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Abstract

We study clustering under anisotropic Gaussian Mixture Models (GMMs), where
covariance matrices from different clusters are unknown and are not necessarily
the identity matrix. We analyze two anisotropic scenarios: homogeneous, with
identical covariance matrices, and heterogeneous, with distinct matrices per cluster.
For these models, we derive minimax lower bounds that illustrate the critical
influence of covariance structures on clustering accuracy. To solve the clustering
problem, we consider a variant of Lloyd’s algorithm, adapted to estimate and utilize
covariance information iteratively. We prove that the adjusted algorithm not only
achieves the minimax optimality but also converges within a logarithmic number
of iterations, thus bridging the gap between theoretical guarantees and practical
efficiency.

1 Introduction

Clustering is a fundamentally important task in statistics and machine learning [7, 2]. The most
widely recognized and extensively studied model for clustering is the Gaussian Mixture Model
(GMM) [17, 19], which is formulated as

Yj = θ∗z∗j + ϵj , where ϵj
ind∼ N (0,Σ∗

z∗j
), ∀j ∈ [n].

Here Y = (Y1, . . . , Yn) are the observations with n being the sample size. We define the set
[n] = {1, 2, . . . , n}. Assume k is the known number of clusters. Let {θ∗a}a∈[k] represent the
unknown centers, and Σ∗

a denote the corresponding unknown covariance matrices. Define z∗ ∈ [k]n

as the cluster assignment vector, where for each index j ∈ [n], the value of z∗j specifies which cluster
the j-th data point is assigned to. The goal is to recover z∗ from Y . For any estimator ẑ, its clustering
performance is measured by the misclustering error rate h(ẑ, z∗), which will be introduced later in
(4).

There has been increasing interest in theoretical and algorithmic analysis of clustering under GMMs.
In a scenario where a GMM is isotropic, meaning that all covariance matrices {Σ∗

a}a∈[k] are equal
to the identity matrix, [15] obtained the minimax rate for clustering, which takes the form of
exp(−(1 + o(1))(mina ̸=b ∥θ∗a − θ∗b∥)2/8), with respect to the misclustering error rate. A diverse
range of methods has been explored in the context of the isotropic setting. Among these, Lloyd’s
algorithm [13] stands out as a particularly effective clustering algorithm, renowned for its extensive
success in a myriad of disciplines. [15, 8] establish computational and statistical guarantees for
the Lloyd’s algorithm. Specifically, they showed it achieves the minimax optimal rates after a few
iterations provided with some decent initialization. Another popular approach to clustering especially
for high dimensional data is the spectral clustering [21, 18, 20], which is an umbrella term for
clustering after a dimension reduction through a spectral decomposition. [14] proves the spectral
clustering also achieves the optimality under the isotropic GMM. Semidefinite programming (SDP)
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is also used for clustering by exploiting its low-rank structure, and its statistical properties have been
studied in literature, for example, [5].

Despite the numerous compelling findings, most existing research primarily focuses on isotropic
GMMs. The understanding of clustering in an anisotropic context, where the covariance matrices
are not constrained to be identity matrices, remains relatively limited. Some studies, including
[15, 5, 16, 1, 9, 24], present results for sub-Gaussian mixture models, wherein the errors ϵj are
assumed to follow some sub-Gaussian distributions with the variance proxy σ2. At first glance,
it might appear that these results encompass the anisotropic case, as distributions of the form
{N (0,Σ∗

a)}a∈[k] are indeed sub-Gaussian distributions. However, from a minimax perspective, the
least favorable scenario among all sub-Gaussian distributions with variance proxy σ2—and thus the
most challenging for clustering—is when the errors are distributed as N (0, σ2I). Therefore, the
minimax rate for clustering under the sub-Gaussian mixture model essentially equals the one under the
isotropic GMM, and methods like Lloyd’s algorithm, which require no covariance matrix information,
can be rate-optimal. As a result, the aforementioned findings primarily pertain to isotropic GMMs.

A few studies have explored the direction of clustering under anisotropic GMMs. [3] presents a
polynomial-time clustering algorithm that provably performs well when Gaussian distributions are
well-separated by hyperplanes. This idea is further developed in [11], which extends the approach
to allow overlapping Gaussians, albeit only in two-cluster scenarios. [22] proposes a novel method
for clustering under a balanced mixture of two elliptical distributions. They establish a provable
upper bound on their clustering performance. Nevertheless, the fundamental limit of clustering under
anisotropic GMMs, and whether a polynomial-time procedure can achieve it, remains unknown.

In this paper, we investigate the clustering task under two anisotropic GMMs. In Model 1, all
covariance matrices are equal (i.e., homogeneous) to some unknown matrix Σ∗. Model 2 offers
more flexibility, with covariance matrices that are unknown and not necessarily identical (i.e.,
heterogeneous). The contribution of this paper is two-fold, summarized as follows:

• Our first contribution is on the minimax rates. We obtain minimax lower bounds for
clustering under anisotropic GMMs with respect to the misclustering error rate. We show
they take the form of

inf
ẑ
sup
z∗

Eh(ẑ, z∗) ≥ exp

(
−(1 + o(1))

(signal-to-noise ratio)2

8

)
,

where the signal-to-noise ratio under Model 1 is equal to mina,b∈[k]:a ̸=b ∥(θ∗a− θ∗b )TΣ∗− 1
2 ∥.

The signal-to-noise ratio for Model 2 is more intricate and will be introduced in Section 3.
For both models, we can see the minimax rates depend not only on the centers but also on
the covariance matrices. This is different from the isotropic case, whose signal-to-noise ratio
is mina ̸=b ∥θ∗a − θ∗b∥. Our results precisely capture the role that covariance matrices play in
the clustering problem. This shows that covariance matrices impact the fundamental limits
of the clustering problem through complex interactions with the centers, especially in Model
2. We obtain the minimax lower bounds by drawing connections with Linear Discriminant
Analysis (LDA) [6] and Quadratic Discriminant Analysis (QDA).

• Our second and more important contribution is on the computational side. We give a
computationally feasible procedure and rate-optimal algorithm for the anisotropic GMM.
Lloyd’s algorithm, developed for the isotropic case, is no longer optimal as it only considers
distances among centers [3]. We study an adjusted Lloyd’s algorithm which estimates the
covariance matrices in each iteration and adjusts the clusters accordingly. It can also be seen
as a hard EM algorithm [4]. Here, we modify the E-step of the soft EM by implementing
a maximization step that directly assigns data points to clusters, rather than calculating
probabilities. As an iterative algorithm, we demonstrate that it achieves the minimax lower
bound within log n iterations. This offers both statistical and computational guarantees,
serving as valuable guidance for practitioners. Specifically, if we let z(t) denote the output
of the algorithm after t iterations, it holds with high probability that

h(z(t), z∗) ≤ exp

(
−(1 + o(1))

(signal-to-noise ratio)2

8

)
,

for all t ≥ log n. The algorithm can be initialized using popular methods like spectral
clustering or Lloyd’s algorithm. In our numerical studies, we demonstrate that our algorithm
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significantly improves over the two aforementioned methods under anisotropic GMMs, and
matches the optimal exponent specified in the minimax lower bound.

Paper Organization. The remaining paper is organized as follows. In Section 2, we study Model 1
where the covariance matrices are unknown but homogeneous. In Section 3, we consider Model 2
where covariance matrices are unknown and heterogeneous. For both cases, we establish the minimax
lower bound for the clustering and give a computationally feasible and rate-optimal procedure. In
Section 4, we provide a numerical comparison with other popular methods. Proofs are included in
the supplement.

Notation. For any matrix X ∈ Rd×d, we denote λ1(X) as its smallest eigenvalue and λd(X) as
its largest eigenvalue. In addition, we denote ∥X∥ as its operator norm. For any two vectors u, v of
the same dimension, we denote ⟨u, v⟩ = uT v as their inner product. For any positive integer d, we
denote Id as the d× d identity matrix. We denote N (µ,Σ) as the normal distribution with mean µ
and covariance matrix Σ. We denote I {·} as the indicator function. For two positive sequences {an}
and {bn}, an ⪯ bn and an = O(bn) both mean an ≤ Cbn for some constant C > 0 independent of
n. We also write an = o(bn) or bn

an
→ ∞ when lim supn

an
bn

= 0.

2 GMM with Unknown but Homogeneous Covariance Matrices

2.1 Model

We first consider the GMM where the covariance matrices of different clusters are unknown but are
assumed to be equal to each other. Then the data-generating process can be displayed as follows:

Model 1: Yj = θ∗z∗j + ϵj , where ϵj
ind∼ N (0,Σ∗),∀j ∈ [n]. (1)

Throughout the paper, we call it Model 1 for simplicity and to distinguish it from a different and more
complicated one that will be introduced in Section 3. The goal is to recover the underlying cluster
assignment vector z∗. If Σ∗ were known, then (1) can be converted into an isotropic GMM by a
linear transformation (Σ∗)−

1
2Yj . However, the unknown nature of Σ∗ makes clustering under this

model more challenging than under isotropic GMMs.

Signal-to-noise Ratio. Define the signal-to-noise ratio

SNR = min
a,b∈[k]:a̸=b

∥(θ∗a − θ∗b )
TΣ∗− 1

2 ∥, (2)

which is a function of all the centers {θ∗a}a∈[k] and the covariance matrix Σ∗. As we will show later
in Theorem 2.1, SNR captures the difficulty of the clustering problem and determines the minimax
rate. We defer the geometric interpretation of SNR until after presenting Theorem 2.2.

A quantity closely related to SNR is the minimum distance among the centers. Define ∆ as

∆ = min
a,b∈[k]:a̸=b

∥θ∗a − θ∗b∥ . (3)

Then we can see SNR and ∆ are of the same order if all eigenvalues of the covariance matrix Σ∗ are
assumed to be constants. If Σ∗ is further assumed to be σ2Id, then SNR equals ∆/σ. As a result, in
[15, 8, 14] where the isotropic GMMs are studied, ∆/σ plays the role of signal-to-noise ratio and
appears in their rates. Since (2) represents a direct generalization, we refer to it as the signal-to-noise
ratio for Model 1.

Loss Function. To measure the clustering performance, we consider the following loss function.
For any z, z∗ ∈ [k]n, we define

h(z, z∗) = min
ψ∈Ψ

1

n

n∑
j=1

I
{
ψ(zj) ̸= z∗j

}
, (4)

where Ψ = {ψ : ψ is a bijection from [k] to [k]}. Here, the minimum is taken over all permutations
of [k] to address the identifiability issues of the labels 1, 2, . . . , k. The loss function measures the
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proportion of coordinates where z and z∗ differ, modulo any permutation of label symbols. Thus, it
is referred to as the misclustering error rate in this paper. Another loss that will be used is ℓ(z, z∗)
defined as

ℓ(z, z∗) =

n∑
j=1

∥∥∥θ∗zj − θ∗z∗j

∥∥∥2 . (5)

It measures the clustering performance of z considering the distances among the true centers. It is
related to h(z, z∗) as h(z, z∗) ≤ ℓ(z, z∗)/(n∆2) and provides more information than h(z, z∗). We
will mainly use ℓ(z, z∗) in the technical analysis but will present results using h(z, z∗) which is more
interpretable.

2.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 1.
Theorem 2.1. Under the assumption SNR√

log k
→ ∞, we have

inf
ẑ

sup
z∗∈[k]n

Eh(ẑ, z∗) ≥ exp

(
−(1 + o(1))

SNR2

8

)
. (6)

If SNR = O(1) instead, we have inf ẑ supz∗∈[k]n Eh(ẑ, z∗) ≥ c for some constant c > 0.

Theorem 2.1 allows the cluster numbers k to grow with n and shows that SNR → ∞ is a necessary
condition to have a consistent clustering. If k is a constant, then SNR → ∞ is also a sufficient
condition. Theorem 2.1 holds for any arbitrary configurations of {θ∗a}a∈[k] and Σ∗, with the minimax
lower bound depending on these through SNR. The parameter space is only for z∗ while {θ∗a}a∈[k]

and Σ∗ are held fixed. Hence, (6) can be interpreted as a case-specific result, precisely capturing the
explicit dependence of the minimax rates on {θ∗a}a∈[k] and Σ∗.

Theorem 2.1 is closely related to the LDA. If there are only two clusters with known centers and a
covariance matrix, then estimating each z∗j becomes exactly the task of the LDA: we aim to determine
from which of two normal distributions, each with a different mean but the same covariance matrix,
the observation Yj is generated. In fact, this approach is also how Theorem 2.1 is proved: We first
reduce the estimation problem of z∗ to two-point hypothesis testing for each individual z∗j . The error
of these tests is analyzed in Lemma A.1 using the LDA, and we then aggregate all these testing errors
together.
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Figure 1: A geometric interpretation of SNR.

With the help of Lemma A.1, we have a geometric interpretation of SNR. In the left panel of Figure 1,
we have two normal distributions N (θ∗1 ,Σ

∗) and N (θ∗2 ,Σ
∗) thatX follows. The black line represents

the optimal testing procedure ϕ displayed in Lemma A.1, dividing the space into two half-spaces.
To calculate the testing error, we can make the transformation X ′ = (Σ∗)−

1
2 (X − θ∗1) so that the

two normal distributions become isotropic: N (0, Id) and N ((Σ∗)−
1
2 (θ∗2 − θ∗1), Id) as displayed in

the right panel. Then the distance between the two centers is ∥(Σ∗)−
1
2 (θ∗2 − θ∗1)∥ , and the distance

from a center to the black curve is half of that. Then, the probability that N (0, Id) falls within the
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grayed area equals exp(−(1 + o(1))∥(Σ∗)−
1
2 (θ∗2 − θ∗1)∥2/8), according to Gaussian tail probability.

As a result, ∥(Σ∗)−
1
2 (θ∗2 − θ∗1)∥ is the effective distance between the two centers of N (θ∗1 ,Σ

∗) and
N (θ∗2 ,Σ

∗) for the clustering problem, taking into account the geometry of the covariance matrix.
Since we have multiple clusters, SNR defined in (2) can be interpreted as the minimum effective
distance among the centers {θ∗a}a∈[k], considering the anisotropic structure of Σ∗. This measure
captures the intrinsic difficulty of the clustering problem.

2.3 Rate-Optimal Adaptive Procedure

In this section, we give a computationally feasible and rate-optimal procedure for clustering under
Model 1. Summarized in Algorithm 1, it is a variant of Lloyd’s algorithm. Starting with an initial
setup, it iteratively updates the estimates of the centers {θ∗a}a∈[k] (in (7)), the covariance matrix Σ∗

(in (8)), and the cluster assignment vector z∗ (in (9)). This algorithm differs from Lloyd’s algorithm in
that the latter is designed for isotropic GMMs and does not incorporate the covariance matrix update
outlined in (8). Furthermore, (9) updates the estimation of z∗j using argmina∈[k](Yj−θ

(t)
a )T (Yj−θ(t)a )

instead. To differentiate clearly, we refer to the classic form as the vanilla Lloyd’s algorithm and
our modified version, which accommodates the unknown and anisotropic covariance matrix, as the
adjusted Lloyd’s algorithm.

Algorithm 1 can also be interpreted as a hard EM algorithm. When applying Expectation Maxi-
mization (EM) to Model 1, the M step estimates the parameters {θ∗a}a∈[k] and Σ∗, while the E step
estimates z∗. It turns out the updates on the parameters (7) - (8) are identical to those in the EM’s M
step. However, the update of z∗ in Algorithm 1 differs from that in the EM. Instead of computing a
conditional expectation typical of the E step, the algorithm performs maximization in (9). As a result,
Algorithm 1 effectively consists solely of M steps for both parameters and z∗, characterizing it as a
hard EM algorithm.

Algorithm 1: Adjusted Lloyd’s Algorithm for Model 1.

