(u(ℓ)

nℓ )
⊤w|. By assumption (A1), we know

(u
(ℓ)
m )⊤u

(p)
n < 0 for all p ̸= ℓ and for all m,n. Therefore, by Lemma 8 we know C < ∥a∥. This

shows f∗ cannot have any units active over balls centered on different rays, since otherwise h

has strictly smaller representation cost. Therefore, we have shown f∗ as f∗ =
∑L

ℓ=1

∑Nℓ

n=1 f
(ℓ)
n .

Additionally, we see that h(ℓ)
n = f

(ℓ)
n , i.e., all inner- and outer-layer weight vectors of units in f

(ℓ)
n

are aligned with u
(ℓ)
n , since otherwise the representation cost of f∗ could be reduced. Therefore,

each f
(ℓ)
n must have the form f

(ℓ)
n (y) = u

(ℓ)
n ψ

(ℓ)
n ((u

(ℓ)
n )⊤y). Minimizing the ψ(ℓ)

n separately under
interpolation constraints, we arrive at the unique solution given in (79).

C.3 Simplex Data

C.3.1 Simplex with one obtuse vertex

Proof of Proposition 2. Consider training samples x1,x2, ...,xN ∈ Rd whose convex hull is a
(N − 1)-simplex such that x1 makes an obtuse angle with all other vertices, i.e., (xn − x1)

⊤x1 < 0
for all n = 2, ..., N . By Lemma 5, f∗ is a norm-ball interpolating min-cost solution if and only if
g∗(y) = f∗(y − x1) + x1 is a norm-ball interpolating min-cost solution for the translated points
0,x2 − x1, ...,xN − x1 ∈ Rd. The latter configuration satisfies the hypotheses of Theorem 3 with a
single training sample per ray. Therefore, the min-cost solution g∗ of the translated points has units
whose inner- and outer-layer weight vetors are aligned with xn − x1, n = 2, ..., N , and likewise for
f∗, since it is translation of g∗.

C.3.2 Simplex with all acute vertices

Justification of Conjecture 1. For concreteness we focus on the case of three points x1,x2,x3 ∈ Rd

whose convex hull is an acute triangle, and let B1, B2, B3 be open balls of radius ρ centered at
x1,x2,x3 (respectively).

Let f be any norm-ball interpolating min-cost solution, and let f(y) =
∑

k ak[w
⊤
k y+bk]+V x+c

be any minimal representative of f .

First, by properties of minimal representatives, none of the ReLU boundary sets Hk = {y ∈ Rd :
w⊤

k y+ bk = 0} intersect any of the balls centered at the training samples. Also, the active set of each
unit in f must contain either one or two norm-balls, since otherwise the unit is either inactive over all
balls or active over all balls, in which cases the unit can be removed or absorbed into unregularized
linear part while strictly reducing the representation cost. By “reversing units”, as in the proof of
Theorem 3, we may transform the parameterization in such a way that the active set of every unit
contains exactly one ball, and do this without changing the representation cost.

After this transformation, we may write

f = f1 + f2 + f3 + ℓ
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where fi is a sum of units active only on the ball Bi and no others, and where ℓ(y) = Ay + b is an
affine function. Then we have

∀y1 ∈ B1, f(y1) = f1(y1) +Ay1 + b = x1 (80)
∀y2 ∈ B2, f(y2) = f2(y2) +Ay2 + b = x2 (81)
∀y3 ∈ B3, f(y3) = f3(y3) +Ay3 + b = x3 (82)

and so,

∀y1 ∈ B1, f1(y1) = x1 − b−Ay1 (83)
∀y2 ∈ B2, f2(y2) = x2 − b−Ay2 (84)
∀y3 ∈ B3, f3(y3) = x3 − b−Ay3 (85)

Finding the min-cost solution then amounts to minimizing of the representation cost of f1, f2, f3

subject to the above constraints. This is made challenging by the fact that the constraints are coupled
together by the parameters A and b of the affine part. However, under the assumption A = 0, we
prove below that the min-cost solution must have the conjectured form f∗ as given in (86). However,
since we cannot a priori assume A = 0, this does not constitute a full proof.

