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ABSTRACT

Drawing inspiration from the vulnerability of the initial feed-forward phase of bi-
ological perception in humans and primates to adversarial attacks, we propose a
novel defense strategy named Error Correcting by Agreement Checking (ECAC).
This strategy is designed to mitigate realistic black-box threats where attackers
don’t have full access to the model. We exploit the fact that natural and adversar-
ially trained models rely on distinct feature sets for classification. Notably, nat-
urally trained models retain commendable accuracy against adversarial examples
generated using adversarially trained models. Leveraging this disparity, ECAC
moves the input toward the prediction of the naturally trained model unless it leads
to disagreement in prediction between the two models, before making the predic-
tion. This simple error correction mechanism is highly effective against leading
SQA (Score-based Query Attacks) black-box attacks as well as decision-based
and transfer-based black-box attacks. We also verify that, unlike other black-box
defense, ECAC maintains significant robustness even when adversary has full ac-
cess to the model. We demonstrate its effectiveness through comprehensive exper-
iments across various datasets (CIFAR and ImageNet) and architectures (ResNet
as well as ViT).

1 INTRODUCTION

Since the advent of adversarial attacks (Szegedy et al., 2014), the field has seen an arms race be-
tween adversarial defenses and attacks. Defenses based on adversarial training, which incorporates
adversarially crafted inputs during training, such as SAT (Standard-Adversarial Training) (Madry
et al., 2018), TRADES (Zhang et al., 2019), and AWP (Wu et al., 2020), have withstood the test of
time. However, robust accuracy still needs improvement for reliable deployment.

In realistic scenarios, attackers lack complete access to models, making black-box defense a
practical choice. Given access to the model confidence scores, attackers can deploy query-
efficient SQA attacks. When only the final prediction classes are accessible, decision-based
attacks become a feasible strategy. Since these attacks require a large number of queries to
the model, many SQA defense methods ignore them, considering it as impractical. How-
ever these attacks can be amplified when combined with techniques like transfer attacks.

Table 1: Transfer accuracy of adversaries generated
by different models. (ResNet-18, CIAFR-10, PGD-
100 attack). Columns show models used in crafting
the adversaries.

Nat’ SAT TRADES MART

Nat’ 00.00 71.27 72.50 75.97
SAT 82.74 51.61 62.22 64.19
TRADES 82.67 62.53 52.94 66.23
MART 78.42 59.01 61.03 54.87

In situations where attackers have access
to similar data, they are capable of train-
ing surrogate models to execute powerful
transfer attacks. Our work focuses on these
practical challenges, proposing a defense
that works well against all these black-box
attacks.

We believe it is challenging for simple
feed-forward networks to achieve adversar-
ial robustness because they lack an error
correction mechanism (Hawkins & Sandra,
2004) as utilized by biological perception.
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Elsayed et al. (2018) showed that when humans were forced to make classification under time-
limited settings (≈ 74 ms), i.e., when they likely cannot use the error correction mechanism in their
perception, adversarially crafted images also fool them. Based on this observation, we propose
devising an error correction mechanism to boost the adversarial robustness of a trained model.

One main challenge is to identify an appropriate error signal. We propose to use the disagree-
ment between the predictions by adversarially trained and naturally trained models as a sub-
stitute error oracle. Zhang & Zhu (2019) showed that adversarially-trained models are shape-
biased, while naturally trained models are texture-biased, i.e., the two models mostly use differ-
ent features. We observed that these different features, namely shape and texture, are orthogonal
to each other, making it particularly challenging to transfer adversarial examples between them.
We illustrate this in Table 1 for three adversarially trained models. For adversarial examples

WeakM 
prediction

WeakMx

o/p: 
StrongM(x’)

x’

jointM  to 
nudge i/p

Nudge to WeakM prediction

Yes

No

∇x

+δ

Agree?StrongM

o/p: 
StrongM(x)StrongM

Figure 1: ECAC Architecture. WeakM refers to a natu-
rally trained model, StrongM refers to an adversarially
trained model, and jointM refers to when the models
are in parallel.

crafted using adversarially trained mod-
els, the naturally trained model gives much
higher accuracy than any other model on
the same network, and vice versa.

Inspired by these observations, we de-
vise a simple error correction mechanism
to boost robustness in black-box settings.
We first record the prediction made by
the naturally trained model (referred to as
weakM ). Then we perturb (or nudge) the
input towards that prediction by a 1-step
targeted PGD attack, employing both the
naturally and adversarially trained models
in parallel, as described later (referred to
as jointM ). If the prediction made by the
adversarially trained model (referred to as
strongM ) on the nudged input matches
our initial prediction, we output that pre-
diction, otherwise, we output the predic-
tion by strongM on the original input. We
always output the logits of strongM . Fig-
ure 1 depicts the overall architecture. The
algorithm is presented in Section 3.2. Our
method operates under the assumption that
if the input is perturbed towards the cor-
rect class, the two models will more readily
agree on their predictions.

To the best of our knowledge, we are the
first to exploit the naturally trained model
to amplify the robustness of the adversarially trained model. Our contributions are summarized as
follows:

• Inspired by biological perception, we argue for the necessity of error correction for adver-
sarial defense. We introduce a novel Error Correcting by Agreement Checking (ECAC)
method for defense against black-box attacks.

• We experimentally show that ECAC significantly enhances the robustness of adversarially-
trained models against realistic attacks: SQA, decision-based, transfer, and also adaptive
black-box attacks. Further, We also verify that, unlike other black-box defense, ECAC
maintains significant robustness even when adversary has full access to the model.

2 BACKGROUND AND RELATED WORK

2.1 PRELIMINARIES

We work with K class classifier f , parameterized by θθθ, which maps the input xi from the input
space X to its corresponding class yi. For each input, the model outputs a score for each class c as
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fc(xi, θθθ), called logits. The class with the highest logit is considered the predicted class. We denote
it as ypredi

= argmaxc fc(xi, θθθ). In this text, we refer to naturally trained model as weakM as they
do not exhibit robustness against adversarial attacks. An adversarially trained model is referred to
as strongM . We refer to the predictions made by the two models strongM and weakM as ystrongMi

and yweakMi
respectively. When we perturb (or nudge) the input as part of our defense, we use

weakM and strongM in parallel by summing the loss (cross-entropy) from the two models and
refer to it as jointM . In the adversarial setting, an adversary perturbs the input xi to x′

i to cause
misclassification. The perturbation is limited to the neighborhood of the original input defined by
the ball Bϵ[xi] = {x′

i : ∥x′
i − xi∥p < ϵ} where ∥.∥p denotes the ℓp norm, and ϵ is the perturbation

budget set to 8/255 for CIFAR-10 and 4/255 for ImageNet. Since the attacks in the ℓ∞ norm are
much stronger, we limit ourselves to it.