Input: Data Y , number of clusters k, an initialization z(0), number of iterations T .
Output: z(T )

1 for t = 1, . . . , T do
2 Update the centers:

θ(t)a =

∑
j∈[n] YjI

{
z
(t−1)
j = a

}
∑
j∈[n] I

{
z
(t−1)
j = a

} , ∀a ∈ [k]. (7)

3 Update the covariance matrix:

Σ(t) =

∑
a∈[k]

∑
j∈[n](Yj − θ

(t)
a )(Yj − θ

(t)
a )T I

{
z
(t−1)
j = a

}
n

. (8)

4 Update the cluster assignment vector:

z
(t)
j = argmin

a∈[k]

(Yj − θ(t)a )T (Σ(t))−1(Yj − θ(t)a ), ∀j ∈ [n]. (9)

In Theorem 2.2, we give a computational and statistical guarantee of Algorithm 1. We show that
starting from a decent initialization, within log n iterations, Algorithm 1 achieves the error rate
exp
(
−(1 + o(1))SNR2/8

)
which matches the minimax lower bound given in Theorem 2.1. As a

result, Algorithm 1 is a rate-optimal procedure. In addition, the algorithm is fully adaptive to the
unknown {θ∗a}a∈[k] and Σ∗. The sole piece of information presumed to be known is k, the number of
clusters, as commonly assumed in clustering literature [15, 8, 14]. The theorem also shows that the
number of iterations needed to achieve the optimal rate is at most log n, providing implementation
guidance to practitioners.
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Theorem 2.2. Assume k = O(1), d = O(
√
n), and mina∈[k]

∑n
j=1 I{z∗j = a} ≥ αn

k for some
constant α > 0. Assume SNR → ∞ and λd(Σ∗)/λ1(Σ

∗) = O(1). For Algorithm 1, suppose
z(0) satisfies ℓ(z(0), z∗) = o(n) with probability at least 1 − η. Then with probability at least
1− η − n−1 − exp(−SNR), we have

h(z(t), z∗) ≤ exp

(
−(1 + o(1))

SNR2

8

)
, for all t ≥ log n.

We make the following remarks on the assumptions of Theorem 2.2: When k is constant, the
assumption that SNR → ∞ is a necessary condition for consistent recovery of z∗, as outlined in the
minimax lower bound presented in Theorem 2.1. The assumption on Σ∗ ensures that the covariance
matrix is well-conditioned. The dimensionality d is assumed to be O(

√
n), a stronger assumption

than in [15, 8, 14], where d = O(n) is sufficient. This is because, unlike these studies, our work
requires estimating the covariance matrix Σ∗ and controlling the estimation error ∥Σ(t) − Σ∗∥.

Theorem 2.2 needs a decent initialization z(0) in the sense that it is sufficiently close to the ground
truth such that ℓ(z(0), z∗) = o(n). This is because our theoretical analysis requires the initialization
being within a specific proximity to the true parameters. The requirement can be fulfilled by
simple procedures. An example is the vanilla Lloyd’s algorithm whose performance is studied in
[15, 8]. Though [15, 8] are for isotropic GMMs, their results can be extended to sub-Gaussian
mixture models with nearly identical proof. Since ϵj are sub-Gaussian random variables with
proxy variance λd(Σ∗), [8] implies the vanilla Lloyd’s algorithm output ẑ satisfies ℓ(ẑ, z∗) ≤
n exp(−(1 + o(1))∆2/(8λd(Σ

∗))) with probability at least 1− exp(−∆/
√
λd(Σ∗))− n−1, under

the assumption that ∆2/(k2(kd/n + 1)λd(Σ
∗)) → ∞. Then we have ℓ(ẑ, z∗) = o(n) with high

probability under the assumptions of Theorem 2.2, and hence it can be used as an initialization for
the algorithm.

3 GMM with Unknown and Heterogeneous Covariance Matrices

3.1 Model

In this section, we study the GMM where the covariance matrices of each cluster are unknown and
not necessarily equal to each other. The data-generation process can be displayed as follows,

Model 2: Yj = θ∗z∗j + ϵj , where ϵj
ind∼ N (0,Σ∗

z∗j
),∀j ∈ [n]. (10)

We refer to this as Model 2 throughout the paper to distinguish it from Model 1, as discussed in
Section 2. The key difference between (10) and (1) is that here we have distinct covariance matrices
{Σ∗

a}a∈[k] for each cluster, instead of a single shared Σ∗. We use the same loss function as defined in
(4).

Signal-to-noise Ratio. The signal-to-noise ratio for Model 2 is defined as follows. We use the
notation SNR′ to distinguish it from the SNR used for Model 1. Compared to SNR, SNR′ is much
more complicated and does not have an explicit formula. We first define a set Ba,b ⊂ Rd for any
a, b ∈ [k] such that a ̸= b:

Ba,b =

{
x ∈ Rd :xTΣ∗ 1

2
a Σ∗−1

b (θ∗a − θ∗b ) +
1

2
xT
(
Σ

∗ 1
2

a Σ∗−1
b Σ

∗ 1
2

a − Id

)
x

≤ −1

2
(θ∗a − θ∗b )

TΣ∗−1
b (θ∗a − θ∗b ) +

1

2
log |Σ∗

a| −
1

2
log |Σ∗

b |

}
.

We then define SNR′
a,b = 2minx∈Ba,b

∥x∥ and

SNR′ = min
a,b∈[k]:a ̸=b

SNR′
a,b. (11)

The form of SNR′ is closely connected to the testing error of the QDA, which we will give in
Lemma 3.1. The interpretation of the SNR′, particularly from a geometric perspective, will be
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deferred until after the presentation of Lemma 3.1. Here let us consider a few special cases where
we are able to simplify SNR′: (1) When Σ∗

a = Σ∗ for all a ∈ [k], by simple algebra, we have
SNR′

a,b = ∥(θ∗a − θ∗b )
TΣ∗− 1

2 ∥ for any a, b ∈ [k] such that a ̸= b. Hence, SNR′ = SNR and Model 2
effectively reduces to Model 1. (2) When Σ∗

a = σ2
aId for any a ∈ [k] where σ1, . . . , σk > 0 are large

constants, we have SNR′
a,b,SNR′

b,a both close to 2∥θ∗a − θ∗b∥/(σa + σb). From these examples, we
can see SNR′ is determined by both the centers {θ∗a}a∈[k] and the covariance matrices {Σ∗

a}a∈[k].

3.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 2.

Theorem 3.1. Assume d = O(1) and maxa,b∈[k] λd(Σ
∗
a)/λ1(Σ

∗
b) = O(1). Under the assumption

SNR′
√
log k

→ ∞, we have

inf
ẑ

sup
z∗∈[k]n

Eh(ẑ, z∗) ≥ exp

(
−(1 + o(1))

SNR
′2

8

)
.

If SNR′ = O(1) instead, we have inf ẑ supz∗∈[k]n Eh(ẑ, z∗) ≥ c for some constant c > 0.

Although the statement of Theorem 3.1 appears similar to that of Theorem 2.1, the two minimax
lower bounds differ due to the varying dependencies of the centers and covariance matrices on SNR′

versus SNR. Using the same argument as in Section 2.2, the minimax lower bound established in
Theorem 3.1 closely relates to the QDA between two normal distributions with different means and
different covariance matrices.

Lemma 3.1 (Testing Error for the QDA). Consider two hypotheses H0 : X ∼ N (θ∗1 ,Σ
∗
1) and

H1 : X ∼ N (θ∗2 ,Σ
∗
2). Define a testing procedure

ϕ = I
{
log |Σ∗

1|+ (x− θ∗1)
T (Σ∗

1)
−1(x− θ∗1) ≥ log |Σ∗

2|+ (x− θ∗2)
T (Σ∗

2)
−1(x− θ∗2)

}
.

Then we have inf ϕ̂(PH0(ϕ̂ = 1) + PH1(ϕ̂ = 0)) = PH0(ϕ = 1) + PH1(ϕ = 0) . Assume d = O(1)

and maxa,b∈{1,2} λd(Σ
∗
a)/λ1(Σ

∗
b) = O(1). If min

{
SNR′

1,2, SNR′
2,1

}
→ ∞, we have

inf
ϕ̂
(PH0

(ϕ̂ = 1) + PH1
(ϕ̂ = 0)) ≥ exp

(
−(1 + o(1))

min
{

SNR′
1,2, SNR′

2,1

}2
8

)
.

Otherwise, inf ϕ̂(PH0
(ϕ̂ = 1) + PH1

(ϕ̂ = 0)) ≥ c for some constant c > 0.
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Figure 2: A geometric interpretation of SNR′.

Lemma 3.1 provides a geometric interpretation of SNR′. In the left panel of Figure 2, we have two
normal distributions N (θ∗1 ,Σ

∗
1) and N (θ∗2 ,Σ

∗
2) from which X can be generated, and the black curve

represents the optimal testing procedure ϕ, as detailed in Lemma 3.1. Since Σ∗
1 is not necessarily

equal to Σ∗
2, the black curve is not necessarily a straight line. If H0 is true, the probability that X

is incorrectly classified occurs when X falls into the gray area, represented by PH0
(ϕ = 1). To
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calculate this, we transformX toX ′ = (Σ∗
1)

− 1
2 (X−θ∗1), standardizing the first distribution. Then, as

displayed in the right panel of Figure 2, the two distributions become N (0, Id) and N ((Σ∗
1)

− 1
2 (θ∗2 −

θ∗1), (Σ
∗
1)

− 1
2Σ∗

2(Σ
∗
1)

− 1
2 ), and the optimal testing procedure ϕ becomes I {X ′ ∈ B1,2}. As a result,

in the right panel of Figure 2, B1,2 represents the space colored by gray, and the black curve is
its boundary. Then PH0

(ϕ = 1) is equal to P(N (0, Id) ∈ B1,2). Under the assumption d = O(1)
and maxa,b∈{1,2} λd(Σ

∗
a)/λ1(Σ

∗
b) = O(1), in Lemma C.10, we can show P(N (0, Id) ∈ B1,2) =

exp(−(1 + o(1))SNR
′2
1,2/8). As a result, SNR′ can be interpreted as the minimum effective distance

among the centers {θ∗a}a∈[k], considering the anisotropic and heterogeneous structure of {Σ∗
a}a∈[k],

and it captures the intrinsic difficulty of the clustering problem under Model 2.

3.3 Optimal Adaptive Procedure

In this section, we give a computationally feasible and rate-optimal procedure for clustering under
Model 2. Similar to Algorithm 1, Algorithm 2 is a variant of Lloyd’s algorithm, adjusted to
accommodate unknown and heterogeneous covariance matrices. It can also be interpreted as a
hard EM algorithm under Model 2. Algorithm 2 differs from Algorithm 1 in (13) and (14), as now
there are k covariance matrices instead of a common one.

Algorithm 2: Adjusted Lloyd’s Algorithm for Model 2.

Input: Data Y , number of clusters k, an initialization z(0), number of iterations T .
Output: z(T )

1 for t = 1, . . . , T do
2 Update the centers:

θ(t)a =

∑
j∈[n] YjI

{
z
(t−1)
j = a

}
∑
j∈[n] I

{
z
(t−1)
j = a

} , ∀a ∈ [k]. (12)

3 Update the covariance matrices:

Σ(t)
a =

∑
j∈[n](Yj − θ

(t)
a )(Yj − θ

(t)
a )T I

{
z
(t−1)
j = a

}
∑
j∈[n] I

{
z
(t−1)
j = a

} , ∀a ∈ [k]. (13)

4 Update the cluster assignment vector:

z
(t)
j = argmin

a∈[k]

(Yj − θ(t)a )T (Σ(t)
a )−1(Yj − θ(t)a ) + log |Σ(t)

a |, ∀j ∈ [n]. (14)

In Theorem 3.2, we give a computational and statistical guarantee for Algorithm 2. We demonstrate
that, with proper initialization, Algorithm 2 achieves the minimax lower bound within log n iterations.
The assumptions needed in Theorem 3.2 are similar to those in Theorem 2.2, except that we require
stronger assumptions on the dimensionality d since now we have k (instead of one) covariance
matrices to be estimated. In addition, by assuming maxa,b∈[k] λd(Σ

∗
a)/λ1(Σ

∗
b) = O(1), we ensure

not only that each of the k covariance matrices is well-conditioned but also that they are comparable
to one another.
Theorem 3.2. Assume k = O(1), d = O(1), and mina∈[k]

∑n
j=1 I{z∗j = a} ≥ αn

k for some
constant α > 0. Assume SNR′ → ∞ and maxa,b∈[k] λd(Σ

∗
a)/λ1(Σ

∗
b) = O(1). For Algorithm 2,

suppose z(0) satisfies ℓ(z(0), z∗) = o(n) with probability at least 1 − η. Then with probability at
least 1− η − 5n−1 − exp(−SNR′), we have

h(z(t), z∗) ≤ exp

(
−(1 + o(1))

SNR
′2

8

)
, for all t ≥ log n.

The vanilla Lloyd’s algorithm can be used as the initialization for Algorithm 2. This is because Model
2 is also a sub-Gaussian mixture model. By the same argument as in Section 2.3, the output of the
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vanilla Lloyd’s algorithm ẑ satisfies ℓ(ẑ, z∗) = o(n) with high probability under the assumptions of
Theorem 3.2.

We conclude this section with a time complexity analysis of Algorithm 2. Compared to the vanilla
Lloyd’s algorithm, our method introduces additional computational overhead due to the need for
computing the inverse and determinant of covariance matrices. Specifically, the time complexity of
Algorithm 2 is O(nkd3T ). In contrast, the vanilla Lloyd’s algorithm has a lower time complexity of
O(nkdT ). The increase in complexity stems from matrix operations in d dimensions, as both matrix
inversion and determinant computation scale as O(d3).

4 Numerical Studies

In this section, we compare the performance of our methods with other popular clustering methods
on synthetic and real datasets under different settings.

Model 1. The first simulation is designed for the GMM with unknown but homogeneous covariance
matrices (i.e., Model 1). We independently generate n = 1200 samples with dimension d = 50 from
k = 30 clusters. Each cluster has 40 samples. We set Σ∗ = UTΛU , where Λ is a 50× 50 diagonal
matrix with diagonal elements selected from 0.5 to 8 with equal space and U is a randomly generated
orthogonal matrix. The centers {θ∗a}a∈[n] are orthogonal to each other with ∥θ∗1∥ = . . . = ∥θ∗30∥ = 9.
We consider four popular clustering methods: (1) the spectral clustering method in [14] (denoted as
“spectral”), (2) the vanilla Lloyd’s algorithm in [15] (denoted as “vanilla Lloyd”), (3) Algorithm 1
initialized by the spectral clustering (denoted as “spectral + Alg 1”), and (4) Algorithm 1 initialized
by the vanilla Lloyd (denoted as “vanilla Lloyd + Alg 1”). The comparison is presented in the left
panel of Figure 3.

Model 2. We also compare the performances of four methods (spectral, vanilla Lloyd, spectral +
Alg 2, and vanilla Lloyd + Alg 2) for the GMM with unknown and heterogeneous covariance matrices
(i.e., Model 2). In this case, we take n = 1200, k = 2, and d = 9. We set Σ∗

1 = Id and Σ∗
2 = Λ2,

a diagonal matrix where the first diagonal entry is 0.5 and the remaining entries are 5. We set the
cluster sizes to be 900 and 300, respectively. To simplify the calculation of SNR′, we set θ∗1 = 0 and
θ∗2 = 5e1, with e1 being the vector that has a 1 in its first entry and 0s elsewhere. The comparison is
presented in the right panel of Figure 3.
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Figure 3: Left: Performance of Algorithm 1 compared with other methods under Model 1. Right:
Performance of Algorithm 2 compared with other methods under Model 2.

In Figure 3, the x-axis is the number of iterations and the y-axis is the logarithm of the misclustering
error rate, i.e., log(h). Each of the curves plotted is an average of 100 independent trials. We can
see both Algorithm 1 and Algorithm 2 outperform the spectral clustering and the vanilla Lloyd’s
algorithm significantly. Additionally, the dashed lines in the left and right panels represent the
optimal exponents −SNR2/8 and −SNR′2/8 of the minimax bounds, respectively. It is observed
that both Algorithm 1 and Algorithm 2 meet these benchmarks after three iterations. This justifies the
conclusion that both algorithms are rate-optimal.

9



Real Data. To further demonstrate the effectiveness of our methods, we conduct experiments using
the Fashion-MNIST dataset [23]. In the first analysis, we use a total of 12,000 28×28 grayscale
images, consisting of 6,000 images each from the T-shirt/top class and the Trouser class. The left
panel of Figure 4 gives a visualization of the data points using their first two principal components,
showing the anisotropic and heterogeneous covariance structures. Since a large number of pixels have
zero across most images, we apply PCA to reduce dimensionality from 784 to 50 by retaining the top
50 principal components. Our Algorithm 2 achieves a misclustering error of 5.71%, outperforming
the vanilla Lloyd’s algorithm, which has an error of 8.24%. In the second analysis, we incorporate
an additional class, the Ankle boot class, increasing the total to 18,000 images across three classes.
Following the same preprocessing steps, the visualization of the dataset’s structure in the right panel of
Figure 4 again confirms the presence of anisotropic and heterogeneous covariances. Here, Algorithm
2 achieves an error of 3.97%, an improvement over the 5.64% error rate observed with the vanilla
Lloyd’s algorithm.

