
MATHSENSEI: A Tool-Augmented Large Language Model for
Mathematical Reasoning

Anonymous ACL submission

Abstract

Tool-augmented Large Language Models001
(TALM) are known to enhance the skillset of002
large language models (LLM), thereby, lead-003
ing to their improved reasoning abilities across004
many tasks. While, TALMs have been success-005
fully employed in different question-answering006
benchmarks, their efficacy on complex math-007
ematical reasoning benchmarks, and, the po-008
tential complimentary benefits offered by tools009
for knowledge retrieval and mathematical equa-010
tion solving, are open research questions. In011
this work, we present MATHSENSEI, a tool-012
augmented large language model for mathe-013
matical reasoning. Augmented with tools for014
knowledge retrieval (Bing Web Search), pro-015
gram execution (Python), and symbolic equa-016
tion solving (Wolfram-Alpha), we study the017
complimentary benefits of these tools through018
evaluations on mathematical reasoning datasets.019
We perform exhaustive ablations on MATH,020
a popular dataset for evaluating mathemati-021
cal reasoning on diverse mathematical disci-022
plines. We also conduct experiments involving023
well-known tool planners to study the impact024
of tool sequencing on the model performance.025
MATHSENSEI achieves 13.5% better accuracy026
over gpt-3.5-turbo with chain-of-thought on027
the MATH dataset. We further observe that028
TALMs are not as effective for simpler math029
word problems (in GSM-8k), and the bene-030
fit increases as the complexity and required031
knowledge increases (progressively over AQuA,032
MMLU-Math, and higher level complex ques-033
tions in MATH).034

1 Introduction035

State-of-the-art Large language models (LLMs), includ-036
ing gpt-3.5-turbo, GPT-4, and open-source counterparts037
like Llama 2 have demonstrated impressive performance038
across a broad spectrum of NLP tasks (Brown et al.,039
2020; Radford et al., 2019; Chowdhery et al., 2022;040
OpenAI, 2023). However, their consistent failure on041
established reasoning dimensions, such as mathemat-042
ical, commonsense, abductive, and multi-hop reason-043
ing (Lu et al., 2023b; Cobbe et al., 2021; Huang and044

Chang, 2023) have led the research community to ex- 045
plore various solutions for enhancing their reasoning 046
abilities. This pursuit has given rise to techniques, such 047
as - (1) intelligent prompting variations, such as chain 048
of thought (Wei et al., 2022), program of thought (Chen 049
et al., 2022), tree of thoughts (Yao et al., 2023), and 050
self-refinement (Madaan et al., 2023), (2) program- 051
guided solving that generates python code as intermedi- 052
ate steps and offloads execution to a symbolic interpreter 053
(Gao et al., 2023), (3) multi-model interaction frame- 054
works, such as Multi-agent Debate (Du et al., 2023; 055
Liang et al., 2023) and Round-Table Conference (Chen 056
et al., 2023b), 4) tool-augmented LLMs powered by ex- 057
ternal symbolic tools, APIs, and libraries (Schick et al., 058
2023; Lu et al., 2023a; Paranjape et al., 2023; Yang and 059
Narasimhan, 2023; Xie et al., 2023). 060

In this work, we study the effectiveness of tool- 061
augmented LLMs (TALM) applied to problems involv- 062
ing mathematical reasoning. Recent advancements 063
in TALM frameworks, such as Chameleon (Lu et al., 064
2023a), OlaGPT (Xie et al., 2023), ART (Paranjape 065
et al., 2023), and SocraticAI (Yang and Narasimhan, 066
2023) have explored the effectiveness of incorporating 067
external tools for solving knowledge-intensive reason- 068
ing tasks and fundamental mathematical problems (such 069
as, arithmetic and algebra). However, the effectiveness 070
of TALM framework is yet to be validated on mathemat- 071
ical reasoning tasks involving complex computations. 072
In this context, it is imperative to assess the suitability 073
of specific tool combinations across diverse mathemat- 074
ical domains (e.g., PreAlgebra, Calculus, Geometry, 075
Intermediate Algebra, Probability) at varying levels of 076
difficulty. This motivated us to undertake a thorough 077
evaluation of TALM framework in the context of com- 078
plex mathematical reasoning tasks. We propose and 079
develop MATHSENSEI, a TALM-based framework, com- 080
prising a distinct set of tools (also referred to as mod- 081
ules), combined in a sequential fashion. These modules 082
include LLM-based components, such as - knowledge 083
retriever (KR). python code generator (PG), code re- 084
finer (CR), , and solution generator (SG); and APIs, 085
such as - Bing-Web-Search-API (BS) and Wolfram- 086
Alpha-API (WA). As illustrated in Fig. 1, MATHSEN- 087
SEI adopts the modular architecture from Chameleon 088
(Lu et al., 2023a). Through systematic experiments of 089
MATHSENSEI, we aim to discern the effectiveness of 090
each module in addressing specific types of mathemati- 091
cal problems, having varying levels of difficulty. 092

1

Question :
Find the positive
difference between
the solutions for
$|x + 3| = 6$."

Solution
Generator

Python
Generator

Wolfram
Alpha

- Python Generator
- Wolfram Alpha
- Solution Generator

Best Setting

Generated Query:
solve |x + 3| = 6
Answer:
Yes, the solution from the Wolfram alpha API for
"solve |x + 3| = 6" is: x = -9 and x = 3 (real solutions)
or x =-3 + 6 e^(i n) and n element R (complex solutions)

MathSensei

student

Generated Code:
from sympy import
Define the equation
Solve the equation
sol = solve(eq, x)
Find the positive difference between the solutions
diff = abs(sol[0] - sol[1])
eq = Abs(x + 3) - 6
print("Positive difference between the solutions:", diff)
Code Output:
Error message: Name ‘x’ is not defined

 - From the Wolfram Alpha response, we find that the solutions are $x=-9$ and $x=3$.
 - The positive difference between the solutions is $3-(-9)=12$.
 - Therefore, the answer is $\\boxed{12}$.

Figure 1: An end-to-end workflow of MATHSENSEI on the compositional setting from the MATH dataset.
The final answer is higlighted in green font.

.

TALM Math Discipline Form Search Python WAlpha Plan Tool-Study
OlaGPT Algebra MCQ ✓ ✗ ✗ Plan-And-Solve ✗

Chameleon ✗ ✗ ✓ ✓ ✗ Plan-And-Solve ✗
ART Algebra Open ✓ ✓ ✗ Call-as-req ✗

MATHSENSEI
Algebra, Precalculus,
Geometry, Probability,
Number Theory & more

Both ✓ ✓ ✓ Both ✓

Table 1: Comparison of MATHSENSEI with state-of-the-art Tool-Augmented LLMs; Form - Question-Answer Format (MCQ
with multiple options, Open/Subjective), Search - Use of Web Search, Python - Python code guided problem solving, WAlpha -
Wolfram Alpha, Tool-Study - Study of each tool, Plan - Planning Strategy used; Plan-And-Solve - Determine the sequence of
tools to be executed beforehand, Call-as-req - Dynamically decide to call tool when required at a step during execution.

Our ablations show complimentary abilities of the093
modules, effect of ordering and combination (such as094
setting of WA + BS + SG (+ +) surpassing PG095
+ SG (+)). This further highlights the need for096
planning strategies. We evaluate two advanced planning097
techniques within our pipeline, investigating method-098
ologies such as Plan-And-Solve (Lu et al., 2023a) and099
REACT (Yao et al., 2022) with MATHSENSEI.100

We make following contributions:101
1. We comprehensively evaluate the effectiveness102
of TALM frameworks across multiple mathemati-103
cal datasets, such as GSM-8K, AQUA-RAT, MATH,104
MMLU-Math, encompassing diverse mathematical105
problem types and tasks. Compared to MATH, MMLU-106
Math, our experiments on simpler mathematical datasets107
(e.g., GSM-8K, AQUA-RAT) reveal minimal benefit of108
using multiple modules on top of CoT prompting.109
2. Through systematic ablations by varying the set and110
order of modules in our framework, we observe that111
complex mathematical problems spanning different do-112
mains (such as, algebra, calculus, number theory, and113
probability from the MATH dataset) can be benefited114
by certain types, combinations, and order of these mod-115
ules. We observe that the BS module outperforms116
the KR module for retrieving relevant knowledge for117
mathematical problems. The setting of WA + BS + SG118
(+ +) outperforms PG + SG (+), demonstrat-119
ing that program-guided solving techniques (Gao et al.,120