2.2 ADVERSARIAL ATTACKS AND DEFENSES

Due to space constraints, we present the prominent adversarial attacks and defense methods in Ap-
pendix D. We want to point out that most black-box defenses do not consider decision-based and
transfer attacks. We believe this gives a false sense of security, as an adversary can easily bypass
such defenses by training a surrogate model. Szegedy et al. (2014); Sitawarin et al. (2024) further
underscore the relevance of defenses against transfer attacks.

Related work: ECAC (ours) is an adaptive defense. Defenses that alter the input or model parame-
ters or both during defense can be categorized as adaptive defense. ECAC alters the input by nudging
it toward the expected correct class. Several existing works also nudge the input as our method, al-
though for different reasons. Wu et al. (2021) nudges the input such that the cross-entropy summed
over all classes is maximized. However, as noted by Croce et al. (2022), this may often reduce the
accuracy when the input is near the decision boundary. Shi et al. (2021) nudges the input using self-
supervised signals while we leverage the disagreement between the strongM and weakM , i.e., we
use the signal from weakM as well. Tao et al. (2022) and Li et al. (2023) use input nudging during
the training time (and are not adaptive defenses).

Qin et al. (2021) showed that simply adding Gaussian noise, of sufficient magnitude, provides non-
trivial accuracy for several SQA attacks. This defense is popularly known as RND. Chen et al.
(2022) have devised an adaptive method, dubbed AAA, most similar in spirit to ours, for defense
against black-box SQA. Instead of outputting true logits, they post-process it such that SQA locally
observes an increase in logits when it really decreases. Thus they are able to successfully mislead
the black-box SQA attackers. However, their method is limited to defense against SQA and does not
increase the correct decision area around an input, thus it remains exposed to the transfer attacks.

3 METHODOLOGY

3.1 MOTIVATION FROM BIOLOGICAL PERCEPTION: NEED FOR ERROR CORRECTION

Despite significant research in making neural network models robust, their robustness remains deci-
sively inferior to biological perception. While adversarially trained models seem to extract human-
interpretable features (Zhang & Zhu, 2019), it has been shown that even adversarially trained models
are brittle to real-world transformations like rotation and translation (Engstrom et al., 2019). Thus,
we ponder:

Can feed-forward neural networks be adversarially robust, or are they intrinsically vulnerable?

Elsayed et al. (2018) showed that if adversarially crafted images are shown for a very brief moment
(about 71ms), they can even fool humans. However, humans easily predict the true class with ample
time (∼ 2 seconds). They attributed it to the top-down and lateral connections in human brains.

Guo et al. (2022) showed that artificial neural networks might already be more robust in represent-
ing the input than biological ones. They compared the IT layer in monkeys with the feature layer
of ResNet-50 and observed that adversarially trained ResNet-50’s encoding is less sensitive to ad-
versarial perturbation. Further, the attack on the biological system was not done using a white-box
but a weaker black-box transfer attack, indicating that they are even more sensitive to the adversar-
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ial attack. However, biological brains do not seem to be fooled by adversarial attacks. The paper
attributes this to some error-correcting mechanism of the brain not fully understood.

Inspired by the above observations, we propose a simple way to correct the input using backward
propagation, described in detail in the following section. On the surface, it may crudely look similar
to the suggested top-down mechanism of the neocortex (Hawkins & Sandra, 2004), but biological
perception is much more sophisticated, and the comparison will not be apt.

3.1.1 OUR INSIGHT

While making a prediction, if an oracle could point us toward the correct class, we could nudge the
input toward that class, thereby undoing the adversarial perturbations. We realize we could leverage
the disagreement between the strongM (adversarially trained model) and weakM (naturally trained
model) predictions as an oracle.

As shown in Table 1, transferring an attack from an adversarially trained model to a naturally trained
one is difficult. This is because the two models use different features. Naturally trained models
often rely on smaller magnitude features (like texture) that are abundantly present in an image. This
was demonstrated by Zhang & Zhu (2019), where they showed that if an image is divided into
tiles, and the tiles are shuffled, naturally trained models still manage to predict the true class, while
adversarially trained models fail. However, texture-like features are easier to remove by adversarial
attacks. Without adversarial training, the model has no incentive to learn better features (Tsipras
et al., 2018). On the contrary, adversarially trained models learn to use shape-aware features and
thus become indifferent toward the texture. We found that these two models can be combined to get
an overall more robust model.

We work with the assumption that when the two models agree, their agreed prediction tends to be
correct. This is based on the intuition that the models are trained to make the correct predictions
and the chance of both strongM and weakM predicting the same wrong class is low. We experimen-
tally validated this assumption for CIFAR-10 using the ResNet-18 model. We found that when an
adversary example is both crafted and nudged using jointM, then nudging towards the correct class
increases the agreement between the two models’ predictions from 34.98% to 49.20%, while if they
are nudged towards a random class, the agreement decreases to 16.99%. Further analysis of how and
when this assumption holds is given in Appendix A in the supplement. Based on this assumption,
we design our defense as explained next.

3.2 ERROR CORRECTING BY AGREEMENT CHECKING

We present the ECAC algo in Algorithm 1. To nudge the input, we use a targeted PGD attack as
shown in equation 1. Here the loss l(·) is the summation of the (cross-entropy) loss incurred by

x′t+1
i ←

∏
Bϵ[xi]

(x′t
i −s size·sign(∇x′t

i
l(x′t

i , y
o
i ))), (1)

Algorithm 1 Error Correcting by Agreement Checking
Inputs: xi, strongM, weakM, s size
Output: Prediction-logits for the input xi.

1: logitW ← weakM(xi).
2: Get x′

i by nudging xi toward argmax(logitW ) us-
ing Equation (1) by s size for 1 step.

3: logitS′ ← strongM(x′
i).

4: if argmax(logitS′) == argmax(logitW ) then
5: return logitS′.
6: end if
7: Return strongM(xi).

weakM and strongM. The algorithm has
the following steps:

- We first note the logit returned by
weakM on the input xi. We term it as
logitW (Step 1), with prediction: yoi .

- Then using the above equation (1), we
nudge the input towards logitW predic-
tion yoi to get x′

i. (Step 2).

- We then calculate the logit returned by
strongM on the nudged input x′

i and term
it logitS′. (Step 3).

- If prediction made by logitS′ matches
logitW , we return logitS′ as final output.
(Step 4 to 6).

- However, on disagreement, we discard
the nudging and simply return the logit as
calculated by strongM on the original input xi. (Step 7).
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3.3 ADAPTIVE DEFENSE BY ECAC, ON SQA ATTACKS

ECAC dynamically shifts the decision boundary, making it harder for attacks to reach it. Further, if
an attacker manages to fool one model, say strongM (as we always output its logit), and if weakM
does not get fooled, weakM would nudge the input towards the correct prediction, thwarting the
attack. This is illustrated in Figure 2.