Figure 4: Visualization of the Fashion-MNIST dataset using the first two principal components.
The data points are color-coded to indicate class membership: Red represents the T-shirt/top class,
green denotes the Trouser class, and blue signifies the Ankle boot class. This illustration shows the
existence of anisotropic and heterogeneous covariance structures.

5 Conclusion

This paper focuses on clustering methods and theory for GMMs, with anisotropic covariance struc-
tures, presenting new minimax bounds and an adjusted Lloyd’s algorithm tailored for varying
covariance structures. Our theoretical and empirical analyses demonstrate the algorithm’s ability to
achieve optimality within a logarithmic number of iterations. Despite these advances, our results
have some limitations that are worth addressing in future work:

1. High-Dimensional Settings: Current results are restricted to dimensions d growing at a rate
slower than n, specifically d = O(

√
n) as stated in Theorem 2.2. Section 3 further requires

a stronger assumption d = O(1). These constraints stem from technical challenges in
estimating covariance matrices accurately and in controlling matrix determinant. Adopting
more sophisticated analytical tools could potentially relax these bounds to d = O(n). In
scenarios where d exceeds n, the misclustering error deviates from the simpler exponential
decay observed under isotropic GMMs, as shown in [16]. This suggests that our model
might also exhibit similar complexities, warranting further exploration into the technique
used in [16] for potential extensions.

2. Ill-Conditioned Covariance Structures: Our analysis relies on the assumption of well-
conditioned covariance matrices, where maxa,b∈[k] λd(Σ

∗
a)/λ1(Σ

∗
b) = O(1). This con-

dition is crucial for the current analytical framework, as it helps manage the estimation
errors of covariance matrices and their inverses. While more advanced techniques may
allow for a relaxation of this assumption, handling ill-conditioned or degenerate covariance
matrices remains challenging, particularly due to the difficulty of working with matrix
inverses in such cases. While minimax lower bounds suggest that clustering is still possible
even when the covariance matrix is degenerate, it raises computational challenges for our
current algorithms. This highlights the need for developing new algorithms that can function
effectively under less restrictive conditions.
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The appendices are organized as follows. Appendix A is dedicated to proving the results in Section
2. To be more specific, we prove the lower bound, Theorem 2.1, in Appendix A.1 and the upper
bound, Theorem 2.2, in Appendix A.2. For the upper bound proof, we first give a high-level idea in
Appendix A.2.1, followed by a detailed proof in Appendix A.2.2. Appendix B includes proofs of the
results in Section 3: the proof of the lower bound, Theorem 3.1, is in Appendix B.1, and the proof of
the upper bound, Theorem 3.2, is in Appendix B.2. We include all technical lemmas and their proofs
in Appendix C.

A Proofs in Section 2

A.1 Proofs for the Lower Bound

In the following lemma, we give a sharp and explicit formula for the testing error of the LDA.
Here we have two normal distributions N (θ∗1 ,Σ

∗) and N (θ∗2 ,Σ
∗) and an observation X that is

generated from one of them. We are interested in estimating from which distribution the ob-
servation is drawn. By the Neyman-Pearson lemma, it is known that the likelihood ratio test
I
{
2(θ∗2 − θ∗1)

T (Σ∗)−1X ≥ θ∗T2 (Σ∗)−1θ∗2 − θ∗T1 (Σ∗)−1θ∗1
}

is the optimal testing procedure. Then
by using the Gaussian tail probability, we are able to obtain the optimal testing error, with its lower
bound given in Lemma A.1.
Lemma A.1 (Testing Error for the LDA). Consider two hypotheses H0 : X ∼ N (θ∗1 ,Σ

∗) and
H1 : X ∼ N (θ∗2 ,Σ

∗). Define a testing procedure

ϕ = I
{
2(θ∗2 − θ∗1)

T (Σ∗)−1X ≥ θ∗T2 (Σ∗)−1θ∗2 − θ∗T1 (Σ∗)−1θ∗1
}
.

Then inf ϕ̂(PH0
(ϕ̂ = 1)+PH1

(ϕ̂ = 0)) = PH0
(ϕ = 1)+PH1

(ϕ = 0) . If ∥(θ∗2 − θ∗1)
T (Σ∗)−

1
2 ∥ → ∞,

we have

inf
ϕ̂
(PH0(ϕ̂ = 1) + PH1(ϕ̂ = 0)) ≥ exp

(
−(1 + o(1))

∥(θ∗2 − θ∗1)
T (Σ∗)−

1
2 ∥2

8

)
.

Otherwise, inf ϕ̂(PH0(ϕ̂ = 1) + PH1(ϕ̂ = 0)) ≥ c for some constant c > 0.

Proof. Note that ϕ is the likelihood ratio test. By the Neyman-Pearson lemma, it is the optimal
procedure. That is, inf ϕ̂(PH0(ϕ̂ = 1)+PH1(ϕ̂ = 0)) = PH0(ϕ = 1)+PH1(ϕ = 0) . Let ϵ ∼ N (0, Id).
By Gaussian tail probability, we have

PH0(ϕ = 1) + PH1(ϕ = 0) = P
(
2(θ∗2 − θ∗1)

T (Σ∗)−1(θ∗1 + ϵ) ≥ θ∗T2 (Σ∗)−1θ∗2 − θ∗T1 (Σ∗)−1θ∗1
)

+ P
(
2(θ∗2 − θ∗1)

T (Σ∗)−1(θ∗2 + ϵ) < θ∗T2 (Σ∗)−1θ∗2 − θ∗T1 (Σ∗)−1θ∗1
)

= 2P
(
2(θ∗2 − θ∗1)

T (Σ∗)−1(θ∗1 + ϵ) ≥ θ∗T2 (Σ∗)−1θ∗2 − θ∗T1 (Σ∗)−1θ∗1
)

= 2P
(
ϵ >

1

2
∥(θ∗2 − θ∗1)

T (Σ∗)−
1
2 ∥
)

≥ Cmin

{
1,

1

∥(θ∗2 − θ∗1)
T (Σ∗)−

1
2 ∥

exp

(
−∥(θ∗2 − θ∗1)

T (Σ∗)−
1
2 ∥2

8

)}
,

for some constant C > 0. The proof is complete.

Proof of Theorem 2.1. We adopt the idea from [15]. Without loss of generality, assume the minimum
in (2) is achieved at a = 1, b = 2 so that SNR = (θ∗1 − θ∗2)

T (Σ∗)−1(θ∗1 − θ∗2). Consider an arbitrary
z̄ ∈ [k]n such that |{i ∈ [n] : z̄i = a}| ≥ ⌈nk − n

8k2 ⌉ for any a ∈ [k]. Then for each a ∈ [k], we can
choose a subset of {i ∈ [n] : z̄i = a} with cardinality ⌈nk − n

8k2 ⌉, denoted by Ta. Let T = ∪a∈[k]Ta.
Then we can define a parameter space

Z = {z ∈ [k]n : zi = z̄i for all i ∈ T and zi ∈ {1, 2} if i ∈ T c} .
Notice that for any z ̸= z̃ ∈ Z , we have 1

n

∑n
i=1 I{zi ̸= z̃i} ≤ k

n
n

8k2 = 1
8k and 1

n

∑n
i=1 I{ψ(zi) ̸=

z̃i} ≥ 1
n (

n
2k − n

8k2 ) ≥
1
4k for any permutation ψ on [k]. Thus we can conclude

h(z, z̃) =
1

n

n∑
i=1

I{zi ̸= z̃i}, for all z, z̃ ∈ Z.
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We notice that

inf
ẑ

sup
z∗∈[k]n

Eh(ẑ, z∗) ≥ inf
ẑ

sup
z∗∈Z

Eh(ẑ, z∗)

≥ inf
ẑ

1

|Z|
∑
z∗∈Z

Eh(ẑ, z∗)

≥ 1

n

∑
i∈T c

inf
ẑi

1

|Z|
∑
z∗∈Z

Pz∗(ẑi ̸= zi).

Now consider a fixed i ∈ T c. Define Za = {z ∈ Z : zi = a} for a = 1, 2. Then we can see
Z = Z1 ∪ Z2 and Z1 ∩ Z2 = ∅. What is more, there exists a one-to-one mapping f(·) between
Z1 and Z2, such that for any z ∈ Z1, we have f(z) ∈ Z2 with [f(z)]j = zj for any j ̸= i and
[f(z)]i = 2. Hence, we can reduce the problem to a two-point testing probe and then apply Lemma
A.1. We first consider the case that SNR → ∞. We have

inf
ẑi

1

|Z|
∑
z∗∈Z

Pz∗(ẑi ̸= zi) = inf
ẑi

1

|Z|
∑
z∗∈Z1

(
Pz∗(ẑi ̸= 1) + Pf(z∗)(ẑi ̸= 2)

)
≥ 1

|Z|
∑
z∗∈Z1

inf
ẑi

(
Pz∗(ẑi ̸= 1) + Pf(z∗)(ẑi ̸= 2)

)
≥ |Z1|

Z
exp

(
−(1 + η)

SNR2

8

)
≥ 1

2
exp

(
−(1 + η)

SNR2

8

)
,

for some η = o(1). Here the second inequality is due to Lemma A.1. Then,

inf
ẑ

sup
z∗∈[k]n

Eh(ẑ, z∗) ≥ |T c|
2n

exp

(
−(1 + η)

SNR2

8

)
=

1

16k
exp

(
−(1 + η)

SNR2

8

)
= exp

(
−(1 + η′)

SNR2

8

)
,

for some other η′ = o(1), where we use SNR2/ log k → ∞.

The proof for the case SNR = O(1) is similar and hence is omitted here.

A.2 Proofs for the Upper Bound

A.2.1 High-level Idea

In this section, we provide a high-level idea for the proof of Theorem 2.2. The detailed proof is
technical and is given later in Appendix A.2.2.

The key idea for establishing the statistical guarantees of Algorithm 1, an iterative algorithm, is to
perform a “one-step” analysis [8]. That is, assume we have an estimation z for z∗. Then we can
apply (7), (8), and (9) on z to obtain {θ̂a(z)}a∈[k], Σ̂(z), and ẑ(z) sequentially, which all depend on
z. Thus, ẑ(z) can be seen as a refined estimate of z∗. We will first build the connection between
ℓ(z, z∗) with ℓ(ẑ(z), z∗) as in Lemma A.2, which informally states that under certain conditions,
with high probability, we have

ℓ(ẑ(z), z∗) ≤ ξideal(δ) +
1

2
ℓ(z, z∗)

holds for any z ∈ [k]n such that ℓ(z, z∗) is small. Here ξideal(δ) refers to the ideal error, which
eventually leads to the upper bound in Theorem 2.2. Lemma A.2 tells us ẑ(·) has a “contraction”
property. That is, after one iteration of (7), (8), and (9), ℓ(ẑ(z), z∗) is at most a half of ℓ(z, z∗), up to
an additive term ξideal(δ).

To establish Lemma A.2, we decompose the loss ℓ(ẑ(z), z∗) into several errors according to the
difference in their behaviors. Next, we will introduce several conditions (Conditions 1 - 3), under
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which we demonstrate that these errors are either negligible, well-controlled by ℓ(z, z∗), or connected
to ξideal(δ). Once Lemma A.2 is established, we will show in Lemma A.3 that the connection can
be extended to multiple iterations, under two more conditions (Conditions 4 - 5). Lemma A.3 states
informally that, under certain conditions and with high probability, we have

ℓ(z(t), z∗) ≤ ξideal(δ) +
1

2
ℓ(z(t−1), z∗)

for all t ≥ 1. This implies ℓ(z(t), z∗) is eventually at most ξideal(δ), up to some constant factor. Last,
we will show all these conditions hold with high probability. Although the algorithmic guarantees in
Lemma A.2 and Lemma A.3 are established with respect to the ℓ(·, ·) loss, we will use the relationship
between h(·, ·) and ℓ(·, ·) to convert this result to one involving h(·, ·). Hence, we prove Theorem
2.2.

A.2.2 Detailed Proofs

In the statement of Theorem 2.2, the covariance matrix Σ∗ is assumed to satisfy λd(Σ∗)/λ1(Σ
∗) =

O(1). Without loss of generality, we can replace it by assuming Σ∗ satisfies
λmin ≤ λ1(Σ

∗) ≤ λd(Σ
∗) ≤ λmax (15)

where λmin, λmax > 0 are two constants. This is due to the following simple argument using the
scaling properties of normal distributions. Let {Yj} be some dataset generated according to Model
1 with parameters {θ∗a}a∈[k], Σ∗, and z∗. The assumption λd(Σ∗)/λ1(Σ

∗) = O(1) is equivalent to
assuming there exist some constants λmin, λmax > 0 and some quantity σ > 0 that may depend on
n such that λminσ

2 ≤ λ1(Σ
∗) ≤ λd(Σ

∗) ≤ λmaxσ
2. By performing a scaling transformation, we

obtain another dataset Y ′
j = Yj/σ. Note that: 1) {Y ′

j } can be seen as generated from Model 1 with
parameters {θ∗a/σ}a∈[k], Σ∗/σ2, and z∗. 2) Clustering on {Yj} is equivalent to clustering on {Y ′

j }.
3) By the definition in (2), the SNRs that are associated with the data-generating processes of {Y ′

j }
and {Yj} are exactly equal to each other. 4) We have λmin ≤ λ1(Σ

∗/σ2) ≤ λd(Σ
∗/σ2) ≤ λmax.

Thus, for the remainder of this section, we assume that (15) holds without any loss of generality.

In the proof, we will mainly use the loss ℓ(·, ·) for convenience. Recall ∆ is defined as the minimum
distance among centers in (3). We have

h(z, z∗) ≤ ℓ(z, z∗)

n∆2
. (16)

The algorithmic guarantees Lemma A.2 and Lemma A.3 are established with respect to the ℓ(·, ·)
loss. Eventually, we will use (16) to convert it into a result with respect to h(·, ·) in the proof of
Theorem 2.2.

Error Decomposition for the One-step Analysis: Consider an arbitrary z ∈ [k]n. Apply (7), (8),
and (9) on z to obtain {θ̂a(z)}a∈[k], Σ̂(z), and ẑ(z):

θ̂a(z) =

∑
j∈[n] YjI {zj = a}∑
j∈[n] I {zj = a}

, ∀a ∈ [k]

Σ̂(z) =

∑
a∈[k]

∑
j∈[n](Yj − θ̂a(z))(Yj − θ̂a(z))

T I {zj = a}
n

,

ẑj(z) = argmin
a∈[k]

(Yj − θ̂a(z))
T (Σ̂(z))−1(Yj − θ̂a), ∀j ∈ [n].

For simplicity, we denote ẑ as shorthand for ẑ(z). Let j ∈ [n] be an arbitrary index with z∗j = a.
According to (9), z∗j will be incorrectly estimated after one iteration in ẑ if a ̸= argminb∈[k](Yj −
θ̂b(z))

T (Σ̂(z))−1(Yj − θ̂b(z)). Therefore, it is important to analyze the event

⟨Yj − θ̂b(z), (Σ̂(z))
−1(Yj − θ̂b(z))⟩ ≤ ⟨Yj − θ̂a(z), (Σ̂(z))

−1(Yj − θ̂a(z))⟩, (17)
for any b ∈ [k] \ {a}. Note that Yj = θ∗a + ϵj . After some rearrangements, we can see (17) is
equivalent to

⟨ϵj , (Σ̂(z∗))−1(θ̂a(z
∗)− θ̂b(z

∗))⟩

≤ − 1

2
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩+ Fj(a, b, z) +Gj(a, b, z) +Hj(a, b, z),
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where

Fj(a, b, z) = ⟨ϵj , (Σ̂(z))−1(θ̂b(z)− θ̂b(z
∗))⟩ − ⟨ϵj , (Σ̂(z))−1(θ̂a(z)− θ̂a(z

∗))⟩
+ ⟨ϵj , ((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ̂b(z

∗)− θ̂a(z
∗))⟩,

Gj(a, b, z) =
1

2
⟨θ∗a − θ̂a(z), (Σ̂(z))

−1(θ∗a − θ̂a(z))⟩ −
1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂(z))−1(θ∗a − θ̂a(z
∗))⟩

+
1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂(z))−1(θ∗a − θ̂a(z
∗))⟩ − 1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂(z∗))−1(θ∗a − θ̂a(z
∗))⟩

− 1

2
⟨θ∗a − θ̂b(z), (Σ̂(z))

−1(θ∗a − θ̂b(z))⟩+
1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂(z))−1(θ∗a − θ̂b(z
∗))⟩

− 1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂(z))−1(θ∗a − θ̂b(z
∗))⟩+ 1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂(z∗))−1(θ∗a − θ̂b(z
∗))⟩,

Hj(a, b, z) =− 1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂(z∗))−1(θ∗a − θ̂b(z
∗))⟩+ 1

2
⟨θ∗a − θ∗b , (Σ̂(z

∗))−1(θ∗a − θ∗b )⟩

− 1

2
⟨θ∗a − θ∗b , (Σ̂(z

∗))−1(θ∗a − θ∗b )⟩+
1

2
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩

+
1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂(z∗))−1(θ∗a − θ̂a(z
∗))⟩.