2023; Drori et al., 2022) may not be universally suitable 121
for all mathematical problems. These findings motivate 122
the necessity of exploiting better planning techniques. 123
Our best configuration of MATHSENSEI, PG + WA + 124
SG (+ +) achieves an impressive performance 125
accuracy of 47.6 % on the MATH dataset, surpass- 126
ing gpt-3.5-turbo() with Chain-of-Thought (CoT) 127
prompting by 13.5% (Chen et al., 2023a). The same set- 128
ting shows a performance gain of +11.6% over GPT-4 129
(with CoT prompting) on Intermediate Algebra prob- 130
lems. For Precalculus, GPT-4 (with CoT prompting) has 131
an accuracy of 26.7%, which gets improved to 28.9% by 132
our WA + PG + SG (+ +) setting. Improvements 133
on AQuA-RAT and MMLU-Math are lower, 2.4% and 134
3.3% respectively, showing the efficacy decreases as 135
requirement of external knowledge decreases. 136
3. We quantify the performance of state-of-the-art 137
planning techniques, such as Plan-And-Solve and RE- 138
ACT coupled with tool-augmented LLMs on the MATH 139
dataset. However, we do not observe benefit of using the 140
planners over our best configurations of PG+WA+SG, 141
which may indicate a need for developing targeted plan- 142
ning strategies for mathematical TALMs. We include 143
our Planning related experiments in the Appendix. 144

2 Related Work 145

Prompting Techniques. Large Language Models 146
(LLMs) employing prompting strategies such as Chain- 147

2

of-Thought (CoT) (Wei et al., 2022) and Program-148
of-Thought (POT) (Chen et al., 2022) have demon-149
strated commendable performance on simple mathe-150
matical datasets such as GSM-8K (Cobbe et al., 2021).151
However, their efficacy diminishes for datasets requir-152
ing complex computations and advanced mathematical153
knowledge. For instance, on the MATH dataset, GPT-4154
with CoT prompting exhibits a notably low accuracy of155
42%. Several variations of these strategies have been ex-156
plored to improve accuracy in reasoning tasks. Madaan157
et al. (2023) proposed self-refine that involves iteratively158
refining the initial output by utilizing feedback from the159
same model. Zhou et al. (2023) employs code-based160
self-verification, by utilizing python code to check sim-161
ple constraints that the LLM generated output should162
satisfy and correcting the output if necessary. Simi-163
larly, Progressive-Hint-Prompting (Zheng et al., 2023)164
involves multiple turns of interactions, using previously165
generated answers as hints for subsequent turns. Similar166
to POT prompting, PAL (Program Aided language mod-167
els) (Gao et al., 2023) adopts a program-guided solving168
paradigm. It reads natural language problems, generates169
programs as intermediate reasoning steps, and delegates170
the solution step to a runtime environment, such as the171
Python interpreter. Across 13 natural language reason-172
ing tasks within Big-Bench-Hard (Suzgun et al., 2022),173
they observe that program-guided solving consistently174
outperforms significantly larger models.175

In our Tool-augmented framework (MATHSENSEI),176
we incorporate several such techniques. We adopt CoT177
prompting for the text generation modules, and use the178
methodology by Gao et al. (2023) to generate python179
code (using libraries like sympy) based on the current180
context and mathematical question; followed by execu-181
tion of the code using python interpreter. While Gao182
et al. (2023) focuses on elementary level MWP (Math183
Word problems) and simple arithmetic datasets such184
as ASDIV (Miao et al., 2021) and SingleEQ (Koncel-185
Kedziorski et al., 2015), we explore complex mathe-186
matical datasets spanning diverse math problem types187
(MATH, AQUA (Ling et al., 2017), MMLU-Math). Fol-188
lowing self-refine, we employ a code refinement module189
to iteratively rectify syntactical errors in the original190
generated code, using error messages from the inter-191
preter.192
Tool-Augmented LLMs. The emerging trend of tool-193
augmented LLMs has garnered increasing attention194
within the research community. Large language models,195
trained on the objective of next-token prediction, ex-196
cel at generating tokens based on probabilistic patterns197
in their training data, making them effective in data-198
intensive tasks. However, their proficiency falls short199
in capturing nuanced reasoning or token relationships,200
particularly in domains like mathematics. Consequently,201
there are instances or specific question types where it202
would be advantageous for an LLM to leverage support203
from specialized tools or modules. For instance, con-204
sider a question requiring the solution to the roots of205
a 4th-degree polynomial. The LLM, upon generating206

a special token followed by a query, can pause its gen- 207
eration and invoke a mathematics knowledge-base like 208
Wolfram Alpha. Wolfram Alpha, in turn, can utilize 209
its API to process the query and return the answer to 210
the LLM, which can then continue its generation. Tool- 211
former (Schick et al., 2023) leverages data annotated 212
with such tool calls (using special tokens for tools) and 213
responses to train language models to employ tools as 214
needed in a self-supervised manner. Similarly, the tool- 215
augmented LLM framework CHAMELEON (Lu et al., 216
2023a) adopts a plug-and-play approach to utilize tools 217
sequentially. In their setup, the sequence of execution 218
of the tools is predetermined based on a target task; the 219
output of each tool is added to the context for subse- 220
quent downstream tools in the pipeline. They perform 221
evaluation on multi-modal knowledge-intensive datasets 222
like ScienceQA, TabMWP. Similarly, frameworks such 223
as ART (Paranjape et al., 2023) engage in multi-step rea- 224
soning, where each step is linked to a tool call. Utilizing 225
search and code tools, ART tackles various tasks across 226
datasets such as MMLU (Hendrycks et al., 2021a)and 227
BigBench (Srivastava et al., 2023). 228

Our work adopts the generic backbone of popular 229
tool-augmented LLM frameworks such as Toolformer 230
and CHAMELEON. In comparison to the previous work, 231
we distinguish ourselves by conducting a comprehen- 232
sive analysis and comparison specific to tools useful 233
for addressing diverse mathematical problems. No- 234
tably, CHAMELEON lacks evaluation on mathematical 235
datasets, and ART focuses exclusively on algebra, lead- 236
ing to gaps in the assessment of tool-augmented LLMs. 237
Furthermore, our study incorporates a comparison of 238
planning techniques within tool-augmented LLM frame- 239
works for mathematical reasoning, an aspect not ade- 240
quately addressed in the current literature. To the best of 241
our knowledge, planning techniques like REACT (Yao 242
et al., 2022) have primarily been tested on knowledge- 243
intensive reasoning datasets such as FEVER (Thorne 244
et al., 2018) and HotpotQA (Yang et al., 2018). 245

3 Methodology 246

We first discuss some notations to formalize the problem. 247
Let M denote the set of modules1 (each performing a 248
specific task), pi be the input prompt for module mi, 249
and Q be the set of mathematical queries. 250

3.1 Problem Formulation 251

Given an input mathematical query q ∈ Q, the objective 252
is to provide the final correct answer a by executing 253
the set of relevant modules. Let [m1, . . . ,mt], be the 254
ordered sequence of chosen modules for answering q, 255
and [o1, . . . , ot] be the output sequence of the t modules. 256
Let, si, fi, and ci denote the instruction, in-context 257

1The modules can be viewed as external tools, where each
module m ∈ M can be either powered by LLMs, such as
Python code generators, Knowledge Retrievers, or they can
be non-LLM API tools, such as WolframAlpha, Bing Web
Search.