Consider the case where a natural input xi is correctly classified, point (a) in the figure. An ad-
versarial attack would perturb the input in an attempt to misclassify it. If the two models agree on

ε-boundary 

StrongM decision boundary

weakM decision boundary
under strongM attack

         pymax py’ ≠y 

max py’ ≠y 

max py’ ≠y 

         py

         py

(a)

(b)

(c)

max py’ ≠y 

         py

(c’)

Figure 2: Illustration of adaptive defense by ECAC.
See the text for details.

their prediction, i.e., before point (b) in the
figure, the output would be strongM(x′

i).
In this case, also, the logit would be re-
turned only after nudging the input towards
the agreed class (not shown in the figure to
avoid clutter). However, when the models
start disagreeing, we have two cases: ei-
ther weakM will make the correct predic-
tion (case A) or not (case B).

We show case A, point (c) in the fig-
ure. Here ECAC would nudge x′

i to-
wards weakM prediction by δi (point
(c’) in the figure). Since nudging is
done using jointM toward the predic-
tion made by weakM, we have δi ∝
sign(∇x′

i
(lce(strongM(x′

i), yweakMi
) +

lce(weakM(x′
i), yweakMi

))). If the two
models agree at point (c’), the output is
strongM(x′

i + δi). Notice that although
strongM makes an incorrect prediction for
point (c), ECAC can fix it and output logits for a point well within the decision boundary, aka point
(c’), of strongM. This effectively increases the decision boundary for strongM. If, instead, the two
models disagree at x′

i+δi (disagreement case not shown in the figure), we would discard the nudging
and output prediction as made by strongM.

For case B, when weakM makes an incorrect prediction, we rely on robustness of strongM.
Since it is hard to fool strongM, the nudging done in the incorrect direction would, often, not
be enough for strongM to cause misclassification, especially under realistic black-box scenario.

Figure 3: Effectiveness of ECAC on the Square attack.
The Square attack is able to successfully attack these
100 samples, individually, for both naturally trained
(weakM) and adversarially trained (strongM) models.
However, Square attack fails when the same models
are used in ECAC. We can see that weakM is able to
fix the error in prediction made by strongM, and vice
versa.

We discuss fraction of each cases occurring
for natural samples for CIFAR-10 in Ap-
pendix B.1.

3.3.1 ROBUSTNESS
TO BLACK-BOX ATTACKS

Owing to its adaptivity, ECAC is espe-
cially robust to black-box attacks. SQA at-
tacks estimate the vulnerability of a sample
based on the score assigned to the true class
by the model. These attacks iteratively
perturb an input region, progressively de-
creasing the models’ confidence in the true
class. A perturbation for an iteration is
discarded if it fails to lower the true class
probability.

We demonstrate this error correction for
the Square attack in Figure 3. For the
demonstration we used smaller, ResNet-
18, models trained on CIFAR-10. strongM
is trained with ϵ = 8/255. We selected
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100 samples, such that the Square attack is able to fool the strongM in 2500 iterations, while ECAC
makes the correct prediction. For each iteration, we measure the number of samples (out of these
100) which are correctly predicted by both strongM and weakM. As shown in the Figure 3, we notice
that strongM makes significantly more errors as compared to weakM, and in each iteration weakM
fixes the prediction made by strongM and vice-versa, demonstrating the efficacy of ECAC. We can
clearly notice that after around 500 to 1000 iterations, the Square attack seems to be stuck in a loop.
It seems that the perturbed input is near the decision boundary for strongM and the Square attack is
often able to perturb it past that as well. However, the error correction mechanism of ECAC, with
the help of weakM, keeps fixing it. Thus the Square attack keeps discarding the perturbations made
by it. We show the accuracy on Square and several other black-box attacks in Table 2.

Hard-label attacks, like the popular SPSA attack, also get fooled similarly. SPSA first estimates the
gradients using finite difference estimates in random directions, then uses that gradient to perturb
the input. However, a random perturbation will rarely cause both models to fail, simultaneously,
in their prediction, and ECAC would likely predict the correct class. Thus the SPSA attack would
fail in estimating a perturbation direction. This is evident from the results in Table 4, where ECAC
exhibits significant robustness against SPSA accuracy. We also demonstrate the efficacy of ECAC
on the popular RayS (Chen & Gu, 2020) attack.

We further point out that for transfer attacks, unlike other black-box defenses, ECAC maintains
significant accuracy. This is primarily because we use an adversarially trained model as part of the
defense. As pointed out by Tsipras et al. (2018), naturally trained models do not have an incentive to
learn robust features, and it is easier to perturb non-robust features to make such defenses susceptible
to transfer attacks. We discuss transfer as well as adaptive attacks in Section 4.2. Finally, even
in a scenario where an adversary has full knowledge and access to the model (i.e., a white-box
attack), ECAC would still demonstrate significant robustness. This is because we consistently output
strongM logits, ensuring that the accuracy remains lower-bounded by strongM(x+ ϵ+ δ), where
ϵ is the allowed perturbation budget and δ represents the adjustments made by ECAC.

3.4 DESIGN CHOICES

Given the observation that the two models use different sets of features, and only strongM is adver-
sarially robust, an intuitive design choice could be to nudge the input only when the models start
disagreeing on their prediction. This way, only strongM is exposed to the attacker till ECAC makes
the correct prediction. This approach boosts robustness but is nearly 10% less effective against sev-
eral SQA attacks, unless we fix the perturbation continuously. Therefore, we chose to continuously
correct the input and discard the nudging if it doesn’t lead to agreement.

We always use strongM to output the logits. This way weakM confidence is kept hidden from the
attacker. Further, since it is much easier to fool the weakM model, if the two models disagree on their
prediction, we rely on the prediction made by strongM. We observe that if we use weakM instead
of strongM to output the logits, than the Square attack accuracy, for 100 iterations, on the first 1K
testset samples of CIFAR-10 drops from 83.50% to 71.80%.

We also needed to select an appropriate model for nudging the inputs. To ensure the input remains
within the correctly classified region for both the models (when it is being attacked), we nudge using
both in parallel. Specifically, we use jointM, which combines weakM and strongM, to perform the
nudging.

To nudge the input, values for two parameters are needed: a) n steps: the number of PGD steps
to nudge the input toward a class, and b) s size: the size of each such step. n steps × s size
determines the amount of nudging. Since strongM is trained with a perturbation budget of ϵ = 8

255
and for weakM, this value is 0, the right amount of nudging should be somewhere in between, i.e.,
around ϵ/2. We observed that the effect of doing multiple small steps could be approximated with
a single large step. Thus we set the value of n steps to 1 (and remove it as a parameter). Further,
as shown in the table 7 in section 4.3.1, we observed that the value of s size leads to a tradeoff
between transfer and black-box attacks. By experimenting on CIFAR-10 for ResNet-18, we freeze
on a value of 0.02 for s size. Thus we have s size = δ. For a slightly higher value, ECAC exhibits
slightly lower accuracy for transfer attacks but slightly higher accuracies for black-box attacks and
vice versa.
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Table 2: ECAC performance compared to baselines on SQA attacks for the CIFAR-10 dataset with
a perturbation budget of ℓ∞ = 8

255 (queries = 100/2500). WideResNet-28-10 is used for all models.