In the above decomposition, the expression ⟨ϵj , (Σ̂(z∗))−1(θ̂a(z
∗) − θ̂b(z

∗))⟩ ≤ − 1
2 ⟨θ

∗
a −

θ∗b , (Σ
∗)−1(θ∗a − θ∗b )⟩ does not involve z. Roughly speaking, it corresponds to the event that z∗j will

be incorrectly estimated in ẑ(z∗). This is considered the main part of (17) and will contribute to
ξideal. The difference between (17) and the main term is expressed through the terms Fj , Gj , Hj : Fj
includes terms related to noise ϵj , illustrating the impact of measurement noise; Gj covers estimation
errors for cluster centers (θ̂a(z) − θ̂a(z

∗)) and covariance matrices (Σ̂(z) − Σ̂(z∗)), showing the
effect of the parameter estimation inaccuracies; Hj contains all other terms from additional error
sources. Readers can refer to [8] for more information about the decomposition.

Conditions and Guarantees for One-step Analysis. We continue to analyze the event (17). We
first define a quantity independent of z, which we refer to as the ideal error:

ξideal(δ) =

n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I

{
⟨ϵj , (Σ̂(z∗))−1(θ̂a(z

∗)− θ̂b(z
∗))⟩

≤ −1− δ

2
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩

}
.

When δ = 0, it is determined by the main term in (17), namely ⟨ϵj , (Σ̂(z∗))−1(θ̂a(z
∗)− θ̂b(z

∗))⟩ ≤
− 1

2 ⟨θ
∗
a− θ∗b , (Σ∗)−1(θ∗a− θ∗b )⟩. Roughly speaking, ξideal(0) relates to the performance of ẑ(z∗). Due

to the presence of the terms Fj , Gj , Hj in the decomposition of (17), what appears in the analysis of
(17) is ξideal(δ) instead of ξideal(0) where hopefully δ > 0 is some small number.

To establish the guarantee for one-step analysis, we next give several conditions on the error terms
Fj(a, b; z), Gj(a, b; z) and Hj(a, b; z).
Condition 1. Assume that

max
{z:l(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Hj(z
∗
j , b, z)|

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩
≤ δ

4

holds with probability at least 1− η1 for some τ, δ, η1 > 0.
Condition 2. Assume that

max
{z:l(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Fj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2ℓ(z, z∗)
≤ δ2

128

holds with probability at least 1− η2 for some τ, δ, η2 > 0.
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Condition 3. Assume that

max
{z:l(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Gj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j
− θ∗b )⟩

≤ δ

8

holds with probability at least 1− η3 for some τ, δ, η3 > 0.
Lemma A.2. Assumes Conditions 1 - 3 hold for some τ, δ, η1, η2, η3, > 0. We then have

P
(
ℓ(ẑ, z∗) ≤ ξideal(δ) +

1

2
ℓ(z, z∗) for any z ∈ [k]n such that ℓ(z, z∗) ≤ τ

)
≥ 1− η,

where η =
∑3
i=1 ηi.

Proof. Consider any j ∈ [n] such that z∗j = a. We notice that for any b ∈ [k] such that b ̸= a,

I {ẑj = b} ≤ I
{
⟨Yj − θ̂b(z), (Σ̂(z))

−1(Yj − θ̂b(z))⟩ ≤ ⟨Yj − θ̂a(z), (Σ̂(z))
−1(Yj − θ̂a(z))⟩

}
= I

{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ̂b(z
∗))⟩

≤ −1

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩+ Fj(z
∗
j , b, z) +Gj(z

∗
j , b, z) +Hj(z

∗
j , b, z)

}
≤ I

{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ̂b(z
∗))⟩ ≤ −1− δ

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+ I
{
δ

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩ ≤ Fj(z
∗
j , b, z) +Gj(z

∗
j , b, z) +Hj(z

∗
j , b, z)

}
≤ I

{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ̂b(z
∗))⟩ ≤ −1− δ

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+ I
{
δ

8
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩ ≤ Fj(z
∗
j , b, z)

}
≤ I

{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ̂b(z
∗))⟩ ≤ −1− δ

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+
64Fj(z

∗
j , b, z)

2

δ2⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2
,

where the second inequality comes from Conditions 1 and 3. Note that we can multiply I {ẑj = b}
on both sides of the above display and the inequality still holds. Hence,

I {ẑj = b} ≤ I
{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ̂b(z
∗))⟩ ≤ −1− δ

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+
64Fj(z

∗
j , b, z)

2

δ2⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2
I {ẑj = b} .

Thus, we have
ℓ(ẑ, z∗)

=

n∑
j=1

∑
b∈[k]\{a}

∥∥∥θ∗b − θ∗z∗j

∥∥∥2 I {ẑj = b}

≤ ξideal(δ) +

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗b − θ∗z∗j

∥∥∥2 I {ẑj = b}
64Fj(z

∗
j , b, z)

2

δ2⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2

≤ ξideal(δ) +

n∑
j=1

max
b∈[k]\{z∗j }

∥∥∥θ∗b − θ∗z∗j

∥∥∥2 64Fj(z
∗
j , b, z)

2

δ2⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2

≤ ξideal(δ) +
ℓ(z, z∗)

2
,

which implies Lemma A.2. Here the last inequality uses Condition 2.
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Conditions and Guarantees for Multiple Iterations. In the above, we establish a statistical
guarantee for the one-step analysis. Now we will extend the result to multiple iterations. That is,
starting from some initialization z(0), we will characterize how the losses ℓ(z(0), z∗), ℓ(z(1), z∗),
ℓ(z(2), z∗), . . . , decay. We impose conditions on ξideal(δ) and the initialization z(0).

Condition 4. Assume that

ξideal(δ) ≤
3τ

8

holds with probability at least 1− η4 for some τ, δ, η4 > 0.

Finally, we need a condition on the initialization.

Condition 5. Assume that

ℓ(z(0), z∗) ≤ τ

holds with probability at least 1− η5 for some τ, η5 > 0.

With these conditions satisfied, we can give a lemma that shows the convergence of our algorithm.

Lemma A.3. Assume Conditions 1 - 5 hold for some τ, δ, η1, η2, η3, η4, η5 > 0. We then have

ℓ(z(t), z∗) ≤ ξideal(δ) +
1

2
ℓ(z(t−1), z∗)

for all t ≥ 1, with probability at least 1− η, where η =
∑5
i=1 ηi.

Proof. By Conditions 4, 5 and a mathematical induction argument, we can easily conclude
ℓ(z(t), z∗) ≤ τ for any t ≥ 0. Thus, Lemma A.3 is a direct extension of Lemma A.2.

With-high-probability Results for the Conditions and Proof of Theorem 2.2. Recall the defini-
tion of ∆ in (3). Recall that in (15) we assume λmin ≤ λ1(Σ

∗) ≤ λd(Σ
∗) ≤ λmax for two constants

λmin, λmax > 0. Hence we have ∆ is of the same order as SNR. Specifically, we have

1√
λmax

∆ ≤ SNR ≤ 1√
λmin

∆. (18)

Hence the assumption SNR → ∞ in the statement of Theorem 2.2 is equivalently ∆ → ∞. Next,
we give two with-high-probability lemmas. The first lemma is for Conditions 1-3, providing upper
bounds for the quantities involved in these conditions, showing that δ can be taken as some o(1) term.
The second lemma shows that for any δ = o(1), ξideal(δ) is upper bounded by the desired minimax
rate multiplied by the sample size n.

Lemma A.4. Under the same conditions as in Theorem 2.2, for any constant C ′ > 0, there exists
some constant C > 0 only depending on α and C ′ such that

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Hj(z
∗
j , b, z)|

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩
≤ C

√
k(d+ log n)

n
(19)

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Fj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2ℓ(z, z∗)
≤ Ck3

(
τ

n
+

1

∆2
+

d2

n∆2

)
(20)

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Gj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j
− θ∗b )⟩

≤ Ck

(
τ

n
+

1

∆

√
τ

n
+
d
√
τ

n∆

)
(21)

with probability at least 1− n−C
′
. As a result, Conditions 1-3 hold for some δ = o(1).

Proof. Under the conditions of Theorem 2.2, the inequalities (33)-(38) hold with probability at
least 1− n−C

′
. In the remaining proof, we will work on the event these inequalities hold. Denote
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Σ̂a(z) =
∑

j∈[n](Yj−θ̂a(z))(Yj−θ̂a(z))T I{zj=a}∑
j∈[n] I{zj=a}

and Σ∗
a = Σ∗ for any a ∈ [k]. Then we have the

equivalence

Σ̂(z∗)− Σ∗ =

k∑
a=1

∑n
j=1 I{z∗j = a}

n
(Σ̂a(z

∗)− Σ∗
a).

Hence, we can use the results from Lemma C.7 and Lemma C.8.

By (43) and (44), we have

∥Σ̂(z∗)− Σ∗∥ ⪯
√
k(d+ log n)

n
,

and

∥Σ̂(z)− Σ̂(z∗)∥ =

∥∥∥∥∥
k∑
a=1

∑n
j=1 I{zj = a}

n
Σ̂a(z)−

k∑
a=1

∑n
j=1 I{z∗j = a}

n
Σ̂a(z

∗)

∥∥∥∥∥
⪯

∥∥∥∥∥
k∑
a=1

∑n
j=1 I{zj = a}

n
(Σ̂a(z)− Σ̂(z∗))

∥∥∥∥∥+
∥∥∥∥∥

k∑
a=1

∑n
j=1(I{zj = a} − I{z∗j = a})

n
Σ̂a(z

∗)

∥∥∥∥∥
⪯

k
√
nℓ(z, z∗)

n∆
+
k

n
ℓ(z, z∗) +

kd

n∆

√
ℓ(z, z∗) +

k

n∆2
ℓ(z, z∗)

⪯
k
√
nℓ(z, z∗)

n∆
+
k

n
ℓ(z, z∗) +

kd

n∆

√
ℓ(z, z∗).

By the assumption that kd = O(
√
n), ∆

k → ∞ and τ = o(n/k), we have ∥Σ̂(z∗)− Σ∗∥, ∥Σ̂(z)−
Σ̂(z∗)∥ = o(1), which implies ∥(Σ̂(z∗))−1∥, ∥(Σ̂(z))−1∥ ⪯ 1. Thus, we have

∥(Σ̂(z∗))−1 − (Σ∗)−1∥ ≤ ∥(Σ̂(z∗))−1∥∥Σ̂(z∗)− Σ∗∥∥(Σ∗)−1∥ ⪯
√
k(d+ log n)

n
, (22)

and similarly

∥(Σ̂(z))−1 − (Σ̂(z∗))−1∥ ⪯ k

n
ℓ(z, z∗) +

k
√
nℓ(z, z∗)

n∆
+
kd

n∆

√
ℓ(z, z∗). (23)

Now we start to prove (19)-(21). Let Fj(a, b, z) = F
(1)
j (a, b, z)+F

(2)
j (a, b, z)+F

(3)
j (a, b, z) where

F
(1)
j (a, b, z) := ⟨ϵj , (Σ̂(z))−1(θ̂b(z)− θ̂b(z

∗))⟩ − ⟨ϵj , (Σ̂(z))−1(θ̂a(z)− θ̂a(z
∗))⟩,

F
(2)
j (a, b, z) := −⟨ϵj , ((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ∗a − θ∗b )⟩,

F
(3)
j (a, b, z) := −⟨ϵj , ((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ∗b − θ̂b(z

∗))⟩+ ⟨ϵj , ((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ∗a − θ̂a(z
∗))⟩.

Notice that
n∑
j=1

max
b∈[k]\{z∗j }

F
(2)
j (z∗j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2ℓ(z, z∗)

⪯
n∑
j=1

k∑
b=1

∣∣∣∣⟨ϵj , ((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ∗z∗j − θ∗b )⟩
∣∣∣∣2

∥θ∗z∗j − θ∗b∥2ℓ(z, z∗)

≤
k∑
b=1

∑
a∈[k]\{b}

n∑
j=1

I{z∗j = a}

∣∣∣∣⟨ϵj , ((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ∗a − θ∗b )⟩
∣∣∣∣2

∥θ∗a − θ∗b∥2ℓ(z, z∗)

≤
k∑
b=1

∑
a∈[k]\{b}

∥((Σ̂(z))−1 − (Σ̂(z∗))−1)(θ∗a − θ∗b )∥2

∥θ∗a − θ∗b∥2ℓ(z, z∗)

∥∥∥∥ n∑
j=1

I{z∗j = a}ϵjϵTj
∥∥∥∥

⪯ k3(
τ

n
+

1

∆2
+

d2

n∆2
),
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where we use (34), (23), and the fact that ℓ(z, z∗) ≤ τ and kd = O(
√
n) for the last inequal-

ity. Here the second to last inequality is due to the following argument: for any w ∈ Rd, we
have

∑
j |⟨ϵj , w⟩|2 =

∑
j w

T ϵjϵ
T
j w = wT (

∑
j ϵjϵ

T
j )w ≤ ∥w∥2∥

∑
j ϵjϵ

T
j ∥. From (41) we have

maxa∈[k] ∥θ∗a − θ̂a(z
∗)∥ = o(1) under the assumption kd = O(

√
n). By the similar analysis as in

F
(2)
j (a, b, z), we have

n∑
j=1

max
b∈[k]\{z∗j }

F
(3)
j (z∗j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2ℓ(z, z∗)
⪯ k3(

τ

n
+

1

∆2
+

d2

n∆2
).

Similarly, we have
n∑
j=1

max
b∈[k]\{z∗j }

F
(1)
j (z∗j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗)−1(θ∗z∗j

− θ∗b )⟩2ℓ(z, z∗)

⪯
k∑
b=1

∑
a∈[k]\{b}

∥(Σ̂(z))−1(θ̂a(z)− θ̂a(z
∗))∥2

∥θ∗a − θ∗b∥2ℓ(z, z∗)

∥∥∥∥ n∑
j=1

I{z∗j = a}ϵjϵTj
∥∥∥∥

⪯ k3

∆4
,

where we use (42) and the fact that (Σ̂(z))−1 has bounded operator norm. Combining these terms
together, we obtain (20).

Next, for (19), by (41) we have

| − ⟨θ∗a − θ̂b(z
∗), (Σ̂(z∗))−1(θ∗a − θ̂b(z

∗))⟩+ ⟨θ∗a − θ∗b , (Σ̂(z
∗))−1(θ∗a − θ∗b )⟩|

≤ |⟨θ∗b − θ̂b(z
∗), (Σ̂(z∗))−1(θ∗b − θ̂b(z

∗))⟩|+ 2|⟨θ∗b − θ̂b(z
∗), (Σ̂(z∗))−1(θ∗a − θ∗b )⟩|

⪯ k(d+ log n)

n
+

√
k(d+ log n)

n
∥θ∗a − θ∗b∥,

and

|⟨θ∗a − θ̂a(z
∗), (Σ̂(z∗))−1(θ∗a − θ̂a(z

∗))⟩| ⪯ k(d+ log n)

n
.

By (22) we have

| − ⟨θ∗a − θ∗b , (Σ̂(z
∗))−1(θ∗a − θ∗b )⟩+ ⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩| ⪯
√
k(d+ log n)

n
∥θ∗a − θ∗b∥2.

Using the results above we can get (19).

Finally we are going to establish (21). Recall the definition of Gj(a, b, z) which has four terms. For
the third and fourth terms, we have

| − ⟨θ∗a − θ̂b(z), (Σ̂(z))
−1(θ∗a − θ̂b(z))⟩+ ⟨θ∗a − θ̂b(z

∗), (Σ̂(z))−1(θ∗a − θ̂b(z
∗))⟩|

⪯ ∥θ̂b(z)− θ̂b(z
∗)∥2 + ∥θ̂b(z)− θ̂b(z

∗)∥∥θ∗a − θ∗b∥,
and

| − ⟨θ∗a − θ̂b(z
∗), (Σ̂(z))−1(θ∗a − θ̂b(z

∗))⟩+ ⟨θ∗a − θ̂b(z
∗), (Σ̂(z∗))−1(θ∗a − θ̂b(z

∗))⟩|
⪯ ∥θ∗a − θ∗b∥2∥(Σ̂(z))−1 − (Σ̂(z∗))−1∥.