3

example(s), and context, respectively, that we use for258
module mi. The input prompt pi, corresponding to259
module mi is defined as:260

pi = ⟨si; fi; ci⟩ (1)261

where context ci is defined as:262

ci =

{
[q], if i = 1;

[ci−1; oi−1], for i = 2, . . . , t
(2)263

Here, x; y denotes concatenation of x and y.264

3.2 Modules265

In this section, we present a brief overview of the tools266
or modules that we use in our study. We show the267
list of model/api used for each module in Table 14. A268
detailed description of the prompts used in each module269
is presented in the Appendix section.270
• LLM-based Knowledge Retrieval (KR) - For this271
module, we design a prompt to extract relevant knowl-272
edge from a pre-trained LLM (taking any one from the273
list of models mentioned in Table 14) in the form of con-274
cepts, formulas, mathematical expressions, theorems,275
definitions, and hints on how to solve a corresponding276
mathematical question. An example prompt and output277
is shown in Table 9 (§A).278
• Bing Web Search (BS) - This module queries279
the Bing-Web-Search-API () to extract the most rele-280
vant snippets which may contain similar questions and281
concepts required for solving a mathematical problem.282
For similar questions search, we directly query the API283
() with a mathematical question. In case of concepts284
search, we first use an LLM (either gpt-3.5-turbo () or285
text-davinci-003 ()) to generate a query corresponding286
to the input question, and then call the API () to re-287
trieve relevant concepts (refer to Fig. 2 for an example).288

289 • Wolfram Alpha (WA) - This module (comprising290
multiple components) calls the Wolfram-Alpha-API291
() using a query in the Wolfram language, retrieving292
the mathematical information from this knowledge base293
and utilizing the capabilities of its computation engine.294
First we employ an LLM to generate contextualized295
thoughts. Subsequently, based on the generated thought,296
the next component formulates a Wolfram code lan-297
guage query (referred to as the “Final Query”). On298
passing this query as input to the Wolfram Alpha API,299
we get a JSON dictionary object. We extract all the useful300
information from this dictionary (using an LLM-based301
extractor) and add it to the context of next module. An302
overview of the WA module is presented in Fig. 3.303
• Python Generator+Executor (PG) - We use an304
LLM that takes as input the current context as a part of305
a well-structured prompt (shown in Appendix Fig. 4).306
The LLM is explicitly instructed to use the sympy li-307
brary for accessing a set of mathematical operations308
and data structures required. Based on the prompt, the309
module generates an (executable) Python code, which310
on execution returns some output(s) or an error message.311
We handle syntax errors using two setups:312

SIMILAR
QUESTION
SEARCH

CONCEPTS
SEARCH

QUERY
GENERATED

If the fourth term of an arithmetic sequence is 200 and the eighth
term is 500, what is the sixth term?

QUESTION

Question 1: Find the 16th term of
arithmetic sequence with common
difference 2?
From the given, a1 = 0 ; n = 16 ; d
= 2; a16 = 0 + (16 - 1)2; a16 = 15 *
2 = 30

Question 2:
...

What is the formula for the
nth term of an arithmetic
sequence?

The main difference between sequence and series is that, by
definition, an arithmetic sequence is simply the set of numbers
created by adding the common difference each time.

Arithmetic series, on the other head, is the sum of n terms of a
sequence. For example, you might denote the sum of the first
12 terms with S12 = a1 + a2 + ... + a12.",

It is represented by the formula a_n = a_1 + (n-1)d, where a_1 is
the first term of the sequence, a_n is the nth term of the
sequence, and d is the common difference, which is obtained
by subtracting the previous term from the current term. How do
you know if a sequence is arithmetic or geometric?"

Figure 2: Overview of the BS module; We concatenate
the similar questions and concepts (which is then used
by a downstream module).

Find the dot product of

PROMPT

...

{{ thought }}

To find the dot product of two
vectors, we need to multiply
their corresponding components
and then add them up.

Do you know the Wolfram
Alpha command to calculate
the dot product of two given
vectors?

GENERATE
THOUGHT

G
EN

ER
AT

E
W

O
LF

R
A

M
Q

U
ER

Y
...

{{ question }}

EXTRACT
ANSWER

Answer:
Yes, the Wolfram Alpha
command to find the dot
product of the two vectors
is: dot product [-2,0,7] and
[3,4,-5]

Final Query: dot product
[-2,0,7] and [3,4,-5]

...

{{ answer }}

the dot product of [-2,0,7] and
[3,4,-5] is -41.

WOLFRAM ANSWER
JSON OBJECT

...

CALL
WOLFRAM
ALPHA

Figure 3: Overview of the WA module.

- Without refinement: Here, if generated code pro- 313
duces syntax errors, we omit the output of PG 314
from the context for next module. 315

- Code-Refinement (CR): Here, we feed the error 316
message along with the incorrect program to a 317
code-fixing LLM which then generates a corrected 318
python code and rationales of fixed errors given 319
as “Errors fixed”. We also add the information of 320
common errors from our qualitative analysis in the 321
system prompt to aid the code refinement process. 322
An output for the code refinement setup from the 323

4

MATH dataset is presented in Appendix Fig. 5.324

• Solution Generator (SG) - The solution gener-325
ator is the final module in all settings. It takes the326
output from the pipeline and compiles a step-by-step327
solution based on all the context of previous modules.328
The final step is prompted to produce the answer of the329
question. It outputs the final answer enclosed within330
$\\boxed{}$ (similar to the MATH dataset).331

4 Experimental Setup332

We first introduce the mathematical datasets used in our333
study (§4.1), followed by the experiments that we per-334
form with various combinations of modules (§4.2). We335
use gpt-3.5-turbo () as the default LLM in LLM-336
based modules unless mentioned otherwise. This is337
mainly because it is more accessible and cheaper com-338
pared to models like GPT-4. For querying a search-339
engine, we use Bing-We-Search-API. Please refer to340
§A.1 for details about online resources that we use.341

4.1 Datasets342

MATH. The MATH dataset (Hendrycks et al., 2021b)343
serves as the primary dataset for our work. It covers344
5000 mathematical problems, which are categorized into345
seven subject types (Precalculus, Prealgebra, Algebra,346
Geometry, Intermediate Algebra, Counting and Proba-347
bility, and Number Theory) and five levels of difficulty348
(ranging from 1 to 5, where 1 denotes the least difficult349
and 5 denotes the most difficult). Our choice of the350
MATH dataset is motivated by its unique characteristics:351
Unlike many datasets, scaling up LLMs (in terms of352
model parameters) does not necessarily enhance accu-353
racy on MATH. The dataset also poses intricate chal-354
lenges, going beyond simple arithmetic or high school355
mathematics problems.356

AQUA-RAT. The AQUA-RAT dataset (Ling et al.,357
2017) contains 253 algebraic math word problems with358
rationales. Unlike the MATH datset, it has a multiple-359
choice answer format with five options. It allows us to360
evaluate MATHSENSEI on mathematical problems in361
the domain of algebra.362

GSM-8K. GSM-8K (Cobbe et al., 2021) contains363
high school level math word problems which require364
basic arithmetic operations (addition, subtraction, multi-365
plication, and division) to reach the final answer. The366
final answer is always an integer value. We use all 1319367
examples from GSM-8K test set for evaluation.368

MMLU-Math. The MMLU dataset (Hendrycks et al.,369
2021a) covers 57 diverse tasks (including elementary370
mathematics, US history, computer science, etc.), which371
require extensive problem solving abilities and world372
knowledge. For this work, we use the mathematical test373
subset of MMLU, known as MMLU-Math that contains374
974 mathematical questions spanning 5 types - abstract375
algebra, elementary mathematics, high-school mathe-376
matics, college mathematics, and formal logic. Similar377

to AQUA-RAT, MMLU-Math also has a multiple-choice 378
answer format. 379

4.2 Experiments 380

We conduct several experiments by meticulous analysis 381
of individual modules in the domain of complex math- 382
ematical reasoning, through systematic ablations on 383
the module sequences. For some of our ablations, we 384
use different variants of OpenAI models, such as text- 385
davinci-002 () and text-davinci-003 () other than 386
the default gpt-3.5-turbo (). We also employ models 387
from the Llama family, such as Llama-2-7B () and 388
Phind-Code-Llama-34B-V2 (). We use accuracy as 389
our evaluation metric for comparing different settings. 390
Our experiments enquire the following questions: 391
• What is the impact of adding LLM generated mathe- 392
matical knowledge relevant to the question [KR mod- 393
ule] before invoking the Solution Generator module 394
[SG module]? (§5.1) 395
• How does the Bing Web Search [BS module] 396
compare against the LLM-based knowledge generation 397
[KR module] for the task of adding relevant math- 398
ematical knowledge and information to the problem 399
solving process? (§5.1, §5.2) 400
• What is the utility of augmenting mathematical 401
knowledge-bases, such as Wolfram Alpha [WA mod- 402
ule] with LLMs for solving problems across different 403
levels of complexity? How does it compare against the 404
paradigm of program-guided solving? (§5.3) 405
• What are the benefits of using program guided com- 406
plex problem solving [PG module], and impact of 407
LLM-based code refinement [CR module] in case of 408
syntactical errors? (§5.4) 409
• What is the effect of using multiple modules to- 410
gether? How does the benefit vary with the difficulty 411
level, mathematical subject type, and dataset? (§5.5) 412
• How to plan effective utilization of these modules? 413
How does non-adaptive planning strategies [Plan-And- 414
Solve] compare against dynamic planning strategies 415
such as [REACT] which uses a thought, action, and 416
observation based mechanism. (Appendix §A.1) 417