Defense Nat’ Accuracy on SQA Attack (# queries = 100/2500)
Methodology Acc’ Square SignHunter SimBA NES Bandit

Undefended 94.78 39.7/00.2 42.3/00.0 73.5/35.6 68.8/05.0 49.9/01.3
SAT 85.83 76.9/60.5 74.9/56.6 84.1/80.4 83.3/75.4 78.7/66.2
RND 91.05 60.8/49.1 61.0/47.8 76.4/64.3 86.2/68.2 70.4/41.6
AAA-Linear 94.84 83.4/79.8 84.2/83.0 86.4/84.5 84.6/71.0 86.7/82.8

ECAC-SAT 90.30 85.7/84.3 80.5/79.4 86.0/83.6 87.3/73.2 85.0/81.9
ECAC-TRADES 91.65 87.4/85.8 81.0/79.0 86.6/85.8 87.9/74.7 85.7/83.0
ECAC-AWP 90.00 86.9/85.0 79.7/77.7 86.4/84.9 87.0/75.1 85.1/82.5
ECAC-AWP E 91.80 87.8/87.5 83.8/82.5 88.0/85.8 88.4/77.5 86.0/83.7
ECAC-WANG23 94.40 91.4/90.9 87.2/85.6 91.0/89.5 92.1/81.6 89.8/88.0

For ImageNet, since we use a perturbation budge of 4/255, i.e., half of what has been used for
CIFAR-10, we set s size = 0.01 for ImageNet. We obtained good performance for all datasets and
models using this parameter.

4 EXPERIMENTS

4.1 SETUP

We evaluated ECAC on CIFAR-10 and ImageNet datasets. For fine-tuning and ablation, we used
ResNet-18. In line with our baseline AAA-linear (Chen et al., 2022), we reported the result using
WideResNet-28-10 for CIFAR-10 and WideResnet-50 for ImageNet. In Appendix E, we provide
the source of these models along with the training details for the models trained locally.

For Square attacks, we used the official implementation of AA (https://github.com/
fra31/auto-attack). In line with our baseline, for the Square attack we set p init = 0.05
(the fraction of pixels changed on every iteration). Auto Attack uses a value of 0.8 for this param-
eter. We note that changing this parameter considerably lowers the AAA-Linear accuracy. For the
rest of the SQA attacks, we used the same parameter as used by AAA-Linear and provide the details
in the supplement. We did 100 iterations for SPSA with a perturbation size of 0.001, a learning
rate of 0.01, and a total of 128 samples for each gradient estimation. For RayS, we used the official
implementation (https://github.com/uclaml/RayS) with 10K (and 1K) queries.

4.2 RESULTS

In this section, we present the results for several attacks. Due to space constraints, some results have
been moved to the Appendix.

SQA attacks: Table 2 presents the results for black-box SQA attacks on WideResNet-28-10 models.
The parameters used and other details for the attack are provided in the Appendix F. We used the
first 1K samples from CIFAR-10. The results for the RND (Qin et al., 2021) attack were borrowed
from the AAA paper (Chen et al., 2022).

We first compare ECAC-SAT (also referred simply as ECAC) performance with baselines. For
ECAC-SAT, we use basic SAT model (Madry et al., 2018) as strongM . For the Square attack, it
outperforms all the baselines including AAA-Linear. We discuss the vulnerability of AAA-Linear
to the Square attack in the subsequent paragraph. For SignHunter, AAA-Linear performs better than
ECAC-SAT. For SimBA, the results are almost similar, despite AAA-Linear’s natural accuracy being
much higher. ECAC-SAT outperform AAA-Linear on the NES attack; however, for larger queries,
its accuracy drops slightly below that of the adversarially trained model. For Bandit, AAA-Linear
also performs a bit better.

7

https://github.com/fra31/auto-attack
https://github.com/fra31/auto-attack
https://github.com/uclaml/RayS


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Square attack accuracy of AAA-Linear for
different values of p init (fraction of pixels changed
every iter’) for CIFAR-10

There are multiple methods to achieve
strongM , making its selection an addi-
tional hyper-parameter. We experimented
with TRADES (Zhang et al., 2019), AWP,
AWP E (Wu et al., 2020), and WANG23
(Wang et al., 2023) as strongM . No-
tably, when employing a stronger strongM
with the same WideResNet-28-10 architec-
ture, we consistently surpass the state-of-
the-art accuracy across all attacks. More in-
formation and comparisons of ECAC with
the corresponding strongM are provided
in Appendix B.2.3.

For the Square attack, AAA-Linear has
used a value of p init = 0.05 for CIFAR-
10 and 0.3 for ImageNet. This is consis-
tent with the original implementation of the
Square attack as it was used on a naturally trained model. However, later implementations used a
value of 0.8, which is more suitable to attack adversarially robust models. An attacker would likely
choose the value that degrades the performance of the model the most. We tested the accuracy of
AAA-Linear, using their code, for different values of this parameter and compared it with ECAC
accuracy in Fig 4. We note a considerable drop in accuracy for AAA-Linear. For ECAC, however,
the accuracy remains almost the same.

We present the results for the ImageNet dataset in Appendix in Table 12. For AAA-Linear, we used
their code to run the Square attack. They randomly selected 1k samples, one from each class, which
are correctly classified by the naturally trained model. The reported accuracy (for AAA-square) is

Table 3: Transfer attack accuracies on CIAFR-10,
using ResNet-18 architecture as surrogate Model.
We note that, AAA-Linear accuracy drops consider-
ably.

SurrogM Natural SAT AAA ECAC
(ResNet-18) (WideResNet-28-10)

AT 73.17 64.85 73.17 69.33
Natural 16.91 85.03 16.91 79.47
jointM 15.36 78.92 15.36 72.95

calculated as the natural accuracy, i.e.,
78.48%× accuracy obtained on the selected
1k samples. For the rest of the results, we
selected the first 2k samples from the val-
idation set of ImageNet. We observe that
ECAC is able to outperform AAA-Linear for
Square and SimBA attacks.

Transfer attacks: Most black-box defenses
do not account for the possibility of trans-
fer attacks. In the current age of big data and
cheap compute, we believe that a resourceful
adversary can easily train a surrogate model
and transfer the attack to the deployed sys-
tem (Szegedy et al., 2014).

It is likely that an adversary will not know the architecture of the deployed model. Therefore, for
CIFAR-10, we trained a ResNet-18 model (details of training provided in Appendix E) and used
it as our surrogate model. We transferred the attacks crafted using PGD-20 on ResNet-18, a much
smaller network, to our target models, all of which use WideResNet-28-10. The results are provided

Table 4: ECAC performance compared to baselines,
using WideResNet-28-10, on decision-based attacks
for CIFAR-10, with the ℓ∞ perturbation of: 8

255 .