We can easily verify that the other two terms are smaller than the above two terms. Then, by using
(42) and (23), we have

|Gj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j
− θ∗b )⟩

⪯
∥θ̂b(z)− θ̂b(z

∗)∥2 + ∥θ̂b(z)− θ̂b(z
∗)∥∥θ∗z∗j − θ∗b∥+ ∥θ∗z∗j − θ∗b∥2∥(Σ̂(z))−1 − (Σ̂(z∗))−1∥

∥θ∗z∗j − θ∗b∥2

⪯ kτ

n
+
k

∆

√
τ

n
+
kd

√
τ

n∆
.
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Lemma A.5. With the same conditions as in Theorem 2.2, for any δ = o(1), we have

ξideal(δ) ≤ n exp

(
−(1 + o(1))

SNR2

8

)
.

with probability at least 1− n−C
′ − exp(−SNR).

Proof. Under the conditions of Theorem 2.2, the inequalities (33)-(38) hold with probability at least
1 − n−C

′
. In the remaining proof, we will work on the event these inequalities hold. Recall the

definition of ξideal. We can write

ξideal(δ) =

n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ̂b(z
∗))⟩ ≤ −1− δ

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
⟨ϵj , (Σ∗)−1(θ∗z∗j − θ∗b )⟩ ≤ −1− δ − δ̄

2
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+

n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
⟨ϵj , ((Σ̂(z∗))−1 − (Σ∗)−1)(θ∗z∗j − θ∗b )⟩ ≤ − δ̄

6
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+

n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
⟨ϵj , (Σ̂(z∗))−1(θ̂z∗j (z

∗)− θ∗z∗j )⟩ ≤ − δ̄
6
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

+

n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
−⟨ϵj , (Σ̂(z∗))−1(θ̂b(z

∗)− θ∗b )⟩ ≤ − δ̄
6
⟨θ∗z∗j − θ∗b , (Σ

∗)−1(θ∗z∗j − θ∗b )⟩
}

=M1 +M2 +M3 +M4.

where δ̄ = δ̄n is some sequence to be chosen later. We bound the four terms sequentially. Suppose
ϵj = (Σ∗)1/2wj , where wj

ind∼ N (0, Id). By (22), we know

M2 ≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{

δ̄

6λmax
∥θ∗z∗j − θ∗b∥2 ≤ λmax∥wj∥∥(Σ̂(z∗))−1 − (Σ∗)−1∥∥θ∗z∗j − θ∗b∥

}

≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
Cδ̄∥θ∗z∗j − θ∗b∥

√
n

d+ log n
≤ ∥wj∥

}

≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I
{
Cδ̄2∥θ∗z∗j − θ∗b∥2

n

d+ log n
− 2d ≤ ∥wj∥2 − 2d

}
,

where C is a constant which may vary from line by line. Recall that kd = O(
√
n), mina̸=b ∥θ∗a −

θ∗b∥ → ∞, and ∆/k → ∞ by assumption. Let n−
1
4 = o(δ̄). Using the χ2 tail probability in Lemma

C.1, we have for any a ̸= b ∈ [k],

EM2 ≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2 exp
(
−Cδ̄2∥θ∗z∗j − θ∗b∥2

√
n
)
≤ n exp

(
−(1 + o(1))

SNR2

8

)
.

We can obtain similar bounds on M3 and M4 by using (41). For M1, the Gaussian tail bound leads to
the inequality

P
{
⟨ϵj , (Σ∗)−1(θ∗a − θ∗b )⟩ ≤ −1− δ − δ̄

2
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩
}

= P
{
⟨wj , (Σ∗)−1/2(θ∗a − θ∗b )⟩ ≤ −1− δ − δ̄

2
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩
}

≤ exp

(
− (1− δ − δ̄)2

8
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩
)
.
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Thus,

EM1 ≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2 exp
(
− (1− δ − δ̄)2

8
⟨θ∗a − θ∗b , (Σ

∗)−1(θ∗a − θ∗b )⟩
)

≤ n exp

(
−(1 + o(1))

SNR2

8

)
.

Overall, we have Eξideal ⪯ n exp
(
−(1 + o(1)) SNR2

8

)
. By the Markov’s inequality, we have

P(ξideal(δn) ≥ Eξideal exp(SNR)) ≤ exp(−SNR).

In other words, with probability at least 1− exp(−SNR), we have

ξideal(δn) ≤ Eξideal(δn) exp(SNR) ≤ n exp

(
−(1 + o(1))

SNR2

8

)
.

Proof of Theorem 2.2. By Lemmas A.3 - A.5, we have that Conditions 1 - 5 are satisfied with
probability at least 1− η − n−1 − exp(−SNR). Then applying Lemma A.3, we have

ℓ(z(t), z∗) ≤ n exp

(
−(1 + o(1))

SNR2

8

)
+

1

2
ℓ(z(t−1), z∗), for all t ≥ 1.

By (16), and since there exists a constant C such that ∆ ≤ CSNR, we can conclude

h(z(t), z∗) ≤ exp

(
−(1 + o(1))

SNR2

8

)
+ 2−t, for all t ≥ 1.

Notice that h(·, ·) takes value in the set {j/n : j ∈ [n] ∪ {0}}, the term 2−t in the above inequality
should be negligible as long as 2−t = o(n−1). Thus, we can claim

h(z(t), z∗) ≤ exp

(
−(1 + o(1))

SNR2

8

)
, for all t ≥ log n.

B Proofs in Section 3

B.1 Proofs for the Lower Bound

Proof of Lemma 3.1. The Neyman-Pearson lemma tells us the likelihood ratio test ϕ is the optimal
procedure. Following the proof of Lemma A.1, we have

PH0
(ϕ = 1) + PH1

(ϕ = 0) = P(ϵ ∈ B1,2) + P(ϵ ∈ B2,1)

≥ exp

(
−1 + o(1)

8
SNR

′2
1,2

)
+ exp

(
−1 + o(1)

8
SNR

′2
2,1

)
,

where the last inequality is by Lemma C.10.

Proof of Theorem 3.1. The proof is identical to the proof of Theorem 2.1 and is omitted here.

B.2 Proofs for the Upper Bound

We adopt a similar proof idea as in Section 2 for Model 1. We first present an error decomposition
for the one-step analysis for Algorithm 2. In Lemma B.1, we show the loss decays after a one-step
iteration under Conditions 6 - 11. Then in Lemma B.2 we extend the result to multiple iterations,
under two extra Conditions 12 - 13. Finally, we show that all the conditions are satisfied with high
probability and thus prove Theorem 3.2.
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In the statement of Theorem 3.2, we assume maxa,b∈[k] λd(Σ
∗
a)/λ1(Σ

∗
b) = O(1) for the covariance

matrices {Σ∗
a}a∈[k]. Without loss of generality, we can replace it by assuming {Σ∗

a}a∈[k] satisfy

λmin ≤ min
a∈[k]

λ1(Σ
∗
a) ≤ max

a∈[k]
λd(Σ

∗
a) ≤ λmax (24)

where λmin, λmax > 0 are two constants. This is due to the scaling properties of the normal
distributions. The reasoning is the same as that in (15) for Model 1 and is omitted here. For the
remainder of this section, we will assume that (24) holds for the covariance matrices.

Error Decomposition for the One-step Analysis: Consider an arbitrary z ∈ [k]n. Apply (12),
(13), and (14) on z to obtain {θ̂a(z)}a∈[k], {Σ̂a(z)}a∈[k], and ẑ(z):

θ̂a(z) =

∑
j∈[n] YjI {zj = a}∑
j∈[n] I {zj = a}

,

Σ̂a(z) =

∑
j∈[n](Yj − θ̂a(z))(Yj − θ̂a(z))

T I {zj = a}∑
j∈[n] I {zj = a}

, ∀a ∈ [k],

ẑj(t) = argmin
a∈[k]

(Yj − θ̂a(z))
T (Σ̂a(a))

−1(Yj − θ̂a(z)) + log |Σ̂a(z)|, ∀j ∈ [n].

For simplicity, we denote ẑ as shorthand for ẑ(z). Let j ∈ [n] be an arbitrary index with z∗j = a.
According to (14), z∗j will be incorrectly estimated after one iteration in ẑ if a ̸= argminb∈[k](Yj −
θ̂b(z))

T (Σ̂b(z))
−1(Yj − θ̂b(z)) + log |Σ̂b(z)|. That is, it is important to analyze the event

⟨Yj − θ̂b(z), (Σ̂b(z))
−1(Yj − θ̂b(z))⟩+ log |Σ̂b(z)| ≤ ⟨Yj − θ̂a(z), (Σ̂a(z))

−1(Yj − θ̂a(z))⟩+ log |Σ̂a(z)|,
(25)

for any b ∈ [k] \ {a}. After some rearrangements, we can see (25) is equivalent to

⟨ϵj , (Σ̂b(z∗))−1(θ∗a − θ̂b(z
∗))⟩ − ⟨ϵj , (Σ̂a(z∗))−1(θ∗a − θ̂a(z

∗))⟩

+
1

2
⟨ϵj , ((Σ̂b(z∗))−1 − (Σ̂a(z

∗))−1)ϵj⟩ −
1

2
log |Σ∗

a|+
1

2
log |Σ∗

b |

≤ − 1

2
⟨θ∗a − θ∗b , (Σ

∗
b)

−1(θ∗a − θ∗b )⟩

+ Fj(a, b, z) +Qj(a, b, z) +Gj(a, b, z) +Hj(a, b, z) +Kj(a, b, z) + Lj(a, b, z),

where
Fj(a, b, z) = ⟨ϵj , (Σ̂b(z))−1(θ̂b(z)− θ̂b(z

∗))⟩ − ⟨ϵj , (Σ̂a(z))−1(θ̂a(z)− θ̂a(z
∗))⟩

− ⟨ϵj , ((Σ̂b(z))−1 − (Σ̂b(z
∗))−1)(θ∗a − θ̂b(z

∗))⟩
+ ⟨ϵj , ((Σ̂a(z))−1 − (Σ̂a(z

∗))−1)(θ∗a − θ̂a(z
∗))⟩,

Qj(a, b, z) = −1

2
⟨ϵj , ((Σ̂b(z))−1 − (Σ̂b(z

∗))−1)ϵj⟩+
1

2
⟨ϵj , ((Σ̂a(z))−1 − (Σ̂a(z

∗))−1)ϵj⟩,

Gj(a, b, z) =
1

2
⟨θ∗a − θ̂a(z), (Σ̂a(z))

−1(θ∗a − θ̂a(z))⟩ −
1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂a(z))
−1(θ∗a − θ̂a(z

∗))⟩

+
1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂a(z))
−1(θ∗a − θ̂a(z

∗))⟩ − 1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂a(z
∗))−1(θ∗a − θ̂a(z

∗))⟩

− 1

2
⟨θ∗a − θ̂b(z), (Σ̂b(z))

−1(θ∗a − θ̂b(z))⟩+
1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂b(z))
−1(θ∗a − θ̂b(z

∗))⟩

− 1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂b(z))
−1(θ∗a − θ̂b(z

∗))⟩+ 1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂b(z
∗))−1(θ∗a − θ̂b(z

∗))⟩,

Hj(a, b, z) =− 1

2
⟨θ∗a − θ̂b(z

∗), (Σ̂b(z
∗))−1(θ∗a − θ̂b(z

∗))⟩+ 1

2
⟨θ∗a − θ∗b , (Σ̂b(z

∗))−1(θ∗a − θ∗b )⟩

− 1

2
⟨θ∗a − θ∗b , (Σ̂b(z

∗))−1(θ∗a − θ∗b )⟩+
1

2
⟨θ∗a − θ∗b , (Σ

∗
b)

−1(θ∗a − θ∗b )⟩

+
1

2
⟨θ∗a − θ̂a(z

∗), (Σ̂a(z
∗))−1(θ∗a − θ̂a(z

∗))⟩,
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Kj(a, b, z) =
1

2
(log |Σ̂a(z)| − log |Σ̂a(z∗)|)−

1

2
(log |Σ̂b(z)| − log |Σ̂b(z∗)|),

Lj(a, b, z) =
1

2
(log |Σ̂a(z∗)| − log |Σ∗

a|)−
1

2
(log |Σ̂b(z∗)| − log |Σ∗

b |).

Among these terms, Fj , Gj , Hj are nearly identical to their counterparts in Section A.2.2 with Σ̂(z)

replaced by Σ̂a(z) or Σ̂b(z). There are three extra terms not appearing in Section A.2.2: Qj is a
quadratic term of ϵj and Kj , Lj are terms involving matrix determinants.

Conditions and Guarantees for One-step Analysis. To establish the guarantee for the one-step
analysis, we first give several conditions on the error terms.
Condition 6. Assume that

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Hj(z
∗
j , b, z)|

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩

≤ δ

12

holds with probability at least 1− η1 for some τ, δ, η1 > 0.
Condition 7. Assume that

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Fj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

≤ δ2

288

holds with probability at least 1− η2 for some τ, δ, η2 > 0.
Condition 8. Assume that

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Gj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j
− θ∗b )⟩

≤ δ

12

holds with probability at least 1− η3 for some τ, δ, η3 > 0.
Condition 9. Assume that

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Qj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

≤ δ2

288

holds with probability at least 1− η4 for some τ, δ, η4 > 0.
Condition 10. Assume that

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Kj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

≤ δ2

288

holds with probability at least 1− η5 for some τ, δ, η5 > 0.
Condition 11. Assume that

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Lj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j
− θ∗b )⟩

≤ δ

12

holds with probability at least 1− η6 for some τ, δ, η6 > 0.

We next define a quantity referred to as the ideal error,

ξideal(δ) =

n∑
j=1

∑
b∈[k]\{z∗j }

∥θ∗z∗j − θ∗b∥2I{⟨ϵj , (Σ̂b(z∗))−1(θ∗a − θ̂b(z
∗))⟩ − ⟨ϵj , (Σ̂a(z∗))−1(θ∗a − θ̂a(z

∗))⟩

+
1

2
⟨ϵj , ((Σ̂b(z∗))−1 − (Σ̂a(z

∗))−1)ϵj⟩ −
1

2
log |Σ∗

a|+
1

2
log |Σ∗

b | ≤ −1− δ

2
⟨θ∗a − θ∗b , (Σ

∗
b)

−1(θ∗a − θ∗b )⟩}.

Lemma B.1. Assumes Conditions 6 - 11 hold for some τ, δ, η1, . . . , η6 > 0. We then have

P
(
ℓ(ẑ, z∗) ≤ ξideal(δ) +

1

2
ℓ(z, z∗) for any z ∈ [k]n such that ℓ(z, z∗) ≤ τ

)
≥ 1− η,

where η =
∑6
i=1 ηi.

Proof. The proof of this lemma is quite similar to the proof of Lemma A.2. The additional terms Qj
and Kj can be handled in the same way as Fj while Lj can be handled similarly to Hj . We omit the
details here.
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Conditions and Guarantees for Multiple Iterations. In the above, we establish a statistical
guarantee for the one-step analysis. Now we will extend the result to multiple iterations. That is,
starting from some initialization z(0), we will characterize how the losses ℓ(z(0), z∗), ℓ(z(1), z∗),
ℓ(z(2), z∗), . . . , decay. We impose conditions on ξideal(δ) and the initialization z(0).
Condition 12. Assume that

ξideal(δ) ≤
τ

2
holds with probability at least 1− η7 for some τ, δ, η7 > 0.

Finally, we need a condition on the initialization.
Condition 13. Assume that

ℓ(z(0), z∗) ≤ τ

holds with probability at least 1− η8 for some τ, η8 > 0.

With these conditions satisfied, we can give a lemma that shows the convergence of our algorithm.
Lemma B.2. Assumes Conditions 6 - 13 hold for some τ, δ, η1, . . . , η8 > 0. We then have

ℓ(z(t), z∗) ≤ ξideal(δ) +
1

2
ℓ(z(t−1), z∗)

for all t ≥ 1, with probability at least 1− η, where η =
∑8
i=1 ηi.

Proof. The proof of this lemma is the same as the proof of Lemma A.3.

With-high-probability Results for the Conditions and Proof of Theorem 3.2. Lemma B.3 and
Lemma B.4 are the counterparts of Lemmas A.4 and A.5 in Appendix A.2.2. Recall that (24) is
assumed. By Lemma C.10, we have ∆ is of the same order as SNR′, which will play a similar role as
(18) in Section A.2.2.