5 Effects of Adding Modules over LLMs 418

Here, we present results and analyze the impact of 419
adding individual modules on top of the original LLM 420
CoT variant (termed SG): 1) KR in § 5.1, 2) BS 421
in §5.2, 3) PG in §5.4, and 4) WA in §5.3. For each 422
module, we also provide ablations over different LLMs 423
(as applicable). 424

5.1 LLM-Based Knowledge Retrieval (KR) 425

Recently, Chameleon (Lu et al., 2023a) demonstrated 426
an accuracy boost for knowledge intensive QA datasets, 427
such as ScienceQA and TabMWP by using the KR 428
module. Skills-In-Context prompting (Chen et al., 429
2023a) also shows similar results by utilizing some ba- 430
sic skills (such as mathematical theorems, during gen- 431
eration). Following the literature, we investigate the 432

5

Model Ovr Acc
text-davinci-002 () 22.8
text-davinci-003 () 27.1
Llama2-7B () 28.4
gpt-3.5-turbo () 34.4

Table 2: Performance of different backbone models
used for KR module in the KR + SG (+) setting.
For all settings, we use gpt-3.5-turbo () as the de-
fault LLM for the SG module.

impact of adding relevant knowledge (such as mathe-433
matical concepts and formulae) using an LLM-based434
KR module in the context of SG module, and exam-435
ine the efficacy of the KR + SG (+) setting on the436
MATH dataset (Table 4). We also ablate over different437
LLMs (Table 2) to power the KR module, while fixing438
the SG module to gpt-3.5-turbo ().439

Results. As shown in of Table 4, the extra knowledge440
retrieved by the KR module is useful only for prob-441
lems in Algebra, PreAlgebra, and Probability domains.442
Moreover, the overall accuracy drops steadily as we443
change KR ’s LLM from gpt-3.5-turbo () to other444
variants (shown in Table 2). This indicates that, generic445
LLMs (such as those mentioned in Table 2) are not446
equipped with mathematical concepts of other domains447
(Precalculus, Gemetry, Number Theory, Intermediate448
Algebra). After analyzing different LLM variants for449
the KR module, we find that the knowledge retrieved450
by weaker LLMs heavily degrades performance of the451
downstream SG module. This motivated us to explore452
the impact of search engine-based knowledge retrieval453
(detailed in §5.2).454

5.2 Query Generation for Bing Web Search (BS)455

We investigate the advantages of adding a search engine-456
based knowledge retrieval module (BS) as an alterna-457
tive of KR for similar questions search and concepts458
search before applying SG .459

Results. In Table 3, we observe that BS + SG (460
+) setting is a clear winner over the SG set-461
ting, when gpt-3.5-turbo () is used for generating462
the BING-Web-Search-API () query and getting fi-463
nal solution from SG . This holds true even if the464
stand-alone SG is varied between text-davinci-003465
() (+22.5%) and gpt-3.5-turbo () (+4.2%).466
Thus, augmenting LLMs with knowledge (relevant to a467
mathematical question) retrieved from the web proves to468
be beneficial in improving problem solving capabilities.469
The use of text-davinci-003 () alone or in com-470
bination with gpt-3.5-turbo () for BS and SG471
modules, diminishes the performance of both BS + SG472
(+) and SG () settings , which is expected (Ye473
et al., 2023).474

5.3 Wolfram Alpha Search (WA)475

We compare the performance of WA + SG (+) and476
SG settings on the MATH dataset in Table 3. We477

LLMs BS+SG WA+SG SG
(+) (+) ()

(+) 38.7 42.6 -
(+) 27.4 35.6 -
(+) 30.0 37.8 -
(+) 20.8 27.0 -

() - - 34.5
() - - 16.2

Table 3: Ablations of BS+SG (+), WA+SG
(+), and SG () settings using different com-
bination of LLMs, such as gpt-3.5-turbo () and
text-davinci-003 () on the MATH dataset.

perform ablations with text-davinci-003 () and gpt- 478
3.5-turbo () as the LLMs used in WA for query gen- 479
eration and answer extraction. 480

Results. From Table 3, we observe that WA + SG 481
(+) outperforms the SG approach by 8.1%, when 482
both WA and SG are powered by gpt-3.5-turbo 483
(). This shows a clear and significant contribution of 484
complementary strengths coming from the knowledge 485
retrieved through Wolfram Alpha (). Furthermore, it is 486
notable that the observed benefits of the WA module 487
cannot be solely attributed to the characteristics of the 488
LLMs employed for query generation or answer extrac- 489
tion. This is evident from the substantial performance 490
gains (around 10.8%) achieved, even after enabling both 491
WA and SG with a comparatively weaker model, 492
such as text-davinci-003 (). Additionally, the mix 493
of text-davinci-003 () and gpt-3.5-turbo () for 494
the WA + SG (+) setting demonstrates superior 495
performance compared to SG with gpt-3.5-turbo 496
(), achieving improvements of 1.1% and 3.3%, respec- 497
tively. Thus, showcasing meaningful positive impact of 498
augmenting WA with the stand-alone SG module. 499

5.4 Python Generator (PG) 500

In this section, we investigate the effectiveness of the 501
Python Generator (PG) module in using python code, 502
and an interpreter to solve mathematical problems (uti- 503
lizing external symbolic libraries from sympy). Fol- 504
lowing, PAL (Program Aided Language Models) (Gao 505
et al., 2023), Program of thought (Chen et al., 2022), 506
our PG module consists of a a program generator and 507
an executor. The generated code and corresponding 508
output are added in context of the next module in se- 509
quence. We present the results of the PG + SG (+) 510
setting in Table 4 for the MATH dataset. For MATH, 511
we present three variations: (i) PG + SG (+) with 512
no code refinement, (ii) PG + CR+ SG (+ +) with 513
code refinement, (iii) PG′[] +SG (+) with Phind- 514
CodeLLama-34B-V2 model used as the LLM for PG 515
Module. We choose Phind-CodeLLama-34B-V2 for 516
our ablation since it is the best model from the hug- 517
gingface Code-LLM leaderboards. The Phind family of 518
models are finetuned versions of CodeLlama-34B on a 519

6

Method Alg P.Cal P.Alg Geom Prob N.Th Int.Alg O.Acc
Baselines with gpt-3.5-turbo ()
CoT-LTP (Guo et al., 2023) 49.6 16.3 52.3 22.5 30.2 29.8 16.9 31.1
ComplexCoT (Fu et al., 2023) 49.1 16.8 53.8 22.3 29.7 33.4 14.6 34.1
ComplexCoT+PHP (Zheng et al., 2023) 51.1 16.1 57.7 25.4 33.7 35.1 17.1 36.5
SKiC (Chen et al., 2023a) 57.9 23.0 62.0 30.1 38.2 35.5 17.8 40.6

Baselines with GPT-4
CoT (Zhou et al., 2023) 70.8 26.7 71.6 36.5 53.1 49.6 23.4 50.4
PHP (Zhou et al., 2023) 74.3 29.8 73.8 41.9 56.3 55.7 26.3 53.9

Ours
SG () 46.7 18.1 55.7 25.3 32.9 30.2 16.2 34.5
KR + SG (+) 49.1 15.0 58.0 24.4 34.3 29.6 12.0 34.4
BS + SG (+) 51.6 20.1 63.3 27.1 36.1 39.6 16.3 38.7
PG + SG (+) 60.0 26.5 66.1 30.7 42.1 40.5 21.1 44.6
PG + CR + SG (+ +) 59.7 25.2 63.9 26.9 48.3 43.0 26.9 44.8
PG′[] + SG (+) 55.4 23.5 58.0 22.9 32.7 42.2 17.9 39.6
WA + SG (+) 57.8 26.1 58.5 26.3 37.6 37.8 31.5 42.6
PG + BS + SG (+ +) 53.1 20.7 58.7 28.6 37.8 36.6 19.9 39.0
BS + PG + SG (+ +) 55.0 23.1 61.2 27.5 35.4 35.4 20.5 39.8
WA + PG + SG (+ +) 62.5 28.9 61.5 27.1 42.6 45.7 33.4 46.3
PG + WA + SG (+ +) 61.6 28.7 64.7 30.5 42.8 49.1 35.0 47.6
BS + WA + SG (+ +) 56.2 22.9 61.0 29.8 37.5 44.0 28.9 42.9
WA + BS + SG (+ +) 60.0 27.0 65.0 29.0 40.5 42.2 31.4 45.4
BS + PG + WA + SG (+ + +) 60.2 26.4 65.0 31.3 44.7 48.7 31.6 46.7