Models RayS (1K/10K queries) SPSA

Undefended 22.30/00.10 00.00
AT 71.40/59.90 62.40
AAA-Linear 58.50/55.10 70.10
ECAC (ours) 72.00/66.60 79.00

in Table 3. When the adversarially trained
model is used to craft the adversary, the
AAA defense exhibits the highest robust-
ness, as does the undefended model. This
aligns with our expectation, as it is hard to
transfer attacks crafted using the adversar-
ially trained model to the naturally trained
model. However, if the adversary uses the
naturally trained model, which is much eas-
ier to train, the accuracy of the AAA de-
fense becomes very poor. Overall, we notice
that ECAC maintains the highest worst-case
transfer accuracy (i.e., 69.33%).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Decision-based attacks: We also tested our method on decision-based attacks (SPSA and RayS).
The results are presented in Table 4. Both, our defense and AAA, show good robustness for SPSA,
which works by estimating the gradient. However, RayS searches for the decision boundary by
starting with a misclassified point (with higher perturbation), and thus is more effective against
AAA defense. Since our defense dynamically changes the decision boundary, it is significantly
more robust than AAA in both cases. We present the results for ImageNet in Appendix C.2.

Adaptive attacks (and robustness against white-box attack): We have demonstrated the perfor-
mance of ECAC assuming attackers do not know the defense strategy. It is interesting to see how
well ECAC holds if attackers know the defense strategy, that is, the ECAC architecture in Fig-
ure 1, but do not have access to the individual strongM or weakM models. We assume, like a
realistic scenario, an attackers can query the deployed ECAC model. To construct an effective adap-
tive attack, we utilized surrogate models trained on analogous datasets. For CIFAR-10, we trained
ResNet-18 using standard and Madry’s [2018] method as our surrogate models.

Table 5: ECAC Accuracy on Adaptive Attack.

Surrogate Model Accuracy ECAC
strongM weakM ECAC Accuracy

50.59 00.00 40.00 60.91

The essence of adaptive attacks is to exploit a
defense’s vulnerabilities. For ECAC, potential
weaknesses arise when (a) both models agree on
an incorrect prediction post-nudging or (b) their
predictions diverge and strongM errs on the in-
put. We devised an adaptive attack to exploit
both cases. First, we identify strongM ’s vul-
nerable class via an untargeted PGD attack with
a higher budget of ϵ + s size, where ϵ is the allowed perturbation budget (≈ 0.031 for CIFAR-10)
and s size is the nudging used by ECAC as defense (0.02 for CIFAR-10). The idea is to mislead
ECAC into nudging the input towards an incorrect class. Once the vulnerable class is identified, we
use a targeted PGD attack towards that class using jointM . Crucially, after each PGD iteration, we
query the deployed ECAC model to check if the attack succeeded. If affirmative, we retain the ad-
versarial example. We present the algorithm in the Appendix as Algorithm 2. Results are presented
in Table 5. Our empirical results underscore that ECAC upholds a significant degree of accuracy in a
black-box context where the attacker knows the defense strategy, thereby attesting to its robustness.

We also notice that the accuracy of the surrogate ECAC model, which is under a white-box attack,
does not fall to zero but remains significantly higher at 40%. This is because of the use of strongM.

Table 6: ECAC CIFAR-10 accuracy with ViT architecture.

Models Nat’ Square RayS SPSA
(ViT) (100/2.5k) (1k/10k)

Natural 91.8 42.5/00.1 18.7/00.3 06.6

SAT 76.4 65.3/52.7 59.5/51.2 64.8
ECAC-SAT 80.1 75.8/74.4 61.8/58.6 76.7
TRADES 80.6 69.7/56.4 63.7/53.8 69.6
ECAC-TRADES 84.8 79.9/77.9 65.7/61.5 80.3

Results on ViT architecture: To
demonstrate the robustness and
applicability of ECAC across di-
verse model architectures, we
conducted experiments using Vi-
sion Transformer (ViT) models on
CIFAR-10. We trained the base
models using the code provided
by Mo et al. (2022). The results
show that ECAC significantly im-
proves the robustness of strongM
in all three settings, demonstrating
its effectiveness with different ar-
chitectures.

4.3 ABLATION STUDY

We performed ablation studies by varying different parameters of the model, including hyperparam-
eters s size and n step, giving different weights to strongM and weakM in constructing jointM ,
and using different adversarially trained models as strongM . Due to space constraints, below we
only present the study on varying s size and present rest of the results in Appendix B.2. We observed
that increasing s size, the amount of corrective nudging done by ECAC, boosts accuracy for SQA
attacks but decreases transfer attack accuracy (4.3.1). Increasing n step improves natural accuracy
but reduces accuracy on SQA attacks (B.2.1). We also find that equally weighing strongM and
weakM in constructing jointM works reasonably well against various attacks (B.2.2).
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4.3.1 EFFECT OF VARYING s size

We finalized the value of s size as 0.02 when ϵ = 8/255. This parameter was chosen heuristically to
achieve a good trade-off between adaptive attack accuracy (i.e., potential vulnerability of the model)
and black-box attacks. In Table 7, we present the accuracy for Natural, Square, and RayS attacks
for different parameter values.

Table 7: Effect on ECAC accuracy for different values of s size, under various attacks. The results
are for the first 1000 samples of CIFAR-10.

Value for s size
Accuracy 0.015 0.018 0.020 0.022 0.025

Natural 88.60 88.70 88.70 89.10 89.40
Square (1k iterations) 81.30 81.60 81.40 82.80 82.00
RayS (1k iterations) 72.00 72.30 72.00 72.00 71.30
Transfer (using jointM ) 69.60 68.00 67.30 66.70 65.30

We observe that increasing the value of s size may yield better results for SQA attacks (Square
attack in the table). However, this makes the model more vulnerable to transfer attacks.

4.4 LIMITATIONS

Our defense is limited to black-box setting, which includes decision based as well as transfer attacks.
Thus, the method is useful in many realistic scenarios where attackers lack complete access to
deployed models. Further the model retains significant robustness even udner white-box attack.

Another weakness of the ECAC model is that it takes more time to make predictions than a simple
feed-forward model. A simple ResNet-18 model takes ≈ 1.6 seconds to classify the entire CIFAR-
10 test set, with a batch size of 500 using an RTX-2080 Ti graphics card, whereas ECAC takes≈ 8.3
seconds. This is because it needs to make an extra forward and an extra backward pass. However, as
observed, the feed-forward part of biological perception also seems vulnerable to adversarial attacks
and needs significantly more time to make a correct prediction. We believe that this weakness could
be manageable for many safety-critical applications.

5 CONCLUSION AND DISCUSSION

In this work, inspired by biological perception, we argue for the need to go beyond simple feed-
forward networks for adversarial robustness. We introduce a novel approach called ECAC, which
combines naturally and adversarially trained models to enhance robustness. ECAC uses the dis-
agreement between the two models as an oracle to nudge the input toward the correct class, simu-
lating an error-correction mechanism. To the best of our knowledge, this is the first attempt in this
direction. We find that this technique significantly boosts black-box robustness, making it appealing
for real-world applications where attackers typically have limited access to deployed models.