Before proceeding, we give a lemma that will be used to lower bound R(f) (assuming A = 0).

Lemma 10. Suppose g is a sum of ReLU units such that g = 0 on a closed convex region C ⊂ Rd

and g is constant and equal to c on a closed ball B ⊂ Rd, and g has a minimal representative where
all its units are active on B. Then

R(g) ≥ 2∥c∥
dist(B,C)

where dist(B,C) = miny∈B,x∈C ∥y − x∥.

Proof. Let g(y) =
∑

k ak[w
⊤
k y + bk]+ be a minimal representative where each unit is active on B.

For g to be constant on B it must be the case that
∑

k akw
⊤
k = 0. Let y = y0 be any value for which

∥∂g(y0)∥, the operator norm of the Jacobian of g, is maximized. Since g is piecewise linear, we see
that its Lipschitz constant Lip(g) = ∥∂g(y0)∥. Let I0 be the set of indices of active units at y0 so that
∂g(y0) =

∑
k∈I0

akw
⊤
k , and let I1 be the complementary index set. Then because

∑
k akw

⊤
k = 0,

we have
∑

k∈I0
akw

⊤
k = −

∑
k∈I1

akw
⊤
k , and so ∥

∑
k∈I0

akw
⊤
k ∥ = ∥

∑
k∈I1

akw
⊤
k ∥. Therefore,

2Lip(g) = 2∥∂g(y0)∥ = 2

∥∥∥∥∥∑
k∈I0

akw
⊤
k

∥∥∥∥∥ =

∥∥∥∥∥∑
k∈I0

akw
⊤
k

∥∥∥∥∥+
∥∥∥∥∥∑
k∈I1

akw
⊤
k

∥∥∥∥∥
≤
∑
k

∥ak∥∥wk∥ = R(g).

Finally,

Lip(g) ≥ max
x∈C,y∈B

∥g(y)− g(x)∥
∥y − x∥

=
∥c∥

minx∈C,y∈B ∥y − x∥
=

∥c∥
dist(B,C)

.

Combining this with the previous inequality gives the claim.

Now, returning to the proof of the main claim, for n = 1, 2, 3, let Cn be the closed convex region
given by the intersection of all closed half-planes containing the balls Bj and Bk, j ̸= n , and k ̸= n,
j ̸= k. By assumption, fn vanishes on Cn and fn is constant and equal to xn − b on the closed ball
Bn. So, by Lemma 10, we see that

R(fn) ≥
2∥xn − b∥

δn

where δn = dist(Bn, Cn). Therefore, for all b ∈ Rd we have

R(f) = R(f1) +R(f2) +R(f3) ≥
3∑

n=1

2∥xn − b∥
δn
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Let x ∈ Rd be the minimizer of

min
b∈Rd

3∑
n=1

2∥xn − b∥
δn

.

Then plugging in b = x above, we have the lower bound

R(f) ≥
3∑

n=1

2∥xn − x∥
δn

,

which is independent of b.

Finally, simple calculations show that the conjectured min-cost solution f∗ specified in (86) has
representation cost achieving this lower bound. Therefore, under the assumption A = 0, f∗ is a
min-cost solution.

Now we prove that, in the special case where the convex hull of the training points is an equilateral
triangle, the norm-ball interpolator f∗ identified in Conjecture 1 is a min-cost solution (though not
necessarily the unique min-cost solution). In this case, we may also give f∗ a more explicit form, as
detailed below.
Proposition 4. Suppose the convex hull of the training points x1,x2,x3 ∈ Rd is an equilateral
triangle. Assume the norm-balls Bn := B(xn, ρ) centered at each training point have radius
ρ < ∥xn − x0∥/2, n = 1, 2, 3, where x0 = 1

3 (x1 + x2 + x3) is the centroid of the triangle. Then a
minimizer f∗ of (19) is given by

f∗(y) = u1ϕ1(u
⊤
1 (y − x0)) + u2ϕ2(u

⊤
2 (y − x0)) + u3ϕ3(u

⊤
3 (y − x0)) + x0, (86)

where ϕn(t) = sn([t − an]+ − [t − bn]+) with un = xn−x0

∥xn−x0∥ , an = − 1
2∥xn − x0∥ + ρ, bn =

∥xn − x0∥ − ρ, and sn = ∥xn − x0∥/(bn − an).