Table 4: Comparison of our Modular Settings to Published Baselines on MATH. We use gpt-3.5-turbo () as the
default LLM for each setting (except one row). For PG′[] + SG (+) setting, we use Phind-CodeLlama-34B-V2
as the underlying LLM for the PG module (while keeping gpt-3.5-turbo () as the default LLM for SG
module); Alg: Algebra, P.Cal: Precalculus, P.Alg: Prealgebra, Geom: Geometry, Prob: Probability, N.Th: Number
Theory, Int.Alg: Intermediate Algebra; We have taken the first four baseline results from SKiC (Chen et al., 2023a),
and following two baselines from (Zhou et al., 2023).

Phind dataset consisting of 80k high quality program-520
ming problems and solutions.521

Results. In Table 4, we observe that the PG + SG (522
+) setting using the sympy library without code re-523
finement can improve upon the performance accuracy524
of SG on the MATH dataset by a margin of 10.1%.525
We find that a majority of problems in MATH require526
complex computations such as solving equations, rep-527
resentation of complex mathematical objects such as528
vectors, solving problems in Geometry, some of which529
are hurdles for the Solution generator module since text530
representations alone fail to capture such complexities.531
Libraries such as sympy, on the other hand, has support532
for symbolically representing such objects using well533
defined functions, classes, methods, and sub-packages.534
We find that this helps PG outperform SG on all math-535
ematical types in MATH. The outcomes of our exper-536
iment with PG + CR + SG (+ +) setting only537
yields marginal enhancements on overall accuracy. We538
also observe a drop in the accuracy by 5% when using539
Phind-CodeLLama-34B-V2 as the LLM in PG module.540

5.5 Results of Multiple Module Experiments541

We experiment with various module combinations542
on four datasets MATH, AQUA-RAT, GSM-8K, and543

Setting FL AA EM CM HM
() 53.9 49.0 84.6 41.0 57.7
(+) 50.6 43.9 84.8 38.6 58.5
(+) 52.4 54.5 88.1 58.0 67.0
(+) 40.5 44.4 80.1 49.0 63.0
(+) 49.5 50.0 81.6 44.0 69.4
(+ +) 44.7 36.1 81.4 57.1 63.7
(+ +) 45.7 55.5 92.1 42.3 68.0
(+ +) 50.0 47.0 81.2 44.0 59.1
(+ +) 46.8 38.0 84.9 47.5 63.3
(+ + +) 41.3 43.0 79.3 45.0 66.1

Table 5: MMLU Accuracy vs type of problem;
FL:Formal logic, AA: Abstract Algebra, EM: Elemen-
tary Mathematics, CM: College Mathematics, HM:
High School Mathematics

MMLU-Math and report in Tabs. 4 & 6. Our findings 544
reveal that distinct modules exhibit specialized efficacy 545
in addressing specific categories of mathematical 546
problems. On the MATH dataset, (1) WA emerges 547
as a valuable resource for tackling intricate math- 548
ematical subdomains, particularly in Intermediate 549
Algebra (Int.Alg) and Number Theory (N.Th). The 550
PG+WA+SG (+ +) setting outperforms SG() by 551
19% on Int.Alg. We conduct a qualitative analysis of 552
PG+SG (+) on 106 randomly sampled questions 553

7

Setting GSM-8K AQUA M.Math
() 77.0 61.4 66.2
(+) 71.8 57.5 64.5
(+) 61.7 57.9 66.0
(+) 56.0 53.5 67.6
(+) 74.1 55.1 68.1
(+ +) 69.1 63.8 65.1
(+ +) 67.6 62.6 67.1
(+ +) 67.6 58.3 67.2
(+ +) 69.2 56.3 69.5
(+ + +) 70.7 61.4 66.9

Table 6: Comparison of Multi-Module Settings for
GSM-8K, AQUA-RAT (AQUA), and MMLU-Math
(M.Math) datasets.

from MATH spanning all types and difficulty levels, pre-554
sented in Table 13. We find that the majority of errors in555
Int.Alg arise from Python code execution errors, clearly556
showcasing the inability of python code to represent557
complex math objects in this domain. In contrast, the558
WA () module effectively interacts with the API using559
symbolic Wolfram code language to address these560
issues, resulting in substantial enhancements.(2) For561
Algebra-related problems (Prealgebra and Algebra)562
having complex computations, the generation of Python563
code guided by PG and the sympy library proves to564
be an effective choice. The WA+PG+SG (+ +)565
setting elevates the performance of SG () by 15.8%566
on Algebra. The PG+SG (+) setting performance is567
also significantly better compared to SG () (10.4%) on568
Prealgebra showing the utility of code representations569
over natural language in this subdomain. (3) Table 8570
presents an examination of the variations in accuracy571
among various settings as a function of the problem572
levels (1-5) in the MATH dataset. Our analysis reveals573
a consistent improvement of over 10% across all574
levels with diverse modular configurations. This575
reaffirms the importance of judiciously selecting tools576
and configurations based on the specific features and577
attributes of the given problem.578
Effectiveness of MATHSENSEI on MMLU-579
Math. Results in Table 6 reveal that the BS+PG+SG580
(+ +) configuration enhances the accuracy of the581
SG () setting by 3.3%. As the performance is gain582
is low, we further perform a type wise analysis in583
Table 5. We observe that, other than Formal Logic584
(FL), adding different modules show substantial585
improvements in different types, such as 17% in586
College Math, 11.7% in High School Math, 7.5%587
in Elementary Math. More specifically we find that:588
(1) The PG+WA+SG (+ +) setting improves the589
accuracy of the SG () setting from 84.6% to 92.1% on590
Elementary mathematics problems. (2) Interestingly,591
problems in formal logic are best solved using SG592
() alone. The drop in performance for the PG+SG593
(+) setting (53.9-> 49.5) is due to the inability of594
PG to adequately represent predicate logic, First Order595
Logic (FOL) sentences through python code, (3) For596
College Mathematics, the Wolfram Alpha () module597
demonstrates highest efficacy, as evidenced by the598

substantial benefits observed in both the WA+SG (+) 599
and WA+PG+SG(+ +) settings. Notably, WA+SG 600
(+) outperforms the SG setting by a significant 601
margin of 17%. Our analysis in MMLU-Math further 602
supports the complimentary benefit of the tools used 603
in MATHSENSEI framework for various mathematical 604
types. 605

Decreased Effectiveness of MATHSENSEI on GSM- 606
8k, and AQUA-RAT. From Table 6, we observe 607
marginal improvement of using multiple modules 608
on AQUA-RAT and GSM-8k, over the standalone 609
SG module. Both datasets mainly comprise sim- 610
pler algebraic and arithmetic word problems. GSM-8K 611
consists of problems requiring simple arithmetic opera- 612
tions, and mostly does not require external mathematical 613
knowledge. The complexity in GSM-8K stems more 614
from linguistic diversity. We conduct a case study on a 615
randomly sampled set of 20 examples from GSM-8K, 616
where PG + SG (+) is incorrect and SG is correct, 617
we find that 18 (out of 20) have incorrect outputs gen- 618
erated by PG (due to reasoning errors)(Table 15). For 619
all these 18 examples, the LLM generated python code 620
tries to solve a simple problem by using complex objects 621
in sympy, which in turn degrades the performance. For 622
the remaining two examples, one has an execution error, 623
while for the other one, SG alters the correct answer 624
to incorrect. 625
Similar to GSM-8K, AQUA-RAT primarily focuses on 626
problems that require generic language-based reason- 627
ing skills. We find that settings with WA mostly hurt 628
the performance compared to SG . This is attributed 629
to the fact that WA and BS are unnecessary for ad- 630
dressing straightforward problems, and invoking them 631
often introduces noisy and irrelevant information into 632
the context of SG . As we saw previously in case of 633
GSM-8K, a significant proportion of errors in PG + SG 634
(+) can be linked to the application of sympy for 635
simple problems (Table 15). These outcomes highlight 636
the diminishing utility of employing additional modules 637
for tasks requiring minimal external knowledge. 638