Lemma B.3 and Lemma B.4 are counterparts of Lemmas A.4 and A.5 in Section A.2.2. The first
lemma is for Conditions 6-11, providing upper bounds for the quantities involved in these conditions,
showing that δ can be taken as some o(1) term. The second lemma shows that for any δ = o(1),
ξideal(δ) is upper bounded by the desired minimax rate multiplied by the sample size n.
Lemma B.3. Under the same conditions as in Theorem 3.2, for any constant C ′ > 0, there exists
some constant C > 0 only depending on α,C ′, λmin, λmax such that

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Hj(z
∗
j , b, z)|

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩

≤ C

√
k(d+ log n)

n
(26)

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Fj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

≤ Ck3
(
τ

n
+

1

∆2
+

d2

n∆2

)
(27)

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Gj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j
− θ∗b )⟩

≤ Ck

(
τ

n
+

1

∆

√
τ

n
+
d
√
τ

n∆

)
(28)

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Qj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

≤ C
k3d2

∆2

(
τ

n
+

1

∆2
+

d2

n∆2

)
(29)

max
{z:ℓ(z,z∗)≤τ}

n∑
j=1

max
b∈[k]\{z∗j }

Kj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

≤ C
k3d2

∆2

(
τ

n
+

1

∆2
+

d2

n∆2

)
(30)

max
{z:ℓ(z,z∗)≤τ}

max
j∈[n]

max
b∈[k]\{z∗j }

|Lj(z∗j , b, z)|
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j
− θ∗b )⟩

≤ C
d

∆2

√
k(d+ log n)

n
(31)

with probability at least 1− n−C
′ − 4

nd . As a result, Conditions 6-11 hold for some δ = o(1).
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Proof. Under the conditions of Theorem 3.2, the inequalities (33)-(38) hold with probability at least
1− n−C

′
. In the remaining proof, we will work on the event these inequalities hold. Hence, we can

use the results from Lemma C.7 and C.8. Using the same arguments as in the proof of Lemma A.4,
we can get (26), (27) and (28).

As for (29), we first use Lemma C.2 to have
∑n
j=1 ∥ϵj∥4 ≤ 3nd with probability at least 1− 4/(nd).

Then, we have
n∑
j=1

max
b∈[k]\{z∗j }

Qj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

⪯
n∑
j=1

k∑
b=1

Qj(z
∗
j , b, z)

2

∆2ℓ(z, z∗)

≤ k

n∑
j=1

∥ϵj∥4
maxa∈[k] ∥(Σ̂a(z))−1 − (Σ̂a(z

∗))−1∥2

∆2ℓ(z, z∗)

⪯ k3d2

∆2

(
τ

n
+

1

∆2
+

d2

n∆2

)
,

where the last inequality is due to (53) and the fact that ℓ(z, z∗) ≤ τ .

Next for (30), notice that by (43), (44), and SNR′ → ∞, we have for any 1 ≤ i ≤ d, λmin

2 ≤
λi(Σ̂a(z

∗)) ≤ 2λmax and∣∣∣∣∣log(1 + max
a∈[k]

∥Σ̂a(z)− Σ̂a(z
∗)∥2

λi(Σ̂a(z∗))
)

∣∣∣∣∣ ≤
∣∣∣∣∣log(1−max

a∈[k]

∥Σ̂a(z)− Σ̂a(z
∗)∥2

λi(Σ̂a(z∗))
)

∣∣∣∣∣ .
Thus by Weyl’s inequality, we know

max
a∈[k]

∣∣∣log |Σ̂a(z)| − log |Σ̂a(z∗)|
∣∣∣

= max
a∈[k]

∣∣∣∣∣log |Σ̂a(z)|
|Σ̂a(z∗)|

∣∣∣∣∣
≤

∣∣∣∣∣
d∑
i=1

log(1−
maxa∈[k] ∥Σ̂a(z)− Σ̂a(z

∗)∥2
λi(Σ̂a(z∗))

)

∣∣∣∣∣
≤

d∑
i=1

log

1 + max
a∈[k]

∥Σ̂a(z)− Σ̂a(z
∗)∥2

λi(Σ̂a(z∗))
+

maxa∈[k]
∥Σ̂a(z)−Σ̂a(z

∗)∥2
2

λ2
i (Σ̂a(z∗))

1−maxa∈[k]
∥Σ̂a(z)−Σ̂a(z∗)∥2

λi(Σ̂a(z∗))


⪯d∥Σ̂a(z)− Σ̂a(z

∗)∥2, (32)

where the last inequality is due to the fact that λi(Σ̂a(z∗)) is at the constant rate, ∥Σ̂a(z) −
Σ̂a(z

∗)∥2 = o(1) and the inequality log(1 + x) ≤ x for any x > 0. (32) yields to the inequality
n∑
j=1

max
b∈[k]\{z∗j }

Kj(z
∗
j , b, z)

2∥θ∗z∗j − θ∗b∥2

⟨θ∗z∗j − θ∗b , (Σ
∗
b)

−1(θ∗z∗j
− θ∗b )⟩2ℓ(z, z∗)

⪯
n∑
j=1

d2 maxa∈[k] ∥Σ̂a(z)− Σ̂a(z
∗)∥2

∆2ℓ(z, z∗)

⪯ k2d2

∆2

(
τ

n
+

1

∆2
+

d2

n∆2

)
.

Finally for (31), by (43) and the similar argument as (32), we can get

max
a∈[k]

∣∣∣log |Σ̂a(z∗)| − log |Σ∗
a|
∣∣∣ ⪯ d

√
k(d+ log n)

n

which implies (31). We complete the proof.

Lemma B.4. With the same conditions as Theorem 3.2, for any sequence δn = o(1), we have

ξideal(δn) ≤ n exp

(
−(1 + o(1))

SNR′2

8

)
.

with probability at least 1− n−C
′ − exp(−SNR′).
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Proof. Under the conditions of Theorem 3.2, the inequalities (33)-(38) hold with probability at least
1− n−C

′
. In the remaining proof, we will work on the event these inequalities hold. Similar to the

proof of Lemma A.5, we have a decomposition ξideal ≤
∑6
i=1Mi where

M1 =

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{⟨ϵj , (Σ∗
b)

−1(θ∗z∗j − θ∗b )⟩+
1

2
⟨ϵj , ((Σ∗

b)
−1 − (Σ∗

z∗j
)−1)ϵj⟩

− 1

2
log |Σ∗

z∗j
|+ 1

2
log |Σ∗

b | ≤ −1− δ − δ̄

2
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
}

is the main term and

M2 =

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{⟨ϵj , ((Σ̂b(z∗))−1 − (Σ∗
b)

−1)(θ∗z∗j − θ∗b )⟩ ≤ − δ̄

10
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
}

M3 =

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{−⟨ϵj , (Σ̂z∗j (z
∗))−1(θ∗z∗j − θ̂z∗j (z

∗))⟩ ≤ − δ̄

10
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
}

M4 =

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{−⟨ϵj , (Σ̂b(z∗))−1(θ̂b(z
∗)− θ∗b )⟩ ≤ − δ̄

10
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
}

M5 =

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{1

2
⟨ϵj , ((Σ̂b(z∗))−1 − (Σ∗

b)
−1)ϵj⟩ ≤ − δ̄

10
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
}

M6 =

n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{−1

2
⟨ϵj , ((Σ̂z∗j (z

∗))−1 − (Σ∗
z∗j
)−1)ϵj⟩ ≤ − δ̄

10
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
}
.

Using the same arguments as the proof of Lemma A.5, we can choose some δ̄ = δ̄n = o(1) which is
slowly diverging to zero satisfying

EMi ≤ n exp

(
−(1 + o(1))

SNR
′2

2

)
for i = 2, 3, 4.

As for M5, by (43) we have

M5 ≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 I{Cδ̄ ∥∥∥θ∗z∗j − θ∗b

∥∥∥2 ≤ ∥wj∥2
√

log n

n

}
,

where C is a constant and wj
iid∼ N (0, Id). Since there exists some constant C ′ such that SNR′ ≤

C ′∆, we can choose appropriate δ̄ = o(1) such that

EM5 ≤
n∑
j=1

∑
b∈[k]\{z∗j }

∥∥∥θ∗z∗j − θ∗b

∥∥∥2 P{Cδ̄ ∥∥∥θ∗z∗j − θ∗b

∥∥∥2√ n

log n
≤ ∥wj∥2

}

≤ n exp

(
−(1 + o(1))

SNR
′2

8

)
.
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M6 is essentially the same with M5 and can be proved similarly. Finally for M1, using Lemma C.10,
we have

P
(
⟨ϵj , (Σ∗

b)
−1(θ∗z∗j − θ∗b )⟩+

1

2
⟨ϵj , ((Σ∗

b)
−1 − (Σ∗

z∗j
)−1)ϵj⟩

− 1

2
log |Σ∗

z∗j
|+ 1

2
log |Σ∗

b | ≤ −1− δ − δ̄

2
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
)

=P
(
⟨wj , (Σ∗

z∗j
)

1
2 (Σ∗

b)
−1(θ∗z∗j − θ∗b )⟩+

1

2
⟨wj , ((Σ∗

z∗j
)

1
2 (Σ∗

b)
−1(Σ∗

z∗j
)

1
2 − Id)wj⟩

− 1

2
log |Σ∗

z∗j
|+ 1

2
log |Σ∗

b | ≤ −1− δ − δ̄

2
⟨θ∗z∗j − θ∗b , (Σ

∗
b)

−1(θ∗z∗j − θ∗b )⟩
)

≤ exp

(
−(1− o(1))

SNR′
z∗j ,b

8

)
.

Then we have

EM1 ≤ n exp

(
−(1 + o(1))

SNR
′2

8

)
.

Using the Markov’s inequality we complete the proof of Lemma B.4.

Proof of Theorem 3.2. By Lemmas B.2-B.4, we can obtain the result by arguments used in the proof
of Theorem 2.2 and hence the proof is omitted here.

C Technical Lemmas

In this section, we present and prove technical lemmas used in this paper. Lemmas C.1 and C.2 are
about χ2 distributions. Appendix C.1 gives various upper bounds needed in the proofs of Appendix
B. Appendix C.2 is devoted to the calculation related to SNR′.

Lemma C.1. For any x > 0, we have

P(χ2
d ≥ d+ 2

√
dx+ 2x) ≤ e−x,

P(χ2
d ≤ d− 2

√
dx) ≤ e−x.

Proof. These results are Lemma 1 of [12].

Lemma C.2. Let Wi
iid∼ χ2

d for any i ∈ [n] where n, d are positive integers. Then we have

P

(
n∑
i=1

W 2
i ≥ 3nd2

)
≤ 4

nd
.

Proof. We have E
∑n
i=1W

2
i = nd(d + 2) and E

∑n
i=1W

4
i = nd(d + 2)(d + 4)(d + 6). Then

we have Var
(∑n

i=1W
2
i

)
= 8nd(d+ 2)(d+ 3). Then we obtain the desired result by Chebyshev’s

inequality.

C.1 With-High-Probability Bounds

Lemma C.3. For any z∗ ∈ [k]n and k ∈ [n], consider independent vectors ϵj ∼ N (0,Σ∗
z∗j
) for any

j ∈ [n]. Assume there exists a constant λmax > 0 such that ∥Σ∗
a∥ ≤ λmax for any a ∈ [k]. Then, for
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any constant C ′ > 0, there exists some constant C > 0 only depending on C ′, λmax such that

max
a∈[k]

∥∥∥∥∥∥
∑n
j=1 I{z∗j = a}ϵj√∑n
j=1 I{z∗j = a}

∥∥∥∥∥∥ ≤ C
√
d+ log n, (33)

max
a∈[k]

1

d+
∑n
j=1 I{z∗j = a}

∥∥∥∥∥∥
n∑
j=1

I{z∗j = a}ϵjϵTj

∥∥∥∥∥∥ ≤ C, (34)

max
T⊂[n]

∥∥∥∥∥∥ 1√
|T |

∑
j∈T

ϵj

∥∥∥∥∥∥ ≤ C
√
d+ n, (35)

max
a∈[k]

max
T⊂{j:z∗j =a}

∥∥∥∥∥∥ 1√
|T |(d+

∑n
j=1 I{z∗j = a})

∑
j∈T

ϵj

∥∥∥∥∥∥ ≤ C, (36)

with probability at least 1− n−C
′
. We have used the convention that 0/0 = 0.

Proof. Note that ϵj is sub-Gaussian with parameter λmax which is a constant. The inequalities (33)
and (35) are respectively Lemmas A.4, A.1 in [15]. The inequality (34) is a slight extension of
Lemma A.2 in [15]. This extension follows from a standard union bound argument. The proof of
(36) is identical to that of (35).

Lemma C.4. Consider the same assumptions as in Lemma C.3. Assume additionally
mina∈[k]

∑n
j=1 I{z∗j = a} ≥ αn

k for some constant α > 0 and k(d+logn)
n = o(1). Then, for

any constant C ′ > 0, there exists some constant C > 0 only depending on α,C ′, λmax such that

max
a∈[k]

∥∥∥∥∥∥ 1∑n
j=1 I{z∗j = a}

n∑
j=1

I{z∗j = a}ϵjϵTj − Σ∗
a

∥∥∥∥∥∥ ≤ C

√
k(d+ log n)

n
, (37)

with probability at least 1− n−C
′
.

Proof. Note that we have ϵj = Σ
∗ 1

2

z∗j
ηj where ηj

iid∼ N (0, Id) for any j ∈ [n]. Since maxa ∥Σ∗
a∥ ≤

λmax, we have

max
a∈[k]

∥∥∥∥∥∥ 1∑n
j=1 I{z∗j = a}

n∑
j=1

I{z∗j = a}ϵjϵTj − Σ∗
a

∥∥∥∥∥∥ ≤ λmax max
a∈[k]

∥∥∥∥∥∥ 1∑n
j=1 I{z∗j = a}

n∑
j=1

I{z∗j = a}ηjηTj − Id

∥∥∥∥∥∥ .
Define

Qa =
1∑n

j=1 I{z∗j = a}

n∑
j=1

I{z∗j = a}ηjηTj − Id.

Take Sd−1 = {y ∈ Rd : ∥y∥ = 1} and Nϵ = {v1, · · · , v|Nϵ|} is an ϵ-covering of Sd−1. In particular,
we pick ϵ < 1

4 , then |Nϵ| ≤ 9d. By the definition of the ϵ-covering, we have

∥Qa∥ ≤ 1

1− 2ϵ
max

i=1,··· ,|Nϵ|
|vTi Qavi| ≤ 2 max

i=1,··· ,|Nϵ|
|vTi Qavi|.

For any v ∈ Nϵ,

vTQav =
1∑n

j=1 I{z∗j = a}

n∑
j=1

I{z∗j = a}(vT ηjηTj v − 1).
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Denote na =
∑n
j=1 I{z∗j = a}. Then

∑n
j=1 I{z∗j = a}vT ηjηTj v ∼ χ2

na
. Using Lemma C.1, we

have

P(max
a∈[k]

∥Qa∥ ≥ t) ≤
k∑
a=1

P(∥Qa∥ ≥ t)

≤
k∑
a=1

|Nϵ|∑
i=1

P(|vTi Qavi| ≥ t/2)

≤
k∑
a=1

2 exp

{
−na

8
min{t, t2}+ d log 9

}
.

Since k(d+logn)
n = o(1) and na ≥ αn/k where α is a constant, we can take t = C ′′

√
k(d+logn)

n for
some large constant C ′′ and the proof is complete.

Lemma C.5. Consider the same assumptions as in Lemma C.3. Then, for any s = o(n) and for any
constant C ′ > 0, there exists some constant C > 0 only depending on C ′, λmax such that

max
T⊂[n]:|T |≤s

1

|T | log n
|T | +min{1,

√
|T |}d

∥∥∥∥∥∥
∑
j∈T

ϵjϵ
T
j

∥∥∥∥∥∥ ≤ C, (38)

with probability at least 1− n−C
′
. We have used the convention that 0/0 = 0.

Proof. Consider any a ∈ [s] and a fixed T ⊂ [n] such that |T | = a. Similar to the proof of Lemma
C.4, we can take Sd−1 = {y ∈ Rd : ∥y∥ = 1} and its ϵ-covering Nϵ with ϵ < 1

4 and |Nϵ| ≤ 9d.
Then we have

∥
∑
j∈T

ϵjϵ
T
j ∥ = sup

∥w∥=1

∑
j∈T

(wT ϵj)
2 ≤ 2 max

w∈Nϵ

∑
j∈T

(wT ϵj)
2.