This work highlights the potential of error-correction mechanisms to enhance adversarial robustness,
suggesting promising future research directions. One idea is to use a generative model to create an
image and then compare its similarity to the original image using, for instance, ℓ2 distance. This
approach, however, requires generating high-quality images, which can be challenging.
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A MODEL AGREEMENT AND CORRECT PREDICTION

We work with the assumption that when the two models agree, their agreed prediction tends to be
correct. While this is intuitive, as the models are trained to make the correct prediction, we further
analyze how and when this assumption holds.

Our assumption is based on the intuition that the chance of StrongM and WeakM predicting the same
wrong class is low. Formally, let the accuracy of StrongM be ps and WeakM pw, their predictions be
Sp and Wp, and y be the correct prediction. Assume their predictions are independent and equally
likely to predict any of the wrong labels, then

P (Sp = y′)y′ ̸=y =
(1− ps)

(C − 1)
, (2)

P (Wp = y′)y′ ̸=y =
(1− pw)

(C − 1)
(3)

where C is the number of classes. We have:

P (correct|agree)
P (incorrect|agree)

=
P (correct, agree)

P (incorrect, agree)
(4)

=
P (Sp = y,Wp = y)∑

y′ ̸=y P (Sp = y′,Wp = y′)
(5)

= (C − 1)
ps

(1− ps)

pw
(1− pw)

. (6)

Therefore, the assumption holds when ps, pw > 50% for binary classification and could hold even
when ps, pw is small for multi-class classification.

Further, as noted in the main paper, we experimentally verified this. For CIFAR-10 using the ResNet-
18 model, we found that when an adversary is both crafted and nudged using both strongM and
weakM in parallel (i.e., jointM), then nudging towards the correct class increases the agreement
between the two models’ predictions from 34.98% to 49.20%, while if they are nudged towards a
random class, the agreement decreases to 16.99%.

B ABLATION STUDY AND DESIGN CHOICES FOR ECAC

We first discuss the design choices, after which we present the ablation studies, where we discuss
the tradeoff in varying several parameters.

B.1 DESIGN CHOICES FOR ECAC

In this section, we discuss how we made decisions regarding several nudging aspects for ECAC.
Before nudging, we categorize inputs into the following cases:

1. Both strongM and weakM agree:

(a) The prediction is correct.
(b) The prediction is incorrect.

2. The two models disagree:

(a) Both strongM and weakM predictions are incorrect.
(b) strongM prediction is correct.
(c) weakM prediction is correct.

In Table 8 we provide the percentage of natural samples from the CIFAR-10 test-set that fall into
each of the cases above.

For case 1, when the two models agree, we do not have a signal to check if the prediction is correct
or not. However, in this case, for natural samples, there is less than a 2% chance that the two models
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Table 8: Percentage of samples from the CIFAR-10 testset falling into different cases.

Case Samples %

Case 1 (a) 81.79
Case 1 (b) 1.86
Case 2 (a) 1.48
Case 2 (b) 1.80
Case 2 (c) 13.07

would disagree. For case 2, however, we can use nudging. Since it is easier to fool weakM , as also
evident from the results in Table 2, we focus on improving the robustness of strongM . In case 2 (a),
when both models are making an incorrect prediction nudging may not be that useful. However this
is unlikely for natural samples. For case 2 (b), nudging can actually lower the prediction. However,
in a black-box setting it would be very difficult for an attacker to achieve this case. Also, by default,
only 1.8% of samples fall into this category. Finally for case 2 (c), which is the second-highest
category with 13% of samples, ECAC fixes the prediction.

B.2 ABLATION STUDY

B.2.1 EFFECT OF VARYING n steps

The two parameters, n steps and s size, determine the amount of corrective nudging done by
ECAC. We present the results of varying n steps for three settings in Table 9. The results are
for the ResNet-18 model, with the Square attack run for 2.5k iterations. In all settings, each step
size was chosen so that the combined s size is close to 0.02. Before nudging the input, we clipped
the nudging to 0.02 for a fair comparison.

Table 9: Effect on ECAC accuracy for different values of n steps, where total perturbation by
nudging was clipped at 0.02. The results are for the first 1000 samples of CIFAR-10.

n steps Size of Natural Square Attack Square Attack
each step Accuracy Accuracy Time (sec)

1 0.020 87.8 82.4 509.6
2 0.011 89.3 79.6 814.4
3 0.007 89.3 78.6 1123.1

From the ablation study of n steps, we infer the following: Incremental steps appear to be
marginally more effective for nudging towards the goal than a single step. This is not surprising, as
iterative attacks like PGD are more effective than single-step attacks like FGSM. With unperturbed
input, a higher step count correlates with increased natural accuracy, as it corrects more samples
incorrectly classified by strongM. However, with the Square attack, there is a slight decrease in ac-
curacy, possibly because the attack misleads weakM more readily, inadvertently steering strongM
toward incorrect classifications.

As anticipated, a greater number of steps result in longer processing times, with the duration in-
creasing linearly. Therefore, we recommend setting n steps to 1 for optimal efficiency.

B.2.2 CHANGING CONTRIBUTION OF TWO MODELS IN jointM

To define jointM , we added the loss terms for the two models, giving equal weightage to both the
models. However, a weighted sum of the two loss terms, where the models contribute differently,
could lead to better robustness. To investigate this, we introduced a new weighting parameter, α.
The loss for jointM is defined as: α× weakM loss + (1 - α ) × strongM loss. We present the
results in Table 10 for several attacks.
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Table 10: Effect on ECAC accuracy on CIFAR-10 for different value of α as used to define jointM .
ECAC uses WideResNet-28-10 models, while surrogate models uses ResNet-18 architecture.

alpha Natural Square Attack Transfer Attack Acc’ using surrog’
Accuracy Accuracy strongM weakM jointM

0.0 91.8 80.3 70.84 77.88 70.76
0.1 91.4 82.7 69.88 78.94 71.49
0.2 91.0 84.0 69.48 78.94 71.80
0.3 91.1 84.3 69.51 79.31 71.75
0.4 90.9 84.8 69.38 79.54 71.79
0.5 90.9 84.5 69.31 79.45 72.20
0.6 90.4 85.1 68.78 79.49 72.12
0.7 90.3 85.5 68.72 79.66 72.41
0.8 90.3 85.2 68.56 79.77 72.50
0.9 89.8 84.4 68.78 80.11 72.44
1.0 86.6 81.7 65.62 84.44 77.11

We observe a trade-off among several accuracies, which aligns with our expectations. When α is
low, nudging is directed more toward strongM features, as the contribution from weakM loss is
minimal. Consequently, post nudging, strongM predictions are expected to align more closely with
weakM predictions, as we are nudging toward what weakM foresees. Hence, natural accuracy is
higher when α is low because weakM predicts natural samples more accurately. Similarly, for
transfer attacks where adversaries are crafted using strongM alone, weakM ’s prediction on them
would be high; thus, the accuracy is higher as well. Conversely, when adversaries are crafted using
weakM or jointM , weakM ’s accuracy is lower. Therefore, in these instances, ECAC accuracy is
low when α is low and increases monotonically.