Proof. By translation and scale invariance of min-cost solutions, without loss of generality we may
assume x1,x2,x3 ∈ Rd are unit-norm vectors and mean-zero (i.e., the triangle centroid x0 = 0). In
this case, the assumption on ρ translates to ρ < 1/2. Additionally, it suffices to prove the claim in
the case d = 2. This is because, if x1,x2,x3 ∈ Rd are the vertices of an equilateral triangle whose
centroid is at the origin, then these points are contained in a two-dimensional subspace S ⊂ Rd. And
if we let P ∈ Rd×2 be a matrix whose columns are an orthonormal basis for S , then by Theorem 2, f
is a min-cost solution if and only if f(y) = Pf0(P

⊤y), where f0 : R2 → R2 is a min-cost solution
under the constraints f0(B(P⊤xn, ρ)) = {P⊤xn} for all n = 1, 2, 3. Therefore, the problem
reduces to finding a min-cost solution of the projected points P⊤x1,P

⊤x2,P
⊤x3 ∈ R2 whose

convex hull is an equilateral triangle in R2.

So now let f : R2 → R2 be any min-cost solution under the assumption x1,x2,x3 ∈ R2 are
unit-norm, have zero mean, and ρ < 1/2. By reversing units as necessary, there exists a minimal
representative of f that can be put in the form f(y) = f1(y) + f2(y) + f3(y) +Ay + c, such that
fn(y) is a sum of ReLU units, all of which are active on Bn, and all of which are inactive on Bj for
j ̸= n.

Let Q be the reflection matrix Q = 2x1x
⊤
1 − I , which reflects points across the line spanned

by x1. In particular, y ∈ B1 then Qy ∈ B1 while if y ∈ B2 then Qy ∈ B3 (and vice versa).
Also, Qx1 = x1, Qx2 = x3, and Qx3 = x2. Define g(y) = 1

2

(
f(y) +Q−1f(Qy)

)
. Then it

is easy to check that g satisfies interpolation constraints, and since Q is unitary, we have R(g) ≤
1
2R(f)+

1
2R(Q◦f ◦Q−1) = 1

2R(f)+
1
2R(f) = R(f). Furthermore, since f is a min-cost solution,

we must have R(g) = R(f). Additionally, since none of the units making up f are active over more
than one ball, neither are the units making up g, which implies no pair of units belonging to g combine
to form an affine function. Therefore, we may write g(y) = g1(y) + g2(y) + g3(y) +By + v,
where B = A+Q−1AQ, such that each gn is a sum of ReLU units, all of which are active on Bn,
and all of which are inactive on Bj for j ̸= n.

Let U be a rotation matrix by 120 degrees such that x2 = Ux1, x3 = Ux2, and x1 = Ux3.
Consider the symmetrized version of g given by h(y) := 1

3 (g(y) +U−1g(Uy) +U−2g(U2y)).
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Since for all y ∈ Bn we have Uy ∈ Bn+1 (with indices understood modulo 3), it is easy to verify
that h satisfies interpolation constraints. Also, since U is unitary, we have R(h) ≤ R(g) ≤ R(f),
which implies R(h) = R(f) since f is a min-cost solution. Again, since none of the units making
up g are active over more than one ball, neither are the units making up h, which implies no
pair of units belonging to h combine to form an affine function. And so, we may write h(y) =
h1(y) +h2(y) +h3(y) +C +u, such that each hn is a sum of ReLU units, all of which are active
on Bn, and all of which are inactive on Bj for j ̸= n.