6 Conclusion 639

We introduce a Tool-augmented Large Language Model 640
(TALM) framework, aka MATHSENSEI, targeted for 641
Mathematical Reasoning. We utilize tools for web- 642
based knowledge retrieval, program execution, and sym- 643
bolic equation solving. We perform extensive ablations 644
over the individual tools, along with varying the or- 645
der and combination on complex mathematical reason- 646
ing datasets (such as MATH). Our best configuration 647
achieves a 13.5% improvement over GPT-3.5-Turbo 648
(with CoT prompting) on MATH. Our experiments with 649
tool-sequencing methods does not improve over our 650
best configuration. We also observe that benefit of math- 651
ematical TALMs are minimal for simpler math word 652
problems (in GSM-8k) and its benefit increases as the 653
required complexity and knowledge for the problem 654
increases through AQuA, MMLU-Math. 655

8

Limitations656

We propose a Tool-Augmented LLM framework657
(TALM), uniquely targeted towards complex mathemat-658
ical reasoning. Here, we discuss three types of lim-659
itations: 1) choice of the set of tools, 2) variants of660
the PG module for simpler problems and 3) devloping661
mathematical TALM-specific planning methods.662

1. Here, we choose tools, which intuitively offers663
knowledge about complex mathematical disciplines and664
complex equation solving capabilities such as Python665
with sympy library, Wolfram-Alpha-API and Bing Web666
Search API. However, we have not explored other667
solvers which are targeted towards logical complexity668
or adding commonsense knowledge. In future, a more669
universal TALM can target adding Z3, SAT solvers and670
OMCS knowledge base query capabilities.671

2. Our Program Generator (PG) module is not only672
inspired by the program-guided solving methods, but673
also targetedly use sympy library to access complex674
mathematical equation solving skills. Such skills may675
not be required for simpler math word problems, as676
present in GSM-8k. In future, we plan to work on677
generalizing the PG module so that it is adaptive for678
simpler problems and focuses mainly on representing679
the problems in code, only accessing sympy capabilities680
when required.681

3. Lastly, we worked on vanilla adaptation of the682
available planning or tool-sequencing methods directly683
in the mathematical TALM (or MATHSENSEI) context.684
From our experiments, it is clear that we need to develop685
more efficient planners that can dynamically choose686
a sequence of tools based on the problem type (say687
WA+PG+SG for algebra and PG + CR+ SG for Proba-688
bility), striking a balance between planning beforehand689
(Plan-And-Solve) and example-wise planning (REACT).690
We hope our work will inspire researchers to work on691
such planning methods for mathematical TALMs.692

References693

Tom Brown, Benjamin Mann, Nick Ryder, Melanie694
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind695
Neelakantan, Pranav Shyam, Girish Sastry, Amanda696
Askell, et al. 2020. Language models are few-shot697
learners. Advances in neural information processing698
systems, 33:1877–1901.699

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song,700
Xiaoyang Wang, Dong Yu, and Jianshu Chen. 2023a.701
Skills-in-context prompting: Unlocking composition-702
ality in large language models.703

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit704
Bansal. 2023b. Reconcile: Round-table conference705
improves reasoning via consensus among diverse706
llms.707

Wenhu Chen, Xueguang Ma, Xinyi Wang, and708
William W Cohen. 2022. Program of thoughts709

prompting: Disentangling computation from reason- 710
ing for numerical reasoning tasks. arXiv preprint 711
arXiv:2211.12588. 712

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 713
Maarten Bosma, Gaurav Mishra, Adam Roberts, 714
Paul Barham, Hyung Won Chung, Charles Sutton, 715
Sebastian Gehrmann, et al. 2022. Palm: Scaling 716
language modeling with pathways. arXiv preprint 717
arXiv:2204.02311. 718

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 719
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 720
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 721
Nakano, Christopher Hesse, and John Schulman. 722
2021. Training verifiers to solve math word prob- 723
lems. arXiv preprint arXiv:2110.14168. 724

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard 725
Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda 726
Chen, Sunny Tran, Newman Cheng, Roman Wang, 727
Nikhil Singh, Taylor L. Patti, Jayson Lynch, Avi Sh- 728
porer, Nakul Verma, Eugene Wu, and Gilbert Strang. 729
2022. A neural network solves, explains, and gener- 730
ates university math problems by program synthesis 731
and few-shot learning at human level. Proceedings 732
of the National Academy of Sciences, 119(32). 733

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. 734
Tenenbaum, and Igor Mordatch. 2023. Improving 735
factuality and reasoning in language models through 736
multiagent debate. 737

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 738
Tushar Khot. 2023. Complexity-based prompting for 739
multi-step reasoning. 740

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 741
Pengfei Liu, Yiming Yang, Jamie Callan, and Graham 742
Neubig. 2023. Pal: Program-aided language models. 743

Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu, 744
Dongyan Zhao, and Nan Duan. 2023. Learning to 745
program with natural language. 746

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 747
Arora, Steven Basart, Eric Tang, Dawn Song, and 748
Jacob Steinhardt. 2021a. Measuring mathematical 749
problem solving with the math dataset. arXiv preprint 750
arXiv:2103.03874. 751

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 752
Arora, Steven Basart, Eric Tang, Dawn Song, and 753
Jacob Steinhardt. 2021b. Measuring mathematical 754
problem solving with the math dataset. NeurIPS. 755

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 756
wards reasoning in large language models: A survey. 757

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish 758
Sabharwal, Oren Etzioni, and Siena Dumas Ang. 759
2015. Parsing algebraic word problems into equa- 760
tions. Transactions of the Association for Computa- 761
tional Linguistics, 3:585–597. 762

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, 763
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and 764
Shuming Shi. 2023. Encouraging divergent thinking 765
in large language models through multi-agent debate. 766

9

http://arxiv.org/abs/2308.00304
http://arxiv.org/abs/2308.00304
http://arxiv.org/abs/2308.00304
http://arxiv.org/abs/2309.13007
http://arxiv.org/abs/2309.13007
http://arxiv.org/abs/2309.13007
http://arxiv.org/abs/2309.13007
http://arxiv.org/abs/2309.13007
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2304.10464
http://arxiv.org/abs/2304.10464
http://arxiv.org/abs/2304.10464
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-767
som. 2017. Program induction by rationale genera-768
tion : Learning to solve and explain algebraic word769
problems.770

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-771
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and772
Jianfeng Gao. 2023a. Chameleon: Plug-and-play773
compositional reasoning with large language models.774
arXiv preprint arXiv:2304.09842.775

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-776
Wei Chang. 2023b. A survey of deep learning for777
mathematical reasoning.778

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler779
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,780
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,781
Shashank Gupta, Bodhisattwa Prasad Majumder,782
Katherine Hermann, Sean Welleck, Amir Yazdan-783
bakhsh, and Peter Clark. 2023. Self-refine: Iterative784
refinement with self-feedback.785

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.786
2021. A diverse corpus for evaluating and developing787
english math word problem solvers.788

OpenAI. 2023. Gpt-4 technical report.789

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,790
Hannaneh Hajishirzi, Luke Zettlemoyer, and791
Marco Tulio Ribeiro. 2023. Art: Automatic multi-792
step reasoning and tool-use for large language models.793
arXiv preprint arXiv:2303.09014.794

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,795
Dario Amodei, Ilya Sutskever, et al. 2019. Language796
models are unsupervised multitask learners. OpenAI797
blog, 1(8):9.798

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta799
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola800
Cancedda, and Thomas Scialom. 2023. Toolformer:801
Language models can teach themselves to use tools.802

Aarohi Srivastava, Abhinav Rastogi, and et al. 2023.803
Beyond the imitation game: Quantifying and extrapo-804
lating the capabilities of language models.805

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-806
bastian Gehrmann, Yi Tay, Hyung Won Chung,807
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,808
Denny Zhou, and Jason Wei. 2022. Challenging big-809
bench tasks and whether chain-of-thought can solve810
them.811