Note that wT ϵj/
√
λmax is a sub-Gaussian random variable with parameter 1. By the tail probability

result for quadratic forms of sub-Gaussian random vectors [10], for any fixed w ∈ Nϵ, we have

P

∑
j∈T

(wT ϵj)
2 ≥ λmax

(
a+ 2

√
at+ 2t

) ≤ exp(−t) .

Since a = o(n), there exists a constantC0 such that 2a ≤ C0a log
n
a . We can take t = C̃(a log n

a +d)

with C̃ = C
16 − C0

4 , then a+ 2
√
at+ 2t ≤ C

4 (a log
n
a + d). Thus,

P

∑
j∈T

(wT ϵj)
2 ≥ C

4
(a log

n

a
+ d)

 ≤ exp

(
− C̃(a log

n

a
+ d)

)
.

Hence, we have

P

∥
∑
j∈T

ϵjϵ
T
j ∥ ≥ C

2
(a log

n

a
+ d)

 ≤ 9d exp

(
− C̃(a log

n

a
+ d)

)
.

As a result,

P
{

max
T⊂[n],1≤|T |≤s

1

|T | log n
|T | + d

∥
∑
j∈T

ϵjϵ
T
j ∥ ≥ C

}
≤

s∑
a=1

P
{
max
|T |=a

∥
∑
j∈T

ϵjϵ
T
j ∥ ≥ C(a log

n

a
+ d)

}

≤
s∑

a=1

(
n

a

)
max
|T |=a

P
{
∥
∑
j∈T

ϵjϵ
T
j ∥ ≥ C(a log

n

a
+ d)

}

≤
s∑

a=1

(
n

a

)
9d exp

(
− C̃(a log

n

a
+ d)

)
.
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Since a log n
a is an increasing function when a ∈ [1, s] and a log n

a ≥ log n ≥ log s, a choice of
C̃ = 3 + C ′, that is C = 16C ′ + 4C0 + 48, can yield the desired result.

Finally, to allow |T | = 0, we note that d ≤ min{1,
√

|T |}d. The proof is complete.

Lemma C.6. For any z∗ ∈ [k]n and k ∈ [n], assume mina∈[k]

∑n
j=1 I{z∗j = a} ≥ αn

k and

ℓ(z, z∗) = o(n∆
2

k ), then

max
a∈[k]

∑n
j=1 I{z∗j = a}∑n
j=1 I{zj = a}

≤ 2. (39)

Proof. For any z ∈ [k]n such that ℓ(z, z∗) = o(n) and any a ∈ [k], we have
n∑
j=1

I{zj = a} ≥
n∑
j=1

I{z∗j = a} −
n∑
j=1

I{zj ̸= z∗j }

≥
n∑
j=1

I{z∗j = a} − ℓ(z, z∗)

∆2

≥ αn

2k
, (40)

which implies ∑n
j=1 I{z∗j = a}∑n
j=1 I{zj = a}

≤
∑n
j=1 I{zj = a}+

∑n
j=1 I{zj ̸= z∗j }∑n

j=1 I{zj = a}

≤ 1 +
αn/2k∑n

j=1 I{zj = a}
≤ 2.

Thus, we obtain (39).

In the following lemma, we are going to analyze estimation errors of the centers and covariance
matrices under the anisotropic GMMs. For any z ∈ [k]n and for any z ∈ [k], recall the definitions

θ̂a(z) =

∑
j∈[n] YjI {zj = a}∑
j∈[n] I {zj = a}

,∀a ∈ [k]

Σ̂a(z) =

∑
j∈[n](Yj − θ̂a(z))(Yj − θ̂a(z))

T I {zj = a}∑
j∈[n] I {zj = a}

,∀a ∈ [k].

Lemma C.7. For any z∗ ∈ [k]n and k ∈ [n], consider independent vectors Yj = θ∗z∗j + ϵj where
ϵj ∼ N (0,Σ∗

z∗j
) for any j ∈ [n]. Assume there exist constants λmin, λmax > 0 such that λmin ≤

λ1(Σ
∗
a) ≤ λd(Σ

∗
a) ≤ λmax for any a ∈ [k], and a constant α > 0 such that mina∈[k]

∑n
j=1 I{z∗j =

a} ≥ αn
k . Assume k(d+logn)

n = o(1) and ∆
k → ∞. Assume (33)-(38) hold. Then for any τ = o(n)

and for any constant C ′ > 0, there exists some constant C > 0 only depending on α, λmax, C
′ such

that

max
a∈[k]

∥∥∥θ̂a(z∗)− θ∗a

∥∥∥ ≤ C

√
k(d+ log n)

n
, (41)

max
a∈[k]

∥∥∥θ̂a(z)− θ̂a(z
∗)
∥∥∥ ≤ C

(
k

n∆
ℓ(z, z∗) +

k
√
d+ n

n∆

√
ℓ(z, z∗)

)
, (42)

max
a∈[k]

∥∥∥Σ̂a(z∗)− Σ∗
a

∥∥∥ ≤ C

√
k(d+ log n)

n
, (43)

max
a∈[k]

∥∥∥Σ̂a(z)− Σ̂a(z
∗)
∥∥∥ ≤ C

(
k

n
ℓ(z, z∗) +

k
√
nℓ(z, z∗)

n∆
+
kd

n∆

√
ℓ(z, z∗)

)
, (44)

for all z such that ℓ(z, z∗) ≤ τ .
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Proof. Using (33) we obtain (41). By the same argument of (118) in [8], we can obtain (42). By (33)
and (37) and (41), we can obtain (43). In the remaining proof, we will establish (53).

Since k(d+logn)
n = o(1), we have ∥Σ̂a(z∗)∥ ⪯ 1 for any a ∈ [k]. The difference Σ̂a(z) − Σ̂a(z

∗)
will be decomposed into several terms. We notice that∥∥∥Σ̂a(z)− Σ̂a(z

∗)
∥∥∥ ≤ S1 + S2, (45)

where

S1 =

∥∥∥∥ 1∑
I{zj = a}

n∑
j=1

I{zj = a}
(
(Yj − θ̂a(z))(Yj − θ̂a(z))

T − (Yj − θ̂a(z
∗))(Yj − θ̂a(z

∗))T
)∥∥∥∥,

and

S2 =

∥∥∥∥
(

1∑
I{zj = a}

− 1∑
I{z∗j = a}

)
n∑
j=1

I{z∗j = a}(Yj − θ̂a(z
∗))(Yj − θ̂a(z

∗))T
∥∥∥∥.

Also, we notice that

S1 ≤ L1 + L2 + L3, (46)

where

L1 =

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = z∗j = a}
(
(Yj − θ̂a(z))(Yj − θ̂a(z))

T − (Yj − θ̂a(z
∗))(Yj − θ̂a(z

∗))T
)∥∥∥∥,

L2 =

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = a, z∗j ̸= a}(Yj − θ̂a(z))(Yj − θ̂a(z))
T

∥∥∥∥,
L3 =

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj ̸= a, z∗j = a}(Yj − θ̂a(z
∗))(Yj − θ̂a(z

∗))T
∥∥∥∥.

For L1, we have

L1 ≤
∥∥∥∥ 1∑n

j=1 I{zj = a}

n∑
j=1

I{zj = z∗j = a}(θ̂a(z)− θ̂a(z
∗))(θ̂a(z)− θ̂a(z

∗))T
∥∥∥∥

+ 2

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = z∗j = a}(Yj − θ̂a(z
∗))(θ̂a(z)− θ̂a(z

∗))T
∥∥∥∥

⪯
∥∥∥θ̂a(z)− θ̂a(z

∗)
∥∥∥2 ∑n

j=1 I{z∗j = a}∑n
j=1 I{zj = a}

+
∥∥∥θ∗a − θ̂a(z

∗)
∥∥∥∥∥∥θ̂a(z)− θ̂a(z

∗)
∥∥∥ ∑n

j=1 I{z∗j = a}∑n
j=1 I{zj = a}

+
∥∥∥θ̂a(z)− θ̂a(z

∗)
∥∥∥
∥∥∥∥∥∥ 1∑n

j=1 I{zj = a}

n∑
j=1

I{zj = z∗j = a}ϵj

∥∥∥∥∥∥ . (47)

By (36), (39), (40), we have uniformly for any a ∈ [k],∥∥∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = z∗j = a}ϵj

∥∥∥∥∥∥ ⪯

√∑n
j=1 I{zj = z∗j = a}∑n
j=1 I{zj = a}

√√√√d+

n∑
j=1

I{z∗j = a}

⪯ 1. (48)

Since maxa∈[k]

∥∥∥θ̂a(z∗)− θ∗a

∥∥∥ = o(1), by (39), (42), (41), (47), and (48), we have uniformly for
any a ∈ [k],

L1 ⪯
∥∥∥θ̂a(z)− θ̂a(z

∗)
∥∥∥ ⪯ k

n∆
ℓ(z, z∗) +

k
√
d+ n

n∆

√
ℓ(z, z∗). (49)
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To bound L2, we first give the following simple fact. For any positive integer m and any
{uj}j∈[m], {vj}j∈[m] ∈ Rd, we have ∥

∑
j∈[m](uj + vj)(uj + vj)

T ∥ ≤ 2∥
∑
j∈[m] uju

T
j ∥ +

2∥
∑
j∈[m] vjv

T
j ∥. Hence, for L2, we have the following decomposition

L2 ≤ 2R1 + 2R2, (50)

where

R1 =

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = a, z∗j ̸= a}(Yj − θ∗a)(Yj − θ∗a)
T

∥∥∥∥,
R2 =

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = a, z∗j ̸= a}(θ∗a − θ̂a(z))(θ
∗
a − θ̂a(z))

T

∥∥∥∥.
Since maxa∈[k]

∑n
j=1 I{zj = a, z∗j ̸= a} ≤ ℓ(z,z∗)

∆2 , we have

R2 ≤
∥∥∥θ∗a − θ̂a(z)

∥∥∥2 ∑n
j=1 I{zj = a, z∗j ̸= a}∑n

j=1 I{zj = a}

⪯
(∥∥∥θ̂a(z)− θ̂a(z

∗)
∥∥∥2 + ∥∥∥θ̂a(z∗)− θ∗a

∥∥∥2) kℓ(z, z∗)

n∆2
. (51)

By (38) and the fact that maxa∈[k]

∑n
j=1 I{zi = a, z∗i ̸= a} ≤ ℓ(z,z∗)

∆2 , we also have

R1 ≤ 2

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = a, z∗j ̸= a}(θ∗z∗j − θ∗zj )(θ
∗
z∗j

− θ∗zj )
T

∥∥∥∥
+ 2

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = a, z∗j ̸= a}ϵjϵTj
∥∥∥∥

≤ 2

∑n
j=1 I{zj = a, z∗j ̸= a}∥θ∗z∗j − θ∗zj∥

2∑n
j=1 I{zj = a}

+ 2

∥∥∥∥ 1∑n
j=1 I{zj = a}

n∑
j=1

I{zj = a, z∗j ̸= a}ϵjϵTj
∥∥∥∥

⪯ kℓ(z, z∗)

n
+

ℓ(z,z∗)
∆2 log n∆2

ℓ(z,z∗) + d
√

ℓ(z,z∗)
∆2

n/k
.

We are going to simplify the above bounds for R1, R2. Under the assumption that k(d+logn)
n =

o(1), ∆/k → ∞, and ℓ(z, z∗) ≤ τ = o(n), we have maxa∈[k] ∥θ̂a(z) − θ̂a(z
∗)∥ = o(1),

maxa∈[k] ∥θ̂a(z∗)− θ∗a∥ = o(1), and kℓ(z,z∗)
n∆2 = o(1). Hence R2 ⪯ kℓ(z,z∗)

n∆2 . Also we have

kℓ(z, z∗)

n∆2
log

n∆2

ℓ(z, z∗)
=
k
√
ℓ(z, z∗)

n∆

√
ℓ(z, z∗)

∆2

(
log

n∆2

ℓ(z, z∗)

)2

≤
k
√
nℓ(z, z∗)

n∆
.

where in the last inequality, we use the fact that x(log(n/x))2 is an increasing function of x when
0 < x = o(n). Then,

L2 ⪯
k
√
nℓ(z, z∗)

n∆
+
k

n
ℓ(z, z∗) +

kd

n∆

√
ℓ(z, z∗).

Since L3 is similar to L2, by (46) we have uniformly for any a ∈ [k]

S1 ⪯
k
√
nℓ(z, z∗)

n∆
+
k

n
ℓ(z, z∗) +

kd

n∆

√
ℓ(z, z∗). (52)

To bound S2, by (70) in [8], we have uniformly for any a ∈ [k],

S2 =

∣∣∣∑n
j=1 I{z∗j = a} −

∑n
j=1 I{zj = a}

∣∣∣∑n
j=1 I{zj = a}

∥∥∥Σ̂a(z∗)∥∥∥2 ⪯ k

n

ℓ(z, z∗)

∆2
,
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where we use (43). Since k
n
ℓ(z,z∗)
∆2 ⪯ k

√
nℓ(z,z∗)

n∆ , by (45) and the facts that ℓ(z, z∗) ≤ τ = o(n) we
have

max
a∈[k]

∥∥∥Σ̂a(z)− Σ̂a(z
∗)
∥∥∥ ⪯

k
√
nℓ(z, z∗)

n∆
+
k

n
ℓ(z, z∗) +

kd

n∆

√
ℓ(z, z∗).

Lemma C.8. Under the same assumption as in Lemma C.7, if additionally we assume kd = O(
√
n)

and τ = o(n/k), there exists some constant C > 0 only depending on α, λmin, λmax, C
′ such that

max
a∈[k]

∥∥∥(Σ̂a(z))−1 − (Σ̂a(z
∗))−1

∥∥∥ ≤ C

(
k

n
ℓ(z, z∗) +

k
√
nℓ(z, z∗)

n∆
+
kd

n∆

√
ℓ(z, z∗)

)
. (53)

Proof. By (43) we have maxa∈[k] ∥Σ̂a(z∗)∥,maxa∈[k] ∥(Σ̂a(z∗))−1∥ ⪯ 1. By (44) we also have
maxa∈[k] ∥Σ̂a(z)∥,maxa∈[k] ∥(Σ̂a(z))−1∥ ⪯ 1. Hence,

max
a∈[k]

∥∥∥(Σ̂a(z))−1 − (Σ̂a(z
∗))−1

∥∥∥ ≤max
a∈[k]

∥∥∥(Σ̂a(z∗))−1
∥∥∥∥∥∥Σ̂a(z)− Σ̂a(z

∗)
∥∥∥∥∥∥(Σ̂a(z))−1

∥∥∥
⪯
k
√
nℓ(z, z∗)

n∆
+
k

n
ℓ(z, z∗) +

kd

n∆

√
ℓ(z, z∗). (54)

C.2 Calculation Related to SNR′

In the following lemmas, we study properties of {SNR′
a,b}a ̸=b. Consider any pair a ̸= b ∈ [k]. Let

η ∼ N (0, Id) and Ξa,b = θ∗a − θ∗b . Define

Ba,b(δ) =

{
x ∈ Rd : xTΣ∗ 1

2
a (Σ∗

b)
−1Ξa,b +

1

2
xT
(
Σ

∗ 1
2

a (Σ∗
b)

−1Σ
∗ 1

2
a − Id

)
x

≤ −1− δ

2
ΞTa,b(Σ

∗
b)

−1Ξa,b +
1

2
log |Σ∗

a| −
1

2
log |Σ∗

b |

}

=

{
x ∈ Rd : ∥x∥2 ≥

(
x− (Σ∗

a)
− 1

2Ξb,a

)T(
(Σ∗

a)
− 1

2Σ∗
b(Σ

∗
a)

− 1
2

)−1(
x− (Σ∗

a)
− 1

2Ξb,a

)
+ log |(Σ∗

a)
− 1

2Σ∗
b(Σ

∗
a)

− 1
2 | − δΞTb,a(Σ

∗
b)

−1Ξb,a

}
,

for any δ ∈ R. Then Ba,b(δ) ⊂ Ba,b(δ
′) for any δ′ ≤ δ. In addition, we define

SNR′
a,b(δ) = min

x∈Ba,b(δ)
2 ∥x∥ ,

and Pa,b(δ) = P(η ∈ Ba,b(δ)) .

Recall the definitions of Ba,b and SNR′
a,b in Section 3. Then it is a special case of Ba,b(δ) and

SNR′
a,b(δ) with δ = 0. That is, we have Ba,b = Ba,b(0) and SNR′

a,b = SNR′
a,b(0).