Observe that u = 1
3 (I +U−1 +U−2)v = 0. Also, we have C = 1

3 (B +U−1BU +U−2BU2).
This implies C commutes with U , because it is easy to see that C = U−1CU . Additionally, C
commutes with Q, because it is easy to see B = Q−1BQ, and by properties of rotations/reflections
we have UQ = QU−1, which implies

Q−1CQ =
1

3
(Q−1BQ+Q−1U−1BUQ+Q−1U−2BU2Q)

=
1

3
(Q−1BQ+Q−1U−1BUQ+Q−1U−2BU2Q)

=
1

3
(Q−1BQ+ (UQ)−1B(UQ) + (UQ)−1U−1BU(UQ))

=
1

3
(Q−1BQ+UQ−1BQU−1 +UQ−1U−1BUQU−1)

=
1

3
(Q−1BQ+UQ−1BQU−1 +U2Q−1BQU−2)

=
1

3
(B +UBU−1 +U2BU−2)

=
1

3
(B +U−2BU2 +U−1BU)

= C,

which shows C commutes with Q. Now we show that any matrix C that commutes with both U and
Q is a scaled identity matrix. Let x⊥

1 denote a unit-vector perpendicular to x1, such that {x1,x
⊥
1 }

form an orthonormal basis for R2. First, we know Q has eigenvectors x1 and x⊥
1 with eigenvalues

1 and −1, respectively. And so QCx1 = CQx1 = Cx1, while QCx⊥
1 = CQx⊥

1 = −Cx1,
which implies Cx1 = ax1 and Cx⊥

1 = bx⊥
1 for some a, b ∈ R, i.e., x1 and x⊥

1 are eigenvectors
of C with eigenvalues a and b, respectively. Furthermore, we have CUx1 = UCx1 = aUx1

and CUx⊥
1 = UCx⊥

1 = bUx1. This implies Ux1 and Ux⊥
1 are also eigenvectors of C with

eigenvalues a and b, respectively. But since x1 and Ux1 are linearly independent, and likewise so are
x⊥
1 and Ux⊥

1 , the only way this could be true is if a = b, i.e., every vector in R2 is an eigenvector of
C for the same eigenvalue λ ∈ R, which implies C = λI for some λ ∈ R.

Figure 9: Illustration of ReLU boundaries (in red) of original interpolant f (left), the function g
(middle) obtained by enforcing reflection symmetry, and the function h (right) obtained by enforcing
both reflection and rotation symmetry.

Therefore, we have shown that every min-cost solution f maps to a min-cost solution h of the form

h(y) = h1(y) + h2(y) + h3(y) + λI
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for some λ ∈ R, where each hn is a sum of ReLU units, all of which are active on Bn and all of
which are inactive on Bj , j ̸= n. In particular, hn(y) = xn − λy for all y ∈ Bn and hn(y) = 0 for
all y ∈ Cn, where Cn is the intersection of all half-planes containing the balls Bj , j ̸= n.

This means we can write h(y) =
∑K

k=1 ak[w
⊤
k y + bk]+ + λI and hn(y) =

∑
k∈An

ak[w
⊤
k y +

bk]+ for some index sets A1,A2,A3 partitioning {1, ...,K} so that R(h) =
∑K

k=1 ∥ak∥ =∑3
n=1

∑
k∈An

∥ak∥. Let R0(·) denote the representation cost of a function computed without
an unregularized linear part, i.e., define R0 analogously to R except where the model class hθ in (6)
is constrained to have V = 0. Then, since the realizations of the hn functions considered above do
not have a linear part, we see that

∑
k∈An

∥ak∥ ≥ R0(hn) and so R(h) =
∑3

n=1

∑
k∈An

∥ak∥ ≥
R0(h1) +R0(h2) +R0(h3).

Now we show how lower boundR0(hn) for all n = 1, 2, 3. Let x⊥
n denote a unit-vector perpendicular

to xn, such that {xn,x
⊥
n } form an orthonormal basis for R2. Consider the univariate functions

h
∥
n(t) := x⊤

nhn(xnt) and h⊥n (t) := (x⊥
n )

⊤hn(x
⊥
n t+ xn). Here h∥n is the projection of h onto the

line spanned by xn, and h⊥n is a projection onto the line perpendicular to xn passing through the
point xn. In particular, by the constraints on hn, we see that h∥n and h⊥n satisfy the constraints

h∥n(t) =

{
0 if t < −1/2 + ρ

1− λt if t > 1− ρ
(87)

and h⊥n (t) = −λt if |t| ≤ ρ.