James Thorne, Andreas Vlachos, Christos812
Christodoulopoulos, and Arpit Mittal. 2018.813
Fever: a large-scale dataset for fact extraction and814
verification.815

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten816
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,817
et al. 2022. Chain-of-thought prompting elicits rea-818
soning in large language models. Advances in Neural819
Information Processing Systems, 35:24824–24837.820

Yuanzhen Xie, Tao Xie, Mingxiong Lin, WenTao Wei, 821
Chenglin Li, Beibei Kong, Lei Chen, Chengxiang 822
Zhuo, Bo Hu, and Zang Li. 2023. Olagpt: Empower- 823
ing llms with human-like problem-solving abilities. 824

Runzhe Yang and Karthik Narasimhan. 2023. The 825
Socratic Method for Self-Discovery in Large Lan- 826
guage Models. https://princeton-nlp.github. 827
io/SocraticAI/. 828

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 829
gio, William W. Cohen, Ruslan Salakhutdinov, and 830
Christopher D. Manning. 2018. Hotpotqa: A dataset 831
for diverse, explainable multi-hop question answer- 832
ing. 833

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 834
Thomas L Griffiths, Yuan Cao, and Karthik 835
Narasimhan. 2023. Tree of thoughts: Deliberate 836
problem solving with large language models. arXiv 837
preprint arXiv:2305.10601. 838

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 839
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 840
React: Synergizing reasoning and acting in language 841
models. arXiv preprint arXiv:2210.03629. 842

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai 843
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao 844
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, 845
Qi Zhang, and Xuanjing Huang. 2023. A compre- 846
hensive capability analysis of gpt-3 and gpt-3.5 series 847
models. 848

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo 849
Li, and Yu Li. 2023. Progressive-hint prompting 850
improves reasoning in large language models. 851

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun 852
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song, 853
Mingjie Zhan, and Hongsheng Li. 2023. Solving 854
challenging math word problems using gpt-4 code 855
interpreter with code-based self-verification. 856

A Prompts 857

Module #FewShot(s)
KR 7
WA 5
PG 7
SG 4

Table 7: Number of Few-Shot(s) (or In-context exam-
ple(s)) used in each module.

Here, we provide additional information about the 858
prompts used for each LLM-powered module and ex- 859
amples. We first provide the number of few-shot (or 860
in-context) samples used in each module in Table 7. We 861
further provide the example input prompt and output for 862
the Knowledge Retrieval module in Table 9. We provide 863
the example of the Program Generator module without 864
code refinement in Figure 4 and with code refinement 865
in Figure 5. 866

10

http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/2212.10535
http://arxiv.org/abs/2212.10535
http://arxiv.org/abs/2212.10535
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2106.15772
http://arxiv.org/abs/2106.15772
http://arxiv.org/abs/2106.15772
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/1803.05355
http://arxiv.org/abs/1803.05355
http://arxiv.org/abs/1803.05355
http://arxiv.org/abs/2305.16334
http://arxiv.org/abs/2305.16334
http://arxiv.org/abs/2305.16334
https://princeton-nlp.github.io/SocraticAI/
https://princeton-nlp.github.io/SocraticAI/
https://princeton-nlp.github.io/SocraticAI/
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921

Setting Level 1 Level 2 Level 3 Level 4 Level 5
SG () 71.8 53.1 41.0 25.6 12.2
WA+SG (+) 74.6 60.5 46.6 37.6 21.3
PG+SG (+) 83.6 62.4 52.6 40.0 19.8
WA+PG+SG (+ +) 76.4 61.5 54.0 40.2 25.2
PG+WA+SG (+ +) 79.1 62.8 53.9 41.8 26.9
BS+WA+SG (+ +) 74.6 59.3 51.0 35.6 21.0
WA+BS+SG (+ +) 76.0 60.1 52.0 39.9 24.6
BS+PG+WA+SG (+ + +) 81.0 60.5 52.9 41.6 25.4

Table 8: Performance of different Settings across varying Levels of Complexity (1-5) on the MATH dataset.

[Instruction]
Read the following question, generate the background knowledge or relevant mathematical information as the
context information that could be helpful for answering the question.
[In-context example(s)]
The smallest distance between the origin and a point on the graph of [y = 1

2x
2 − 9] can be expressed as a. Find

a2.
Knowledge:
- The question involves the concept of distance between two points in a coordinate system.
- The distance between the origin and a point (x, y) on the graph is given by the formula

√
(x2 + y2).

- Minimizing (x2 + y2) is same as minimizing
√
(x2 + y2).

- Substitute y = 1/2x2 − 9 into the equation to get x2 + (1/2x2 − 9)2.
- Take derivative of above equation and set it to 0.
[Input Question]
What is the following value when expressed as a common fraction: 1

21 + 1
22 + 1

23 + · · ·+ 1
28 + 1

29 + 1
210 ?

Output
- The question involves understanding of geometric series in mathematics.
- A geometric series is a series of numbers where each term is obtained by multiplying the previous term by a
fixed constant, called the common ratio.
- The sum of the first n terms of a geometric series is given by the formula Sn = a(1− rn)/(1− r), where a is
the first term and r is the common ratio.
- In this case, the first term is 1/2 and the common ratio is also 1/2.
- We need to find the sum of the first 10 terms of the series, which can be calculated using the above formula.

Table 9: Example of Knowledge Retrieval (KR) Prompt and Output .

[Instruction]
You need to act as a policy model, that given a question, determines the sequence of modules that can be executed
sequentially to solve the question.
The modules are defined as follows:
- wolfram-alpha-search: Calls the Wolfram-Alpha API to solve the given question or intermediate steps in the
question.
- bing-search: Retrieves similar questions, background knowledge, useful information using the Bing Web Search
API.
- python-generator: This module generates an executable python program that can solve the given question using
the Sympy library.
- solution-generator: This module generates a detailed solution to the question based on the already generated
context. Normally, solution-generator will incorporate the information from wolfram-alpha-search, bing-search,
python-generator. It is always the last module to be executed.
[In-context example(s)]
Question: Determine the number of ways to arrange the letters of the word ELEVEN.
Modules: [’bing-search’,’solution-generator’]
[Input Question]
If the numbers 4, 5 and 6 are each used exactly once to replace the letters in the expression A(B − C), what is
the least possible result?
Output
Modules: [’python-generator’, ’solution-generator’]

Table 10: Example of Planner Prompt and Output in Plan-And-Solve (PAS).

11

{{ instruction }}

GENERATE
CODE

{{ in-context example(s) }}
...

{{ question }}

Read the following mathematical question and write Python
code using the Sympy library to answer the question or
generate an intermediate result

A particle moves so that it is at at time .
Find the speed of the particle, measured in units of distance
per unit of time.

from sympy import *

t = symbols('t')

r = Matrix([3*sin(t/4),3*cos(t/4)])

v = diff(r, t)

speed = simplify(v.norm())

print(\"Speed of the particle:\", speed)

PROMPT

Speed of the particle:
3*sqrt(Abs(sin(t/4))**2 + Abs(cos(t/4))**2)/4

EXECUTE
CODE

Figure 4: Overview of the PG Module (without code
refinement).