To understand these quantities, we first study a canonical setting that can be later applied to establish
Lemma C.10.
Lemma C.9. Consider any θ ∈ Rd \ {0} and any Σ ∈ Rd×d that is positive semi-definite. Let
λmax, λmin > 0 be the largest and smallest eigenvalue of Σ, respectively. For any t ∈ R, define

D(t) = {x ∈ Rd : ∥x∥2 ≥ (x− θ)TΣ−1(x− θ) + t},
and s(t) = minx∈D(t) ∥x∥. Then the following hold:

• Under the assumption that −∥θ∥2 /(8λmax) < t < ∥θ∥2 /8, we have

∥θ∥ /(max{2, 2
√
2λmax}) < s(t) < (1−min{

√
λmin/8, 1/2}) ∥θ∥ .
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• If t′ also satisfies −∥θ∥2 /λmax < t′ < ∥θ∥2 /8, we have

|s(t′)− s(t)| ≤ λmax
t′ − t

2min{
√
λmin/8, 1/2} ∥θ∥

.

• If θ is further assumed to satisfy min{
√
λmin/8, 1/2} ∥θ∥ ≥ 2λmax and ∥θ∥ ≥

λmin

32 min{
√
λmin/8, 1/2}, there exists a d-dimensional ball H(t) ∈ Rd with

radius (λmin/8)min{
√
λmin/8, 1/2} such that H(t) ⊂ D(t) and ∥x∥ ≤

(λmin/8)min{
√
λmin/8, 1/2}+ λmax + s(t) for all x ∈ H(t).

Proof. First, we check whether each of the following two points is contained in D(t) or not, under
the assumption −∥θ∥2 /λmax < t < ∥θ∥2.

• When x = 0, we have (x− θ)TΣ−1(x− θ) + t ≥ ∥θ∥2 /λmax + t > 0. Hence, 0 /∈ D(t).

• When x = θ, we have ∥θ∥2 > t. Hence, θ ∈ D(t).

As a result, D(t) is non-empty, s(t) is well defined, and 0 < s(t) < ∥θ∥2. Next, we consider a few
more points to sharpen upper and lower bounds on s(t) under the assumption −∥θ∥2 /(8λmax) <

t < ∥θ∥2 /8.

• For any x that satisfies ∥x∥ ≤ ∥θ∥ /(max{2, 2
√
2λmax}), we have ∥x− θ∥ ≥ ∥θ∥ /2 and

consequently, (x − θ)TΣ−1(x − θ) + t ≥ (∥θ∥ /2)2/λmax + t = ∥θ∥2 /(4λmax) + t.
Under the assumption that t > −∥θ∥2 /(8λmax), we can verify that ∥θ∥2 /(4λmax) + t >

∥θ∥2 /(8λmax) ≥ (∥θ∥ /max{2, 2
√
2λmax})2 ≥ ∥x∥2. Hence, such x /∈ D(t).

• When x = (1 − min{
√
λmin/8, 1/2})θ, we have ∥x∥ ≥ ∥θ∥ /2 and (x − θ)TΣ−1(x −

θ) + t ≤ ∥θ∥2 (min{
√
λmin/8, 1/2})2/λmin + t = ∥θ∥2 /max{8, 4λmin} + t. Under

the assumption that t < ∥θ∥2 /8, we have ∥θ∥2 /max{8, 4λmin} + t < ∥θ∥2 /8 + t ≤
∥θ∥2 /4 ≤ ∥x∥2. Hence, such x ∈ D(t).

As a result, we have ∥θ∥ /(max{2, 2
√
2λmax}) < s(t) < (1−min{

√
λmin/8, 1/2}) ∥θ∥.

Define a ball S(r) = {x ∈ Rd : ∥x∥2 ≤ r2} and define S2(r; t) = {x ∈ Rd : (x−θ)TΣ−1(x−θ) ≤
r2 − t} to be the part of Rd that is inside the corresponding ellipsoid. Then we have s(t) = min{r ≥
0 : S1(r) ∩ S2(r; t) ̸= ∅}. By the definition and bounds of s(t) and the convexity of S1(s(t)) and
S2(s(t); t), we must have |S1(s(t)) ∩ S2(s(t); t)| = 1, meaning that S1(s(t)) and S2(s(t); t) touch
each other externally at one point. This implies s(t) can be obtained by the following process: We let
S1(r) and S2(r) grow by increasing r, starting from 0. The first time they touch each other, we stop
and the value of r is exactly s(t).

Denote y(t) ∈ R such that {y(t)} = S1(s(t)) ∩ S2(s(t); t). Then we must have y(t) ∈ S̄2(s(t); t).
By the first conclusion, we have

∥y(t)− θ∥ ≥ ∥θ∥ − ∥y(t)∥ = ∥θ∥ − s(t) ≥ min{
√
λmin/8, 1/2} ∥θ∥

∥y(t)− θ∥ ≤ ∥θ∥+ ∥y(t)∥ = ∥θ∥+ s(t) ≤ 2 ∥θ∥ .

In addition, we have

s2(t)− t = (y(t)−θ)TΣ−1(y(t)−θ) ≥ ∥y(t)− θ∥2 /λmax ≥ (min{
√
λmin/8, 1/2} ∥θ∥)2/λmax.

Now we are going to prove the second conclusion of the lemma. Without loss of generality, assume
t ≤ t′. Then we have D(t) ⊃ D(t′) and s(t) ≤ s(t′). We are going to establish a lower bound
for s(t). First by definition of s(t′), we have |S1(s(t

′)) ∩ S2(s(t
′); t′)| = 1. Since t ≤ t′, we

have S2(s(t
′); t) ⊃ S2(s(t

′); t′). We have S1(s(t
′)) ∩ S2(s(t

′); t) ̸= ∅. From here we can also see
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s(t) ≤ s(t′). Now consider any x ∈ S̄2(s(t
′); t). It satisfies (x− θ)TΣ−1(x− θ) = s2(t′)− t. Then

we have

(√
s2(t′)− t′

s2(t′)− t
(x− θ)

)
Σ−1

(√
s2(t′)− t′

s2(t′)− t
(x− θ)

)
= s2(t′)− t′,

meaning that θ +
√

s2(t′)−t′
s2(t′)−t (x− θ) ∈ S̄2(s(t

′); t′). Hence,

∥x∥ ≥

∥∥∥∥∥θ +
√
s2(t′)− t′

s2(t′)− t
(x− θ)

∥∥∥∥∥−
∥∥∥∥∥x−

(
θ +

√
s2(t′)− t′

s2(t′)− t
(x− θ)

)∥∥∥∥∥
=

∥∥∥∥∥θ +
√
s2(t′)− t′

s2(t′)− t
(x− θ)

∥∥∥∥∥−
(
1−

√
s2(t′)− t′

s2(t′)− t

)
∥x− θ∥

≥ min
y∈S̄2(s(t′);t′)

∥y∥ −

(
1−

√
s2(t′)− t′

s2(t′)− t

)
max

y∈S̄2(s(t′);t)
∥x− θ∥ .

Since |S1(s(t
′))∩S̄2(s(t

′); t′)| = 1, we have miny∈S̄2(s(t′);t′) ∥y∥ = s(t′). Since (x−θ)TΣ−1(x−
θ) ≥ λ−1

max ∥x− θ∥2, we have ∥x− θ∥2 ≤ λmax(s
2(t′)− t). Hence,

∥x∥ ≥ s(t′)−

(
1−

√
s2(t′)− t′

s2(t′)− t

)√
λmax(s2(t′)− t)

≥ s(t′)−
√
λmax

(√
s2(t′)− t−

√
s2(t′)− t′

)
= s(t′)−

√
λmax

t′ − t√
s2(t′)− t+

√
s2(t′)− t′

≥ s(t′)−
√
λmax

t′ − t

2
√
s2(t′)− t′

.

As a result, for any r < s(t′)−
√
λmax

t′−t
2
√
s2(t′)−t′

, we have S1(r)∩S2(s(t
′); t) = ∅ and consequently

S1(r) ∩ S2(r; t) = ∅. As a result, s(t) ≥ s(t′)−
√
λmax

t′−t
2
√
s2(t′)−t′

. Since we have shown s2(t′)−

t′ ≥ (min{
√
λmin/8, 1/2} ∥θ∥)2/λmax, we have s(t) ≥ s(t′)− λmax

t′−t
2min{

√
λmin/8,1/2}∥θ∥

.

For the third conclusion of the lemma, recall the definition of y(t). Under the assumption that
min{

√
λmin/8, 1/2} ∥θ∥ ≥ 2λmax, we have ∥y(t)− θ∥ − λmax > 0 and λmax/ ∥y(t)− θ∥ ≤ 1/2.

Denote y′(t) = θ + y(t)−θ
∥y(t)−θ∥ (∥y(t)− θ∥ − λmax). Then

∥y′(t)− θ∥ ≤ ∥y(t)− θ∥ ≤ 2 ∥θ∥ ,
∥y′(t)− θ∥ = (1− λmax/ ∥y(t)− θ∥) ∥y(t)− θ∥ ,

∥y(t)− y′(t)∥ =

∥∥∥∥ y(t)− θ

∥y(t)− θ∥
λmax

∥∥∥∥ = λ.
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Consequently,

(y′(t)− θ)TΣ−1(y′(t)− θ)− (y(t)− θ)TΣ−1(y(t)− θ)

=

(
1− λmax

∥y(t)− θ∥

)2

(y(t)− θ)TΣ−1(y(t)− θ)− (y(t)− θ)TΣ−1(y(t)− θ)

= − λmax

∥y(t)− θ∥

(
2− λmax

∥y(t)− θ∥

)
(y(t)− θ)TΣ−1(y(t)− θ)

≤ − λmax

∥y(t)− θ∥
(y(t)− θ)TΣ−1(y(t)− θ)

≤ − λmax

∥y(t)− θ∥
∥y(t)− θ∥2 λ−1

max

≤ −∥y(t)− θ∥

≤ −min{
√
λmin/8, 1/2} ∥θ∥ .

Denote H(t) to be the ball centered at y′(t) with radius (λmin/8)min{
√
λmin/8, 1/2}. Then for

any x ∈ H(t), we have

(x− θ)TΣ−1(x− θ)− (y(t)− θ)TΣ−1(y(t)− θ)

= (y′(t)− θ)TΣ−1(y′(t)− θ) + 2(x− y′(t))TΣ−1(y′(t)− θ) + (x− y′(t))TΣ−1(x− y′(t))

− (y(t)− θ)TΣ−1(y(t)− θ)

≤ (y′(t)− θ)TΣ−1(y′(t)− θ) + 2λ−1
min ∥x− y′(t)∥ ∥y′(t)− θ∥+ λ−1

min ∥x− y′(t)∥2

− (y(t)− θ)TΣ−1(y(t)− θ)

≤ −min{
√
λmin/8, 1/2} ∥θ∥+ 2λ−1

min ∥x− y′(t)∥ ∥y′(t)− θ∥+ λ−1
min ∥x− y′(t)∥2

≤ −min{
√
λmin/8, 1/2} ∥θ∥+ 4λ−1

min ∥x− y′(t)∥ ∥θ∥+ λ−1
min ∥x− y′(t)∥2

≤ −1

2
min{

√
λmin/8, 1/2} ∥θ∥+

λmin

64
(min{

√
λmin/8, 1/2})2

≤ 0,

where the last inequality holds under the assumption ∥θ∥ ≥ λmin

32 min{
√
λmin/8, 1/2}. Hence,

H(t) ⊂ S2(s(t); t) and consequently H(t) ⊂ D(t). On the other hand, for any x ∈ H(t), we have

∥x∥ ≤ ∥x− y′(t)∥+ ∥y′(t)− y(t)∥+ ∥y(t)∥

≤ (λmin/8)min{
√
λmin/8, 1/2}+ λmax + s(t).

The proof is complete.

Lemma C.10. Assume d = O(1). Consider any a ̸= b ∈ [k]. Assume there exist constants
λmin, λmax such that 0 < λmin ≤ λ1(Σ

∗
j ) ≤ λd(Σ

∗
j ) ≤ λmax for any j ∈ {a, b}. Then SNR′

a,b and
∥Ξb,a∥ are of the same order. When SNR′

a,b = O(1), we have Pa,b(0) ≥ c for some constant c > 0.
When SNR′

a,b → ∞, we have

Pa,b(0) ≥ exp

(
−1 + o(1)

8
SNR

′2
a,b

)
,

and for any δ = o(1), we have

Pa,b(δ) ≤ exp

(
−1− o(1)

8
SNR

′2
a,b

)
.

Proof. Recall the setting stated in Lemma C.9. By the definition of Ba,b, we can take θ =

(Σ∗
a)

− 1
2Ξb,a, Σ = (Σ∗

a)
− 1

2Σ∗
b(Σ

∗
a)

− 1
2 , and t = log |(Σ∗

a)
− 1

2Σ∗
b(Σ

∗
a)

− 1
2 | such that Ba,b =

D(t). Due to d = O(1) and (24), we have that all eigenvalues of Σ are constants and that
log |(Σ∗

a)
− 1

2Σ∗
b(Σ

∗
a)

− 1
2 | is also a constant. Consequently, t is constant. In addition, ∥θ∥ is of

the same order as ∥Ξb,a∥.
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When ∥Ξb,a∥ is a constant, ∥θ∥ is a constant, then SNR′
a,b must be a constant as well. This is because

D(t) is the set of points where one density is greater or equal to another. Then D(t) is non-empty as
both densities have integral 1. Hence, s(t) must be finite, meaning SNR′

a,b is a constant. In this case,
we have Pa,b(0) = P(η ∈ D(t)) being a constant as well.

When ∥Ξb,a∥ → ∞, we have ∥θ∥ → ∞. Since all the assumptions needed in Lemma C.9 are
satisfied, by its first conclusion, we have s(t) being of the same order as ∥θ∥, and consequently
being of the same order as ∥Ξb,a∥. As a result, SNR′

a,b and ∥Ξb,a∥ are of the same order. In
addition, H(t) exists and its radius is some constant c1 > 0. Hence, its volume is cd1Vd where Vd
is denoted as the volume of a d-dimensional unit ball. In addition, for any x ∈ H(t), we have
∥x∥ ≤ s(t) + c2 = SNR′

a,b/2 + c2 for some constant c2 > 0. Recall η ∼ N(0, Id). Then we have

Pa,b(0) ≥ P(η ∈ H(t)) ≥ cd1Vd min
x∈H(t)

1√
(2π)d

exp

(
−1

2
∥x∥2

)
≥ cd1Vd

1√
(2π)d

exp

(
−1

2

∥∥SNR′
a,b/2 + c2

∥∥2)
≥ exp

(
−1 + o(1)

8
SNR

′2
a,b

)
.

Now let us consider Ba,b(δ) where δ = o(1). We can take θ,Σ same as before, but let t′ =

log |(Σ∗
a)

− 1
2Σ∗

b(Σ
∗
a)

− 1
2 | − δΞTb,a(Σ

∗
b)

−1Ξb,a. Then we have t′ = o(1) ∥θ∥2. Hence, by Lemma C.9,
we have ∣∣SNR′

a,b − SNR′
a,b(δ)

∣∣ = 2 |s(t)− s(t′)| ⪯ |t− t′|
∥θ∥

= o(1) ∥θ∥ = o(1)SNR′
a,b.

Hence,

Pa,b(δ) = P(η ∈ Ba,b(δ)) ≤ max
x∈Ba,b(δ)

1√
(2π)d

exp

(
−1

2
∥x∥2

)
=

1√
(2π)d

exp

(
−1

2
min

x∈Ba,b(δ)
∥x∥2

)
=

1√
(2π)d

exp

(
−1

8
SNR

′2
a,b(δ)

)
= exp

(
−1− o(1)

8
SNR

′2
a,b

)
.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

39



Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiment results were averaged. Error bars were inappropriate from a visual
standpoint.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

41

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper carried out foundational and theoretical analysis on clustering which
has no direct social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

44


	Introduction
	GMM with Unknown but Homogeneous Covariance Matrices
	Model
	Minimax Lower Bound
	Rate-Optimal Adaptive Procedure

	GMM with Unknown and Heterogeneous Covariance Matrices
	Model
	Minimax Lower Bound
	Optimal Adaptive Procedure

	Numerical Studies
	Conclusion
	Proofs in Section 2
	Proofs for the Lower Bound
	Proofs for the Upper Bound
	High-level Idea
	Detailed Proofs


	Proofs in Section 3
	Proofs for the Lower Bound
	Proofs for the Upper Bound

	Technical Lemmas
	With-High-Probability Bounds
	Calculation Related to SNR'