Claim 1: For all n = 1, 2, 3, R0(hn) ≥ R0(h
∥
n) + R0(h

⊥
n ). Proof: Let hn(y) =

∑
k ak[w

⊤
k y +

bk]+ + c be any realization of hn, whose representation cost is C =
∑

k
1
2

(
∥ak∥2 + ∥wk∥2

)
. Then

realizations of h∥n and h⊥n are given by

h∥n(t) = x⊤
nhi(xit) =

∑
k

(x⊤
nak)[(x

⊤
nwk)t+ bk]+ + x⊤

n c. (88)

h⊥n (t) = (x⊥
n )

⊤hn(x
⊥
n t+ xn) =

∑
k

((x⊥
n )

⊤ak)[((x
⊥
n )

⊤wk)t+ bk +w⊤
k xn]+ + (x⊥

n )
⊤c,

(89)

whose representation costs C∥ and C⊥, respectively, are given by

C∥ =
∑
k

1

2

(
(x⊤

nak)
2 + (x⊤

nwk)
2
)

(90)

C⊥ =
∑
k

1

2

(
((x⊥

n )
⊤ak)

2 + ((x⊥
n )

⊤wk)
2
)

(91)

and by the Pythagorean Theorem we see that C = C∥ + C⊥. Therefore, C ≥ R0(h
∥
n) + R0(h

⊥
n )

and finally minimizing over all realizations of hn gives the claim.

Claim 2: For all n = 1, 2, 3, R0(h
∥
n) ≥

∣∣∣ 1−λβ
β−α

∣∣∣ + ∣∣∣ 1−λα
β−α

∣∣∣, where β = 1 − ρ and α = −1/2 + ρ.

Proof: By results in Savarese et al. [2019], R0(h
∥
n) ≥ R0(p) where p(t) is the function satisfying the

same constraints as h∥n given in (87) while linearly interpolating over the interval t ∈ [α, β]. From
the formula R0(p) = max{

∫
|p′′(t)|dt, |p′(∞) + p′(−∞)|} as established in Savarese et al. [2019],

we can show directly that R0(p) =
∣∣∣ 1−λβ
β−α

∣∣∣+ ∣∣∣ 1−λα
β−α

∣∣∣, which gives the claimed bound.

Claim 3: For all n = 1, 2, 3, R0(h
⊥
n ) ≥ |λ|. Proof : The function q(t) with minimal R0-cost

satisfying the constraint q(t) = −λt for |t| ≤ ρ is a single ReLU unit plus a constant: q(t) =
−λ[t+ ρ]+ + λρ, which has R0-cost |λ|.
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Putting the above claims together, we see that

R0(hn) ≥
∣∣∣∣1− λβ

β − α

∣∣∣∣+ ∣∣∣∣1− λα

β − α

∣∣∣∣+ |λ| (92)

≥
∣∣∣∣2− λ(β + α)

β − α

∣∣∣∣+ |λ| (93)

≥ 2− |λ|(β + α)

β − α
+ |λ| (94)

=
2

β − α
+

−2α

β − α
|λ| (95)

≥ 2

β − α
(96)

where in the last inequality we used the fact that −2α
β−α > 0 since α = −1/2 + ρ < 0 and β − α =

3/2− 2ρ > 0.

Therefore, R(f) = R(h) ≥ R0(h1) +R0(h2) +R0(h3) ≥ 6
β−α . Also, the function f∗ given by

f∗ = f∗
1 + f∗

2 + f∗
3

where
f∗
n(y) =

xn

β − α
([x⊤

n y − α]+ − [x⊤
n y − β]+)

satisfies norm-ball interpolation constraints andR(f∗) = 6
β−α . Hence, f∗ is a min-cost solution.
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D Additional simulations

We train a one-hidden-layer ReLU network without a skip connection using the setting we used in
Figure 1. As can be seen from Figure 10 we get a similar result for the NN denoiser with and without
the skip connection. Therefore in Appendix D.1 we use one-hidden-layer ReLU network without a
skip connection.

Figure 10: NN denoiser vs eMMSE denoiser. We trained a one-hidden-layer ReLU network on a denoising
task. The clean dataset has four points equally spaced in the interval [−5, 5], and the noisy samples are generated
by adding zero-mean Gaussian noise with σ = 1.5. We use λ = 10−5 in both setting. The figure shows the
denoiser output as a function of its input for: (1) NN denoiser trained online using (7) for 100K iterations, (2)
NN denoiser trained offline using (8) with M = 9000 and 20K epochs, and (3) the eMMSE denoiser (4).