A.1 Planning Strategies867

We explore two state-of-the-art planning strategies868
based following the Chameleon (Lu et al., 2023a) and869
the REACT (Yao et al., 2022) frameworks and report in870
in Table 11.871

Plan-And-Solve Within the Plan-And-Solve (PAS)872
framework, a dynamic planner (LLM), generates a plan873
for a given mathematical problem before the start of exe-874
cution. In our context, the plan consists of the sequence875
of modules to be run. Notably, this planning approach is876
inherently non-adaptive, as the strategy lacks the capa-877
bility to determine the next module based on feedback878
and the output of the previously executed modules. To879
instruct the planner LLM, we provide input prompts880
containing information about each module, along with881
a few-shot example representing a possible sequence.882
The prompts utilized for the planner model are detailed883
in Table 10.884

MATHSENSEI with REACT Planner. The previous885
modular settings, have a fixed order of execution of the886
modules. However, we also wish to test out settings887
where there is power given to the central LLM to call888
different modules as and when required. This is done889
by executing (thought, action request, action execution)890
triplets. The thought serves as a summary of what we891
have till now in relation to answering the question, the892
action request is the specific action we wish to take in893

the next step, and the action execution step calls the nec- 894
essary module from the modules library to execute the 895
action. We call this setting thought-request-execution 896
(Tho-Re-Exec), an overview of the setup is presented 897
in Figure 2. The results for this setting corresponding to 898
each problem type is presented in Table 11. 899

Online Resources. List of online resources that we 900
use are as follows: 901

• open-source icons: https://iconduck.com/ 902
icons/ 903

• llama-2 icon: https://llama-2. 904
ai/wp-content/uploads/2023/08/ 905
Llama-2-icon-150x150.png 906

• codellama icon: https://codellama.dev/ 907
icons/black-transparentbg.png 908

• python icon: https://s3.dualstack. 909
us-east-2.amazonaws.com/ 910
pythondotorg-assets/media/community/ 911
logos/python-logo-only.png 912

• azure openai service: https://azure. 913
microsoft.com/en-us/products/ 914
ai-services/openai-service/ 915

• bing web search api service: https: 916
//www.microsoft.com/en-us/bing/apis/ 917
bing-web-search-api 918

12

https://iconduck.com/icons/
https://iconduck.com/icons/
https://iconduck.com/icons/
https://llama-2.ai/wp-content/uploads/2023/08/Llama-2-icon-150x150.png
https://llama-2.ai/wp-content/uploads/2023/08/Llama-2-icon-150x150.png
https://llama-2.ai/wp-content/uploads/2023/08/Llama-2-icon-150x150.png
https://llama-2.ai/wp-content/uploads/2023/08/Llama-2-icon-150x150.png
https://llama-2.ai/wp-content/uploads/2023/08/Llama-2-icon-150x150.png
https://codellama.dev/icons/black-transparentbg.png
https://codellama.dev/icons/black-transparentbg.png
https://codellama.dev/icons/black-transparentbg.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://s3.dualstack.us-east-2.amazonaws.com/pythondotorg-assets/media/community/logos/python-logo-only.png
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

Plan Method Alg P.Cal P.Alg Geom Prob N.Th Int.Alg O.Acc
PAS* 57.3 29.8 65.0 32.4 42.0 47.7 31.9 47.3
REACT* 62.9 30.6 65.1 32.1 42.0 46.1 33.7 48.9
PG + WA + SG (+ +)* 61.4 32.8 65.2 33.4 45.4 54.2 37.6 50.7
WA + PG + SG (+ +)* 64.4 32.1 62.8 32.1 46.9 49.4 38.3 50.6

Table 11: Comparison of planning strategies: Plan-And-Solve (PAS) and REACT with two of our best performing
settings on 3072 randomly sampled examples from the MATH dataset. Here X* denotes the use of 3072 samples
for evaluating method X.

Setting Level 1 Level 2 Level 3 Level 4 Level 5
PAS* 76.0 60.1 53.9 40.5 26.1
REACT* 78.3 62.0 55.4 41.6 27.9
PG + WA + SG (+ +)* 79.3 65.3 54.3 43.9 31.1
WA + PG + SG (+ +)* 78.3 65.6 55.8 43.1 30.1

Table 12: Comparing Performance of different Planning Strategies (§??) with two of our Top Performing Settings
by varying Difficulty Level of Problems from the MATH dataset.

Subject PG-Exec-Err PG-R-Err SG-Err Tot.Examples
Alg 8 5 2 15
P.Cal 6 9 0 15
P.Alg 4 11 0 15
Geom 3 12 0 15
Prob 8 6 1 15
N.Th 6 7 3 16
Int.Alg 14 0 1 15
Overall Count 51 48 7 106

Table 13: Summary of Error types with PG + SG (+) setting on a random subset of 106 examples (MATH
dataset); PG-Exec-Err: Code generated by PG module having syntactical errors; PG-R-Err: Executable python
code (from PG) having reasoning errors; SG-Err: Solution Generator (SG) alters correct output from PG to
incorrect; Alg: Algebra, P.Cal: Precalculus, P.Alg: Prealgebra, Geom: Geometry, Prob: Probability, N.Th: Number
Theory, Int.Alg: Intermediate Algebra. Here we report the absolute count of errors across different subjects.

13

...

Refined Code:
from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)\
roots =solve(eq, x)
integer_roots = [r for r in roots if int(r) ==r]
print(\"Integer roots:\", integer_roots)
Changed: 'is_integer()' to 'int(r) == r' to check if the roots
are integers
Error: Cannot convert complex to int

FINAL PG OUTPUT

{{ instruction }}
...

{{ in-context example(s) }}
...

Generated Code:
from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)
roots = solve(eq, x)
integer_roots = [r for r in roots if r.is_integer()]
print(\"Integer roots:\", integer_roots)
Error: 'bool' object is not callable

REFINE CODE
(ROUND-1)

Refined Code:
from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)
roots =solve(eq, x)
integer_roots = []
for r in roots:
if r.is_real and int(r) == r:
 integer_roots.append(int(r))
print(\"Integer roots:\", integer_roots)
Changed: Used the is_real() method to check if the roots are real.
Fixed the incorrect way of checking if the roots are integers.
Error: None

PROMPT

REFINE CODE
(ROUND-2)

EXECUTE
CODE

Equation: Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
Integer roots: [-2, 1]

Figure 5: Overview of the Code Refiner module.

Module Models/APIs or Tools
KR text-davinci-002 ()

text-davinci-003 ()
Llama-2-7B ()
gpt-3.5-turbo ()

BS text-davinci-003 ()
gpt-3.5-turbo ()
Bing-Web-Search-API ()

WA text-davinci-003 ()
gpt-3.5-turbo ()
Wolfram-Alpha-API ()

PG gpt-3.5-turbo ()
Phind-CodeLLama-34B-V2 ()
Python Interpreter ()

CR gpt-3.5-turbo ()
SG text-davinci-003 ()

gpt-3.5-turbo ()

Table 14: Module Inventory.

Dataset PG-R-Err PG-Exec-Err SG-Err
GSM-8K 18 1 1

AQUA-RAT 13 6 1

Table 15: Case study of error types of PG+SG (+)
on GSM-8K and AQUA-RAT datasets for 20 randomly
selected examples on which PG(+) fails and SG()
is correct. PG-Exec-Err: Code generated by PG module
having syntactical errors; PG-R-Err: Executable python
code (from PG) having reasoning errors; SG-Err: So-
lution Generator (SG) alters correct output from PG to
incorrect

14

[Question]
Uriah’s book bag is getting too heavy for him. He needs to remove 15 pounds from it. His comic books weigh
1/4 pound each and his toys weigh 1/2 pound each. If he removes 30 comic books, how many toys does he need
to remove?
Gold answer: 30 comic books weigh 7.5 pounds because 30 x .25 = «30*.25=7.5»7.5 He needs to remove 7.5
more pounds because 15 - 7.5 = 7.5 He needs to remove 15 toys because 7.5 / .5 = 15
[PG+SG Output]
Python generator:
from sympy import *
x = symbols(’x’)
eq = Eq((1/4)*(30-x) + (1/2)*x, 15)
print("Equation:",eq)
sol = solve(eq, x)
print("Solution x:",sol)
ans = 30 - sol[0]
print("Toys to remove:",ans)
Python output:
Equation: Eq(0.25*x + 7.5, 15)
Solution x: [30.0000000000000]
Toys to remove: 0
[SG Output]
Solution:
- We know that Uriah needs to remove a total of 15 pounds from his bag.
- He removes 30 comic books, which weigh a total of 30*(1/4) = 7.5 pounds.
- So he still needs to remove 15 - 7.5 = 7.5 pounds.
- Let the number of toys he needs to remove be x.
- The weight of x toys is x*(1/2) = 0.5x pounds.
- We need to solve the equation 0.5x = 7.5 to find x.
- Solving for x, we get x = 15.
- Therefore, Uriah needs to remove 15 toys from his bag.
- the answer is 15

Table 16: Example showing PG+SG(+) (Incorrect) vs SG ()(correct) for GSM-8K

15

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Modules

	Experimental Setup
	Datasets
	Experiments

	Effects of Adding Modules over LLMs
	LLM-Based Knowledge Retrieval (KR)
	Query Generation for Bing Web Search (BS)
	Wolfram Alpha Search (WA)
	Python Generator (PG)
	Results of Multiple Module Experiments

	Conclusion
	Prompts
	Planning Strategies