For the SQUARE attack, since perturbations are random, both strongM and weakM accuracies
decreases. Hence, it is necessary to stabilize features for both models. We observe higher accuracy
around the mid-value of α. Overall, we conclude that an α of 0.5 is a reasonably effective choice.

B.2.3 CHANGING strongM

ECAC relies on the distinct features used by weakM and strongM . There are several ways to
achieve strongM , making the choice of strongM another hyper-parameter. For a fair comparison
with the baseline, AAA (Chen et al., 2022), we only used models trained on WideResNet-28-10. In
addition to SAT (Madry et al., 2018), we used TRADES (Zhang et al., 2019), AWP, AWP E (Wu
et al., 2020), and WANG23 (Wang et al., 2023) as strongM . We obtained all the pre-trained models
from the official repository of Croce et al. (2021), except TRADES, which we trained locally using
the same parameters as SAT.

In table 11 we show how ECAC boosts the robustness of corresponding strongM for different
attacks. As noted in section 4.2 using these stronger strongM models, we easily surpass the robust-
ness achieved by the baseline AAA.

B.2.4 DIFFERENT WAYS OF NUDGING THE INPUT

In this work, we used a simple 1-step targeted PGD attack to nudge the input toward the expected
correct class. The nudging is the same for all samples. A potentially better approach would be
to use an adaptive technique for nudging, such as AutoPGD (Croce & Hein, 2020b). AutoPGD is
an advanced iteration of the PGD attack that incorporates momentum from previous iterations and
adaptively adjusts the step size and the number of iterations based on variations in the objective
function’s value. Implementing AutoPGD for nudging—replacing our current heuristic approach
to determine nudging parameters, as discussed in Section 4.1—could refine our methodology by
tailoring the nudging process to individual samples, potentially enhancing accuracy. However, this
adaptation would necessitate multiple iterative steps, significantly increasing the computation time
required for ECAC classification. To balance efficacy and efficiency, our current implementation
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Table 11: ECAC performance compared to baselines on SQA attacks for the CIFAR-10 dataset with
a perturbation budget of ℓ∞ = 8

255 (queries = 100/2500). WideResNet-28-10 is used for all models.

Defense Nat’ Accuracy on SQA Attack (# queries = 100/2500)
Methodology Acc’ Square SignHunter SimBA NES Bandit

SAT 85.83 76.9/60.5 74.9/56.6 84.1/80.4 83.3/75.4 78.7/66.2
ECAC-SAT 90.30 85.7/84.3 80.5/79.4 86.0/83.6 87.3/73.2 85.0/81.9

TRADES 86.40 77.1/61.2 74.9/57.0 86.2/82.6 85.4/74.8 80.3/66.2
ECAC-TRADES 91.65 87.4/85.8 81.0/79.0 86.6/85.8 87.9/74.7 85.7/83.0

AWP 85.36 75.9/62.7 74.0/60.0 84.1/80.4 83.4/75.2 79.1/68.6
ECAC-AWP 90.00 86.9/85.0 79.7/77.7 86.4/84.9 87.0/75.1 85.1/82.5

AWP E 88.25 81.3/67.8 79.5/63.4 87.2/84.4 86.9/79.9 83.4/72.5
ECAC-AWP E 91.80 87.8/87.5 83.8/82.5 88.0/85.8 88.4/77.5 86.0/83.7

WANG23 92.44 86.5/75.5 85.0/71.6 92.1/89.1 91.5/84.8 87.8/79.7
ECAC-WANG23 94.40 91.4/90.9 87.2/85.6 91.0/89.5 92.1/81.6 89.8/88.0

Table 12: ECAC performance compared to baselines on SQA attacks for ImageNet dataset, with a
perturbation budget of: ℓ∞ = 4

255 (#query = 100/2500). WideResNet-50 is used for all models.

Attack Undefended SAT RND AAA-Linear ECAC (Ours)

ACC(%) 78.48 68.46 75.32 78.48 72.35
Square 55.40/10.90 61.90/54.40 58.67/50.54 64.35/63.96 67.05/64.95
SignHunter 62.25/17.30 62.65/58.25 59.36/52.98 71.75 /71.25 67.25/64.80
SimBA 70.65/57.35 66.40/64.80 66.36/63.27 70.80/66.20 72.75/69.90
NES 76.15/59.35 67.15/64.65 71.33/66.05 76.60/70.25 70.80/66.25
Bandit 62.60/27.65 64.70/59.45 65.15/61.38 69.70/69.20 69.10/67.95

employs a simplified, single-step nudging approach that has demonstrated satisfactory performance
in practical applications.

C MORE RESULTS

We present additional results in this section, which we couldn’t include in the main paper due to
space constraints.

C.1 ACCURACY OF IMAGENET FOR SQA ATTACKS

We present the accuracy of ImageNet for SQA attacks in Table 12.

C.2 TRANSFER ATTACK FOR IMAGENET

In this section, we present the transfer attack for ImageNet. Since training ImageNet models is
computationally expensive (especially adversarially robust models), we used the same component
models (i.e., strongM and weakM ) that are used for defense. We tabulate our results in Table 13. It
is not surprising that AAA accuracy drops to zero when we craft the attack using the same naturally
trained model. More importantly, we observe that, although we used the same component models
that were used for ECAC, the accuracy for ECAC remains considerably high.

C.3 ADAPTIVE ATTACKS

In this section we provide the algorithm for the adaptive-attack (Algorithm 2).
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Table 13: Transfer accuracy of adversaries generated for ImageNet. We used the same component
models that are used in the defense.

Surrogate M Undefended SAT AAA ECAC
(WRN-50) (WideResNet-50)

AT 67.05 40.65 67.05 48.95
Nat’ trained 00.01 67.15 00.01 61.90
jointM 00.00 59.10 00.00 55.70

Algorithm 2 Adaptive attack
Inputs:

• (x, y): Input and label pair.
• surrStrongM , surrogWeakM : Surrogate models.
• ECAC: Deployed ECAC model.
• s size, ϵ: parameters used in ECAC-defense and perturbation budget.
• pgd itrs, pgd s size: Iterations used for PGD attack.
• pgdAtk(input, label, model, pert bdgt, pgd itrs, pgd s size, do t): # A function to do

pgd attack. do t is a binary variable which indicates if attack is targeted (if True) or not.
Output: x′ such that ECAC(x′) ̸= y or FAILURE if no such x′ is found.