D.1 MNIST

We use the MNIST dataset to verify various properties. First, the offline and online solutions achieve
approximately the same test MSE when trained on a subset of the MNIST dataset (Figure 11).
Second, to show that the fact that NN denoiser does not converge to the eMMSE denoiser is not due
to approximation error (Figure 12). Lastly, to present the critical noise level in which representation
cost minimizer f∗1D has strictly lower MSE than the eMMSE, for all smaller noise levels (Figure 13).

Figure 11: Online setting vs offline setting for MNIST denoiser. We train a one-hidden layer ReLU
network on a subset of N = 100 MNIST images for 10K iterations. We use a Gaussian noise with
zero mean and σ = 0.1.
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Figure 12: Test loss vs. layer width for MNIST denoiser. We train a one hidden layer ReLU
network on MNIST denoiser task using 7 for 93K iterations with a fixed learning rate. We use a
Gaussian noise with zero mean and σ = 0.1. The figure shows the test loss vs. layer width.
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Figure 13: MSE vs. Noise std. We train a one-hidden layer ReLU network on a subset of N = 100
MNIST images (the range of each pixel is [0, 1]) for 10K iterations with fixed LR. We use a Gaussian
noise with zero mean. The figure shows the MSE vs noise std (σ) for NN denoiser (orange line) and
for eMMSE denoiser (blue line). Note that the eMMSE is dependent on σ (4). For low noise levels,
the eMMSE output is one of the training set images. For moderate noise levels, the eMMSE output is
a weighted sum of the training set images. For high noise levels, the eMMSE output is the mean of
the training set images.

D.2 Three non-colinear training samples

We show in Figures 14 and 15 that for N = 3 training points from the MNIST dataset that forming
a triangle in d = 2 dimensions the empirical minimizer obtained using noisy samples and weight
decay regularization agrees well with the form of the exact representation cost minimizer predicted
by Proposition 2 and Conjecture 4.

D.3 Empirical validation of the subspace assumption

We validated that the following image datasets are (approximately) low rank:

• CIFAR10
• CINIC10
• Tiny ImageNet (a lower resolution version of ImageNet, enabling us to use SVD)
• BSD (a denoising benchmark composed from 128X1600 patches of size 40X40 cropped

from 400 images [Zhang et al., 2017])
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Figure 14: Function space view of a denoiser, trained for 3 MNIST data points (Acute Angle).
Here, we compare empirical results (left) with our theoretical results (right). We compare the
function-space view for inputs from the data plane, with respect to the model output in each of the
data directions. For the empirical results, we choose 3 random MNIST data points under the same
label, and under the condition that they form an acute triangle (64◦, for this figure). We trained a
single-layer FC ReLU network with linear residual connection for 1M epochs, with weight decay of
1E − 8 (as described in our model), and ADAM optimizer with learning rate 1E − 5.

Table 1: We applied a Singular Value Decomposition (SVD) for each of the above datasets, and
calculated the relative number of Singular Values (SV) needed to achieve a given percentile of the
energy (for the average vector).

Dataset 95% 99% 99.9%

CIFAR10 0.8% 7.5% 30%

CINIC10 1% 23% 41%

Tiny ImageNet 1.6% 20% 36%

BSD 0.1% 1.6% 4.5%

As can be seen from Table 1 all the datasets that we used are (approximately) low rank.
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Figure 15: Function space view of a denoiser, trained for 3 MNIST data points (Obtuse Angle).
Here, we compare empirical results (left) with our theoretical results (right). We compare the
function-space view for inputs from the data plane, with respect to the model output in each of the
data directions. For the empirical results, we added a single data point to the two previously chosen
for Figure 14 under the condition that the three points form an obtuse triangle (95◦, for this figure).
We trained a single-layer FC as described in Figure 14. As predicted, the function we have converged
to for data forming an obtuse triangle is noticeably different form the function we converged to when
the data was forming an acute triangle.
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