1: xt ← pgdAtk(x, y, surrStrongM , ϵ + s size, pgd itrs, pgd s size, False).
2: yt← argmax(surrStrongM(xt))
3: do t← True
4: if yt == y then
5: do t← False.
6: end if
7: x′ ← x
8: jointM ← Combine surrStrongM and surrogWeakM .
9: for itr = 1 to pgd itrs do

10: x′ ← pgdAtk(x′, yt, jointM , ϵ, 1, pgd s size, do t).
11: if argmax(ECAC(x′)) ̸= y then
12: Return x′

13: end if
14: end for
15: Return FAILURE

Our initial phase identifies the most susceptible class for surrogStrongM within perturbation bud-
get of ϵ+s size (Steps 1 and 2). Subsequent to this identification, a targeted PGD attack is executed
towards this identified class (with budget of only ϵ). Conversely, should this approach not yield suc-
cess, we revert to an untargeted PGD attack (Steps 3 to 6), although this scenario seldom deceives
ECAC, as strongM is not fooled even at a higher perturbation. During the terminal iterative process
(Steps 9 to 14), the attack is driven by surrogate-jointM , where each update to the input is evalu-
ated against the operational ECAC model. The process culminates successfully with the delivery of
the altered sample upon a successful deception or, failing all iterations, culminates in a declaration
of failure (Step 15).

We also point out that it is possible to merge AAA-Linear and RND defenses with ECAC. For the
RND method, we can add noise to the input before classification, and we can apply the AAA-Linear
technique to the final output. We leave this as a future direction.

D ADVERSARIAL ATTACKS AND DEFENSES

We discuss the existing literature on Adversarial attacks and defense in this section.
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Adversarial attacks: Popular white-box attacks include FGSM (Goodfellow et al., 2014), PGD
(and targeted-PGD) (Kurakin et al., 2018; Madry et al., 2018), and its variants like AutoPGD
(APGD) (Croce & Hein, 2020b), FAB (Croce & Hein, 2020a), and C&W (Carlini & Wagner, 2017).
These are the strongest attacks as the adversary has complete access to the model, including its
parameters.

In the real-world settings, attackers only have limited access to the model. If adversaries have access
to the model’s confidence for each of the predicted class, they can progressively search for a better
adversary, called Score-based Query Attacks (SQA). Square attack (Andriushchenko et al., 2020) is
arguably the most popular attack of this kind. Other popular SQA attacks are Bandit (Ilyas et al.,
2018b), SimBA (Simple Black Box attack) (Guo et al., 2019), ZOO (Chen et al., 2017), SignHunter
(Al-Dujaili & O’Reilly, 2019), NES (Ilyas et al., 2018a) and others (Cheng et al., 2019), (Papernot
et al., 2017).

In hard-label black-box attacks, also known as decision attacks, an attacker only knows the final
class predicted by the model. SPSA (Uesato et al., 2018), HopSkipJump (Chen et al., 2020), RayS
(Chen & Gu, 2020), and a few other (Ma et al., 2021; Shukla et al., 2021; Cheng et al., 2018; Brendel
et al., 2018) attacks have been developed for this setting.

In transfer attack setting, an attacker has access to a surrogate model and craft adversarial attacks
using white-box attacks on the surrogate model. Due to transferability of the adversarial examples
(Szegedy et al., 2014), such attacks often transfer to the adversary. Transfer attacks, when coupled
with above mentioned decision attacks can significantly reduce the number of queries needed by
the decision attacks. Sitawarin et al. (2024) further underscores the relevance of defenses against
transfer attacks. These attacks are most successful if surrogate model is trained on the same data
and has same architecture.

Adversarial defense: Defenses based on Adversarial Training (AT), which incorporates adversarial
samples during training, have been most successful so far. SAT (Madry et al., 2018) and TRADES
(Zhang et al., 2019) are the most popular defenses and several other defenses extend these methods
in some way: e.g. MART (Wang et al., 2019) GAIRAT (Zhang et al., 2020), HE (Pang et al., 2020;
Fakorede et al., 2023), MAIL (Liu et al., 2021), AWP (Wu et al., 2020; Yu et al., 2022). For an
exhaustive survey of the field kindly refer to (Akhtar et al., 2021).

E MODEL SOURCE AND TRAINING DETAILS USED FOR DEFENSE

Table 14: Source for different WideResNet models. * indicates that the models are obtained from
RobustBench (Croce et al., 2021) and the corresponding source column contains the Model-ID

Dataset strongM/weakM Model Architecture Model-Source

CIFAR-10 weakM WideResNet-28-10 Standard*
strongM -SAT Trained locally
strongM -TRADES Trained locally
strongM -AWP Wu2020Adversarial*
strongM -AWP E Wu2020Adversarial extra*
strongM -WANG23 Wang2023Better WRN-28-10*

ImageNet weakM WideResNet-50 From PyTorch: wide resnet50 2
strongM -SAT Salman2020Do 50 2*

We provide the source of the WideResNet models in Table 14. For ResNet-18 and for cases where
the corresponding model is not present on RobustBench (i.e., strongM for CIFAR-10), we trained
the model locally. We used Madry’s et al. (2018) method to train all the adversarially robust models
for CIFAR-10, which are used as strongM . In line with the settings used in the literature (Wang
et al., 2019; Liu et al., 2021), all the base models (i.e., those included in Table 3 as well) have been
trained for 120 epochs using mini-batch gradient descent with an initial learning rate of 0.01 (0.1 for
WideResNet), which was decayed by a factor of 10 at epoch 75, 90 and 100. The values for other
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hyper-parameters are weight decay: 0.0035 (0.0007 for WideResNet), momentum: 0.9, and batch
size: 128.

Table 15: Hyper-parameters as used for SQA attacks

Method Hyperparameter CIFAR-10 ImageNet

Square p (fraction of pixels changed every iteration) 0.05 0.3
SignHunter δ (finite difference probe) 8([0, 255]) 0.1([0, 1])
SimBA d (dimensionality of 2D frequency space) 32 32

order (order of coordinate selection) random random
ϵ (step size per iteration) 8

255
4

255
NES δ (finite difference probe) 2.55 0.1

η (image lp learning rate) 2 0.002
q (# finite difference estimations / step) 20 100

Bandit δ (finite difference probe) 2.55 0.1
η (image lp learning rate) 2.55 0.01
τ (online convex optimization learning rate) 0.1 0.01
Tile size (data-dependent prior) 20 50
ζ (bandit exploration) 0.1 0.1

F PARAMETERS USED FOR SQA ATTACKS

We used the same parameters as used by AAA defense for most of the attacks. We adapted
the code from BlackBoxBench (https://github.com/adverML/BlackboxBench), ex-
cept for SimBA, which we discuss in the next paragraph. Further we provide the JSON files that
have the values of parameters we used for the attacks. The details of the parameters have been com-
piled in Table 15. For the square attack, for which we used code provided by auto attack, we used
p init = 0.05 for CIFAR-10 and 0.3 for ImageNet.

For the SimBA attack (Guo et al., 2019), we observed that if we change one pixel at a time, both
AAA-Linear and ECAC do not get fooled. Although it does bring the accuracy for the naturally
trained model very low. Thus, we used the SimBA-DCT attack. This is not as effective against
naturally trained models but is more effective for adaptive attacks like AAA-Linear and ECAC. We
adapted the code from the simple-blackbox-attack repository (https://github.com/cg563/
simple-blackbox-attack). We also modified the DCT attack such that the minimum pertur-
bation is scaled to the allowed maximum perturbation.
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